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Abstract: In this study, six new 2,6-disubstituted thiosemicarbazone derivatives of pyridine were
synthesized (4–9), and their tuberculostatic activity was evaluated. All of them showed two- to
eightfold higher activity (minimum inhibitory concentration (MIC) 0.5–4 µg/mL) against the resistant
strain compared with the reference drug. Compounds 5 and 7, which contained the most basic
substituents—pyrrolidine and piperidine—in their structure, strongly inhibited the growth of the
standard strain (MIC 2 µg/mL). Furthermore, the same derivatives exhibited activity comparable
to that of the reference drugs against some types of Gram-positive bacteria (MIC 0.49 µg/mL)
and showed no cytotoxicity (IC50 > 50 µg/mL) in HaCaT cells. The zwitterionic structure of each
compound was determined using X-ray crystallography. Absorption, distribution, metabolism, and
excretion analyses showed that all compounds are good drug candidates. Thus, compounds 5 and 7
were identified as leading structures for further research on antituberculosis drugs with extended
effects.

Keywords: synthesis; pyridine; thiosemicarbazone; tuberculostatic activity; antimicrobial activity;
cytotoxic activity; structure–activity relationship; X-ray; ADME

1. Introduction

Tuberculosis (TB) is one of the first-identified contagious diseases and is caused by
Mycobacterium tuberculosis [1,2]. Nevertheless, it remains a huge worldwide epidemiological
problem, as evidenced by a recent report published by the World Health Organization [3].
The greatest obstacle in the implementation of TB control programs, such as the End TB
strategy and TB-DOTS, is the emergence of drug-resistant, including multi-drug-resistant,
M. tuberculosis (MDR-TB) strains [3,4]. The reasons for increased drug resistance include
inadequate healthcare infrastructure, poor adherence to therapy, prescription of the wrong
treatment, drug unavailability or using low-quality drugs, and reinfection, among others [5,
6]. In 2021, 450,000 people developed MDR/RR-TB, and only 36% of confirmed cases were
enrolled for treatment [3]. The treatment of MDR-TB, which is resistant to the two most
potent drugs, isoniazid (INH) and rifampicin (RIF), involves using toxic and less effective
second-line medications and is associated with a long treatment duration (up to 24 months)
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and a high cost of therapy, and it often fails to produce the desired outcomes [7,8]. The
development of new drug regimens against MDR-TB had stagnated for decades until
2012 and 2014, when the EMA approved the use of bedaquiline and delamanid. However,
the numerous side effects of these drugs make their application difficult. All these facts
highlight the urgent need to discover subsequent drugs against TB [9–11].

In the recent literature, several series of compounds containing a pyridine ring [12–14]
or a thiosemicarbazone fragment [15–17] have been reported with promising antituber-
culosis properties. These two elements were combined by our research team to create
2,4-disubstituted pyridine thiosemicarbazone derivatives. Leading structures, DMK-15 and
MKG-1b (Figure 1), could be identified in each of the presented series [18,19]. DMK-15, with
pyrrolidine on the 4-position of the pyridine ring and morpholine in the thiosemicarbazone
chain, showed an excellent tuberculostatic potential (minimum inhibitory concentration
(MIC) 0.4 µg/mL) with low cytotoxic activity on human dermal fibroblast cells (IC50
36.18 µg/mL). MKG-1b, with a phenyl group in the C-4 position and—similar to DMK-15—
morpholine at the end of the side chain, showed high activity toward Mycobacterium strains
(MIC 3.1 µg/mL), with a simultaneous low effect on other pathogenic microorganisms
(MIC 0.98–500 µg/mL).
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Figure 1. Structures of 2,4-disubstituted thiosemicarbazone derivatives of pyridine DMK-15 and
MKG-1b.

In these studies, we looked at how changing the position of the functional group’s
connection to the aromatic ring from 4 to 6 affected the ability to inhibit mycobacteria. We
created six 2,6-disubstituted thiosemicarbazone derivatives of pyridine for this purpose.
The same or similar substituents were introduced into the structures, as in DMK-15 and
MKG-1b. All compounds showed significant activity against the M. tuberculosis-resistant
strain (MIC 0.5–4 µg/mL), whereas two of them also showed activity against the standard
strain (MIC 2 µg/mL).

2. Materials and Methods
2.1. Chemistry

The initial compound (Apollo Scientific, Bredbury, UK) and all reagents and solvents
(Sigma-Aldrich, Darmstadt, Germany) were of analytical grade. Thin-layer chromatog-
raphy was performed on Merck silica gel 60F254 plates and visualized using UV light.
The stationary phase in column chromatography was high-purity Merck silica gel (pore
size 60 Å, 70–230 mesh). Elemental analyses (%C, H, N) of all synthesized compounds
in the solid form were carried out using a PerkinElmer PE 2400 Series II CHNS analyzer
(Perkin-Elmer, Shelton, CT, USA), the results of which were in agreement with the calcu-
lated values within the ±0.4% range. IR spectra were recorded as KBr pellets of the solids
using a Satellite FT-IR spectrophotometer (Bruker, Madison, WI, USA). The 1H and 13C
NMR spectra in DMSO-d6 were recorded using Varian Unity Plus (500 MHz) and Varian
Gemini (200 MHz) instruments (Varian Medical Systems, Palo Alto, CA, USA). Melting
points were determined using a Stuart SMP30 apparatus (Stone, Staffordshire, UK) and
were uncorrected.
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2.1.1. General Procedure for the Synthesis of Nitriles 1–3

First, 40 mmol of 6-chloropicolinonitrile and 48 mmol of an appropriate nucleophilic
agent were dissolved in 25 mL of dioxane, and then, 6 mL of 1,8-diazabicyclo [5.4.0]undec-
7-ene (DBU) was added. The mixture was refluxed for 1–12 h. After the evaporation of the
solvent, ice was added. The precipitated products were filtered, dried, and recrystallized
from a suitable solvent or purified by column chromatography.

