# Synthesis, antifungal activity and semi-empirical AM1-MO calculations of some new 4-oxo- 4 H -chromene derivatives 

Hafez Mohamed El-Shaaer, Salah Abdel-Ghaffar Abdel-Aziz, Faten Ismail Hanafy, Tarik El-Sayed Ali* and Ali Zaky El-Fauomy<br>Department of Chemistry, Faculty of Education, Ain Shams University, Roxy, 11711, Cairo, Egypt<br>*Corresponding author at: Department of Chemistry, Faculty of Education, Ain Shams University, Roxy, 11711, Cairo, Egypt. Tel.: +2.010.3730144;<br>fax: +2022581243. E-mail address: tarik elsayed1975@yahoo.com (T.E. Ali).

## ARTICLE INFORMATION

Received: 01 January 2011
Received in revised form: 06 February 2011
Accepted: 09 February 2011
Online: 30 June 2011


#### Abstract

Some new antifungal agents have been prepared through reaction of 4-oxo-4 4 -chromene-3carbaldehydes ( $\mathbf{1 a , b}$ ) with some active primary amines ( $\mathbf{2 a - e}$ ) and amides/thioamides ( $\mathbf{6 a - d}$ ) in different conditions. Structures of the products were established on the basis of elemental analysis, IR, ${ }^{1} \mathrm{H}$ NMR, mass spectra and semi-empirical AM1-MO calculations.


## KEYWORDS

## Synthesis

Chromone
Chromone Derivatives
3-Formylchromones
Antifungal Activity
AM1-M0 Calculation

## 1. Introduction

Derivatives of 4 H -1-benzopyran-4-one, also known as 4 H -chromen-4-ones or chromones, belong to an important class of natural oxygen-containing heterocycles that are widely distributed among many plants [1]. Many natural and synthetic chromone derivatives exhibit various types of biological activities [2] and find use as valuable synthetic intermediates in the preparation of pharmacologically relevant products and new heterocyclic systems [3-5]. In recent years, 3formylchromones have attracted considerable attention as highly reactive compounds, which can serve as the starting materials in synthesis of a whole series of heterocycles with useful properties due to three strong electrophilic centres (carbon atoms C-2 and C-4 of the chromone system and formyl group) [6]. These compounds possess a highly polarized $\mathrm{C}_{2}-\mathrm{C}_{3}$ $\pi$-bond and their reactions with dinucleophiles start predominantly from the attack of the unsubstituted C-2 atom ( 1,4 -addition) and are accompanied by pyrone ring opening to form the $\beta$-dicarbonyl intermediate capable of undergoing intramolecular heterocyclizations [7,8]. In continuation to our interest in the chemistry of 4-oxo- 4 H -chromene-3carbaldehydes ring system [9-14], owing to its considerable biological activities. The present work describes the preparation of new systems derived from the reaction of 4 -oxo4 H -chromene-3-carbaldehydes $\mathbf{1 a}, \mathbf{b}$ with primary amines $\mathbf{2 a}, \mathbf{e}$ and amide/thioamide derivatives 6a-d in polar and non-polar solvents. The antifungal activities for some the prepared compounds were investigated. Also, the AM1 molecular orbital calculations for some new compounds were studied and compared with their experimental ${ }^{1} \mathrm{H}$ NMR values.

## 2. Experimental

### 2.1. Instrumentation

The melting point was determined in an open capillary tube on a digital Stuart SMP-3 apparatus. Infrared spectra were measured on Perkin-Elmer 293 spectrophotometer $\left(\mathrm{cm}^{-1}\right)$, using KBr disks. ${ }^{1} \mathrm{H}$ NMR spectra were measured on Gemini-200 spectrometer ( 200 MHz ), using DMSO- $d_{6}$ as a solvent and tetramethylsilane (TMS) ( $\delta$ ) as the internal standard. Mass spectra recorded on a Gas Chromatographic GCMSqp 1000 ex Shimadzu instrument at 70 eV . Elemental microanalyses were performed in microanalysis center at Cairo University. The purity of the synthesized compounds was checked by thin layer chromatography (TLC). 4-0xo- 4 H -chromene-3-carbaldehydes $\mathbf{1 a}, \mathbf{b}$, primary amines $2 \mathbf{d}-\mathbf{e}$ and amide $\mathbf{6 b} \mathbf{- c}$ were prepared by published methods: 1a,b [15], 2d [16], 2e [17], 6b [18], 6c [19].

### 2.2. Synthesis

### 2.2.1. 3-(Aryliminomethyl)-4-oxo-4H-chromenes (3a,d,e)

A mixture of 4 -oxo- 4 H -chromene-3-carbaldehydes $\mathbf{1 a , b}$ $(10.00 \mathrm{mmol})$ and amino compounds namely $1,4-$ phenylenediamine (2a), 4-amino-5-methyl-3-thioxo-1,2,4triazole (2d) and 4-amino-6-methyl-3-thioxo-1,2,4-triazin$5(2 \mathrm{H}$ )-one ( 2 e ) ( 10.00 mmol ) in absolute ethanol or dry benzene ( $50 \mathrm{~cm}^{3}$ ) containing of 4-toluenesulfonic acid ( 0.01 g ) was refluxed for 5 h . The obtained solids were filtered off and crystallized to give 3a,d,e, respectively.






