

Synthesis, Biological Evaluation of 1,1-Diarylethylenes as a Novel Class of Antimitotic Agents

Abdallah Hamze, Anne Giraud, Samir Messaoudi, Olivier Provot, Jean-François Peyrat, Jérôme Bignon, Jian-Miao Liu, Joanna Wdzieczak-Bakala, Sylviane Thoret, Joëlle Dubois, et al.

▶ To cite this version:

Abdallah Hamze, Anne Giraud, Samir Messaoudi, Olivier Provot, Jean-François Peyrat, et al.. Synthesis, Biological Evaluation of 1,1-Diarylethylenes as a Novel Class of Antimitotic Agents. ChemMed-Chem, Wiley-VCH Verlag, 2009, 4 (11), pp.1912-1924. 10.1002/cmdc.200900290. hal-02394586

HAL Id: hal-02394586 https://hal.archives-ouvertes.fr/hal-02394586

Submitted on 4 Dec 2019

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Synthesis, Biological Evaluation of 1,1-Diarylethylenes as a Novel Class of Antimitotic Agents

Abdallah Hamze, [a] Anne Giraud, [a] Samir Messaoudi, [a] Olivier Provot, [a] Jean-François Peyrat, [a] Jérôme Bignon, [b] Jian-Miao Liu, [b] Joanna Wdzieczak-Bakala, [b] Sylviane Thoret, [b] Joëlle Dubois, [b] Jean-Daniel Brion, [a] and Mouad Alami*[a]

ABSTRACT. The cytotoxic activity of a series of 23 new isocombretastatin A derivatives with modifications on the B-ring was studied. Several compounds exhibited excellent antiproliferative activity at a nanomolar concentration against a panel of human cancer cell lines. The most cytotoxic compounds, isoFCA4 (**2e**), isoCA4 (**2k**) and isoNH₂CA4 (**2s**), strongly inhibited tubulin polymerization with IC50 values of 4, 2 and 1.5 μ M, respectively. These derivatives were found to be 10-fold more active than phenstatin and colchicine in the growth inhibitory

activities but displayed similar activities as inhibitors of tubulin polymerization. In addition, they led to the arrest of three cancer cell lines in the G_2/M phase of the cell cycle and induced apoptosis. The disrupting in vitro effect of 2e, 2k and 2s on the vessel-like structures formed by human umbilical vein endothelial cells (HUVEC) suggest that these compounds may act as vascular disrupting agents. Both compounds, 2k and 2s, have the potential for further pro-drug modification and development as vascular disrupting agents for treatment of solid tumor cancers.

Introduction

The formation of microtubules is a dynamic process involved in a variety of cellular process including cell division, maintenance of cell shape, cell signaling, cell migration and intracellular transport.[1] Microtubules are dynamic hollow structures composed of α - and β -tubulin heterodimers. Because microtubules have crucial roles in the regulation of mitotic spindle formation, the disruption of cellular microtubule dynamics can have quite drastic effects on cell viability, leading to cell cycle arrest in M phase followed by apoptosis. The discovery of natural substances capable of interfering with the assembly or disassembly of microtubules has attracted much attention because microtubules are recognized as an attractive pharmacological target for anticancer discovery.[2] The commonly used drugs belonging to this class of compounds are paclitaxel and vinca alkaloids. Although they have gained wide clinical use for the treatment of various cancers.[3] these complex drugs suffer from several drawbacks since they are generally difficult to synthesize, they cause neurotoxic side effects in patients, [4] and their clinical potential is now limited by the development of multidrug resistance (MDR).[5] Therefore, the search of new antimitotic tubulin inhibitors that overcome resistance mechanisms has become a topic of great interest. Recently, it was demonstrated that some tubulin-binding agents also target the vascular system of tumors, inducing morphological changes in the endothelial cells of the tumors blood vessels so as to occlude flow.[6]

Among the large class of natural substances interfering with the dynamics of tubulin polymerization and depolymerization, combretastatin A-4 (CA4), first isolated from the South African bush willow tree, *Combretum caffrum*, ¹⁷ is a promising anticancer drug. CA4 binds to tubulin at the colchicine binding site and is recognized as a very effective inhibitor of tubulin assembly (Figure 1). Moreover, CA4 exhibits strong growth inhibitory activity, at nanomolar concentrations, against a wide variety of human cell lines including multidrug resistant (MDR) positive cancer cell lines. ^[8] However, the low water solubility of CA4 limits its efficacy *in vivo*. A more-soluble disodium

phosphate pro-drug (CA4P) has been developed as the selected lead for human studies. [9] CA4P, and its amino acid derivative AVE-8062^[10] have been demonstrated to cause vascular shutdown in established tumors *in vivo*, consistent with an anti-vascular mechanism of action. [6] Currently, CA4-P either as a single agent or in combination therapy is undergoing several advanced clinical trials worldwide for the treatment of age-related macular degeneration (AMD) [9] or anaplastic thyroid cancer. [11]

Despite their remarkable anticancer activity, these Z-stilbene compounds may be prone to double bond isomerization. [12] The *E*-isomers display dramatically reduced inhibition of cancer cell growth and tubulin assembly. [13] A number of structure-activity relationships (SARs) have been reported for the combretastatins. These studies revealed that the 3,4,5-trimethoxyphenyl (TMP) unit as well as the *cis* orientation of the two aromatic rings is a prerequisite for significant biological activity. [14] Therefore, extensive studies have been conducted to prepare various *cis* restricted analogues by inserting mainly the *cis*-olefin in a five-membered heterocyclic ring (e.g.; pyrazoles, thiazoles, triazoles, imidazolones). [15]

Our interest in 1,1-diarylethylene unit synthesis,^[16] combined with our efforts to discover novel potent tubulin assembly inhibitors, related to CA4,^[17] led us to identify a promising class of substances with strong cytotoxic and antimitotic activities, simply by switching the trimethoxyphenyl nucleus from the C(1) to the C(2) position of the ethylene bridge.^[18]

E-mail: mouad.alami@u-psud.fr

Univ Paris-Sud, CNRS, BioCIS-UMR 8076, Laboratoire de Chimie Thérapeutique, Faculté de Pharmacie, 5 rue J.-B. Clément, Châtenay-Malabry, F-92296, France Fax:, fax: 33(0)1.46.83.58.28,

[[]b] Institut de Chimie des Substances Naturelles, UPR 2301, CNRS, avenue de la Terrasse, F-91198 Gif sur Yvette, France

Figure 1. Structure of combretastatin A-4, its synthetic amino-derivative AC-7739, their water soluble pro-drugs CA4P and AVE-8062, phenstatin and *iso*combretastatin A-4.

In contrast to their natural parent combretastatins A-1, to A-6, these synthetic isomers of combretastatins A, named isocombretastatins A (isoCA), are easy to synthesize without the need to control the olefin geometry and constitute the simplest isomers of combretastatins A. The most active compound isoCA4 that share a striking structural similarity with phenstatin^[19] appears to elicit its tumor cytotoxicity in a fashion similar to CA4, via inhibition of tubulin polymerization, which then leads to cell cycle arrest in G2/M. As the replacement of the 1,2-ethylene bridge by the 1,1-ethylene one resulted in retention of biological activities, our finding encouraged us to use this bioisostere^[20] in future structure activity relationships studies. Because the 3,4,5-trimethoxyphenyl nucleus (A-ring) is crucial to obtain relevant cytotoxic and antitubulin responses, we intended to introduce variations in the B-ring that could yield compounds with drug-like properties. Herein we report the synthesis and biological evaluation of a broad range of Bring-substituted isoCA4 analogues, in which the A ring is kept intact. The potencies of newly synthesized compounds to inhibit the growth of cancer cells, to prevent tubulin assembly and to attack the established vessel network were evaluated in vitro.

Results and Discussion

Chemistry.

While the palladium-catalyzed coupling of 3,4,5-trimethoxyacetophenone N-tosylhydrazone with aryl halides proved to be an efficient procedure for the synthesis of 2.[18] we examined an alternative synthetic route avoiding the use of palladium catalyst. 21 We envisaged that the terminal double bond in compounds 2 could be generated by dehydration of the corresponding tertiary alcohols. As outlined in Scheme 1, commercially available trimethoxyacetophenone (1) with Grignard reagents in THF furnished the corresponding tertiary alcohols which upon treatment without purification using a catalytic amount of PTSA in CH₂Cl₂ afforded **2a-c** in good overall yields. In a similar way, the synthesis of compounds 2d-j was realized by treatment of 1 with an aryl lithium species obtained according to a lithiumhalogen exchange reaction from the corresponding bromo- or iodo- derivatives. It should be noted that the condensation reaction should be conducted in a mixture of toluene/hexanes (3/1) as no reaction occurred in THF or Et₂O, presumably due to the enolization of the 3,4,5-trimethoxyacetophenone moiety. Subsequent dehydration of the resulting tertiary alcohols gave the corresponding 1,1-diarylethylene derivatives 2, except for 2g. In this case, 2g was obtained *via* the DMAP elimination of the corresponding mesylate since PTSA was ineffective to produce the expected compound. Finally, desilylation of the TBDMS-ether intermediate 2j under alkaline conditions led to the formation of isoCA4 (2k) in excellent yield.

Scheme 1. Reagents and conditions: a) (i) ArMgBr, THF, -40 °C; (ii) PTSA (10 mol%), CH₂Cl₂, 20 °C (**2a**: 44%, **2b**: 54%, **2c**: 81%); b) (i) ArLi, hexanes/toluene (1/3), -78 °C; (ii) PTSA (10 mol%), CH₂Cl₂, 20 °C (**2d**: 80%, **2e**: 48%, **2f**: 53%, **2h**: 48%, **2i**: 32%, **2j**: 85%; (iii) MsCl, DMAP, CH₂Cl₂, (**2g**: 36%); c) K₂CO₃, MeOH, 20 °C, (**2k**: 94%).

Among the structural features considered to be interesting, it has been shown that a compound with only a methoxy group in the para position of ring B of CA4 maintains its cytotoxic potential, suggesting that the presence of a free hydroxyl group is not fundamental. Consequently, as an extension of our SAR efforts with isoCA4, a selection of compounds 2I-r including, esters, carbamates and β -sugar derivatives were prepared. Scheme 2 details the analogous synthesis of 3'-O-substituted isocombretastatin analogues from the parent compound isoCA4 (2k).

Scheme 3. Synthesis of isoNH₂CA4 (2s)

Scheme 2. Reagents and conditions: a) Me₂SO₄, K₂CO₃ Acetone; b) Ac₂O, Pyr., CH₂Cl₂; c) Diethylcarbamoyl chloride, Pyr.; CH₂Cl₂; d) SO₃-pyridine complex, Pyr.; e) Chlorambucil, EDC, DMAP, CH₂Cl₂; f) 2,3,4,6-tetra-O-acetyl-α-D-glucopyranosyl bromide, KOH, CH₃CN; g) NH₄Cl, MeOH.

As the replacement in the CA4 series of the hydroxyl moiety on the B-ring by an amino group resulted in retention of biological activities,^[23] we envisioned to prepare the substance **2s**, which constitutes the simplest isomer of AC-7739. To this end, the

coupling reaction between acetophenone 3 and 3,4,5trimethoxyphenyl magnesium bromide (Scheme 3) led to the tertiary alcohol which upon treatment with a catalytic amount of PTSA provided 2s in a low 12% yield. To note, the protection of the free amino group into the corresponding pivaloylamino, phthalimide or acetamide derivatives did not significantly improve the yield of the coupling reaction. In view of these results, we adopted a Wittig strategy to have an easier access to a variety of aniline derivatives and their nitro precursors. Scheme 4 outlines the synthetic route followed for the synthesis of these amino substances. The preparation involved a reaction sequence in four steps: (i) condensation of the 3,4,5-trimethoxyphenylmagnesium bromide with commercially available appropriate benzaldehyde derivatives, (ii) oxidation of (iii) resulting alcohols, Wittig reaction afford methyltriphenylphosphonium bromide to corresponding 1,1-diarylethylene 2t-v derivatives and (iv) reduction of the nitro group by Zn/AcOH. Accordingly, the expected amine isomers 2s, 2w, 2x were obtained in good overall yields. Noteworthy, this strategy allowed an easy access to aminoisocombretastatin analogues 2s, 2w, 2x in the scale of several grams.