6-(Pyrrolidin-1-Yl)Picolinonitrile (1)

Starting from 6-chloropicolinonitrile (5.5 g) and pyrrolidine (4 mL), compound 1 was
obtained as white crystals (6.3 g, 91%): m.p. 73–75 °C (methanol); IR (KBr): 3097, 3075 (υ
CAr-H), 2959, 2865 (υ C-H), 2230 (υ C≡N), 1616, 1595 (υ C=N), 1499, 1458 (υ C=C), 1247,
1225, 1207, 1185 (δ C-H), 793 (γ C-H) cm−1; 1H NMR (500 MHz, DMSO-d6): δ 1.92–1.95 (m,
4H, 2CH2), 4.58–3.84 (m, 4H, 2CH2), 6.75 (d, 1H, pyridine, J = 9 Hz), 7.08 (d, 1H, pyridine,
J = 7 Hz), 7.62 (dd, 1H, pyridine, J1 = 8 Hz, J2 = 8 Hz) ppm; 13C NMR (125 MHz, DMSO-d6):
δ 25.34 (2C), 46.85 (2C), 112.05, 116.69, 118.73, 130.93, 138.17, 157.15 ppm; Anal. Calcd for
C10H11N3 (173.21): C, 69.34; H, 6.40; N, 24.26; Found: C, 69.38; H, 6.17; N, 24.52.

6-(Piperidin-1-Yl)Picolinonitrile (2)

Starting from 6-chloropicolinonitrile (5.5 g) and piperidine (4.7 mL), compound 2 was
obtained as slightly yellowish liquid (6.9 g, 92%): m.p.—(AcOEt:CHCl3 1:5); IR (KBr): 3019
(υ CAr-H), 2939, 2856 (υ C-H), 2234 (υ C≡N), 1595 (υ C=N), 1487, 1446 (υ C=C), 1254, 1215
(δ C-H), 771 (γ C-H) cm−1; 1H NMR (500 MHz, DMSO-d6): δ 1.51–1.54 (m, 4H, 2CH2),
1.0–1.61 (m, 2H, CH2), 2.50–2.51 (m, 4H, 2CH2), 7.11 (d, 1H, pyridine, J = 7 Hz), 7.15
(d, 1H, pyridine, J = 9 Hz), 7.64 (dd, 1H, pyridine, J1 = 7 Hz, J2 = 7 Hz) ppm; 13C NMR
(125 MHz, DMSO-d6): δ 24.54, 25.36 (2C), 45.60 (2C), 112.19, 117.41, 118.56, 130.75, 138.86,
159.04 ppm. The results of the elemental analyses are consistent with a description in the
literature [20,21].

6-Phenoxypicolinonitrile (3)

Starting from 6-chloropicolinonitrile (5.5 g) and phenol (4.5 g), compound 3 was
obtained as white crystals (7.5 g, 91%): m.p. 72–74 °C (AcOEt:CHCl3 1:5); IR (KBr): 3080,
3041 (υ CAr-H), 2239 (υ C≡N), 1586, 1567 (υ C=N), 1491, 1433 (υ C=C), 1258 (δ C-H), 1210
(υ C-O), 802, 767, 704, 686 (γ C-H) cm−1; 1H NMR (500 MHz, DMSO-d6): δ 7.20 (d, 2H, Ph,
J = 8 Hz), 7.28 (t, 1H, Ph, J = 8 Hz), 7.41 (d, 1H, pyridine, J = 9 Hz), 7.47 (t, 2H, Ph, J = 7 Hz),
7.79 (d, 1H, pyridine, J = 7 Hz), 8.08 (t, 1H, pyridine, J = 8 Hz) ppm; 13C NMR (125 MHz,
DMSO-d6): δ 117.41, 117.45, 121.79 (2C), 125.06, 125.83, 129.87, 130.38 (2C), 142.28, 153.23,
163.65 ppm; Anal. Calcd for C12H8N2O (196.20): C, 73.46; H, 4.11; N, 14.28; Found: C, 73.43;
H, 4.27; N, 14.18.

2.1.2. General Procedure for the Synthesis of Thiosemicarbazones 4–9
Method A (4, 6)

A solution of the nitrile (2 mmol) in methanol (10 mL) was treated with DBU (2.7 mmol,
0.4 mL) and heated to reflux for 4 h. Then, 2 mmol of carbothiohydrazide was added, and
the mixture was refluxed for another 1–1.5 h. The reaction mixture was poured onto ice
and acidified with acetic acid, which resulted in precipitation. The precipitated products
were filtered, dried, and purified by column chromatography.

Method B (7)

A solution of the nitrile (2 mmol) in methanol (10 mL) was treated with DBU (2.7 mmol,
0.4 mL) and heated to reflux for 4 h. Then, 2 mmol of carbothiohydrazide was added,
and the mixture was refluxed for another 2.5 h. The reaction mixture was poured onto
ice and acidified with acetic acid, resulting in the formation of an oily suspension, which
was extracted with chloroform (3 × 20 mL). The combined organic layers were dried over
anhydrous MgSO4. The drying agent was filtered, and the solvent evaporated. After triple
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washing with diethyl ether, a precipitate was formed. The precipitated product was dried
and recrystallized from a suitable solvent.

Method C (5, 8, 9)

A solution of the nitrile (2 mmol) in methanol (10 mL) was treated with DBU (2.7 mmol,
0.4 mL) and heated to reflux for 4 h. Then, 2 mmol of carbothiohydrazide was added,
and the mixture was refluxed for another 0.5–1 h. Then, the reaction mixture was cooled,
resulting in the formation of a precipitate. The precipitated products were filtered, dried,
and recrystallized from a suitable solvent.