2a-e

Scheme 1

### 2.2.2. 3-(Aryliminomethyl)-4-oxo-4H-chromenes (3b,c)

A mixture of $\mathbf{1 a}(2.08 \mathrm{~g}, 10.00 \mathrm{mmol})$ and 2-furfurylamine $(\mathbf{2 b})$ or 4 -aminoantipyrine ( $2 \mathbf{c}$ ) ( $2.03 \mathrm{~g}, 10.00 \mathrm{mmol}$ ) in dry benzene ( $50 \mathrm{~cm}^{3}$ ) containing 4-toluenesulfonic acid ( 0.01 g ) was refluxed for 5 h . The obtained solids were filtered off and crystallized to give $\mathbf{3 b}, \mathbf{c}$, respectively.
2.2.3. 4-[(2-(Butylthio)-6-methyl-4-oxo-2H-chromen-3(4H)-ylidene)methylamino]-1,2-dihydro-1,5-dimethyl-2-phenyl-pyrazol-3-one (4c)

A mixture of $\mathbf{3 c}(3.73 \mathrm{~g}, 10.00 \mathrm{mmol})$ and 1-butanethiol ( 0.9 $\mathrm{g}, 10.00 \mathrm{mmol}$ ) in dry toluene ( $50 \mathrm{~cm}^{3}$ ), was refluxed for 2 h . The solution so obtained was concentrated to half volume. The obtained solid was filtered off and crystallized to give 4c.

### 2.2.4. 3-[(Arylamino)methylene]-2-ethoxy-2,3-dihydro-6-methylchromen-4-ones (5b,c)

Method A: A mixture of $1 \mathrm{a}(2.08 \mathrm{~g}, 10.00 \mathrm{mmol})$ and 2furfurylamine (2b) or 4-aminoantipyrine (2c) ( 10.00 mmol ) in absolute ethanol ( $50 \mathrm{~cm}^{3}$ ) was refluxed for 5 h . The obtained solids were filtered off and crystallized to give $\mathbf{5 b}, \mathbf{c}$, respectively.

Method B: A compound 3b,c ( $3.73 \mathrm{~g}, 10.00 \mathrm{mmol}$ ) were boiled in absolute ethanol ( $50 \mathrm{~cm}^{3}$ ) for 5 h . The obtained solids were filtered off and crystallized to give $\mathbf{5 b}, \mathbf{c}$, respectively.

### 2.2.5. 3-[(Arylamino)methylene]-2-ethoxy-2,3-dihydro-6-methylchromen-4-ones (7a-c)

A mixture of $\mathbf{1 a}(2.08 \mathrm{~g}, 10.00 \mathrm{mmol})$ and amide compounds namely 2-cyanoacetamide (6a), 4-chlorobenz-ylidene-semicarbazone (6b) and 2-amino-4H-chromen-3carboxamide ( $6 \mathbf{c}$ ) ( 10.00 mmol ) in absolute ethanol ( $50 \mathrm{~cm}^{3}$ ) was refluxed for 5 h . The obtained solids were filtered off and crystallized to give 7a-c, respectively.

### 2.2.6. 3-(N-Aroylamino-1-hydroxymethyl)-6-methyl-chromen-4-ones (8a,c)

Equimolar amounts of $\mathbf{1 a}(2.08 \mathrm{~g}, 10.00 \mathrm{mmol})$ and amide derivatives namely 2 -cyanoacetamide (6a), 2 -amino- 4 H -chromen-3-carboxamide ( $\mathbf{6 c}$ ) ( 10.00 mmol ) in dry benzene ( 50 $\mathrm{cm}^{3}$ ) containing 4-toulenesulfonic acid ( 0.01 g ) were refluxed for 5 h . The obtained solids were filtered off and crystallized to give 8a,c, respectively.

### 2.2.7. 1-(4-chlorobenzylidene)-4-(2-hydroxy-6-methyl-4-oxo-2H-chromen-3(4H)-ylidene)methyl)thiosemicarbazide (9d)

Equimolar amounts of $\mathbf{1 a}(2.08 \mathrm{~g}, 10.00 \mathrm{mmol})$ and 4chlorobenzylidenethiosemicarbazone (6d) (2.13 g, 10.00 mmol ) in dry benzene ( $50 \mathrm{~cm}^{3}$ ) containing 4-toulenesulfonic acid $(0.01 \mathrm{~g})$ was refluxed for 5 h . The obtained solid was filtered off and crystallized to give 9d.

Table 1. Physical properties and mass spectral data of newly prepared compounds.