OHC
$$R^1$$
 R^2 A, b MeO R^1 R^2 R^3 R^4 R^4

Scheme 4.ª Synthesis of isoaminocombretastatin derivatives o Reagents: (a) 3,4,5-(MeO) $_{3}$ C₆H₂MgBr, THF, -78 $^{\circ}$ C (b) PCC, CH₂Cl₂, 20 $^{\circ}$ C (c) Ph $_{3}$ PCH $_{3}$ Br, LiHMDS, THF, 0 to 20 $^{\circ}$ C (d) Zn, AcOH, 20 $^{\circ}$ C.

Biological evaluation.

(A) In vitro Cell Growth Inhibitory Activity.

The cytotoxic activity of 23 newly synthesized isocombretastatin analogues 2 against the human colon carcinoma cell-line (HCT-116) was initially evaluated using isoCA4, CA4^[24] and phenstatin as reference compounds. The GI₅₀ values corresponding to the concentration of studied compound leading to 50% decrease in HCT-116 cell growth are presented in Table 1.

Several 1,1-diarylethylene candidates retained potent cancer cell growth-inhibitory activity in a nanomolar range. In particular, the best inhibition results were obtained with compounds **2e**, **2m** and **2s** (7, 8 and 2 nM, respectively). These values were comparable to *iso*CA4 (**2k**, $GI_{50} = 2$ nM) or CA4 ($GI_{50} = 2$ nM) and more active than the phenstatin ($GI_{50} = 33$ nM). A comparison of GI_{50} values exhibited by *iso*CA4 and *iso*aminocombretastatin A-4 (**2s**, *iso*NH₂CA4) revealed that the introduction of an amino group instead of a hydroxyl moiety at

the C3'-position on the B-ring, provide a compound with an equal biological efficacy. Additionally, switching the NH2 group from the C3' to the C2' position retained for 2x the cellular growth inhibitory activity at a nanomolar range (Gl₅₀ = 40 nM), while its corresponding nitro precursor, 2v, showed a decline by a factor of ten. One can note that isoCA4 and its corresponding acetate pro-drug 2m, displayed a similar cell growth inhibition. In contrast, compounds 2n and 2o with a carbamate or a sulfonic acid ester functions, respectively, were found to display a weak cytotoxic effect. When isoCA4 was attached to chlorambucil[25] via an ester linkage, the resulting compound 2p maintained substantial biological potency (GI₅₀ = 25 nM) as compared to other esters and isoCA4. It should be noted that the replacement of the hydroxyl at C3'-position by a fluorine atom, gave compound isoFCA4 (2e) with comparable cytotoxic activity to that of isoCA4, while introduction at the C3'-position of a bromine atom (2f) resulted in a significant loss of antiproliferative activity to micromolar range.

Table 1. Cytotoxicity of *iso*CA4 analogues against HCT-116 cells (colon carcinoma cells).

Compound	$GI_{50}\ (nM\pmSD)^{[a]}$	Compound	GI ₅₀ (nM) ^[a]
2a	400 ± 25	20	6000 ± 420
2b	40 ± 3	2p	25 ± 2
2c	80 ± 7	2 q	3000 ±155
2d	450 ± 60	2r	4000 ± 320
2e (isoFCA4)	7 ± 1	2s (isoNH2CA4)	2 ± 0.1
2f	1000 ± 90	2t	60 ± 2
2g	650 ± 66	2u	4000 ± 250
2h	NA ^[b]	2v	400 ± 33
2i	NA ^[b]	2w	5000 ± 510
2j	180 ± 30	2x	40 ± 3
21	1000 ± 110	isoCA4	2 ± 0.2
2m	8 ± 0.2	CA4	$2^{[c]}\pm0.1$
2n	2800 ± 310	Phenstatin	$33^{\text{[c]}}\pm2.5$

[a] Gl_{50} is the concentration of compound needed to reduce cell growth by 50% following 72 h cell treatment with the tested drug (average of three experiments). [b] NA, non active. [c] The Gl_{50} values for CA4 and phenstatin were determined in this study.

It is interesting to note that our lead compounds isoFCA4 and isoNH2CA4 with a 1,1-diarylethylene scaffold are as potent than their corresponding Z-1,2-diarylethylene isomers, C3'fluorocombretastatin^[26] and AC-7739 respectively.^[23] These results provide a good example of the bioisosteric equivalence between the 1,1 ethylene bridge and the Z-1,2 ethylene one.[18] As it was reported that the 3-hydroxyl group on the B-ring of CA4 is not essential for potent activity, [13a] we replaced the Bring of isoCA4 with a 4-methoxyphenyl group. As expected, the resulting compound 2b showed a 20-fold decrease in cytotoxicity compared to that of isoCA4. A similar cytotoxicity was also observed with compound 2c having a 2-naphthyl ring in place of a 4-methoxyphenyl group indicating, that these substituents are bioisosteres.[27] Replacement of the B-ring of isoCA4 with a 4-tolyl (2a) or 5-benzodioxole (2d) rings resulted in an important loss of potency relative to the parent substance isoCA4, albeit still cytotoxic (GI_{50} < 0.5 μ M). However, the introduction of a heterocyclic moiety such as guinoline to give **2g** led to a decrease of the cytotoxic activity ($GI_{50} = 650 \text{ nM}$) against HCT-116 cells. Finally, none of the following compounds 2h, 2i, 2l, 2q and 2r exhibited sufficient cytotoxic activities to warrant further biological evaluations.

(B) Inhibition of tubulin polymerization and cytotoxicity for selected compounds

To further characterize the cytotoxicity profile of these compounds, we have investigated the effect of the most active substances **2b**, **2e**, **2m**, **2p**, **2s** and **2x** ($GI_{50} \le 40$ nM) on the proliferation of a panel of six tumor cell lines (myelogenous leukemia (K562), human glioblastoma (U87), carcinomic human alveolar basal epithelial (A549), human breast cancer (MDA-MB-435 and MDA-MB-231, hormone-independent breast cancer) and normal primary human umbilical vein endothelial (HUVEC)). As shown in Table 2, all examined compounds of the *iso*CA4 series display similar potencies and showed activities with GI_{50} values in the range of 2-50 nM.

These compounds inhibit cell growth at a nanomolar concentration whatever the cancer cell lines used, suggesting the high therapeutic potency of these drugs. Interestingly, substances <code>isoFCA4</code> and <code>isoNH2CA4</code> bearing on C3'-position a fluorine atom or an amino function respectively show similar cytotoxic potency. The GI_{50} values obtained are comparable to these of CA4 and <code>isoCA4</code> (GI₅₀ = 2-8 nM) and significantly lower than the GI₅₀ values of 26-41 nM found for colchicine and phenstatin.

To investigate whether the cytotoxic activities of the isoCA4 series were related to their interaction with microtubulin system, all compounds presented in Table 2 as well as the reference substances (CA4, phenstatin and colchicine) were evaluated for in vitro tubulin polymerization inhibitory activity. The results show that isoNH2CA4 and the fluorinated compound isoFCA4 exhibit a similar inhibition of tubulin polymerization as isoCA4 and CA4 (Table 2). When comparing the inhibition of tubulin polymerization versus the cell growth inhibitory effect, we found a good correlation for most of the active compounds except for 2m and 2p. It can be assumed that the ester group is hydrolyzed by esterase in the cell. However, this cannot happen in the tubulin polymerization assay which is a cell-free test where no esterase enzymes are present. A noticeable finding is the high potency of **2b** (IC₅₀ = $2.0 \mu M$) indicating that the presence of 3'OH on the B-ring does not play an essential role for strong antitubulin activity as it was previously observed in the CA4 series. [13b]

(C) Cell cycle analysis and apoptosis

Because microtubules as well as microfilaments are essential for cell division and their disruption can induce G₂/M arrest and apoptosis, the effect of the most active compounds isoFCA4, isoCA4 and isoNH2CA4 on the cell cycle was measured by flow cytometry. MDA-MDB-231, K562 and HCT116 cancer cell lines were incubated for 24 h with the selected drugs at different concentrations. The cell-cycle profiles depicted in Figure 2 show a significant increase in the number of cells arrested at the G₂/M growth stage with increasing concentration (5 to 10 nM) of the studied drugs. The observed effects of isoFCA4, isoCA4 and isoNH2CA4 on cell cycle progression correlated well with their strong antiproliferative and antitubulin activities. This stays in agreement with the similar properties reported previously for the majority of antimitotic agents. Cell cycle arrest at G2/M is often followed by DNA fragmentation and the morphological features of apoptosis.[28] Therefore, we have investigated the effect of isoFCA4, isoCA4 and isoNH2CA4 (1, 5, 10 nM) on induction of apoptosis in K562, HCT-116 and MDA-MB-231 cancer cells using a caspases 3 and 7 standard assays. [29] The enzymatic activity of caspases 3 and 7 was measured by monitoring the cleavage of the fluorogenic substrate Z-DEVD-R110 in cancer cells. The results presented in Figure 3 show a significant dose-dependent increase in proteolytic activity of both examined caspases in the cells treated for 24 h with the three studied substances.

More interestingly, a spectacular 10- to 15-fold dose-dependent increase in apoptosis was evidenced in K562 leukemic cells previously described as being resistant to apoptosis induction by a variety of agents including diphtheria toxin, camptothecin, cytarabine, etoposide, paclitaxel, staurosporine, and antifas antibodies. [30] These current findings clearly show that, in addition to their antiproliferative and antitubulin effects, the treatment of cancer cells with

Cytoxicity GI ₅₀ , (nM \pm SD) $^{[a]}$									
Compound	HCT116 ^[b]	K562 ^[b]	U87 ^[b]	A549 ^[b]	M435 ^[b]	M231 ^[b]	HUVEC ^[b]	ITP IC ₅₀ , $(\mu M)^{[b]}$	
2b	40 ± 3	18 ± 0.9	28 ± 1.9	20 ± 1.8	25 ± 1.81	10 ± 0.1	38 ± 2.5	2	
isoFCA4 (2e)	7 ± 1	4 ± 0.2	7 ± 0.42	7 ± 0.3	8 ± 0.6	3 ± 0.12	5 ± 0.2	4	
2x	40 ± 3	20 ± 1.3	58 ± 3.8	45 ± 3.1	36 ± 2.7	26 ± 1.9	ND ^[c]	6	
2m	8 ± 0.2	5 ± 0.3	8 ± 0.5	15 ± 1.2	10 ± 0.9	3 ± 0.14	18 ± 1.2	57	
2p	25 ± 2	30 ± 1.7	30 ± 2.5	42 ± 3.6	40 ± 3.1	24 ± 1.7	ND ^[c]	75	
isoNH₂CA4 (2s)	2 ± 0.1	4 ± 0.16	8 ± 0.47	7 ± 0.51	7 ± 0.52	6 ± 0.21	3 ± 0.12	1.5	
isoCA4	2 ± 0.2	5 ± 0.19	8 ± 0.36	8 ± 0.7	4.5 ± 0.2	4 ± 0.16	1.5 ± 0.07	2	
CA4 ^[d]	2 ± 0.1	3.6 ± 0.21	3 ± 0.25	7 ± 0.45	3 ± 0.15	3.5 ± 0.1	2.5 ± 0.1	1	
Colchicine ^[d]	32 ± 5	29 ± 1.9	ND ^[c]	ND ^[c]	ND ^[c]	26 ± 1.8	30 ± 0.1	2	
Phenstatin [d]	33 ± 2.5	41 ± 2.3	ND ^[c]	ND ^[c]	ND ^[c]	28 ± 2	38 ± 2.8	2	

[a] Gl₅₀ is the concentration of compound needed to reduce cell growth by 50% following 72 h cell treatment with the tested drug (average of three experiments). [b] HCT116, colon carcinoma; K562, myelogenous leukaemia; U87, glioblastome; A549, carcinomic alveolar basal epithelial; MDA-MB-435, breast cancer and MDA-MB-231 hormone-independent breast cancer; ITP, Inhibition of Tubulin Polymerization; IC₅₀ is the concentration of compound required to inhibit 50% of the rate of microtubule assembly (average of three experiments). [c] ND, not determined. [d] The Gl₅₀ and IC₅₀ values (cytotoxicity and ITP respectively) for CA4, colchicin and phenstatin were determined in this study.