N’-(Morpholine-4-Carbonothioyl)-6-(Pyrrolidin-1-Yl)Picolinohydrazonamide (4)

Starting from 6-(pyrrolidin-1-yl)picolinonitrile (0.411 g) and morpholine-4-
carbothiohydrazide (0.322 g), the title compound 4 was obtained as yellow crystals (0.576 g,
86%): m.p. 180–182 ◦C (AcOEt:CHCl3 1:1); IR (KBr): 3422, 3286, 3119 (υ N-H), 2957, 2851 (υ
C-H), 1663 (υ C=N), 1608 (δ N-H), 1504, 1424 (υ C=C), 1350, 1309, 1261, 1221 (υ C-N), 1114
(υ C-O), 1021 (δ C-H), 889, 794 (γ C-H) cm−1; 1H NMR (500 MHz, DMSO-d6): δ 1.96–1.99
(m, 4H, 2CH2), 3.40–3.60 (m, 8H, 4CH2), 3.80–3.83 (m, 4H, 2CH2), 6.69 (d, 1H, pyridine,
J = 9 Hz), 7.31 (d, 1H, pyridine, J = 7 Hz), 7.51 (br. s, 1H, NH2 + D2O exchangeable), 7.68 (t,
1H, pyridine, J = 8 Hz), 8.43 (br. s, 1H, NH2 + D2O exchangeable), 12.60 (br. s, 1H, NH +
D2O exchangeable) ppm; 13C NMR (125 MHz, DMSO-d6): δ 25.41 (2C), 46.83 (2C), 47.24
(2C), 66.73 (2C), 108.77, 110.85, 138.64, 142.23, 145.75, 156.16, 179.11 ppm; Anal. Calcd for
C15H22N6OS (334.44): C, 53.87; H, 6.63; N, 25.13; Found: C, 53.74; H, 6.65; N, 24.79.

6-(Pyrrolidin-1-Yl)-N’-(Pyrrolidine-1-Carbonothioyl)Picolinohydrazonamide (5)

Starting from 6-(pyrrolidin-1-yl)picolinonitrile (0.411 g) and pyrrolidine-1-
carbothiohydrazide (0.290 g), the title compound 5 was obtained as yellow crystals (0.425 g,
61%): m.p. 200–201 ◦C (anhydrous ethanol); IR (KBr): 3407, 3243 (υ N-H), 3061 (υ CAr-H),
2969, 2837 (υ C-H), 1664 (υ C=N), 1599 (δ N-H), 1497, 1460 (υ C=C), 1161, 1101 (υ C-N),
1015, 917 (δ C-H), 788 (γ C-H) cm−1; 1H NMR (500 MHz, DMSO-d6): δ 1.81–1.96 (m, 8H,
4CH2), 3.47–3.56 (m, 8H, 4CH2), 6.67 (d, 1H, pyridine, J = 9 Hz), 7.28 (d, 1H, pyridine,
J = 8 Hz), 7.51 (br. s, 1H, NH2 + D2O exchangeable), 7.67 (t, 1H, pyridine, J = 8 Hz), 8.20
(br. s, 1H, NH2 + D2O exchangeable), 12.59 (br. s, 1H, NH + D2O exchangeable) ppm; 13C
NMR (125 MHz, DMSO-d6): δ 25.25 (2C), 25.41 (2C), 46.82 (2C), 48.60 (2C), 108.53, 110.54,
138.62, 142.38, 144.26, 156.15, 176.41 ppm; ppm; Anal. Calcd for C15H22N6S (318.44): C,
56.58; H, 6.96; N, 26.39; Found: C, 56.51; H, 7.03; N, 26.15.

N’-(Morpholine-4-Carbonothioyl)-6-(Piperidin-1-Yl)Picolinohydrazonamide (6)

Starting from 6-(piperidin-1-yl)picolinonitrile (0.374 g) and morpholine-4-
carbothiohydrazide (0.322 g), the title compound 6 was obtained as yellow crystals (0.510 g,
73%): m.p. 177–178 ◦C (AcOEt:CHCl3 1:1); IR (KBr): 3280, 3221, 3134 (υ N-H), 3082 (υ
CAr-H), 2932, 2848 (υ C-H), 1671 (υ C=N), 1607 (δ N-H), 1496, 1461 (υ C=C), 1382, 1350,
1252, 1223 (υ C-N), 1114 (υ C-O), 1020 (δ C-H), 889, 791 (γ C-H) cm−1; 1H NMR (500 MHz,
DMSO-d6): δ 1.53–1.63 (m, 6H, 3CH2), 3.56–3.67 (m, 8H, 4CH2), 3.80–3.81 (m, 4H, 2CH2),
7.08 (d, 1H, pyridine, J = 9 Hz), 7.33 (d, 1H, pyridine, J = 8 Hz), 7.52 (br. s, 1H, NH2 + D2O
exchangeable), 7.70 (t, 1H, pyridine, J = 8 Hz), 8.42 (br. s, 1H, NH2 + D2O exchangeable),
12.62 (br. s, 1H, NH + D2O exchangeable) ppm; 13C NMR (125 MHz, DMSO-d6): δ 24.76,
25.44 (2C), 45.94 (2C), 47.24 (2C), 66.72 (2C), 109.58, 111.09, 139.32, 142.10, 145.53, 158.07,
179.93 ppm; Anal. Calcd for C16H24N6OS (348.47): C, 55.15; H, 6.94; N, 24.12; Found: C,
55.35; H, 6.76; N, 23.89.

6-(Piperidin-1-Yl)-N’-(Pyrrolidine-1-Carbonothioyl)Picolinohydrazonamide (7)

Starting from 6-(piperidin-1-yl)picolinonitrile (0.374 g) and pyrrolidine-1-
carbothiohydrazide (0.290 g), the title compound 7 was obtained as yellow crystals (0.379 g,
57%): m.p. 166–168 ◦C (toluene); IR (KBr): 3433, 3295 (υ N-H), 3054 (υ CAr-H), 2931, 2853
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(υ C-H), 1671 (υ C=N), 1603 (δ N-H), 1533, 1461 (υ C=C), 1361, 1337, 1274, 1236 (υ C-N),
1026 (δ C-H), 914, 787 (γ C-H) cm−1; 1H NMR (500 MHz, DMSO-d6): δ 1.53–1.63 (m, 6H,
3CH2), 1.82–1.83 (m, 4H, 2CH2), 3.55–3.66 (m, 4H, 2CH2), 7.05 (d, 1H, pyridine, J = 9 Hz),
7.30 (d, 1H, pyridine, J = 7 Hz), 7.51 (br. s, 1H, NH2 + D2O exchangeable), 7.69 (t, 1H,
pyridine, J = 8 Hz), 8.20 (br. s, 1H, NH2 + D2O exchangeable), 12.62 (br. s, 1H, NH + D2O
exchangeable) ppm; 13C NMR (125 MHz, DMSO-d6): δ 24.77, 25.24 (2C), 25.46 (2C), 45.95
(2C), 48.60 (2C), 109.35, 110.77, 139.29. 142.23, 144.04, 158.07, 176.51 ppm; Anal. Calcd for
C16H24N6S (332.47): C, 57.80; H, 7.28; N, 25.28; Found: C, 57.49; H, 7.20; N, 24.88.