| Comp. | Formula | M.p. ( ${ }^{( } \mathrm{C}$ ) | Yield <br> (\%) | Calc./Found\% |  | M. Wt | MS, m/z ( $\mathrm{I}_{\mathrm{r}} / \%$ ) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | C | H |  |  |
| 3a | $\mathrm{C}_{16} \mathrm{H}_{11} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{Cl}$ | 203-205 | 61 | 64.33 | 3.71 | 298.73 | - |
|  |  |  |  | 64.38 | 3.54 |  |  |
| 3b | $\mathrm{C}_{16} \mathrm{H}_{13} \mathrm{NO}_{3}$ | 201-203 | 25 | 71.90 | 4.90 | 267.29 | 267 (M+, 28.90\%), 186 (31.60), 174 (11.50), 172 (76.20), 160 (7.90), 135 (22.70), 134 (10.8), 109 (3.6), 108 (25.90), 107 (44.4), 91 (100), 82 (9.1), 81 (80.3), 78(15.1), 69 (94.50), 53 (71.8) |
|  |  |  |  | 71.64 | 4.64 |  |  |
| 3 c | $\mathrm{C}_{22} \mathrm{H}_{19} \mathrm{~N}_{3} \mathrm{O}_{3}$ | 219-221 | 45 | 70.76 | 5.13 | 373.41 | 373 (M+, 9.20), 372 (35.60), 371 (92.90), 343 (12.20), 187 (18.60), 186 (100), 160 (57.40), 135 (20.70), 77 (26.60) |
|  |  |  |  | 70.14 | 4.89 |  |  |
| 3d | $\mathrm{C}_{14} \mathrm{H}_{12} \mathrm{~N}_{4} \mathrm{O}_{2} \mathrm{~S}$ | 223-225 | 66 | 55.99 | 4.03 | 300.34 | $\begin{aligned} & 301(\mathrm{M}+1,0.23), 300(\mathrm{M}+, 0.44), 186(40.20), 135(12.00), 134(17.91), 115 \\ & (100), 91(13.7), 78(23.07), 77(30.13) \end{aligned}$ |
|  |  |  |  | 55.63 | 4.83 |  |  |
| 3 e | $\mathrm{C}_{15} \mathrm{H}_{12} \mathrm{~N}_{4} \mathrm{O}_{3} \mathrm{~S}$ | 229-230 | 75 | 54.87 | 3.68 | 328.35 | $330(\mathrm{M}+2,5.60), 329(\mathrm{M}+1,20.90), 328(\mathrm{M}+, 8.30), 186(95.1), 160(9.70)$, 143 (100), 134 (11.20), 115 (6.90), 102 (7.90), 91 (6.60), 84 (2.70), 52 (2.60) |
|  |  |  |  | 54.51 | 3.52 |  |  |
| 4c | $\mathrm{C}_{26} \mathrm{H}_{29} \mathrm{~N}_{3} \mathrm{O}_{3} \mathrm{~S}$ | 185-187 | 31 | 67.36 | 6.30 | 463.60 | 389 (M-S( $\left.\left.\mathrm{CH}_{2}\right)_{2} \mathrm{CH}_{3}, 73.5\right), 373$ (29.50), 297 ( 41.70 ), 281 (35.10), 214 (6.90), 201 (3.20), 188 (19.40), 187 (7.20), 186 (3.10), 160 (2.40), 121(19.00), 119 (3.90), 91 (2.30), 56 (100) |
|  |  |  |  | 67.13 | 6.21 |  |  |
| 5b | $\mathrm{C}_{18} \mathrm{H}_{19} \mathrm{NO}_{4}$ | 87-88 | 30 | 68.99 | 6.11 | 313.35 | - |
|  |  |  |  | 68.84 | 5.66 |  |  |
| 5c | $\mathrm{C}_{24} \mathrm{H}_{25} \mathrm{~N}_{3} \mathrm{O}_{4}$ | 197-199 | 35 | 68.72 | 6.00 | 419.48 | 421 ( $\mathrm{M}+2,0.35$ ), 391 ( 0.23 ), 373 (M-EtOH, 10.40), 281 (23.02), 203 (44.36), 188 (9.10), 187 (5.08), 121 (10.54), 119 (3.78), 84 (42.09), 83 (15.43), 56 (100) |
|  |  |  |  | 68.52 | 5.86 |  |  |
| 7a | $\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}_{4}$ | 204-205 | 47 | 63.99 | 5.37 | 300.31 | - |
|  |  |  |  | 63.62 | 4.98 |  |  |
| 7b | $\mathrm{C}_{21} \mathrm{H}_{2} \mathrm{~N}_{3} \mathrm{O}_{4} \mathrm{Cl}$ | 244-246 | 31 | 60.94 | 4.87 | 413.86 | 371 (M-HCNO, 13.20), 245 (7.40), 228 (4.10), 186 (67.70), 185 ( 9.70 ), 134 (100), 95 (27.70), 91 (8.60), 77 (16.80), 51 (12.20) |
|  |  |  |  | 60.74 | 4.69 |  |  |
| 7c | $\mathrm{C}_{23} \mathrm{H}_{2} \mathrm{~N}_{2} \mathrm{O}_{5}$ | 261-262 | 40 | 68.31 | 4.98 | 404.42 | 358 (M-EtOH, 31.2), 189 (100), 188 (2.70), 174 (16.80), 173 (98.90), 172 (13.10), 146 (18.20), 145 (20.30), 118 (29.20), 90 (20.30), 89 (37.00), 88 (5.80), 63 (27.00) |
|  |  |  |  | 68.26 | 4.96 |  |  |
| 8a | $\mathrm{C}_{14} \mathrm{H}_{12} \mathrm{~N}_{2} \mathrm{O}_{4}$ | 222-224 | 43 | 61.76 | 4.44 | 272.26 | 272 (M+, 3.40), 255 (15.20), 254 (11.80), 229 (24.10), 188 (47.30), 187 (18.90), 186 (100), 160 (13.90), 134 (25.80), 91 (10.60), 78 (11.90), 77 (22.20), 68 (11.90), 53 (6.50) |
|  |  |  |  | 61.55 | 4.27 |  |  |
| 8c | $\mathrm{C}_{21} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}_{5}$ | 190-192 | 28 | 67.02 | 4.28 | 376.37 |  |
|  |  |  |  | 67.70 | 4.56 |  |  |
| 9d | $\mathrm{C}_{19} \mathrm{H}_{16} \mathrm{~N}_{3} \mathrm{O}_{3} \mathrm{SCl}$ | 210-213 | 25 | 56.78 | 4.01 | 401.87 | 406 (M+4, 70.00), 368 (69.41), 338 (4.71), 305 (17.65), 274 (25.29), 260 (35.20), 238 (27.08), 220 (30.00), 203 (54.12), 178 (100), 176 ( 45.20 ), 113 (3.53) |
|  |  |  |  | 56.86 | 4.09 |  |  |