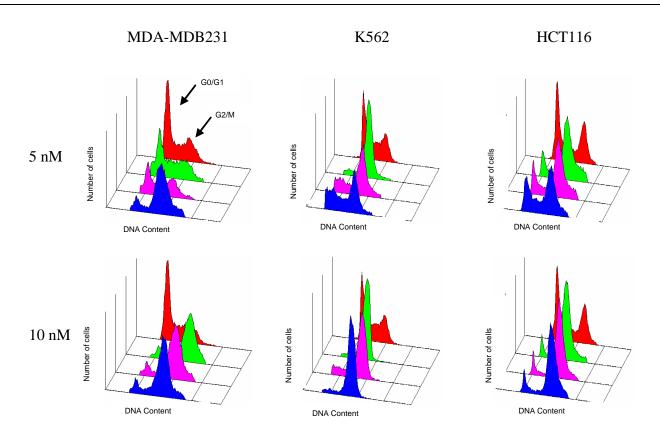
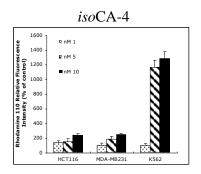



Figure 2. Effect of isoFCA4 (green), isoCA4 (blue) and isoNH₂CA4 (rose) on cell cycle distribution in MDA-MDB-231, K562 and HCT116 cells determined by flow cytometry analysis (DMSO control in red). DNA content was assessed via propidium iodide staining.

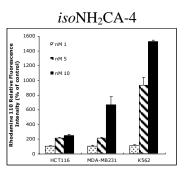
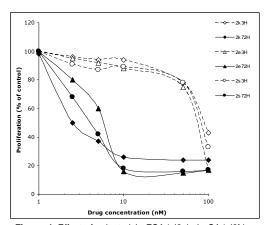
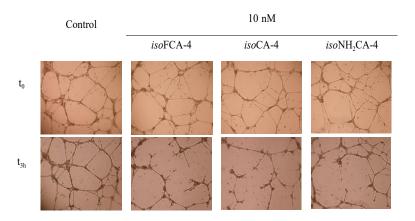




Figure 3. Apoptotic effects of *iso*FCA4, *iso*CA4 and *iso*NH₂CA4 in HCT116, MDA-MDB-231 and K562 cells. The results are expressed in the percentage of apoptotic cells detected following 24 h treatment with *iso*FCA4, *iso*CA4 and *iso*NH₂CA4 at different concentrations.

Figure 4. Effect of selected *iso*FCA4 (**2e**), *iso*CA4 (**2k**) and *iso*NH₂CA4 (**2s**), on in vitro endothelial cells (HUVEC) after 3 h and 72 h of treatment.

Figure 5. Inhibitory activity of isoFCA4, isoCA4 and isoNH₂CA4 on in vitro formed vessel-like structures. IsoFCA4, isoCA4 and isoNH₂CA4 or vehicule were added to the vascular tubes formed during 24 h by HUVEC on Matrigel. Images were taken 3 h after addition of the compounds.

(D) Effect on Human Umbilical Vein Endothelial Cells Organization

In order to expand our studies, the effects of our lead compounds isoFCA4, isoCA4 and isoNH2CA4 on the proliferation of normal endothelial cells (HUVEC) were determined. The results presented in Figure 4 show that after 72 h of incubation, compounds isoFCA4, isoCA4 and isoNH₂CA4 exhibit a similar growth inhibition activity (GI₅₀ = 1.5-5 nM) as CA4 (GI $_{50}$ = 2.5 nM). However, no change in the viability of HUVEC cells treated for 3 h with isoFCA4, isoCA4 and isoNH2CA4 was observed even at the concentration of 10 nM. The ability of endothelial cells to form tubular structures when plated on a Matrigel matrix allows the observation of three-dimensional organization of endothelial cells and offers an in vitro model of angiogenesis.[31] When seeded on Matrigel, flattened endothelial cells aggregate to form a reticular vascular network of capillary-like vessels (Figure 5). To evaluate whether our lead compounds could affect newly formed blood vessels, the in vitro assay of tube formation by HUVEC was performed. The addition of isoFCA4, isoCA4 and isoNH2CA4 for 3 h to formed capillary-like tubes rapidly disrupted the integrity of the network. This effect was evidenced for 10 nM concentration of tested substances which was shown previously to be not toxic for HUVEC after 3 h of treatment. Altogether, our results suggest that these

substances might be lead compounds for use as vascular disrupting agents.

Conclusion

We have shown that 1,1-diarylethylenes of general structure 2 are potent antiproliferative agents. The compounds described in this report are structurally simpler than those of the CA4 series, chemically stable (no isomerization), and easily accessible. Three representative substances isoFCA4, isoCA4 and isoNH2CA4 have emerged as lead compounds. They displayed antiproliferative activity with an GI₅₀ values ranging from 2 to 10 nM against different human cancer cell lines. Flow cytometric analysis indicated that these drugs act as antimitotics and arrest the cell cycle in the G₂/M phase. Moreover, we showed that our lead compounds have spectacular disrupting in vitro effects on newly formed vascular tubes after 3 h of treatment. These results suggest that isoFCA4, isoCA4 and isoNH2CA4 might be lead compounds for use as vascular disrupting agents and promising candidates for in vivo evaluation. Both compounds isoCA4 and isoNH₂CA4, have the potential for further pro-drug modification and development as vascular disrupting agents for treatment of solid tumor cancers and ophthalmological diseases.

Experimental Section

Chemistry

Melting points (mp) were recorded on a Büchi B-450 apparatus and were uncorrected. NMR spectra were performed on a Bruker AMX 200 (1 H, 200 MHz; 13 C, 50 MHz), Bruker AVANCE 300 or Bruker AVANCE 400 (1H, 400 MHz; 13C, 100 MHz). Unless otherwise stated, $CDCl_3$ was used as solvent. Chemical shifts δ are in ppm, and the following abbreviations are used: singlet (s), doublet (d), triplet (t), multiplet (m) and broad singlet (bs). Elemental analyses (C, H, N) were performed with a Perkin-Elmer 240 analyzer at the microanalyses Service of the Faculty of Pharmacy at Châtenay-Malabry (France) and were within 0.4% of the theorical values otherwise stated. Mass spectra were obtained using a Bruker Esquire electrospray ionization apparatus. Thinlayer chromatography was performed on silica gel 60 plates with a fluorescent indicator and visualized under a UVP Mineralight UVGL-58 lamp (254 nm) and with a 7% solution of phosphomolybdic acid in ethanol. Flash chromatography was performed using silica gel 60 (40-63 µm, 230-400 mesh ASTM) at medium pressure (200 mbar). All solvents were distilled and stored over 4 Å molecular sieves before use. All reagents were obtained from commercial suppliers unless otherwise stated. Organic extracts were, in general, dried over magnesium sulphate (MgSO₄) or sodium sulphate (Na₂SO₄).

Synthesis of 2a-c

2,6-Dimethoxy[4-(4-methylbenzene)vinyl]anisole (2a)

To a solution of 3,4,5-trimethoxyacetophenone (420 mg; 2 mmol) in THF (10 mL) was added at -40°C under an argon atmosphere, 6 mL of a 1M solution of para-tolylmagnesium bromide in THF (6 mmol). The mixture was stirred for 3 h at this temperature and further 16 h at room temperature. A saturated NH₄Cl solution (10 mL) was slowly added to the mixture to hydrolyze the adduct and the mixture was extracted with Et₂O (10 mL x 3). The combined organic layers were dried over MgSO₄, filtered, and concentrated. The crude mixture was next dissolved in CH₂Cl₂ (10 mL), mixed with some crystals of PTSA and stirred for 3 h at room temperature. The solution was washed with a saturated NaCl solution (20 mL) and extracted with CH2Cl2 (10 mL x 2). The organic layers were combined, dried over MgSO₄, and concentrated. The residue was further purified by flash chromatography to yield 2a (307 mg; 54 %). R_f (cyclohexane/EtOAc : 6/4) = 0.75. ¹H RMN: (δ ppm, CD₃COCD₃. 300 MHz): 2.33 (s, 3H, CH₃), 3,75 (s, 3H, OCH₃), 3.76 (s, 6H, OCH_3), 5.38 (d, 1H, J = 1.2 Hz), 5.40 (d, 1H, J = 1.2 Hz), 6.59 (s, 2H), 7.22-7.25 (m, 4H). ¹³C NMR (100 MHz, CD₃COCD₃): 21.1, 56.5, 60.6 (2), 106.9 (2), 113.5, 128.9 (2), 127.9 (2), 138.0, 138.4, 139.3, 151.0, 154.1 (2), one C not detected. IR (cm⁻¹): 2936, 1737, 1578, 1504, 1451, 1409, 1346, 1233, 1182, 1123, 1009. Anal. Calcd for C₁₈H₂₀O₃: C 76.03, H 7.09, found: C 75.74, H 6.99.

2,6-Dimethoxy[4-(4-methoxybenzene)vinyl]anisole (2b)

Compound **2b** was prepared as for **2a** from 3,4,5-trimethoxyacetophenone (420 mg; 2 mmol) and (4-methoxyphenyl)magnesium bromide to afford the title compound (384 mg; 64 %). R $_{\it f}$ (cyclohexane/EtOAc: 6/4) = 0.60. 1 H RMN: (δ ppm, CD $_{\it 3}$ COCD $_{\it 3}$, 300 MHz): 3.75 (s, 3H, OCH $_{\it 3}$), 3.78 (s, 6H, OCH $_{\it 3}$), 3.82 (s, 3H, OCH $_{\it 3}$), 5.34 (m, 2H, CH $_{\it 2}$), 6.60 (s, 2H), 6.92 (d, 2H, $\it J$ = 8.7 Hz), 7.29 (d, 2H, $\it J$ = 8.7 Hz). 13 C NMR (75 MHz, CD $_{\it 3}$ COCD $_{\it 3}$): 55.5, 56.4 (2), 60.5, 106.8 (2), 112.7, 114.4 (2), 130.1 (2), 134.4, 138.2 (2), 150.6, 154.1 (2), 160.5. IR (cm $^{-1}$): 1579, 1507, 1454, 1411, 1346, 1299, 1233, 1174, 1122, 1030, 1004. Anal. Calcd for C $_{\it 18}$ H $_{\it 20}$ O $_{\it 4}$: C 71.98, H 6.71, found: C 71.85, H 6.66.

2-[1-(3,4,5-trimethoxyphenyl)vinyl]naphtalene (2c)

Compound **2c** was prepared as for **2a** from 3,4,5-trimethoxyacetophenone (420 mg; 2 mmol) and (2-naphthylmagnesium bromide to afford the title compound (518 mg;

81 %). R_r (CH₂Cl₂/EtOAc : 9/1) = 0.80. mp 89°C. ¹H RMN: (δ ppm, CD₃COCD₃, 300 MHz): 3.77 (s, 9H, OCH₃), 5.54-5.64 (m, 2H, CH₂), 6.67 (s, 2H), 7.50-7.55 (m, 3H), 7.87-7.91 (m, 4H). ¹³C RMN: (\Box ppm, CD₃COCD₃, 75 MHz): 56.5, 60.7 (2), 106.9 (2), 115.0, 127.1, 128.0, 128.5, 128.6, 129.1, 129.5, 130.5, 134.1, 134.4, 137.8, 139.6 (2), 151.1, 154.2 (2). IR (cm⁻¹): 2936, 1578, 1503, 1451, 1412, 1352, 1331, 1237, 1182, 1122, 1003. Anal. ($C_{21}H_{20}O_3$) C, H. Calcd for $C_{21}H_{20}O_3$: C 78.74, H 6.29, found: C 78.64, H 6.20.