N’-(Morpholine-4-Carbonothioyl)-6-Phenoxypicolinohydrazonamide (8)

Starting from 6-phenoxypicolinonitrile (0.393 g) and morpholine-4-carbothiohydrazide
(0.322 g), the title compound 8 was obtained as yellow crystals (0.152 g, 21%): m.p. 131–134
◦C (ethanol); IR (KBr): 3453, 3373, 3173 (υ N-H), 3049 (υ CAr-H), 2970, 2851 (υ C-H), 1683
(υ C=N), 1588, 1574 (δ N-H), 1458, 1441 (υ C=C), 1341, 1253, 1227, 1223 (υ C-N), 1108 (υ
C-O), 1023 (δ C-H), 908, 803 (γ C-H) cm−1; 1H NMR (500 MHz, DMSO-d6): δ 3.53–3.55 (m,
4H, 2CH2), 3.77–3.79 (m, 4H, 2CH2), 6.46 (br. s, 1H, NH), 7.19–7.28 (m, 4H, pyridine + 3Ph),
7.42 (t, 2H, pyridine, J = 8 Hz), 7.70 (br. s, 1H, NH), 7.87 (d, 1H, pyridine, J = 8 Hz), 8.09
(t, 1H, pyridine, J = 8 Hz), 8.45 (br. s, 1H, NH) ppm; 13C NMR (125 MHz, DMSO-d6): δ
47.16 (2C), 66.69 (2C), 115.09, 116.86, 121.55 (2C), 125.52, 130.45 (2C), 142.48, 142.57, 144.64,
153.29, 162.80, 179.66 ppm; Anal. Calcd for C17H19N5O2S (357.43): C, 57.13; H, 5.36; N,
19.59; Found: C, 57.09; H, 5.21; N, 19.36.

6-Phenoxy-N’-(Pyrrolidine-1-Carbonothioyl)Picolinohydrazonamide (9)

Starting from 6-phenoxypicolinonitrile (0.393 g) and pyrrolidine-1-carbothiohydrazide
(0.290 g), the title compound 9 was obtained as yellow crystals (0.338 g, 41%): m.p. 170–173
◦C (ethanol); IR (KBr): 3417, 3212 (υ N-H), 3038 (υ CAr-H), 2968, 2852 (υ C-H), 1666 (υ
C=N), 1591, 1574 (δ N-H), 1445, 1424 (υ C=C), 1342, 1273, 1237 (υ C-N), 1107 (υ C-O), 1026
(δ C-H), 797, 703 (γ C-H) cm−1; 1H NMR (500 MHz, DMSO-d6): δ 1.81–1.84 (m, 4H, 2CH2),
3.52–3.53 (m, 4H, 2CH2), 3.73–3.74 (m, 4H, 2CH2), 6.36 (s, 2H, NH2), 7.14–7.28 (m, 3H,
pyridine + 3Ph), 7.43–7.47 (t, 2H, Ph, J = 7 Hz), 7.75 (d, 1H, pyridine, J = 8 Hz), 8.08 (t, 1H,
pyridine, J = 8 Hz), 9.23 (s, 1H, NH) ppm; 13C NMR (125 MHz, DMSO-d6): δ 25.26 (2C),
48.59, 52.86, 115.55, 116.58, 121.43 (2C), 125.43, 130.40 (2C), 142.42, 142.72, 143.23, 153.37,
162.75, 176.98 ppm; Anal. Calcd for C17H19N5OS (341.43): C, 59.80; H, 5.61; N, 20.51; Found:
C, 59.47; H, 5.21; N, 20.27.

2.2. Tuberculostatic Activity Assay

Compounds 4–9 were examined in vitro for their tuberculostatic activity toward two
M. tuberculosis strains: the standard H37Rv strain and a “wild-type” strain isolated from TB
patients, namely Spec. 210, which is resistant to the clinically used antituberculosis drugs
INH, RIF, ethambutol, and p-aminosalicylic acid. Investigations were performed in 96-well
microtiter plates by twofold serial microdilution using Middlebrook 7H9 Broth medium
(Beckton Dickinson) containing 10% of OADC (Beckton Dickinson). The inoculum was
prepared from fresh LJ culture in Middlebrook 7H9 Broth medium with OADC, adjusted
to a no. 0.5 McFarland tube, and diluted 1:100. The stock solution of the tested agent was
prepared in DMSO. For each test compound, stock solutions were diluted in Middlebrook
7H9 Broth medium with OADC to achieve a fourfold value of the final highest concentration
to be tested. Compounds were diluted serially in sterile 96-well microtiter plates using
100 µL Middlebrook 7H9 Broth medium with OADC. Concentrations of the tested agents
ranged from 512 to 0.0625 µg/mL. A growth control step containing no antibiotic and a
sterile control step without inoculation were also performed on each plate. The plates were
incubated at 37 ◦C for 21 days. After the incubation period, 30 µL of Alamar Blue solution
was added to each well, and the plates were reincubated for 24 h. Growth was indicated
by a color change from blue to pink, and the lowest concentration of a compound that
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prevented the color change was noted as its MIC [22,23]. INH was used as the reference
drug for comparison. Each experiment was performed in triplicate.

2.3. In Vitro Antibacterial Activity Assay

The antibacterial and antifungal activities of compounds 4–9 were screened by the
microdilution broth method using Mueller–Hinton broth for the growth of bacteria and
Mueller–Hinton broth with 2% glucose for the growth of fungi. The antimicrobial assays
were carried out following a previous study [24]. The MICs of the aforementioned deriva-
tives were evaluated for the panel of reference microorganisms from the ATCC (American
Type Culture Collection), including Gram-positive bacteria (Staphylococcus aureus ATCC
25923, Staphylococcus epidermidis ATCC 12228, Micrococcus luteus ATCC 10240, Bacillus
subtilis ATCC 6633, and Bacillus cereus ATCC 10876), Gram-negative bacteria (Escherichia
coli ATCC 25922, Proteus mirabilis ATCC 12453, Klebsiella pneumoniae ATCC 13883, and
Pseudomonas aeruginosa ATCC 9027), and fungi (Candida albicans ATCC 102231 and Candida
parapsilosis ATCC 22019) (LGC Standards, Teddington, Middlesex, UK). Vancomycin (VAN),
ciprofloxacin (CIP), and fluconazole (FCZ) were used as standard drugs for comparison.
Each experiment was performed in triplicate.