## 3. Results and discussion

### 3.1. Chemistry

Condensation reactions of Equimolar quantities of 4-oxo4 H -chromene-3-carbaldehydes $\mathbf{1 a}, \mathbf{b}$ with active primary amines namely, 1,4-phenylenediamine (2a), 4-amino-5-methyl-3-thioxo-1,2,4-triazole (2d) and 4-amino-6-methyl-3-thioxo-1,2,4-triazin-5 2 H ) one (2e) in ethanol and/or dry benzene containing 4-toluenesulfonic acid as a catalyst yielded 3-(aryliminomethyl)-4-oxo-4H-chromenes 3a,d,e, respectively (Scheme 1).

Similarly, reaction of 1a with 2-furfurylamine (2b) and 4-aminoantipyrine (2c) in dry benzene containing 4-toluenesulfonic acid gave 3-(aryliminomethyl)-4-oxo-4Hchromene derivative $\mathbf{3 b}, \mathbf{c}$, respectively, but when $1 \mathbf{1 a}$ reacted with 2b,c in boiling ethanol yielded 1,4-adducts $\mathbf{5 b}, \mathbf{c}$, respectively (Scheme 1). Reaction of $3 \mathbf{c}$ with nucleophilic reagents gave 1,4 -adducts due to 1,4 -addition of nucleophilic reagent. Thus, reaction of $3 \mathbf{c}$ with 1-butanethiol in dry toluene gave $\mathbf{4 c}$, and when $\mathbf{3 b}, \mathbf{c}$ were refluxed in absolute ethanol gave $\mathbf{5 b}, \mathbf{c}$ (Scheme 1). Structure of products $\mathbf{3 a - e}, \mathbf{4 c}$ and $\mathbf{5 b}, \mathbf{c}$ were confirmed by elemental analysis, IR, ${ }^{1} \mathrm{H}$ NMR and mass spectra (Table 1 and 2). The 1,4 -adducts $\mathbf{5 b}, \mathbf{c}$ were formed by condensation of aldehyde $\mathbf{1 a}$ with primary amines $\mathbf{2 b}, \mathbf{c}$ followed by 1,4 -addition of ethanol as nucleophile. In addition, ${ }^{1} \mathrm{H}$ NMR spectra of $\mathbf{5 b}, \mathbf{c}$ support the presence of $\mathrm{H}-2$ hydrogen atom on pyranone system not on pyrone system. The reason for this rather unusual ring-addition of ethanol to give 1,4adducts $\mathbf{5 b}, \mathbf{c}$ was the formation of the stable hydrogen-bonded ketoamine system [20].

On the other hand, condensation of aldehyde 1a with primary amines $\mathbf{2 a}, \mathbf{d}, \mathbf{e}$ gave only condensation products $\mathbf{3 a}, \mathbf{d}, \mathbf{e}$ and not gave 1,4-adducts with addition of ethanol because the primary amines $\mathbf{2 a}, \mathbf{d}, \mathbf{e}$ are more basic amines in comparison with the amines $\mathbf{2 b}, \mathbf{c}$ and their basicity are sufficiently to
deprotonated the 1,4 -adducts and initiate the elimination of ethanol to give only the condensation products.

The behaviour of aldehyde 1a towards amide/thioamide derivatives 6a-d in polar and nonpolar medium has been studied. Thus, reaction of 1a with cyanoacetamide (6a), 4 -chlorobenzylidenesemicarbazone (6b) and 2 -amino- 4 H -chromene-3-carboxamide ( $\mathbf{6 c}$ ) in boiling ethanol afforded the 1,4 -adducts $7 \mathbf{a - c}$ with addition of ethanol $[20,21]$ (Scheme 2) (Table 1 and 2).

On the other hand, reaction of aldehyde 1a with 6a,c in dry benzene containing 4-toluenesulfonic acid as a catalyst afforded 3-( N -aroylamino-1-hydroxymethyl)-6-methyl-chro-men-4-ones 8a,c, respectively, while its reaction with 4 -chlorobenzylidene-thiosemicarbazone 6d under the same condition afforded 1-(4-chlorobenzylidene)-4-(2-hydroxy-6-methyl-4-oxo-2H-chromen-3(4H)-ylidene)methyl) thiosemicarbazide (9d) (Scheme 3). Structures of 8a,c and 9d were established by ${ }^{1} \mathrm{H}$ NMR spectra (Table 2). ${ }^{1} \mathrm{H}$ NMR spectra of compounds 8a, c support the presence of OH group on C-9 of chromone moiety, while for $\mathbf{9 d}$ support the presence of OH group on C-2 of chromanone moiety.

### 3.2. Molecular orbital calculations

The experimental ${ }^{1} \mathrm{H}$-NMR spectra results were compared with theoretical data which were obtained from molecular mechanical calculations on the basis of the semi-empirical AM $_{1}$ methods of HyperChem 7.5 computer program. The calculated charges on $\mathrm{H}-2$ and $\mathrm{H}-9$ hydrogen atoms using $\mathrm{AM}_{1}-\mathrm{MO}$ calculation method after geometrical optimization of the structures were compared with experimental ${ }^{1} \mathrm{H}$ NMR $\delta$ values for compounds 3a-9d (Table 3).