Synthesis of 2d-2f, 2h-j

5-[1-(3,4,5-trimethoxyphenyl)vinyl]benzo[1,3]dioxole (2d)

To a -78°C solution of 5-iodobenzo[d][1,3]dioxole (124 mg; 0.5 mmol) in hexanes (15 mL) was slowly added via syringe, 625 µL (1 mmol) of a 1.6 M solution of BuLi in pentane under nitrogen. After stirring for 45 min. at -78°C, 105 mg (0.5 mmol) of 3,4,5trimethoxyacetophenone in toluene (5 mL) was added to the solution which was warmed to room temperature, and stirring was continued for 12 h. A saturated NH₄Cl solution (10 mL) was slowly added to the mixture to hydrolyze the adduct and the mixture was extracted with Et₂O (10 mL x 3). The combined organic layers were dried over MgSO₄, filtered, and concentrated. The crude was next dissolved in CH2Cl2 (10 mL), mixed with some crystals of PTSA and stirred for 3 h at room temperature. The solution was washed with a saturated NaCl solution (20 mL) and extracted with CH₂Cl₂ (10 mL x 2). The organic layers were combined, dried over MgSO₄, concentrated and the crude mixture was treated as for 2ac to afford the title compound 2d (30 mg; 19 %). R_f $(CH_2CI_2/Cyclohexane) = 0.82.$ ¹H RMN: (\square ppm, CD_3CI_3 , 300 MHz): 3.72 (s, 6H, OCH₃), 3.78 (s, 3H, OCH₃), 5.21 (d, 1H, J = 1.5 Hz), 5.25 (d, 1H, J = 1.5 Hz), 5.86 (s, 2H, OCH₂O), 6.46 (s, 2H), 6.67 (d, 1H, J = 8.7 Hz), 6.72-6.76 (m, 2H). ¹³C RMN: (\square ppm, CD₃Cl₃, 75 MHz): 56.1 (3), 60.8, 105.7 (2), 107.9, 108.6, 122.0, 101.1, 112.9, 135.4, 137.3, 137.9, 147.3, 147.5, 149.6, 152.8. IR (cm⁻¹): 2939, 2835,1699, 1578, 1503, 1488, 1463, 1450, 1410, 1340, 1234, 1184, 1161, 1124, 1036, 1006, 936, 907, 866, 844, 814, 783, 733, 702. MS (ESI+, m/z, %): 337 (M+Na)+, 100. Calcd for C₁₈H₁₈O₅: C 68.78, H 5.77, found: C 68.68, H 5.72.

5-(1-(3-fluoro-4-methoxyphenyl)vinyl)-1,2,3-trimethoxybenzene (isoFCA4, 2e)

Compound **2e** was prepared as for **2d** from 3,4,5-trimethoxyacetophenone (105 mg; 0.5 mmol) and 2-fluoro-4-iodoanisole (126 mg; 0.5 mmol) to afford the title compound (76 mg; 48 %). R_f (Cyclohexane/EtOAc: 7/3) = 0.52. mp 64-66 °C. 1 H NMR: 1 H NMR (300 MHz, CDCl₃): δ = 3.82 (s, 6H, OCH₃), 3.88 (s, 3H, OCH₃), 3.92 (s, 3H, OCH₃), 5.35 (d, 1H, J = 1.5 Hz), 5.38 (d, 1H, J = 1.5 Hz), 6.58 (s, 2H), 6.95 (m, 1H), 7.05-7.19 (m, 2H). 13 C NMR (75 MHz, CDCl₃): δ = 56.1 (2), 56.3, 60.9, 105.7 (2), 112.9, 113.4, 115.9 (d, J = 19 Hz), 124.0, 134.4 (d, J = 6.2 Hz), 136.9, 138.0, 147.4 (d, J = 10.5 Hz), 148.7, 150.4, 152.9, 153.6. 19 F NMR: (δ ppm, CD₃Cl₃, 188 MHz): -136.0. IR (cm⁻¹): 3086, 3011, 2939, 2835, 1619, 1576, 1518, 1504, 1462, 1439, 1310, 1205, 1117, 1085, 949, 899, 876. MS (ESI+) m/z (%): 341 [M+Na]+, 100. Calcd for C₁₈H₁₉FO₄: C 67.91, H 6.02, found: C 67.80, H 5.94.

5-(1-(3-bromo-4-methoxyphenyl)vinyl)-1,2,3-trimethoxybenzene (2f)

Compound **2f** was prepared as for **2d** from 3,4,5-trimethoxyacetophenone (105 mg; 0.5 mmol) and 2-bromo-4-iodoanisole (156 mg; 0.5 mmol) to afford the title compound (101 mg; 53 %). R_f (Cyclohexane/EtOAc: 7/3) = 0.46. 1H RMN: (δ ppm, CD₃Cl₃, 300 MHz): 3.65 (s, 3H, OCH₃), 3.78 (s, 6H, OCH₃), 3.85 (s, 3H, OCH₃), 5.30 (s, 1H), 5.70 (s, 1H), 6.50 (s, 2H), 6.80 (d, 1H, J= 8.7 Hz), 7.36-7.46 (m, 2H). 13 C RMN: (\Box ppm, CD₃Cl₃, 75 MHz): 55.9, 56.2 (2), 60.9, 103.9 (2), 112.8, 112.9, 115.8, 131.7, 132.9, 133.7, 136.3, 137.9, 145.7, 152.9 (2), 156.3. IR (cm⁻¹): 2936, 2835, 1579, 1504, 1485, 1461, 1411, 1336, 1287, 1257, 1231, 1181, 1122. MS (ESI+, m/z, %): 403 (M+Na)+, 100. Calcd for C₁₈H₁₉BrO₄: C 57.01, H 5.05, found: C 56.78, H 4.90.

2,2-Dimethyl-6-[1-(3,4,5-trimethoxyphenyl)vinyl]-2H-chromene (2h)

Compound **2h** was prepared as for **2d** from 3,4,5-trimethoxyacetophenone (105 mg; 0.5 mmol) and 6-iodo-2,2-dimethyl-2*H*-chromene (143 mg; 0.5 mmol) to afford the title compound (85 mg; 48 %). R_f (Cyclohexane/EtOAc: 7/3) = 0.60. 1 H RMN: ($^{\circ}$ ppm, CD₃Cl₃, 300 MHz): 1.43 (s, 6H, OCH₃), 3.82 (s, 6H, OCH₃), 3.88 (s, 3H, OCH₃), 5.29 (d, 1H, J = 1.2 Hz), 5.36 (d, 1H, J = 1.2 Hz), 5.62 (d, 1H, J = 10.0 Hz), 6.30 (d, 1H, J = 10.0 Hz), 6.65 (s, 2H), 6,73 (d, 1H, J = 8.4 Hz), 6,88 (d, 1H, J = 2.4 Hz), 7.11 (dd, 1H, J = 8.4 Hz, J = 2.4 Hz). 13 C RMN: ($^{\circ}$ ppm, CD₃Cl₃, 75 MHz): 28.1 (2), 56.2 (2), 60.9, 76.4, 105.8 (2), 112.6, 115.9, 120.8, 122.2, 126.1, 129.1, 130.9, 133.7, 137.5, 137.8, 146.9 (2), 152.9 (2). IR (cm⁻¹): 2973, 2935, 2834, 1578, 1504, 1489, 1451, 1410, 1365, 1343, 1265, 1235, 1122, 1005. Calcd for C₂₂H₂₄O₄: C 74.98, H 6.86, found: C 74.86, H 6.74.

2,2-Dimethyl-6-[1-(3,4,5-trimethoxyphenyl)vinyl]-2*H*-chroman (2i)

Compound **2i** was prepared as for **2d** from 3,4,5-trimethoxyacetophenone (105 mg; 0.5 mmol) and 6-iodo-2,2-dimethyl-3,4-dihydro-2H-chromene (144 mg; 0.5 mmol) to afford the title compound (57 mg; 32 %). R_f (Cyclohexane/EtOAc: 7/3) = 0.56. 1H RMN: (δ ppm, CD₃Cl₃, 300 MHz): 1.35 (s, 6H, CH₃), 1.88 (t, 2H, J = 6.6 Hz), 2.76 (t, 2H, J = 6.6 Hz), 3.82 (s, 6H, OCH₃), 3.88 (s, 3H, OCH₃), 5.26 (d, 1H, J = 1.2 Hz), 5.35 (d, 1H, J = 1.2 Hz), 6,57 (s, 2H), 6.74 (d, 1H, J = 8.1 Hz), 7.08 (s, 1H), 7.09 (d, 1H, J = 8.1 Hz). 13 C RMN: (δ ppm, CD₃Cl₃, 75 MHz): 22.5, 26.9 (2), 32.8, 58.2 (2), 60.9, 74.5, 105.7 (2), 112.0, 116.8, 120.5, 127.3, 129.1, 137.8, 149.8, 152.8 (2), 154.0. IR (cm⁻¹): 2973, 2937, 1579, 1496, 1451, 1410, 1384, 1346, 1260, 1124. Calcd for $C_{22}H_{26}O_4$: C 74.55, H 7.39, found: C 74.50, H 7.36.

tert-butyl(2-methoxy-5-(1-(3,4,5-trimethoxyphenyl)vinyl)phenoxy)dimethylsilane (2j)

Compound **2j** was prepared as for **2d** from 3,4,5-trimethoxyacetophenone (105 mg; 0.5 mmol) and *tert*-butyl(5-iodo-2-methoxyphenoxy)dimethylsilane (182 mg; 0.5 mmol) to afford the title compound (118 mg; 55 %). R_f (cyclohexane/EtOAc : 8/2) = 0.51. 1 H NMR (300 MHz, CDCl₃): δ = 0.15 (s, 6H, SiCH₃), 0.98 (s, 9H, CCH₃), 3.75 (s, 3H, OCH₃), 3.78 (s, 6H, OCH₃), 3.85 (s, 3H, OCH₃), 5.33 (d, 1H, J = 1.2 Hz), 5.34 (d, 1H, J = 1.2 Hz), 6.60 (s, 2H), 6.83 (t, 1H, J = 1.2 Hz), 6.96 (m, 2H). 13 C NMR (100 MHz, CDCl₃): δ = -3.8; 19.0, 26.1, 55.8, 56.4 (2), 60.6, 106.8 (2), 112.6, 112.7, 118.8, 121.4, 122.6, 134.9, 138.1, 146.0, 150.5, 151.8, 154.1 (2). IR (cm⁻¹): 3417, 2937, 2837, 1579, 1506, 1460, 1411, 1346, 1281, 1254, 1124, 1005. Calcd for $C_{24}H_{34}O_{5}Si$: C 66.94, H 7.96, found: C 66.85, H 7.92.

2-methoxy-5-(1-(3,4,5-trimethoxyphenyl)vinyl)phenol (isoCA4, 2k)

To a solution of 2j (73 mg; 0.17 mmol) in MeOH (10 mL) was added K_2CO_3 (34.5 mg; 0.25 mmol) and the mixture was stirred for 12 h at room temperature. The solution was washed with a saturated NaCl Solution (10 mL) and extracted with EtOAc (2 x 10 mL). The organic layers were combined, dried over MgSO₄, and concentrated. The residue was further purified by flash chromatography to afford the title compound 2k (51 mg; 94%). R_f (cyclohexane/EtOAc : 8/2) = 0.21. mp 112 °C. 1 H NMR (δ ppm, 300 MHz, CDCl₃): δ = 3.81 (s, 6H, OCH₃), 3.87 (s, 3H, OCH₃), 3.91 (s, 3H, OCH₃), 5.30 (d, 1H, J = 1.5 Hz), 5.37 (d, 1H, J = 1.5 Hz), 5.60 (bs, 1H, OH), 6.55 (s, 2H), 6.82 (m, 2H), 6.97 (d, 1H, J = 2.1Hz). ¹³C NMR (100 MHz, CDCl₃): 55.9, 56.1 (2), 60.9, 105.8 (2), 110.1, 112.8, 114.4, 120.2, 134.4, 134.7, 137.8, 145.2, 148.4, 149.5, 152.8 (2). IR (cm⁻¹): 3417, 2937, 2837, 1579, 1506, 1460, 1411, 1346, 1281, 1254, 1005. MS (ESI+) m/z (%): 339 [M+Na]+, 100. Calcd for C₁₈H₂₀O₅: C 68.34, H 6.37, found: C 68.25, H 6.33.