2.4. Cytotoxic Activity Assay

Compounds 4–9 were stored at room temperature and were dissolved in DMSO at
20 mg/mL on the day of the experiment. Further dilutions were made in the cell growth
medium. HaCaT cells, an immortalized human keratinocyte line (AddexBio, San Diego,
CA, USA; gender: male; age: 62 years; tissue: skin), were plated at 30,000 cells/well in
a 96-well plate without phenol red DMEM supplemented with 10% fetal bovine serum
and penicillin–streptomycin–amphotericin (HiMedia (India)/Sigma-Aldrich, Saint Louis,
MO, USA). Other test compounds were diluted in water to obtain 20× concentrated stock
solutions, which were then added in triplicate to cell cultures at 20× dilution. After 3 days
of incubation, cell viability was assayed using the MTT method, which measures cellular
metabolism by quantifying the activity of dehydrogenases, such as succinate dehydro-
genase, involved in the respiratory electron transport chain in mitochondria (which is
proportional to cell viability) [25]. The total amount of proteins (proportional to cell num-
bers) was then assayed using the sulforhodamine B method [26]. The colorimetric signal
was acquired using a Molecular Devices microplate reader MAX190 and SoftMax3.1.2PRO
software. Statistical significance was evaluated using two-tailed student’s t-tests. De-
viations ≥20% compared with water control with p values below 0.05 were considered
statistically significant.

2.5. X-ray Study

Single crystals of compounds suitable for X-ray diffraction were obtained by slow
evaporation of the solvents at room temperature, from methanol–DMF (1:1 v/v) for 5–
9, and from ]isopropanol–DMF–water (1:1:1 v/v) for 4. Diffraction measurements were
carried out on an XtaLAB Synergy diffractometer, Dualflex, (Rigaku Oxford Diffraction,
PL, London, UK), with a Pilatus 300 K detector at low temperature (100 K) and with
CuKα (1.54184 A) radiation. Diffraction data were processed using CrysAlis PRO (Rigaku
Oxford Diffraction. CrysAlis PRO; Rigaku Oxford Diffraction Ltd.: Yarnton, Oxfordshire,
England). Crystal structure solution and refinement were carried out using SHELX [27,28].
All H atoms (except those involved in hydrogen bonds) were geometrically optimized and
allowed as riding atoms, with distances appropriate for a temperature of 100 K and with
Uiso(H) = 1.2 Ueq(C, N). Methyl H atoms were refined with Uiso(H) = 1.5 Ueq(C).

In 5, the highest maximum in the difference Fourier map was ~0.6 e/A-3, which is
twice as large as the deepest hole on the map. This maximum was located near the sulfur
atom, and its presence can probably be attributable to the anharmonicity of the motion
of the sulfur atom since the anharmonic refinement in olex2 [29] reduces this maximum
to 0.3 e/A-3. Similarly, for 7, the highest maximum on the differential electron density
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map was twice as large as the deepest hole on the map. This disproportion can be reduced
by the anharmonic refinement of sulfur atoms. In 8, a disorder of the morpholine ring
was detected, which was divided into two parts with the occupancy factors 0.59 and
0.41 and refined isotropically. In 6, a large disorder was detected in the piperidine ring
of molecule B. The ring was divided into two parts and refined with occupancy factors
0.83 and 0.17. Unfortunately, an additional disorder of water molecules near the threefold
axis was much more difficult to refine; therefore, the SQUEEZE procedure was used. The
number of electrons found in the solvent-accessible volume was 20, which gave two water
molecules in the unit cell. In 4, a significant disorder around the threefold axis was detected;
therefore, the SQUEEZE procedure was used again. The number of electrons found in
the solvent-accessible volume was 112, which can be interpreted as three isopropanol
molecules and one water molecule in a unit cell. CCDC 2216086, 2216085, 2216084, 2216082,
2208427, and 2,208,428 contain the supplementary crystallographic data for this study. The
data were provided free of charge by The Cambridge Crystallographic Data Centre via
www.ccdc.cam.ac.uk/structures (accessed on 31 October 2022).

2.6. Absorption, Distribution, Metabolism, and Excretion (ADME)

The pharmacokinetic properties, drug-likeness, and absorption of the synthesized com-
pounds were analyzed. An ADME analysis was carried out using the SwissADME service
(Swiss Institute of Bioinformatics 2021 [30] and BOILED-Egg—To Predict Gastrointestinal
Absorption and Brain Penetration of Molecules) [31].

3. Results and Discussion
3.1. Chemistry

The synthesis route used in this study is outlined in Figure 2. The initial compound
6-chloropicolinonitrile was refluxed for 1–12 h with a nucleophilic agent (pyrrolidine,
piperidine, phenol) and then DBU was added to dioxane, yielding 6-substituted picoli-
nonitriles 1–3 (yield 91–92%). Subsequently, the nitrile groups were converted into methyl
imidate groups. These reactions were carried out at reflux for 4 h in the presence of
methanol and a catalytic amount of DBU. To obtain final products 4–9 (yield 21–86%),
each of the methyliminoesters, which were in the solution form prepared in situ, was
condensed with morpholine-4-carbothiohydrazide and pyrrolidine-1-carbothiohydrazide
by heating at boiling temperature for 0.5–2.5 h. Carbothiohydrazides were obtained in the
reaction between methyl hydrazinecarbodithioate and cyclic amines in water or alcohol,
following the modified method described by Klayman et al. [32]. All the newly synthesized
compounds were characterized using the following methods: IR, 1H NMR, and 13C NMR
spectra, elemental analysis. The results of the spectral analysis were in accordance with the
assigned structures. The 1H NMR and 13C NMR spectra of all compounds are provided in
Supplementary Materials in Figures S1–S18.
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3.2. Tuberculostatic Activity