The calculated charges on $\mathrm{H}-2$ and $\mathrm{H}-9$ hydrogen atoms $\left(\mathrm{Q}_{\mathrm{H}}\right)$ are linearly related to the measured ${ }^{1} \mathrm{H}-\mathrm{NMR} \delta$ values for compounds 3a-9d from the linear relations $\delta-\mathrm{NMR}_{(\mathrm{H}-2)}=3.748$ $+24.476\left(\mathrm{Q}_{\mathrm{H}-2}\right), r=0.99$ except $(\mathbf{3 a}, \mathbf{4 c}, \mathbf{5 b}, \mathbf{8 c})$ and $\delta-\mathrm{NMR}_{(\mathrm{H}-9)}$

Table 2. IR and ${ }^{1} \mathrm{H}$ NMR spectral data of newly prepared compounds.

| Compound | IR, ( $\mathrm{v} / \mathrm{cm}^{-1}$ ) | ${ }^{1} \mathrm{H}$ NMR (DMSO- $\boldsymbol{d}_{6}, \delta$ ) |
| :---: | :---: | :---: |
| 3a | $1604(\mathrm{C}=\mathrm{N}), 1641(\mathrm{C}=0), 3378\left(\mathrm{NH}_{2}\right)$ | $\begin{aligned} & 6.60\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{~J}_{7,8}=6.7 \mathrm{~Hz}, \mathrm{H}-8\right), 6.92-7.28(\mathrm{~m}, 7 \mathrm{H}, \mathrm{Ar}-\mathrm{H} \text { and } \mathrm{H}-9), 7.76(\mathrm{br} \mathrm{~s}, \mathrm{H}-2), 12.08-12.15 \text { (br s, } \\ & \left.2 \mathrm{H}, \mathrm{NH}_{2}\right) \end{aligned}$ |
| 3b | $\begin{aligned} & 3035\left(\mathrm{CH}_{\text {arom }}\right), 2945\left(\mathrm{CH}_{\text {aliph }}\right), \\ & 1645\left(\mathrm{C}=\mathrm{O}_{\text {pyrone }}\right), 1616(\mathrm{C}=\mathrm{N}) \end{aligned}$ | - ${ }^{\text {c }}$ |
| 3 c | 1619 ( $\mathrm{C}=\mathrm{O}_{\text {pyrone }}$ ), 1652 ( $\mathrm{C}=\mathrm{O}_{\text {pyrazole }}$ ) | $\begin{aligned} & 2.44\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{Ar}-\mathrm{CH}_{3}\right), 3.14\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{~N}-\mathrm{CH}_{3}\right), 7.29-7.50(\mathrm{~m}, 8 \mathrm{H}, \mathrm{Ar}-\mathrm{H} \text { and } \mathrm{Ph}-\mathrm{H}, \mathrm{H}-9), 8.06(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}-5) \text {, } \\ & 8.66(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}-2) \end{aligned}$ |
| 3d | $\begin{aligned} & 1601 \text { (C=C), } 1619 \text { (C=N), } 1651 \text { (C=0), } \\ & 3109 \text { (NH) } \end{aligned}$ | $\begin{aligned} & 2.46\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{Ar}-\mathrm{CH}_{3}\right), 2.50\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{Ar}^{2}-\mathrm{CH}_{3}\right), 7.48-7.66(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-7 \text { and } \mathrm{H}-8), 7.93(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}-5) \text {, } \\ & 8.20 \text { (br s, } 1 \mathrm{H}, \mathrm{H}-9), 8.71 \text { (br s, } 1 \mathrm{H}, \mathrm{H}-2), 11.03(\mathrm{~s}, 1 \mathrm{H}, \mathrm{SH}) \end{aligned}$ |
| 3 e | $\begin{aligned} & 1641\left(\mathrm{C}=\mathrm{O}_{\text {pyrone }}\right), 1701\left(\mathrm{C}=\mathrm{O}_{\text {triazine }}\right) \text {, } \\ & 3173(\mathrm{NH}) \end{aligned}$ | $\begin{aligned} & 2.20\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{Ar}-\mathrm{CH}_{3}\right), 2.47\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{Ar}-\mathrm{CH}_{3}\right), 7.64-7.75(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-7 \text { and } \mathrm{H}-8), 7.93(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}-5) \text {, } \\ & 8.76(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}-9), 9.14(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}-2), 13.66(\mathrm{~s}, 1 \mathrm{H}, \mathrm{SH}) \end{aligned}$ |
| 4c | $\begin{aligned} & 1640 \text { ( } \mathrm{C}=\mathrm{O}_{\text {pyrone }} \text { ), } 1673 \text { ( } \mathrm{C}=\mathrm{O}_{\text {pyrazole }} \text { ), } \\ & 3114 \text { (NH) } \end{aligned}$ | $1.17\left(\mathrm{t}, 3 \mathrm{H}, \mathrm{CH}_{3}\right)$, 2.09-2.73 (m, 13H, $\mathrm{CH}_{2} \mathrm{CH}_{2}$ and $\mathrm{Ar}-\mathrm{CH}_{3}$ ), 3.07-3.19 (m, $2 \mathrm{H}, \mathrm{SCH}_{2}$ ), $8.06(\mathrm{ss}, 1 \mathrm{H}, \mathrm{H}-$ 2), $7.00-7.80(\mathrm{~m}, 6 \mathrm{H}, \mathrm{Ar}-\mathrm{H}$ and $\mathrm{Ph}-\mathrm{H}), 7.95(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}-5), 8.82,8.98$ (ss, $1 \mathrm{H}, \mathrm{H}-9), 9.62(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH})$ |
| 5b | 1617 ( $\mathrm{C}=\mathrm{C}$ ), 1652 ( $\mathrm{C}=\mathrm{O}_{\text {pyrone }}$ ), 3254 ( NH ) | $1.06\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{CH}_{3}\right.$ ethoxy), $2.22\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{Ar}^{2} \mathrm{CH}_{3}\right.$ ), 3.29-3.60 (m, 2H, CH $\mathrm{CH}_{2}$ ethoxy), 4.51-4.77 (m, 2H, N-$\mathrm{CH}_{2}$-furan), 5.94, 5.96 (ss, 1H, H-2), 6.37-6.47 (m, 3H, furan), $6.80-8.14$ (m, 4H, H-9 and Ar-H), $9.42\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}_{9,10}=3.4 \mathrm{~Hz}, \mathrm{NH}\right)$ |