3-[1-(3,4,5-Trimethoxyphenyl)vinyl]quinoline (2g)

To a -100°C solution of 3-bromoquinoline (104 mg; 0.5 mmol) in Et₂O (15 mL) was slowly added \emph{via} syringe, 625 μL (1 mmol) of a

1.6 M solution of tBuLi in pentane under nitrogen. After stirring for 45 min. at -78°C, 105 mg (0.5 mmol) of 3,4,5trimethoxyacetophenone in toluene (5 mL) was added to the solution which was warmed to room temperature, and stirring was continued for 12 h. A saturated NH₄Cl solution (10 mL) was slowly added to the mixture to hydrolyze the adduct and the mixture was extracted with Et₂O (10 mL x 3). The combined organic layers were dried over MgSO₄, filtered, and concentrated. The crude mixture and 4-(dimethylamino)pyridine DMAP (2.0 mmol) was next dissolved in CH2Cl2 (10 mL). Methanesulfonyl chloride (190mL, 2.45 mmol) was added via syringe. The mixture was stirred at room temperature for 1 h and poured into a saturated solution of sodium chloride. The two layers were separated and the aqueous layer was extracted with CH2Cl2 (3 x 10 mL). The combined organic layers were dried over MgSO₄, filtered and concentrated. The residue was next dissolved in CH2Cl2 (8 mL) and DBU (14 mmol) was added to the mixture which was refluxed for 3 h. After cooling, the mixture was poured into water, extracted with CH2Cl2 (3 x 8 mL). The organic layers were combined, dried over MgSO₄, and concentrated. The residue was further purified by flash chromatography to yield the title compound 2g (58 mg; 36 %). R_f (Cyclohexane/EtOAc: 7/3) = 0.36. ¹H RMN: (δ ppm, CD₃Cl₃, 300 MHz): 3.77 (s, 6H, OCH₃), 3.80 (s, 3H, OCH₃), 5.52 (s, 2H, CH₂), 6.51 (s, 2H), 7.41-7.50 (t, 1H, J = 6.9 Hz), 7.60-7.64 (t, 1H, J = 6.9Hz), 7.72 (d, 1H, J = 6.9 Hz), 7.96-8.08 (m, 2H), 8.88 (d, 1H, J =2.1 Hz). ¹³C RMN: (δ ppm, CD₃Cl₃ 75 MHz): 55.2 (2), 59.9, 104.5 (2), 114.8, 126.0, 126.7, 127.0, 128.1, 128.6, 133.1, 133.7, 135.2, 137.3, 146.1, 146.6, 149.5 (2), 152.2. IR (cm⁻¹): 2927, 1730, 1575, 1503, 1464, 1447, 1410, 1368, 1347, 1324, 1283, 1177, 1002, 976, 957, 917, 862, 840. MS (ESI+, m/z, %): 341 (M+Na)+, 100. Calcd for C₂₀H₁₉NO₃: C 74.75, H 5.96, N 4.36, found: C 74.61, H 5.90, N 4.29.

2,6-Dimethoxy[4-(3,4-dimethoxybenzene)vinyl]anisole (2l)

To a solution of IsoCA4 (50 mg; 0.158 mmol) in acetone (5 mL) were added K₂CO₃ (62 mg; 0.632 mmol) and Me₂SO₄ (80 mg; 0.632 mmol). After stirring at room temperature for 12 h, the mixture was poured into H₂O (15 mL) and EtOAc (15 mL). The separated aqueous phase was extracted with EtOAc (3 x 15 mL). The combined organic extracts were dried over MgSO₄, filtered and concentrated under reduced pressure to afford the title compound **2I** (42 mg; 80 %). R_f (CH₂CI₂) = 0.63. ¹H RMN: (δ ppm, CD₃Cl₃, 300 MHz): 3.80 (s, 6H, OCH₃), 3.84 (s, 3H, OCH₃), 3.87 (s, 3H, OCH₃), 3.89 (s, 3H, OCH₃), 5.33 (d, 1H, J = 1.5 Hz), 5.36 (d, 1H, J = 1.5 Hz), 6.56 (s, 2H), 6.83 (d, 1H, J = 8.4 Hz), 6.88-6.92 (m, 2H). ¹³C RMN: (δ ppm, CDCl₃ 75 MHz): 55.9 (3), 56.0, 56.1, 56.3, 60.9, 105.7, 110.8, 111.5, 112.7, 121.0, 132.5, 134.0, 137.3, 137.9, 142.7, 148.5, 148.9, 149.7, 152.8, 153.0. IR (cm⁻¹): 2998, 2936, 2835,1730, 1679, 1579, 1506, 1452, 1411, 1330, 1248, 1235, 1221, 1173, 1122, 1025, 1005, 951, 889, 857, 845, 815, 766, 734. MS (ESI+, m/z, %): 353 (M+Na)+, 100. Calcd for C₁₉H₂₂O₅: C 69.09, H 6.71, found: C 68.85, H 6.56.

Acetic acid 2-methoxy-5-[1-(3,4,5-trimethoxyphenyl)vinyl]-phenyl ester (2m)

Acetic anhydride (42 µL; 0.442 mmol) was added dropwise to a magnetically stirred solution of isoCA4 (31.5 mg; 0.316 mmol), pyridine (53 µL), DMAP (2 mg; 0.016 mmol) in CH₂Cl₂ (1 mL) maintained at 0°C. Stirring was continued for 1 h at this temperature, and H₂O (3 mL) was added to the reaction mixture. After extraction with CH2Cl2 (3 x 3 mL), the combined organic layers were dried over MgSO₄, and concentrated. The residue was further purified by flash chromatography to yield the desired compound (74 mg; 65 %). R_f (Cyclohexane/EtOAc: 7/3) = 0.44. ¹H RMN: (δ ppm, CDCl₃, 300 MHz): 2.28 (s, 3H, CH₃), 3.74 (s, 6H, OCH_3), 3.78 (s. 3H, OCH_3), 3.84 (s. 3H, OCH_3), 5.26 (d. 1H, J =1.5 Hz), 5,31 (d, 1H, J = 1.5 Hz), 6.48 (s, 2H), 6.86 (d, 1H, J = 8.7Hz), 6.97 (d, 1H, J = 2.1 Hz), 7.16 (dd, 1H, J = 8.4 Hz, J = 2.1 Hz). ¹³C RMN: (δ ppm, CDCl₃, 75 MHz): 20.7, 55.9, 56.1 (2), 60.9, 105.6 (2), 111.9, 122.8, 126.6, 113.1, 134.0, 137.0, 137.8, 139.3, 148.7, 150.8, 152.9, 169.0. IR (cm⁻¹): 2937, 2839, 1766, 1680, 1580,

1506, 1455, 1411, 1346, 1330, 1304, 1267, 1234, 1207, 1194, 1175, 1121, 1006, 958, 936, 897, 844, 818, 777, 731, 718. MS (ESI+, m/z, %): 381 (M+Na) † , 100. Calcd for $C_{20}H_{22}O_6$: C 67.03, H 6.19, found: C 66.88, H 6.06.

Diethyl-carbamic acid 2-methoxy-5-[1-(3,4,5-trimethoxyphenyl) -vinyl]phenyl ester (2n)

To a solution of isoCA4 (31.5 mg; 0.316 mmol) in CH₂Cl₂ (2 mL) were added successively, pyridine (54 μ L) and diethylcarbamoyl chloride (86 mg; 0.632 mmol). Stirring was continued for 12 h at room temperature, and a saturated NaHCO₃ solution (5 mL) was added to the reaction mixture. After extraction with EtOAc (3 x 8 mL), the combined organic layers were dried over MgSO₄, and concentrated. The residue was further purified by flash chromatography to yield the title compound (57 mg; 50 %). R_f $(CH_2CI_2) = 0.15$. mp 148°C. ¹H RMN: (δ ppm. CDCI₃ 300 MHz): 1.11-1.20 (m, 6H, CH₃), 3.28-3.39 (m, 4H, CH₂), 3.75 (s, 6H, OCH_3), 3.77 (s, 3H, OCH_3), 3.80 (s, 3H, OCH_3), 5.25 (d, 1H, J =0.9 Hz), 5.32 (d, 1H, J = 1.2 Hz), 6.50 (s, 2H), 6.82 (d, 1H, J = 8.4Hz), 7.05-7.10 (m, 2H). ¹³C RMN: (δ ppm, CDCl₃, 75 MHz): 13.4, 14.0, 42.0, 42.3, 55.9, 56.1 (2), 60.9, 105.6 (2), 111.8, 112.9, 123.3, 126.0, 133.8, 137.2, 137.7, 140.2, 148.9, 151.5, 152.8, 154.0. IR (cm⁻¹): 2937, 2839, 1766, 1680, 1580, 1506, 1455, 1411, 1346, 1330, 1304, 1267, 1234, 1207, 1194, 1175, 1121, 1006, 958, 936, 897, 844, 818, 777, 731, 718. MS (ESI+, m/z, %): 438 (M+Na)+, 100. Calcd for C23H29NO6: C 66.19, H 7.04, N 3.37, found: C 74.61, H 6.80, N 3.21.

Sulfuric acid mono-{2-methoxy-5-[3,4,5-trimethoxyphenyl)-vinyl]phenyl} ester (2o)

To a solution of isoCA4 (246 mg; 0.78 mmol) in pyridine (1 mL) was added SO₃-pyridine complex (75 mg; 0.47 mmol). After stirring for 24 h at room temperature, the mixture was hydrolyzed with $H_2\mbox{O}$ (0.5 mL). After concentration under reduced pressure, the residue was purified by flash chromatography to afford the title compound **20** (247 mg; 80 %. R_f (CH₂Cl₂/MeOH: 7/3) = 0.37. ¹H RMN: (δ ppm, CDCI₃, 300 MHz): 3.59 (s, 3H, OCH₃), 3.71 (s, 6H, OCH₃), 3.82 (s, 3H, OCH₃), 5.22 (s, 1H), 5.30 (s, 1H), 6.47 (s, 2H), 6.66 (d, 1H, J =8.7 Hz), 6.95 (dd, 1H, J = 8.7 Hz, J = 1.8 Hz), 7.54 (d, 1H, J = 1.8Hz). 13 C RMN: (δ ppm, CDCl $_3$, 75 MHz): 56.1 (2), 56.4, 60.8, 105.8 (2), 112.1, 113.4, 121.9, 125.7, 134.0, 136.8, 137.9, 140.3, 148.4, 150.3, 152.8 IR (cm⁻¹): 2937, 2839, 1766, 1680, 1580, 1506, 1455, 1411, 1346, 1330, 1304, 1267, 1234, 1207, 1194, 1175, 1121, 1006, 958, 936, 897, 844, 818, 777, 731, 718. MS (ESI-, m/z, %): 395 (M-H) $^+$, 100. Calcd for $C_{18}H_{20}O_8S$: C 54.54, H 5.06, found: C 54.44, H 5.00.

4-{4-[Bis-(2-chloroethyl)-amino]-phenyl}-butyric acid 2: methoxy-5-[1-(3,4,5-trimethoxyphenyl)-vinyl]phenyl ester (2p)

To a solution of isoCA4 (31.5 mg; 0.316 mmol) in CH₂Cl₂ (5 mL) were added successively, (72 mg; 0.376 mmol) of 1-ethyl-3-(3dimethylaminopropyl)carbodiimide (EDCI), DMAP (42 mg; 0.347 mmol) and Chlorambucil (106 mg; 0.347 mmol). Stirring was continued for 1 h at room temperature, and a saturated NaHCO₃ solution (3 mL) was added to the reaction mixture. After extraction with EtOAc (3 x 3 mL), the combined organic layers were dried over MgSO₄, and concentrated. The residue was further purified by flash chromatography to yield the desired compound (127 mg; 70 %. R_f (cyclohexane/EtOAc: 7/3) = 0.42. ¹H RMN: (δ ppm, CDCl₃, 300 MHz): 1.98-2.10 (m, 2H), 2.59 (t, 2H, J = 7.5 Hz, CH₂CO), 2.67 (t, 2H, J = 7.2 Hz, CH₂N), 3.60-3.75 (m, 8H), 3.82 (s, 6H) OCH_3), 3.86 (s, 3H, OCH_3), 3.88 (s, 3H, OCH_3), 5.35 (d, 1H, J = 1.0Hz), 5.40 (d, 1H, J = 1.0 Hz), 6.56 (s, 2H), 6.68 (d, 2H, J = 8.7 Hz), 6.94 (d, 1H, J = 8.7 Hz), 7.03 (d, 1H, J = 2.4 Hz), 7.12 (d, 2H, J =8.7 Hz), 7.25 (dd, 1H, J = 8.7 Hz, J = 2.1 Hz). ¹³C RMN: (δ ppm, CDCl₃, 75 MHz): 26.9, 33.3, 33.9, 40.3, 53.9, 55.9, 56.2 (2), 60.9, 105.7, 111.9, 112.8, 113.1, 122.8, 126.5, 129.8, 131.4, 134.0, 137.0, 139.3, 143.9, 148.8, 150.9, 152.9. IR (cm⁻¹): 2934, 2839,1759, 1614, 1579, 1509, 1454, 1411, 1389, 1347, 1303, 1269, 1236, 1177, 1122, 1026, 1005, 958, 908, 845, 816, 770, 729. MS (ESI+, m/z, %): 624 (M+Na)⁺, 100. Calcd for $C_{32}H_{37}Cl_2NO_6$: C 63.79, H 6.19, N 2.32, found: C 63.68, H 6.19, N 2.22.