In vitro tuberculostatic activity against M. tuberculosis strains H37Rv and Spec. 210 is
presented in Table 1 and is expressed in MICs, which is the lowest concentration needed to
inhibit the growth of the tested microorganisms in relation to the control with no tested
compound. INH was used as the reference drug. The MIC values of the tested compounds
were in the range of 0.5–16 µg/mL, which indicates good-to-moderate antituberculosis
activity. Compounds 5 and 7 showed the highest ability to inhibit the growth of bacterial
cells. The structure of these compounds contained pyrrolidine and piperidine, respectively,
located at the C6 position of the pyridine ring, and pyrrolidine in the thiosemicarbazone
chain. Compared with the MIC values of INH (0.125 and 8 µg/mL), compounds 5 and 7
showed values that were 16 times higher (MIC 2 µg/mL) for the standard strain; however,
more importantly, compound 7 showed a values that was 16 times lower (MIC 0.5 µg/mL),
and compound 5 showed an value that was 8 times (MIC 1 µg/mL) for the resistant
strain. The presence of a phenoxy moiety in 8 and 9 (with lower basicity and a higher
molecular weight than piperidine and pyrrolidine) at the 6-position on the pyridine ring
and the presence of morpholine in 4, 6, and 8 (with lower lipophilicity and higher electron
density than pyrrolidine) on the side chain decreased the antituberculosis potency for both
the standard strain (MIC 8–16 µg/mL) and the resistant strain (MIC 1–4 µg/mL). These
derivatives showed activity that was two- to eightfold higher against the resistant strain as
compared with the reference drug INH. Interestingly, for all compounds, lower inhibitory
titers were observed for the resistant strain compared with that of the standard strain.

Table 1. In vitro tuberculostatic activity of compounds 4–9.

Compound
MIC [µg/mL]

H37Rv Spec. 210

4 16 4
5 2 1
6 8 1
7 2 0.5
8 8 4
9 8 4

INH 0.125 8

The M. tuberculosis H37Rv strain is used as a reference strain in various microbiological
tests, including drug resistance tests, and in the search for new antimycobacterial drugs.
Whole-genome sequencing of the reference strain and clinical strains revealed considerable
genetic diversity between M. tuberculosis clinical isolates. The absence of some genes has
also been proven in the genome of M. tuberculosis H37Rv in comparison with the genomes
of clinical strains, e.g., genes encoding adenylate cyclase (MT1360), glycosyl transferase
(MT1800), oxidoreductase (MT1801), and others. This genetic diversity observed in studies
comparing the H37Rv genome with the genomes of clinical isolates contributes to the
differences in pathogenicity and virulence of the strains and can explain the phenotypic
variation of the strains. In addition, this fact may explain the higher MIC of the reference
strain compared with the clinical strains [33–36].

3.3. Antimicrobial Activity

In vitro antimicrobial activity is presented in Table 2, which is expressed in MICs.
CIP, VAN, and FCZ were used as reference drugs. Compounds 4–7 and 9 showed higher
bacteriostatic activity against all types of Gram-positive bacteria—except for B. cereus
ATCC 10,876 for 5—than against tuberculostatic activity. For example, for compound 7, the
MIC value for all Staphylococcus strains was 0.49 µg/mL, whereas for the M. tuberculosis
standard strain, it was 2 µg/mL. Moreover, their growth inhibition potential was equal
to or higher than those of the reference drugs CIP and VAN, respectively. Compound
8 showed moderate or weak (MIC 31.3–250 µg/mL) to no activity (MIC > 1000 µg/mL)
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depending on the strain. None of the tested derivatives showed inhibitory effects on the
growth of Gram-negative bacteria strains. A similar relationship was observed for fungi,
except for C. albicans ATCC 102,231 for 4, 5, and 7, and C. parapsilosis ATCC 22,019 for 7,
with good (MIC 7.8–15.6 µg/mL) or moderate activity (MIC 250 µg/mL).

Table 2. In vitro antimicrobial activity against Gram-positive bacteria, Gram-negative bacteria, and
fungi of compounds 4–9.

Chemicals
Microorganism

4 5 6 7 8 9 CIP VAN FCZ

MIC [µg/mL]

Gram-positive bacteria

S. aureus ATCC 25923 3.9 0.49 1.95 0.49 250 0.98 0.49 0.98 -
S. epidermidis ATCC 12228 1.95 0.49 0.98 0.49 31.3 0.49 0.49 0.98 -

M. luteus ATCC 10240 7.8 0.49 0.98 1.95 125 0.49 0.98 0.12 -
B. subtilis ATCC 6633 7.8 0.49 7.8 1.95 >1000 0.49 0.03 0.24 -
B. cereus ATCC 10876 7.8 7.8 7.8 1.95 >1000 3.9 0.12 0.98 -

Gram-negative bacteria

E. coli ATCC 25922 >1000 >1000 >1000 >1000 >1000 1000 - 0.004 -
P. mirabilis ATCC 12453 >1000 >1000 >1000 >1000 >1000 >1000 - 0.03 -

K. pneumoniae ATCC 13883 >1000 >1000 >1000 >1000 >1000 >1000 - 0.06 -
P. aeruginosa ATCC 9027 >1000 >1000 >1000 >1000 >1000 1000 - 0.49 -

Yeasts

C. albicans ATCC 102231 250 250 1000 15.6 >1000 1000 - - 0.98
C. parapsilosis ATCC 22019 >1000 1000 1000 7.8 >1000 1000 - - 1.95

3.4. Cytotoxic Activity

Cytotoxic activity in HaCaT cell lines determined using the two methods is outlined
in Table 3 and is expressed as the half-maximal inhibitory concentration (IC50), which
is defined as a measure of the strength of a substance to inhibit a specific biological or
biochemical function. Compounds 4, 5, and 7 showed no cytotoxicity against noncancer
cells. Compounds 6 and 8 inhibited cell metabolic activity while maintaining cell viability,
whereas compound 9 showed the same while losing cell viability. The selectivity index
(SI) was calculated by comparing IC50 values and determined using the sulforhodamine
B method, for noncancerous epithelial HaCaT cells against MIC values for M. tuberculosis
standard strains. The nontoxicity of compounds 4–8 was indicated by SI values > 1.0. For
compounds 5 and 7, which showed the highest tuberculostatic activity, the MIC value was
more than 25 times lower, as compared with the concentration causing a cytotoxic effect
against noncancer cells.