| 5c | $\begin{aligned} & 1640 \text { ( } \mathrm{C}=\mathrm{O}_{\text {pyrone }} \text { ), } 1673 \text { ( } \mathrm{C}=\mathrm{O}_{\text {pyrazole }} \text { ), } \\ & 3389 \text { (NH) } \end{aligned}$ | 1.06 ( $\mathrm{m}, 3 \mathrm{H}, \mathrm{CH}_{3}$ ethoxy), $2.50\left(\mathrm{~m}, 6 \mathrm{H}, \mathrm{Ar}-\mathrm{CH}_{3}\right.$ ), $3.19\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{N}-\mathrm{CH}_{3}\right), 3.86$ (br s, $2 \mathrm{H}, \mathrm{CH}_{2}$ ethoxy), 6.80 (br s, 1H, H-2), 7.06-7.65 (m, 7H, Ar-H and Ph-H), $7.95(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}-5), 8.89\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}_{9,10}=3.2 \mathrm{~Hz}\right.$, $\mathrm{H}-9), 9.68\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}_{9,10}=3.2 \mathrm{~Hz}, \mathrm{NH}\right)$ |
| 7a | $\begin{aligned} & 1616(\mathrm{C}=\mathrm{C}), 1658(\mathrm{C}=\text { Opyrone }), \\ & 1695\left(\mathrm{C}=\mathrm{O}_{\text {amide }}\right), 2224(\mathrm{C} \equiv \mathrm{~N}), 3388(\mathrm{NH}) \end{aligned}$ | 1.21 (m, 3H, CH 2 ethoxy), 2.42 ( $\mathrm{s}, 3 \mathrm{H}, \mathrm{Ar}-\mathrm{CH}_{3}$ ), 2.88, 2.95 (ss, $2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CN}$ ), 3.69-3.85 (m, 2H, CH ethoxy), 5.15 (br s, $1 \mathrm{H}, \mathrm{OH}$ enolic), $6.88-8.00$ (m, $5 \mathrm{H}, \mathrm{H}-2, \mathrm{H}-9$ and Ar-H) |
| 7b | $\begin{aligned} & 1618(\mathrm{C}=\mathrm{N}), 1645\left(\mathrm{C}=\mathrm{O}_{\text {pyrone }}\right), \\ & 1695\left(\mathrm{C}=\mathrm{O}_{\text {amide }}\right), 3443,3232(\mathrm{NH}, \mathrm{NH}) \end{aligned}$ | 1.07 (m, 3H, CH ${ }_{3}$ ethoxy), $2.45\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{Ar}-\mathrm{CH}_{3}\right), 3.32\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right.$ ethoxy), $6.53(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{H}-2)$, 7.42-8.18 (m, 9H, H-9, CH=N and Ar-H), 9.00 (br s, 1H, NH), 10.33 (br s, 1H, NH) |
| 7c | $\begin{aligned} & 1604 \text { ( } \mathrm{C}=\mathrm{C}), 1680\left(\mathrm{C}=\mathrm{O}_{\text {pyrone }}\right) \\ & \left.1716 \text { ( } \mathrm{C}=\mathrm{O}_{\text {amide }}\right), 3150(\mathrm{NH}=\mathrm{C}-), 3390(\mathrm{NH}) \end{aligned}$ | $1.10\left(\mathrm{t}, 3 \mathrm{H}, \mathrm{CH}_{3}\right.$ ethoxy), $2.51\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{Ar}-\mathrm{CH}_{3}\right), 3.55-3.57$ (br s, 2H, CH 2 ethoxy), 7.19-8.09 (m, 10H, $\mathrm{H}-2, \mathrm{H}-9$ and $\mathrm{Ar}-\mathrm{H}$ ), 8.52 ( $\mathrm{s}, 1 \mathrm{H}, \mathrm{NH}$ ), 8.88 ( $\mathrm{s}, 1 \mathrm{H}, \mathrm{NH}$ ) |
| 8a | $\begin{aligned} & 1606(\mathrm{C}=\mathrm{C}), 1667\left(\mathrm{C}=\mathrm{O}_{\text {pyrone }}\right), 1695 \\ & \left(\mathrm{C}=\mathrm{O}_{\text {amide }}\right), 2264(\mathrm{C} \equiv \mathrm{~N}), 3333 \text { (br s, NH, OH) } \end{aligned}$ | 2.42 (s, 3H, Ar-CH3), 2.88, 2.95 (ss, 2H, CH2CN), 5.96 (br s, $1 \mathrm{H}, \mathrm{OH}$ ), 7.11-7.44 (m, 4H, H-9 and ArH), 8.53 (s, 1H, H-2), 10.39 (s, 1H, NH) |
| 8c | $\begin{aligned} & 1603(\mathrm{C}=\mathrm{N}), 1648\left(\mathrm{C}=\mathrm{O}_{\text {pyrone }}\right), \\ & 1706\left(\mathrm{C}=\mathrm{O}_{\text {amide }}\right), 3163(\mathrm{NH}=\mathrm{C}-), 3283(\mathrm{OH}) \text {, } \\ & 3391\left(\mathrm{NH}_{\text {amide }}\right) \end{aligned}$ | $\begin{aligned} & 2.47\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{Ar}-\mathrm{CH}_{3}\right), 5.90(\mathrm{brs}, 1 \mathrm{H}, \mathrm{OH}), 6.54\left(\mathrm{~d}, 1 \mathrm{H}, J_{9,10}=1.22 \mathrm{~Hz}, \mathrm{H}-9\right), 7.10-8.01(\mathrm{~m}, 7 \mathrm{H}, \mathrm{Ar}-\mathrm{H}) \text {, } \\ & 8.16\left(\mathrm{~d}, 1 \mathrm{H}, J_{5,7}=0.92 \mathrm{~Hz}, \mathrm{H}-5\right), 8.46(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}-2), 8.93(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH}), 10.02(\mathrm{br} \mathrm{~s}, 1 \mathrm{H}, \mathrm{NH}) \end{aligned}$ |
| 9d | $\begin{aligned} & 1616(\mathrm{C}=\mathrm{N}), 1645\left(\mathrm{C}=\mathrm{O}_{\text {pyrone }}\right) \text {, } \\ & 3166 \text { (br s, OH), } 3388,3227(\mathrm{NH}, \mathrm{NH}) \end{aligned}$ | $\begin{aligned} & 2.43\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{Ar}-\mathrm{CH}_{3}\right), 6.87(\mathrm{br} \mathrm{~s}, 1 \mathrm{H}, \mathrm{H}-2), 7.14\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{~J}_{7.8}=8.5 \mathrm{~Hz}, \mathrm{H}-8\right), 7.36-8.27(\mathrm{~m}, 8 \mathrm{H}, \mathrm{H}-9 \text {, } \\ & \mathrm{CH}=\mathrm{N} \text { and } \mathrm{Ar}-\mathrm{H}), 9.12(\mathrm{br} \mathrm{~s}, 1 \mathrm{H}, \mathrm{NH}), 11.54(\mathrm{br} \mathrm{~s}, 1 \mathrm{H}, \mathrm{NH}) \end{aligned}$ |