Acetic acid 3,4,5-triacetoxy-6-{2-methoxy-5-[1-(3,4,5-trimetho xyphenyl)vinyl]phenoxy}tetrahydropyran-2-yl methyl ester (2q)

2,3,4,6-tetra-O-acetyl-α-D-glucopyranosyl bromide (260 mg; 0.632 mmol) in CH₃CN was slowly added to a stirred solution of isoCA4 (31.5 mg; 0.316 mmol) in CH₃CN (2 mL) containing KOH 1N (1.15 mL). After stirring for 12 h at room temperature, the mixture was hydrolyzed with HCl 1N (5 mL). After extraction with EtOAc (3 x 5 mL), the combined organic layers were dried over MgSO₄, and concentrated. The residue was further purified by flash chromatography to yield the desired compound (102 mg; 50 %. R_f (EtOAc) = 0.80. ¹H RMN: (δ ppm, CDCl₃ 300 MHz): 2.01 (s, 3H, CH₃CO), 2.02 (s, 6H, CH₃CO), 2.05 (s, 3H, CH₃CO), 3.80 (s, 6H, OCH₃), 3.83 (s, 3H, OCH₃), 3.86 (s, 3H, OCH₃), 4.04-4.16 (m, 2H), 4.24 (dd, 1H, J = 12.0 Hz, J = 5.1 Hz), 4.99 (m, 1H), 5.13 (m, 1H),5.24-5.30 (m, 2H), 5.31 (s, 1H), 5.35 (s, 1H), 6.52 (s, 2H), 6.83 (d, 1H, J = 8.4 Hz), 7.00 (dd, 1H, J = 8.4 Hz, J = 2.1 Hz), 7.18 (d, 1H, J = 2.4 Hz). ¹³C RMN: (δ ppm, CDCl₃. 75 MHz): 20.6, 56.1, 56.2 (2), 60.9, 61.9, 69.8, 71.3, 72.0, 72.6, 100.8, 105.7, 112.1, 112.9, 119.8, 124.6, 134.1, 137.0, 131.4, 137.9, 145.9, 149.2, 150.4, 152.9, 169.3, 169.4, 170.2, 190.5. IR (cm⁻¹): 2939, 2840,1749, 1606, 1578, 1508, 1452, 1412, 1367, 1345, 1216, 1206, 1179, 1125, 1065, 1035, 956, 904, 845, 818, 780, 725, 702. MS (ESI+, m/z, %): 669.7 (M+Na)+, 100. Calcd for C₃₂H₃₈O₁₄: C 59.44, H 5.92, found: C 59.30, H 5.84.

2-Hydroxymethyl-6-{2-methoxy-5-[1-(3,4,5-trimethoxyphenyl)-vinyl]phenoxy}tetrahydropyran-3,4,5-triol (2r)

To a solution of 2q (50.4 mg; 0.078 mmol) in dry MeOH (2 mL) was added a 28% NH₄Cl solution (8 mL). After stirring for 2 h at 60°C, the mixture was hydrolyzed with HCl 1N (5 mL). After extraction with EtOAc (3 x 10 mL), the combined organic layers were dried over MgSO₄, and concentrated. The residue was further purified by flash chromatography to yield the desired compound (34 mg; 90 %. R_f (CH₂Cl₂/MeOH: 8/2) = 0.12. mp 154-157°C. ¹H RMN: (δ ppm, CDCl₃, 300 MHz): 3.10-3.50 (m, 5H), 3.52 (d, 1H, J = 11.7 Hz), 3.68 (s, 6H, OCH₃), 3.73 (s, 3H, OCH₃), 3.78 (s, 3H, OCH₃), 4.48 (s, 1H), 4.86 (m, 1H), 4.94 (s, 1H), 5.03 (s, 1H), 5,18 (s, 1H), 5.34 (m, 1H), 5.45 (s, 1H), 6.55 (s, 2H), 6.86 (dd, 1H, J = 7.8 Hz, J = 1.5 Hz), 6.96 (d, 1H, J = 8.4 Hz), 7.12 (d, 1H, J =1.5 Hz). 13 C RMN: (δ ppm, CDCl₃, 75 MHz): 55.6, 55.8, (2), 60.0, 60.4, 69.5, 73.1, 76.8, 77.2, 100.4, 105.5, 112.0, 113.1, 115.1, 121.5, 133.0, 136.7, 137.2, 146.2, 148.5, 148.9, 152.5. IR (cm⁻¹): 3464, 3277, 2924, 2853,1741, 1650, 1578, 1506, 1463, 1425, 1411, 1377, 1340, 1319, 1250, 1233, 1211, 1179, 1154, 1124, 1088, 1050, 1040, 1015, 996, 955, 919, 893, 860, 843, 816, 778, 725. MS (ESI+, m/z, %): 501 (M+Na)+, 100. Calcd for C₂₄H₃₀O₁₀: C 60.24, H 6.32, found: C 60.10, H 6.16.

Synthesis of 4a-4c

(4-Methoxy-3-nitrophenyl)-(3,4,5-trimethoxyphenyl)methanone (4a)

To a THF (18 mL) solution of 4-methoxy-3-nitroacetobenzaldehyde (2.54 g, 14 mmol) was added slowly at -78°C, a 0.7 N solution of 3,4,5-trimethoxybenzaldehyde (28 mL; 19.6 mmol). The reaction mixture was stirred for 1 h at room temperature until the disappearance of starting material, as judged by TLC. Then, the reaction was hydrolyzed at 0°C with a saturated NH₄Cl solution (20 mL) and extracted with EtOAc (3 x 15 mL). The combined organic layers were dried with MgSO₄ and evaporated to dryness. The crude alcohol was then dissolved in CH₂Cl₂ (30 mL) and pyridinium chlorochromate PCC (8.62 g; 40 mmol) was added by portions (15 mmol then 15 mmol after 1 h and 10 mmol after 2 h). The solution was stirred for a night at room temperature and filtered over SiO₂, and the solvent was removed in vacuo. The residue was further purified by flash chromatography to yield the desired compound (3.25 g; 67%). R_f (cyclohexane/EtOAc: 1/1) = 0.44. ¹H RMN: (δ

ppm, CDCl₃, 300 MHz): 3.88 (s, 6 H, OCH₃), 3.94 (s, 3H, OCH₃), 4.06 (s, 3H, OCH₃), 7.00 (s, 2H), 7.20 (d, 1H, J = 8.8 Hz), 8.06 (dd, 1H, J = 8.8 Hz, J = 2.2 Hz), 8.32 (d, 1H, J = 2.2 Hz).

(5-Methoxy-2-nitrophenyl)-(3,4,5-trimethoxyphenyl)methanone (4b)

Compound **4b** was prepared as for **4a** from 5-methoxy-2-nitroacetobenzaldehyde (2.54 g, 14 mmol) to afford the title compound **4b** (2.28g; 47%). R_f (cyclohexane/EtOAc: 6/4) = 0.54. mp 156°C. ¹H RMN: (δ ppm, CDCl₃, 300 MHz): 3.81 (s, δ H, OCH₃), 3.91 (s, 3H, OCH₃), 3.92 (s, 3H, OCH₃), 6.88 (d, 1H, J = 2.9 Hz), 6.99 (s, 2H), 7.08 (dd, 1H, J = 9.3 Hz, J = 2.9 Hz), 8.22 (d, 1H, J = 9.3 Hz).

(4-Methoxy-2-nitrophenyl)-(3,4,5-trimethoxyphenyl)methanone (4c)

Compound **4c** was prepared as for **4a** from 4-methoxy-2-nitroacetobenzaldehyde (2.54 g, 14 mmol) to afford the title compound **4c** (2.91 g; 47%). Yield: 60%. R_f (cyclohexane/EtOAc: 6/4) = 0.52. mp 165° C. 1 H RMN: (δ ppm, CDCl₃, 300 MHz): 3.81 (s, 6 H, OCH₃), 3.91 (s, 3H, OCH₃), 3.95 (s, 3H, OCH₃), 6.98 (s, 2H), 7.24 (dd, 1H, J = 8.4 Hz, J = 2.7 Hz), 7.43 (d, 1H, J = 8.4 Hz), 7.62 (d, 1H, J = 2.7 Hz).

Synthesis of 2t-v

2,6-Dimethoxy[4-(4-methoxy-3-nitrobenzene)vinyl]anisole (2t)

To a 0°C cooled solution of methyltriphenylphosphonium bromide (1.07 g; 3 mmol) in THF (10 mL) was added slowly 3 mL of a 1N THF solution of LiHMDS (3 mmol). The yellow ylide solution was stirred at 0 °C for 1 h, then 4a (520.5 mg; 1.5 mmol) in 10 mL of THF was slowly added via syringe. The resulting mixture was allowed to warm to room temperature and stirred further for 1 h. The solution was poured in H₂O (10 mL) and extracted with CH₂Cl₂ (2 x 10 mL). The organic layers were combined, dried over MgSO₄, and concentrated. The residue was further purified by flash chromatography to yield the desired compound 2t (460 mg; 89 %). R_f (cyclohexane/EtOAc: 7/3) = 0.33. ¹H NMR (300 MHz, CDCl₃): $\delta = 3.82$ (s, 6H, OCH₃), 3.88 (s, 3H, OCH₃), 3.98 (s, 3H, OCH₃), 5.44 (s, 2H), 6.50 (s, 2H), 7.05 (d, 1H, J = 8.7 Hz), 7.52 (dd, 1H, J= 2.0 Hz, J = 8.7 Hz), 7.87 (d, 1H, J = 2.0 Hz). ¹³C NMR (75 MHz, CDCl₃): δ = 56.2 (2C), 56.6, 60.9, 105.5 (2C), 113.2, 114.6, 125.1, 133.7, 133.9, 136.1, 138.2, 139.5, 147.6, 152.4, 153.1 (2C). IR (cm⁻¹): 2939, 1619, 1579, 1529, 1504, 1469, 1412, 1354, 1275, 1239, 1184, 1119, 1016, 996, 954, 895. MS (APCI) m/z (%): 346 [M+H]⁺ 100. Calcd for C₁₈H₁₉NO₆: C 62.60, H 5.55, N 4.06, found: C 62.33, H 5.40, N 3.98.

2,6-Dimethoxy[4-(5-methoxy-2-nitrobenzene)vinyl]anisole (2u) Compound **2u** was prepared as for **2t** from **4b** to afford the title compound (279 mg; 54 %). R_f (cyclohexane/EtOAc: 6/4) = 0.47. mp 99°C. ¹H RMN: (δ ppm, CDCl₃, 300 MHz): 3.77 (s, 6H, OCH₃), 3.83 (s, 3H, OCH₃), 3.92 (s, 3H, OCH₃), 6.45 (s, 2H, CH₂), 6.91 (d, 1H, J = 3.0 Hz), 6.96 (dd, 1H, J = 9.0 Hz, J = 3.0 Hz), 8.05 (d, 1H, J = 9.0 Hz). ¹³C RMN: (δ ppm, CDCl₃, 75 MHz): 55.9, 56.1 (2), 60.8, 104.0 (2), 113.3, 114.4, 117.5, 127.1, 134.7, 138.3, 139.6, 141.6, 147.0, 153.0 (2), 163.0. IR (cm⁻¹): 2939, 2838, 1576, 1507, 1461, 1414, 1339, 1294, 1235, 1184, 1125, 1063, 1027. MS (ESI+, m/z, %): 368 (M+Na)+, 100. Calcd for C₁₈H₁₉NO₆: C 62.60, H 5.55, N 4.06, found: C 62.50, H 5.50, N 4.01.