Table 3. Cytotoxic activity of compounds 4–9.

Compound
IC50-HaCaT [µg/mL] SI IC50-HaCaT/MIC-MT

MTT SULF SULF

4 >50 >50 >3.13
5 >50 >50 >25
6 9.49 >50 >6.25
7 >50 >50 >25
8 0.57 50 6.25
9 0.06 1.31 0.16

3.5. X-ray Study

Crystallographic data are presented in Tables 4 and 5. All tested compounds in the
crystal state assumed the zwitterionic form (Figure 3). Four of the structures, namely 4, 6–8,
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showed static disorder. For trigonal structures, namely compounds 4 and 6, the disorder
was so significant that the SQUEEZE procedure had to be applied. Three structures, namely
4, 6, and 8, were solvates, but the positions of the water molecules were well-defined only
in compound 8. Strong hydrogen bonds occurring in the studied compounds are presented
in Tables 6–11 and in Figure 4. Compounds 5, 7, and 9 showed the same hydrogen bond
system. A chain hydrogen bond of the N–H···S type was formed (Figure 4, example for 9).
A chain bifurcated hydrogen bond of the N–H···S···H–N type was formed in compound 6
(Figure 4). The most complex system of hydrogen bonds was observed in compound 8, in
which water molecules formed hydrogen bonds with each other and with the NH2 group
and the sulfur atom (Figure 4). Four molecules in the asymmetric unit were identified in
compound 7. Due to hydrogen bonding, molecules A and B and molecules C and D formed
chains along the [110] crystallographic direction. These chains, in turn, established planes
parallel to the plane

(
111

)
in the crystal.

Table 4. Crystal data, data collection, and refinement details of compounds 4–6.

4 5 6

Crystal data
Chemical formula C15.50H23.44N6O1.22S C15H22N6S C32H48.22N12O2.11S2

Mr 345.46 318.44 698.94
Crystal system Triagonal Monoclinic Triagonal

Space group R3 : H P21/n R3 : H

a, b, c (Å)
23.2044 (3),
23.2044 (3),
17.2241 (2)

10.2776 (2),
11.0270 (2),
14.7731 (3)

23.47158 (15),
23.47158 (15),

34.2380 (3)
α, β, γ (◦) 90, 90, 120 90, 107.077 (2), 90 90, 90, 120

V (Å3) 8031.7 (2) 1600.44 (6) 16335.2 (3)
Z 18 4 18

µ (mm−1) 1.75 1.84 1.72
Crystal size (mm) 0.47 × 0.19 × 0.14 0.74 × 0.40 × 0.06 0.6 × 0.4 × 0.2

Tmin, Tmax 0.587, 1.000 0.418, 1.000 0.740, 1.000
Data collection

No. of measured,
independent and

observed [I > 2σ(I)]
reflections

35,469, 3757, 3509 22,970, 3306, 3021 65,950, 7458, 6866

Rint 0.037 0.056 0.078
(sin θ/λ)max (Å−1) 0.637 0.636 0.637

Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.037, 0.094, 1.07 0.039, 0.108, 1.04 0.038, 0.100, 1.05

No. of reflections 3757 3306 7458
No. of parameters 227 208 501
∆max, ∆min (e Å−3) 0.57, −0.34 0.61, −0.37 0.33, −0.35

Table 5. Crystal data, data collection, and refinement details of compounds 7–9.

7 8 9

Crystal data
Chemical formula C16H24N6S C17H23O4S C17H19N5OS

Mr 332.47 393.46 341.43
Crystal system Triclinic Orthorhombic Monoclinic

Space group P1 Pccn P21/c

a, b, c (Å)
8.46333 (10),

15.03304 (15),
27.4526 (2)

38.0250 (5),
12.37094 (19),
7.92165 (12)

5.0283 (1),
22.5544 (3),
14.5985 (2)

α, β, γ (◦) 98.1961 (8), 90.2187 (8),
100.2120 (9) 90, 90, 90 90, 97.451 (1), 90

V (Å3) 3400.82 (6) 3726.39 (9) 1641.64 (5)
Z 8 8 4

µ (mm−1) 1.76 1.85 1.87
Crystal size (mm) 0.45 × 0.22 × 0.18 0.54 × 0.25 × 0.20 0.5 × 0.2 × 0.1

Tmin, Tmax 0.338, 1.000 0.752, 1.000 0.526, 1.000
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Table 5. Cont.

7 8 9

Data collection
No. of measured,
independent and

observed [I > 2σ(I)]
reflections

106,334, 14,102, 12,685 14,227, 3766, 3545 23,458, 3365, 3150

Rint 0.079 0.023 0.058
(sin θ/λ)max (Å−1) 0.636 0.636 0.637

Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.047, 0.131, 1.04 0.037, 0.091, 1.05 0.040, 0.111, 1.06

No. of reflections 14,102 3766 3365
No. of parameters 864 252 229
∆max, ∆min (e Å−3) 0.85, −0.54 0.49, −0.45 0.34, −0.39

Table 6. Hydrogen-bond geometry (Å, ◦) for 4.

D—H···A D—H H···A D···A D—H···A

N4—H4A···S1 i 0.87(2) 2.55(2) 3.3997(13) 167(2)

N4—H4B···S1 ii 0.87(2) 2.68(2) 3.4601(13) 150(2)

Symmetry codes: (i) − y + 4/3, x – y + 2/3, z − 1/3; (ii) y − 1/3, − x + y + 1/3, − z + 4/3.

Table 7. Hydrogen-bond geometry (Å, ◦) for 5.

D—H···A D—H H···A D···A D—H···A

N4—H4A···S1 i 0.89(2) 2.45(2) 3.3295(13) 171.8(17)

Symmetry codes: (i)− x + 3/2, y − 1/2, − z + 1/2.

Table 8. Hydrogen-bond geometry (Å, ◦) for 6.

D—H···A D—H H···A D···A D—H···A
N4A—H4AB···S1B 0.88(3) 2.48(3) 3.3022(16) 156(2)

N3B—H3B···S1B 0.83(2) 2.35(2) 2.8530(15) 120(2)

N4B—H4BA···S1A i 0.89(3) 2.50(3) 3.3494(16) 161(2)

N4C—H4CB···S1D i 0.90(3) 2.48(3) 3.3307(16) 157(2)

N4D—H4DA···S1C 0.88(3) 2.45(3) 3.2760(17) 156(2)
Symmetry codes: (i) x − 1, y − 1, z.