Scheme 2

Table 3. Calculated charges on $\mathrm{H}-2$ and $\mathrm{H}-9$ hydrogen atoms by AM1-MO method and their experimental ${ }^{1} \mathrm{H}$ NMR $\delta$ values for compounds 3a-9d.

| Compound | Q / (experimental $\boldsymbol{\delta}$ values in ppm) |  |
| :--- | :---: | :---: |
|  | $\mathbf{H}-\mathbf{2}$ | $\mathbf{H ~ - 9}$ |
| $\mathbf{3 a}$ | $0.205(7.76)$ | $0.136(\mathrm{~m})^{* *}$ |
| 3c | $0.198(8.66)$ | $0.172(\mathrm{~m})$ |
| 3d | $0.212(8.71)$ | $0.160(8.20)$ |
| 3e | $0.211(9.14)$ | $0.191(8.76)$ |
| 4c | $0.126(8.06)$ | $0.173(8.90)$ |
| 5b | $0.139(5.95)$ | $0.168(\mathrm{~m})$ |
| 5c | $0.130(6.80)$ | $0.175(8.89)$ |
| 7a | $0.100(\mathrm{~m})$ | $0.204(\mathrm{~m})$ |
| 7b | $0.106(6.53)$ | $0.203(\mathrm{~m})$ |
| 7c | $0.144((\mathrm{~m})$ | $0.228(\mathrm{~m})$ |
| 8a | $0.195(8.53)$ | $0.101(\mathrm{~m})$ |
| 8c | $0.161(8.46)$ | $0.105(6.54)$ |
| 9d | $0.133(6.87)$ | $0.217(\mathrm{~m})$ |

Q = Calculated net hydrogen charges.
${ }^{* *} \mathrm{~m}=$ The proton is multiplet.
$=2.975+33.65\left(\mathrm{Q}_{\mathrm{H}-9)}\right), r=0.995$ except (3e), where $r$ is regression coefficient. The positive slopes reveal a direct proportionality of the calculated charges on $\mathrm{H}-2$ and $\mathrm{H}-9$ hydrogen atoms with measured ${ }^{1} \mathrm{H}$-NMR $\delta$ values, which support the proposed structures for these compounds. The dependence of ${ }^{1} \mathrm{H}$ NMR shifts on the charge density at H-9 is more pronounced than that found at $\mathrm{H}-2$, as indicated from slope values.