2,6-Dimethoxy[4-(4-methoxy-2-nitrobenzene)vinyl]anisole (2v) Compound **2v** was prepared as for **2t** from **4c** to afford the title compound (362 mg; 70 %). R_f (cyclohexane/EtOAc: 6/4) = 0.50. mp 123°C. 1 H RMN: (δ ppm, CDCl₃, 300 MHz): 3.77 (s, 6H), 3.83 (s, 3H), 3.89 (s, 3H), 6.44 (s, 2H, CH₂), 7.14 (dd, 1H, J = 8.4 Hz, J = 2.7 Hz), 7.34 (d, 1H, J = 8.4 Hz), 7.42 (d, 1H, J = 2.7 Hz). 13 C RMN: (δ ppm, CDCl₃, 75 MHz): 55.8, 56.1 (2), 60.8, 104.1 (2), 109.1, 114.8, 118.9, 128.7, 133.2, 135.1, 138.2, 146.0 (2), 149.4 (2), 153.0 (2), 159.5. IR (cm⁻¹): 2937, 2838, 1619, 1579, 1528, 1504, 1461, 1412, 1343, 1300, 1266, 1234, 1184, 1123, 1064, 1029,

1005. MS (ESI+, m/z, %): 368 (M+Na)⁺, 100. Calcd for $C_{18}H_{19}NO_6$: C 62.60, H 5.55, N 4.06, found: C 62.56, H 5.50, N 4.00.

Synthesis of 2s, 2w, 2x

2-methoxy-5-(1-(3,4,5-trimethoxyphenyl)vinyl)aniline (isoNH₂CA4, 2s)

Compound 2t (86 mg; 0.25 mmol) and 98 mg of Zn (powder 98%, dust< 10 µM (1.5 mmol)) were dissolved in glacial AcOH (5 mL). The reaction mixture was then stirred for 1 h at room temperature. The solvent was removed in vacuo, the resulting granular residue was redissolved in EtOAc (15 mL) and the mixture was filtered through a pad of celite. The filtrate was washed with water (10 mL) and the organic layer was dried over MgSO₄, and concentrated. The residue was further purified by flash chromatography to yield the desired compound (68.5 mg; 87%). R_f (Cyclohexane/EtOAc: 6/4) = 0.37. ¹H NMR (300 MHz, CD₃COCD₃): δ = 3.80 (s, 3H, OCH₃), 3.64 (s, 6H, OCH₃), 3.70 (s, 3H, OCH₃), 4.38 (s, 2H, NH₂), 5.26 (d, 1H, J = 1.6 Hz), 5.29 (d, 1H, J = 1.6 Hz), 6.61 (s, 2H), 6.61 (dd, 1H, J = 8.4 Hz, J = 2.2 Hz), 6.71 (d, 1H, J = 2.2 Hz), 6.79 (d, 1H, J = 8.4 Hz). ¹³C NMR¹H NMR (75 MHz, CD₃COCD₃): $\delta = 55.8$, 58.3 (2), 60.7, 106.9 (2), 110.7, 112.1, 114.9, 117.9, 134.9, 138.0, 138.5, 139.0, 147.8, 151.4, 153.9 (2). IR (cm⁻¹): 3371, 2937, 2835, 1579, 1513, 1462, 1411, 1346, 1296, 1255, 1235, 1221, 1179, 1125, 1027, 1006. Calcd for C₁₈H₂₁NO₄: C 68.55, H 6.71, N 4.44, found: C 68.38, H 6.60, N 4.32.

4-Methoxy-2-[1-(3,4,5-trimethoxyphenyl)vinyl]aniline (2w)

Compound **2w** was prepared as for **2s** from the reduction of **2u** to afford the title compound (55 mg; 70 %). R_I (cyclohexane/EtOAc: 5/5) = 0.39. ^1H RMN: (δ ppm, CDCl3, 300 MHz): 3.77 (s, 3H), 3.80 (s, 6H, OCH3), 3.85 (s, 3H, OCH3), 3.92 (s, 3H, OCH3), 5.32 (d, 1H, J=1.5 Hz), 5.71 (d, 1H, J=1.5 Hz), 6.59 (s, 2H), 6.66 (d, 1H, J=8.4 Hz), 6.72-6.79 (m, 2H). ^{13}C RMN: (δ ppm, CDCl3, 75 MHz): 55.9, 56.6 (2), 60.6, 105.4 (2), 115.4, 115.6, 116.6, 117.2, 128.3, 136.3, 139.6 (2), 140.0 (2), 148.7, 152.7, 154.3 (2). IR (cm $^{-1}$): 3440, 3360, 2938, 2832, 1578, 1498, 1462, 1410, 1340, 1280, 1234, 1177, 1121, 1038, 1004. MS (ESI+, m/z, %): 338 (M+Na) $^+$, 100. Calcd for C18H21NO4: C 68.55, H 6.71, N 4.44, found: C 68.44, H 6.62, N 4.35

5-Methoxy-2-[1-(3,4,5-trimethoxyphenyl)vinyl]aniline (2x)

Compound **2x** was prepared as for **2s** from the reduction of **2u** to afford the title compound (36 mg; 46 %). R_f (cyclohexane/EtOAc: 7/3) = 0.21. mp 148°C. ^1H RMN: (δ ppm, CDCl₃, 300 MHz): 3.79 (s, 3H, OCH₃), 3.80 (s, 6H, OCH₃), 3.85 (s, 3H, OCH₃), 5.28 (d, 1H, J = 1.5 Hz), 5.65 (d, 1H, J = 1.5 Hz), 6.24 (d, 1H, J = 2.7 Hz), 6,59 (s, 2H), 7.43 (dd, 1H, J = 8.4 Hz, J = 2.7 Hz), 7.03 (d, 1H, J = 8.4 Hz). ^{13}C RMN: (δ ppm, CDCl₃, 75 MHz): 55.1, 56.1 (2), 60.8, 101.0, 103.9, 104.1 (2), 115.3, 120.1, 131.8, 136.1, 138.2, 145.2 (2), 147.0 (2), 153.2 (2), 160.4. IR (cm $^{-1}$): 3472, 3374, 2937, 2835, 1608, 1576, 1503, 1410, 1342, 1234, 1207, 1123, 1027, 1004. MS (ESI+, m/z, %): 338 (M+Na)+, 100. Calcd for C₁₈H₂₁NO₄: C 68.55, H 6.71, N 4.44, found: C 68.37, H 6.57, N 4.30.

Biology

Cell Culture and Proliferation Assay.

Cancer cell lines were obtained from the American type Culture Collection (Rockville, MD) and were cultured according to the supplier's instructions. Briefly, A549 lung carcinoma, MDA-MB-231, MDA-MB-435 cells were grown in Dulbecco minimal essential medium (DMEM) containing 4.5 g/L glucose supplemented with 10% FCS and 1% glutamine. Human K562 leukemia and HCT116 colorectal carcinoma cells were grown in RPMI 1640 containing 10% FCS and 1% glutamine. Human umbilical vein endothelial cells (HUVECs) were obtained from Clonetics (Lonza, Walkersville, MD, USA) and cultured according to the supplier's instructions. Briefly, HUVECs from three to six passages were subcultured to

confluence onto 0.2% gelatincoated tissue culture flasks in endothelial cell growth medium (EGM2) containing growth factors and 2% FCS. All cell lines were maintained at 37 °C in a humidified atmosphere containing 5% CO2. Cell viability was assessed using Promega CellTiter-Blue TM reagent according to the manufacturer's instructions. Cells were seeded in 96-well plates (5 × 103 cells/well) containing 50 μL growth medium. After 24 h of culture, the cells were supplemented with 50 µL of the tested compound dissolved in DMSO (less than 0.1% in each preparation). After 72 h of incubation, 20 µL of resazurin was added for 2 h before recording fluorescence (λex = 560 nm, λem = 590 nm) using a Victor microtiter plate fluorimeter (Perkin-Elmer, USA). The IC50 corresponds to the concentration of the tested compound that caused a decrease of 50% in fluorescence of drug treated cells compared with untreated cells. Experiments were performed in triplicate.

Tubulin Binding Assay. Sheep brain tubulin was purified according to the method of Shelanski^[32] by two cycles of assembly-disassembly and then dissolved in the assembly buffer containing 0.1 M MES, 0.5 mM MgCl₂, 1 mM EGTA, and 1 mM GTP, pH 6.6 (the concentration of tubulin was about 2-3 mg/mL). Tubulin assembly was monitored and recorded continuously by turbidimetry at 350 nm in a UV spectrophotometer equipped with a thermostatted cell at 37 °C. The Gl₅₀ value of each compound was determined as the concentration which decreased the maximum assembly rate of tubulin by 50% compared to the rate in the absence of compound. The Gl₅₀ values for all compounds were compared to the Gl₅₀ of CA4, colchicine and phenstatin and measured the same day under the same conditions.

Cell Cycle Analysis. Exponentially growing cancer cells (K562, HCT116, MDA-MB-231) were incubated with tested compound or DMSO for 24 h. Cell-cycle profiles were determined by flow cytometry on a FC500 flow cytometer (Beckman-Coulter, France) as described previously.^[33]

Apoptosis Assay. Apoptosis was measured by the Apo-one homogeneous caspase-3/7 assay (Promega Co, WI) according to the manufacturer's recommendations. Briefly, cells were subcultured on a 96-well plate with 5 x 10^4 cells/well in 100 µL medium. After 24 h of incubation, the medium in the 96-well plate was discarded and replaced with medium containing different concentrations of *iso*FCA4, *iso*CA4 and *iso*NH₂CA4 (1, 5, and 10 nM) or 0.1% DMSO (as negative control). The treated cells were incubated for 24 h, each well then received 100 µL of a mixture of caspase substrate and Apo-one caspase 3/7 buffer. After 1 h of incubation, the fluorescence of sample was measured using a Victor microtiter plate fluorimeter (Perkin-Elmer, USA) at 527 nm.

Cord Disruption Assay: HUVECs (2 × 10^4 cells per well) were plated in 96-well plates on a thick layer of Matrigel (Becton Dickinson; 10 mg mL 1 , 60 μ L per well) and allowed to align for 24 h. *Iso*FCA4, *iso*CA4, *iso*NH $_2$ CA4 or vehicle were added to the formed cords and left for 3 h. Images were taken 3 h after the addition of compounds.

Acknowledgments. We thank the CNRS, the ICSN and the MNSER for the doctoral fellowship to A.G. We also thank Alexia Pinault for excellent technical assistance.