Table 9. Hydrogen-bond geometry (Å, ◦) for 7.

D—H···A D—H H···A D···A D—H···A

N4—H4B···S1 i 0.85(2) 2.48(2) 3.3061(15) 165(2)
Symmetry codes: (i)x + 1, − y + 1/2, z + 1/2.

Table 10. Hydrogen-bond geometry (Å, ◦) for 8.

D—H···A D—H H···A D···A D—H···A
N4A—H4A···S1B 0.89(2) 2.49(2) 3.3485(13) 164.3(16)

N4A—H4B···S1A i 0.84(2) 2.86(2) 3.5748(12) 143.9(16)

N3B—H3B···S1B 0.871(19) 2.349(18) 2.8316(12) 115.2(14)

N4B—H4C···S1A ii 0.86(2) 2.59(2) 3.4157(13) 160.3(17)

N4B—H4D···S1B iii 0.81(2) 2.58(2) 3.3085(13) 150.8(17)
Symmetry codes: (i)x − y + 2/3, x + 1/3, −z + 4/3; (ii) −y + 4/3, x – y + 2/3, z−1/3; (iii) x – y + 1, x, −z + 1.
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Table 11. Hydrogen-bond geometry (Å, ◦) for 9.

D—H···A D—H H···A D···A D—H···A
O1W—H1WA···O2W 0.76(2) 2.01(2) 2.7698(18) 174(2)

O1W—H1WB···S1 i 0.86(2) 2.51(2) 3.3673(13) 177.1(18)

O2W—H2WA···S1 ii 0.86(2) 2.45(2) 3.3097(12) 172.8(18)

O2W—H2WB···S1 iii 0.86(2) 2.41(2) 3.2556(13) 169.1(18)

N4—H4A···O14Aa, iv 0.88 2.20 2.928 (4) 139.2

N4—H4A···O14Bb iv 0.88 2.25 3.001(3) 143.8

N4—H4B···O1W 0.88 2.08 2.9164(17) 159.7
Symmetry codes: (i)x, −y + 3/2, z + 1/2; (ii) x, y + 1, z; (iii) x, −y + 3/2, z−1/2; (iv) −x + 1, y + 1/2, −z + 3/2.

3.6. ADME Analysis

A bioavailability radar was created for each compound studied (Figure 5). With
respect to drug-likeness, the compounds were found to have a good bioavailability score
(0.55). All compounds were found to conform to the rules of Lipinski [37], Ghose [38],
Egan [39], Veber [40], and Muegge [41]. Thus, all compounds are good drug candidates.
The logKp value for the tested compounds ranged from−7.61 cm/s to−6.39 cm/s, and the
more negative the logKp, the less skin-permeant the molecule. In the BOILED-Egg diagram
(Figure 6), all compounds showed absorption in the gastrointestinal tract, which may make
them effective drugs. None of the compounds permeated the blood–brain barrier. All
compounds were actively effluxed by P-glycoprotein, represented as (PGP+), which is
indicated by the blue color of the indicator of the compound.
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4. Conclusions

The synthesized compounds 4–9 had a pyrrolidine, piperidine, and phenoxy moiety
at the 6-position on the pyridine ring and a thiosemicarbazone chain terminated with mor-
pholine or pyrrolidine at the 2-position. The compounds were synthesized in three steps:
substitution of a halogen atom of the initial material, their conversion to methyliminoesters,
and condensation with carbothiohydrazides. The spatial structure of the compounds re-
vealed that they crystallize in the zwitterionic form. Zwitterionic species were observed,
probably due to the formation of an intramolecular hydrogen bond. All compounds showed
a good bioavailability score and absorption in the gastrointestinal tract, and none of them
permeated the blood–brain barrier, which makes them good drug candidates. Moreover,
tuberculostatic, antimicrobial, and cytotoxic studies confirmed the drug potential of these
compounds. The whole group of compounds is of particular interest because of their strong
activity against the M. tuberculosis-resistant strain. Compounds containing pyrrolidine (5, 7,
9) show increased antibacterial activity. All these compounds exhibit the same hydrogen
bonding systems. Compound 9 has a lower level of antituberculosis activity; this may
be due to the introduced large phenoxy group. Compounds 5 and 7 can be identified as
leading structures which additionally showed an effect on the standard M. tuberculosis
strain and on other microorganisms and were nontoxic on nontumor cells.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/ma16010448/s1, Figure S1: 1H NMR spectrum (500 MHz, DMSO-
d6) of compound 1; Figure S2: 13C NMR spectrum (125 MHz, DMSO-d6) of compound 1; Figure S3:
1H NMR spectrum (500 MHz, DMSO-d6) of compound 2; Figure S4: 13C NMR spectrum (125 MHz,
DMSO-d6) of compound 2; Figure S5: 1H NMR spectrum (500 MHz, DMSO-d6) of compound 3;
Figure S6: 13C NMR spectrum (125 MHz, DMSO-d6) of compound 3; Figure S7: 1H NMR spectrum
(500 MHz, DMSO-d6) of compound 4; Figure S8: 13C NMR spectrum (125 MHz, DMSO-d6) of
compound 4; Figure S9: 1H NMR spectrum (500 MHz, DMSO-d6) of compound 5; Figure S10: 13C
NMR spectrum (125 MHz, DMSO-d6) of compound 5; Figure S11: 1H NMR spectrum (500 MHz,
DMSO-d6) of compound 6; Figure S12: 13C NMR spectrum (125 MHz, DMSO-d6) of compound 6;
Figure S13: 1H NMR spectrum (500 MHz, DMSO-d6) of compound 7; Figure S14: 13C NMR spectrum
(125 MHz, DMSO-d6) of compound 7; Figure S15: 1H NMR spectrum (500 MHz, DMSO-d6) of
compound 8; Figure S16: 13C NMR spectrum (125 MHz, DMSO-d6) of compound 8; Figure S17: 1H
NMR spectrum (500 MHz, DMSO-d6) of compound 9; Figure S18: 13C NMR spectrum (125 MHz,
DMSO-d6) of compound 9.
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