### 3.3. Antifungal activities

Some of the newly synthesized compounds were screened for their antifungal activities against three species of fungi, Alternaria alternate, Aspergillus niger and Aspergillus flavipes using disc diffusion method [22].


Activity of each tested compound was compared with that of Flucanazole as the standard (Table 4). Compounds 3a and 4c showed very high activities against the three species of fungi. Compound 9d showed very high activities against Aspergillus niger, while compounds $\mathbf{3 c}, \mathbf{3 e}$ and $\mathbf{5 b}$ showed lower activities against the three species of fungi.

Table 4. Antifungal activities data of some the prepared compounds.

| Compound | Diameter of inhibition zone (mm)* |  |  |
| :--- | :---: | :---: | :---: | :---: |
|  | Alternaria <br> alternate | Aspergillus <br> niger | Aspergillus <br> flavipes |
|  | ++++ | ++++ | ++++ |
| 3 c | + | + | ++ |
| 3 l | + | ++ | + |
| 4c | ++++ | ++++ | ++++ |
| 5b | ++ | +++ | ++ |
| 7c | + | + | + |
| 9d | +++ | ++++ | ++ |
| Flucanazole | ++++ | ++++ | ++++ |

* Very high active $=++++$ (inhibition zone $>30 \mathrm{~mm}$ ), High active $=+++$ (inhibition zone 21-30 mm), Moderately active = ++ (inhibition zone 11-20 mm ), Lower active $=+$ (inhibition zone $1-10 \mathrm{~mm}$ ).


## 4. Conclusion

Condensation reactions of 4 -oxo- 4 H -chromene-3-carbaldehydes 1a,b with active primary amines 2a-e and amides/thioamides 6a-d gave condensation products or condensation with 1,4 -addition of the solvent medium depends on the basicity of amine derivatives and polarity of the medium.

## Acknowledgement

We thank Dr. Hala Samir, Department of Biology and Geology, Faculty of Education, Ain Shams University for evaluation of antimicrobial activities for the prepared compounds.

## References

[1]. Ellis, G. P. Chromenes, Chromanones, and Chromones. The Chemistry of Heterocyclic Compounds; Wiley: New York, NY, Vol. 31, 1977.
[2]. Horton, D. A.; Bourne, G. T.; Smythe, M. L. Chem. Rev. 2003, 103, 893930.
[3]. Langer, P. Synlett 2007, 7, 1016-1025
[4]. Ali, T. E.; Abdel-Aziz, S. A.; El-Shaaer, H. M.; Hanafy, F. I.; El-Fauomy A. Z. Phosphorus, Sulfur and Silicon and the Relat. Elem. 2008, 183, 21392160.
[5]. Ibrahim, A. M.; Ali, T. E. J. Brazilian Chem. Soc. 2010, 2, 1007-1016.
[6]. Ghosh, C. K.; Patra, A. J. Heterocycl. Chem. 2008, 45, 1529-1547.
[7]. Sosnovskikh, V. Y.; Moshkin, V. S.; Kodess, M. I. Tetrahedron 2008, 64, 7877-7889.
[8]. Sosnovskikh, V. Y.; Irgashev, R. A.; Moshkin, V. S.; Kodess, M. I. Russ. Chem. Bull., Intern. Edition 2008, 57, 2146-2151.
[9]. El-Shaaer, H. M.; Zahradnik, P.; Lacova, M.; Matulova, M. Collect. Czech. Commun. 1994, 59, 1673-1681.
[10]. Melikyan, G. S.; Lacova, M.; Kralova, K.; El-Shaaer, H. M.; Henselova, M.; Avetisyan, A. A. Chem. Papers 1993, 47, 388-392.
[11]. El-Shaaer, H. M.; Perjessy, A.; Zahradnik, P.; Lacova, M.; Sustekova, Z. Monatsh. Chem. 1993,124, 539-548.
[12]. Ali, T. E. Phosphorus, Sulfur, Silicon and Relat. Elem. 2007, 182, 17171726.
[13]. Ali, T. E.; Abdel-Aziz, S. A.; El-Shaaer, H. M.; Hanafy, F. I.; El-Fauomy, A. Z. Turk. J. Chem. 2008, 32, 365-374.
[14]. Lácová, M.; Gašparová, R.; Koiš, P.; Boháč, A.; El-Shaaer, H. M. Tetrahedron 2010, 66, 1410-1419.
[15]. Nohara, A.; Umetani, T.; Sanno, Y. Tetrahedron 1974, 30(19), 35533561.
[16]. Hassan, A. Y. Phosphorus, Sulfur, Silicon and the Relat. Elem. 2009, 184, 2759-2776.
[17]. Dornow, A.; Menzel, M. P. Chem. Ber. 1964, 97, 2173-2178.
[18]. Hania, M. M.. E-Journal of Chemistry 2009, 6(S1), S508-S514.
[19]. Schiemenz, G. P. Chem. Ber. 1962, 95, 483-486.
[20]. Stankovicova, H.; Lacova, M.; Gaplovsky, A.; Chovancova, J.; Pronayova, N. Tetrahedron 2001, 57, 3455-3464.
[21]. Lacova, M.; Stankovicova, H.; Odlerova, Z. Farmaco 1995, 50(12), 885888.
[22]. Rahman, A. U.; Choudhary, M. I.; Thomsen, W. J. Bioassay Techniques for Drug Development, Harwood Academic Publishers: The Netherlands 2001.