Keywords: Combretastatin A-4; Isocombretastatin A-4 analogues; Tubulin, Cytotoxicity; Inhibitors of tubulin assembly; Anti-cancer; Vascular disrupting agents

- [2] a) J. A. Hadfield, S. Ducki, N. Hirst, A. T. McGown, *Prog. Cell Cycle Res.* 2003, *5*, 309–325; b) T. Beckers, S. Mahboobi, *Drug Future* 2003, *28*, 767–785; c) A. Brancale, R. Silvestri, *Med. Res. Rev.* 2007, *27*, 209–238; d) B. Bhattacharyya, D. Panda, S. Gupta, M. Banerjee, *Med. Res. Rev.* 2008, *28*, 155–183; e) G. M. Cragg, P. G. Grothaus, D. J. Newman, *Chem. Rev.* 2009, *109*, 3012–3043; f) J. Mulzer, E. Ohler, *Chem. Rev.* 2003, *103*, 3753–3786; g) P. B. Schiff, J. Fant, S. B. Horwitz, *Nature* 1979, *277*, 665–667.
- a) F. Gueritte, Fahy, J. The Vinca Alkaloids. In Anticancer Agents from Natural Products; Cragg, G. M., Kingston, D. G. I., Newman, D. J. Eds.; CRC Press: Boca Raton, FL, 2005; pp 123–135; b) D. G. I. Kingston, Taxol and Its Analogs. In Anticancer Agents from Natural Products; Cragg, G. M., Kingston, D. G. I., Newman, D. J. Eds.; CRC Press: Boca Raton, FL, 2005; pp 89–122.
- [4] a) R. J. Freilich, C. Balmaceda, A. D. Seidman, M. Rubin, L. M. DeAngelis, Neurology 1996, 47, 115–118; b) P. H. Hilkens, J. Verweij, C. J. Vecht, G. Stoter, M. J. van den Bent, Ann. Oncol. 1997, 8, 187–190.
- [5] a) A. T. Fojo, M. Menefee, Semin. Oncol. 2005, 32, S3–S8; b) C. Dumontet, B. I. Sikic, J. Clin. Oncol. 1999, 17, 1061–1070.
- [6] a) G. M. Tozer, C. Kanthou, C. S. Parkins, S. A. Hill, Int. J. Exp. Pathol. 2002, 83, 21–38; b) G. D. Dark, S. A. Hill, V. E. Prise, G. M. Tozer, G. R. Pettit, D. J. Chaplin, Cancer Res. 1997, 57, 1829–1834; c) Tozer, G. M.; Kanthou, C.; Baguley, B. C. Nat. Rev. Cancer 2005, 5, 423–435; d) J. Griggs, J. C. Metcalfe, R. Hesketh, Lancet. Oncol. 2001, 2, 82–87; e) G. M. Tozer, V. E. Prise, J. Wilson, R. J. Locke, B. Vojnovic, M. R. L. Stratford, M. F. Dennis, D. J. Chaplin, Cancer Res. 1999, 59, 1626–1634; f) D. J. Chaplin, M. R. Horsman, D. W. Siemann, Curr. Opin. Invest. Dr. 2006, 7, 522–528; g) A. M. Gaya, G. J. S. Rustin, Clin. Oncol. 2005, 17, 277–290.
- [7] a) G. R. Pettit, S. B. Singh, E. Hamel, C. M. Lin, D. S. Alberts, D. Garcia-Kendall, Experientia 1989, 45, 209–211; b) G. R. Pettit, S. B. Singh, M. R. Boyd, E. Hamel, R. K. Pettit, J. M. Schmidt, F. Hogan, J. Med. Chem. 1995, 38, 1666–1672.
- [8] a) G. R. Pettit, M. R. Rhodes, D. L. Herald, E. Hamel, J. M. Schmidt,
 R. K. Pettit, J. Med. Chem. 2005, 48, 4087–4099; b) A. T. McGown,
 B. W. Fox, Cancer Chemother. Pharmacol. 1990, 26, 79–81.
- [9] a) G. R. Pettit, C. Temple, V. L. Narayanan, R. Varma, M. J. Simpson, M. R. Boyd, G. A. Rener, N. Bansal, Anticancer Drug Design 1995, 10, 299–309; b) D. W. Siemann, D. J. Chaplin, P. A. Walicke, Expert. Opin. Investig. Drugs 2009, 18, 189–197; c) N. E. Mealy, B. Lupone, M. Balcell, Drug Future 2006, 31, 547–548; d) D. M. Patterson, G. J. S. Rustin, Drug Future 2007, 32, 1025–1032.
- [10] K. Oshumi, R. Nakagawa, Y. Fukuda, T. Hatanaka, T. Tsuji, J. Med. Chem. 1998, 41, 3022–3032.
- [11] a) J. W. Lippert III, Bioorg. Med. Chem. 2007, 15, 605–615; b) D.
 M.; Patterson, G, J. S. Rustin, Clinical Oncology 2007, 19, 443–456.
- [12] a) S. Aprile, E. Del Grosso, G. C. Tron, G. Grosa, *Drug. Metab. Dispos.* 2007, 35, 2252–2261; b) I. G. Kirwan, P. M. Loadman, D. J. Swaine, D. A. Anthoney, G. R. Pettit, J. W. Lippert III, S. D. Shnyder, P. A. Cooper, M. C. Bibby, *Clin. Cancer Res.* 2004, 10, 1446–1453; c) O. G. Ganina, E. Daras, V. Bourgarel-Rey, V. Perrot, A. N. Andresyuk, J.-P. Finet, A. Y. Fedorov, I. P. Beletskaya, S. Combes, *Bioorg. Med. Chem.* 2008, 16, 8806–8812.
- [13] a) M. Cushman, D. Nagarathnam, D. Gopal, A. K. Chakraborti, C.
 M. Lin, E. Hamel, J. Med. Chem. 1991, 34, 2579–2588; b) M.
 Cushman, D. Nagarathnam, D. Gopal, H.-M. He, C. M. Lin, E.
 Hamel, J. Med. Chem. 1992, 35, 2293–2306.
- [14] G. C. Tron, T. Pirali, G. Sorba, F. Pagliai, S. Dusacca, A. A. Genazzani, J. Med. Chem. 2006, 49, 3033–3044; b) N. Ty, J. Kaffy, A. Arrault, S. Thoret, R. Pontikis, J. Dubois, L. Morin-Allory, J.-C. Florent Bioorg. Med. Chem. Lett. 2009, 19, 1318–1322; c) N. Ty, G. Dupeyre, G. G. Chabot, J. Seguin, F. Tillequin, D.Scherman, S. Michel, X. Cachet Bioorg. Med. Chem. Lett. 2008, 16, 7494–7503; d) M.-J. Lai, C.-Y. Kuo, T.-K. Yeh H.-P. Hsieh, L.-T. Chen, W.-Y. Pan, K.-Y. Hsu, J.-Y. Chang, J.-P. Liou, Chem. Med. Chem. 2009, 4, 588–593.
- [15] a) N. H. Nam. Curr. Med. Chem. 2003, 10, 1697–1722; b) K. Odlo, J. Hentzen, J. Fournier dit Chabert, S. Ducki, O. A. B. S. M. Gani, I. Sylte, M. Skrede, V. A. Flørenes, T. V. Hansen, Bioorg. Med. Chem.

a) M. A. Jordan, L. Wilson, Nat. Rev. Cancer 2004, 4, 253–265; b)
 G. Attard, A. Greystoke, S. Kaye, J. De Bono, Pathol. Biol. 2006, 54, 72–84.

- Lett. 2008, 16, 4829–4838; c) C. Congiu, M. T. Cocco, V. Onnis, Bioorg. Med. Chem. Lett. 2008, 18, 989–993; d) N. Xue, X. Yang, R. Wu, J. Chen, Q. He, B. Yang, X. Lu, Y. Hu, Bioorg. Med. Chem. 2008, 16, 2550–2557; e) B. L.Flynn, E., Hamel, M. K. Jung, J. Med. Chem. 2002, 45, 2670–2673; f) J. P. Liou, Y. L. Chang, F. M. Kuo, C. W. Chang, H. Y Tseng, C. C. Wang, Y. N. Yang, J. Y. Chang, S. J. Lee, H. P. Hsieh, J. Med. Chem. 2004, 47, 4247–4257; g) Q. Zhang, Y. Peng, X. I. Wang, S. M. Keenan, S. Arora, W. J. Welsh, J. Med. Chem. 2007, 50, 749–754.
- [16] a) A. Hamze, D. Veau, O. Provot, J.-D. Brion, M. Alami, J. Org. Chem. 2009, 74, 1337–1340. b) F. Liron, M. Gervais, J.-F. Peyrat, M. Alami, J.-D. Brion. Tetrahedron Lett. 2003, 44, 2789–2794.
- [17] a) O. Provot, A. Giraud, J.-F. Peyrat, M. Alami, J.-D. Brion, Tetrahedron Lett. 2005, 46, 8547–8550; b) C.; Mousset, A.; Giraud, O.; Provot, A.; Hamze, J. Bignon, J. M. Liu, S. Thoret, J. Dubois, J.-D. Brion, M. Alami, Bioorg. Med. Chem. Lett. 2008, 18, 3266–3271; c) C. Mousset, O. Provot, A. Hamze, J. Bignon, J.-D. Brion, M. Alami, Tetrahedron 2008, 64, 4287–4294.
- [18] a) S. Messaoudi, B. Tréguier, A. Hamze, O. Provot, J.-F. Peyrat, J. R. Rodrigo De Losada, J.-M. Liu, J. Bignon, J. Wdzieczak-Bakala, S. Thoret, J. Dubois, J.-D. Brion, M. Alami, J. Med. Chem. 2009, 52, DOI: 10.1021/jm900321u; b) M. Alami, J.-D. Brion, O. Provot, J.-F. Peyrat, S. Messaoudi, A. Hamze, A. Giraud, J. Bignon, J. Bakala, J.-M. Liu, WO 122620 A1, 2008.
- [19] G. R. Pettit, B. Toki, D. L. Herald, P. Verdier-Pinard, M. R. Boyd, E. Hamel, R. K. Pettit, J. Med. Chem. 1998, 41, 1688–1695.
- [20] G. A. Patani, E. J. LaVoie, Chem. Rev. 1996, 96, 3147-3176.
- [21] For toxicity of palladium see: J. Kielhorn, C. Melber, D. Keller, I. Mangelsdorf, Intl. J. Hyg. Environ. Health 2002, 205, 417–432.
- [22] determined by ${}^{1}H$ NMR ${}^{3}J_{H_{1}-H_{2}} = 12$ Hz.
- [23] K. Ohsumi, R. Nakagawa, Y. Fukuda, T. Hatanaka, Y. Morinaga, Y. Nihei, K. Ohishi, Y. Suga, Y. Akiyama, T. Tsuji, J. Med. Chem. 1998, 41, 3022–3032
- [24] For the synthesis of CA4 as a reference compound, see: A. Giraud, O. Provot, A. Hamze, J.-D. Brion, M. Alami, *Tetrahedron Lett.* 2008, 49, 1107–1110.
- [25] B. Coggiola, F. Pagliai, G. Allegrone, A.A. Genazzani, G.C. Tron, Biogra. Med. Chem. Lett. 2005, 15, 3551–3554.
- [26] N.J. Lawrence, L.A. Hepworth, D. Rennison, A.T. McGown, J.A. Hadfield, J. Fluorine Chem. 2003, 123, 101–108.
- [27] C. Alvarez, R. Alvarez, P. Corchete, C. Pérez-Melero, R. Pelaez, M. Medarde, Bioorg. Med. Chem. 2008, 16, 8999–9008.
- [28] E. Tashiro, S. Simizu, M. Takada, K. Umezawa, M. Imoto, Jpn. J. Cancer Res. 1998, 89, 940–946.
- [29] K. M. Boatright, G. S. Salvesen, S. Guy, Curr. Opin. Cell. Biol. 2003, 15, 725–731.
- [30] a) M. P. Chang, J. Bramhall, S. Graves, B. Bonavida, B. J. Wisnieski, J. Biol. Chem. 1989, 264, 15261–15267; b) A. McGahon, R. Bissonnette, M. Schmitt, K. M. Cotter, D. R. Green, T. G. Cotter, Blood 1994, 83, 1179–1187; c) A. J. McGahon, W. K. Nishioka, S. J. Martin, A. Mahboubi, T. G. Cotter, D. R. Green, J. Biol. Chem. 1995, 270, 22625–22631; d) R. M. Gangemi, M. Tiso, C. Marchetti, A. B. Severi, M. Fabbi, Cancer Chemother. Pharmacol. 1995, 36, 385–392; e) L. Dubrez, F. Goldwasser, P. Genne, Y. Pommier, E. Solary, Leukemia 1995, 9, 1013–1024; f) S. Ray, G. Bullock, G. Nunez, C. Tang, A. M. Ibrado, Y. Huang, K. Bhalla, Cell Growth Diff. 1996, 7, 1617–1623.
- [31] K. A.; Hotchkiss, A. W. Ashton, R. Mahmood, R. G. Russel, J. A. Sparano, E. L. Schwartz, Mol. Cancer Ther. 2002, 1, 1191–1200.
- [32] M. L. Shelanski, F. Gaskin, C. R. Cantor, Proc. Natl. Acad. Sci. U.S.A. 1973, 70, 765–768.
- [33] C. Venot, M. Maratrat, C. Dureuil, E. Conseiller, L. Bracco, L. Debussche. EMBO J. 1998, 17, 4668–4679.