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A B S T R A C T 

The Knuth-Bendix completion procedure was introduced as a 
means of deriving canonical term-rewriting systems to serve as deci­
sion procedures for given equational theories. The procedure gen­
erates new rewrite rules to resolve ambiguities resulting from exist­
ing rules that overlap. We propose using this procedure to syn­
thesize logic programs, as well as functional programs, from 
specifications and domain knowledge expressed as equivalence-
preserving rewrite rules. An implementation is underway. 

1 . I N T R O D U C T I O N 

A (first-order) functional (applicative) program is a 
set of directed equations, used to compute by replacing 
instances of left-hand sides wi th the value of the r ight-
hand sides. For example, the following is a program for 
concatenating two lists of elements: 

where <= has the declarative meaning "is equal" (nil is 
the empty list and • denotes the cons function). Given 
the term 

it wi l l compute the result of appending the two ele­
ments a and 6 in the list a.b.nil [with parentheses, 
that should be a(bnil)] to the front of the list 
c.d.e.nil. A logic program [Kowalski-74] is a set of 
Horn clauses used as a pattern-directed program that 
searches for output terms that satisfy a given goal for 
given input terms. In this paradigm, the append pro-
gram would be expressed in two statements: 
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where : — has the declarative meaning "is implied by" . 
Given a goal 

append (a b nil ,c d e nil ,Z), 

this program computes the appended list 
Z=a.b.c.d.e.nil. Throughout this paper we follow the 
convention of using lower case for constants and upper 
case for free (universally quantified) variables. 

A rewrite system is a set of directed equations (or 
equivalences) used as a nondeterministic pattern-
directed program that returns as output a simplified 
term equal to a given input term. (See [Huet-Oppen-80] 
for a survey.) For example, the following is a three-rule 
rewrite system for append: 

Rules may be applied in any order to any matching sub-
term unt i l no further applications are possible. Thus, 
applying the rules to the term 

append {a nil,nil), 

one gets either the rewrite sequence 

append (a nil ,nil) a append (nil ,nil) a nil, 

or (using only the second rule) simply 

append (a nil ,nil) a nil. 

Such pattern-directed functional programming is avail­
able in SASL [Turner-79], HOPE [Burstall-MacQueen-
Sannella-80], OBJ2 [Futatsugi,et al.-84], rewrite 
languages [Hoffmann-O'Donnell-82], and PLANNER-like 
languages. 

In this paper, we describe how the Knuth-Bendix 
completion procedure [Knuth-Bendix-70] may be used to 
generate programs f rom their (equational) specifications. 
The completion procedure was originally suggested as a 
means of generating rewrite systems that can be used to 
decide the val id i ty of identities in equational theories. 
Given a finite set of equations and a monotonic, well-
founded ordering on terms, the procedure generates 
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new rules that follow from . Each rule generated 
by the procedure is a reduction wi th respect to i.e. 

whenever (t rewrites to / ' ) by a single appli­
cation of the rule, and each rule is sound for 
follows from £ by "replacing equals by equals." Imple­
mentations of the completion procedure include REVE 
[Lescanne-83], RRL at GE [Kapur-Sivakumar-83], and 
FORMEL at 1NRIA [Hullot-80]. 

A rewrite system synthesized by the completion 
procedure (and not containing nested defined symbols 
on left-hand sides) can be translated into a terminat ing 
functional program in a straightforward manner—with 
the pattern-directed invocation eliminated, if desired. 
For example, the above rewrite system for append could 
translate to 

Function definitions can be translated into Horn clauses 
in the standard manner [by encoding a rule like 

as a clause f(X)=Z :- h{X)=Y, 
g(Y)=Z]. Logic programs differ from functional ones in 
that output variables in a goal are instantiated by 
unification with the head of a clause. Rewrite rules 
equating conjunctions correspond to Horn clauses which 
may be used to solve goals in that way. For example, a 
rule of the form 

corresponds to the two Horn clauses (one for each con­
junct that appears on only one side): 

a rule P-->true corresponds to the assertion P. In this 
way, the above logic-program for append follows from 
the two-rule system: 

Note that , in general, a logic program formed from a 
rewrite system in this way is not guaranteed to ter­
minate when backtracking is employed in the search for 
solutions to a given goal. 

A rewrite system is complete (as a functional or 
logic program) if the patterns on the left-hand sides of 
its rules cover all possible (variable-free) input values. 
One can determine that a program is complete, and all 
cases are covered, using methods described in [Thiel-84, 
Dershowitz-85, Kounalis-Zhang-85]. 

Not all rewrite systems correspond to functional or 
logic programs. Rewrite rules wi th nested defined sym­
bols on their left-hand side do not have a straightfor­
ward analogue in all functional languages. And 
equivalences between formulae other than conjunctions 
do not have Horn clause counterparts. [Dershowitz-85] 
describes how a restricted form of completion, called 
"narrowing," can be used as an interpreter for logic 
programs expressed as rewrite rules that are not neces­
sarily Horn clauses. 
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In general, the completion procedure may go on 
generating an inf inite number of new rules. But , some­
times, despite the backtracking in Step [1], a particular 
choice of (partial) ordering forces the whole pro-
cedure to fail w i th all equations unorientable. On the 
other hand, as long as the completion procedure does 
not terminate in failure, for any equation M=N that 
follows (logically) from the given rules R (considered as 
equations), the procedure wi l l eventually generate 
enough rules for M and N to reduce to the identical 
term. For this to be the case, the procedure must exe­
cute fairly, by which we mean that no orientable equa­
tion remains in £ forever. 

The completion procedure has been extended 
[Peterson-Stickel-81, Fages-83] to rewrite systems that 
contain associative-commutative function symbols (pos­
sibly wi th ident i ty element) by considering a somewhat 
extended notion of crit ical pair and a unification algo­
r i thm for associative-commutative symbols. If / is an 
associative-commutative symbol, then crit ical pairs are 
also formed f rom overlapped terms of the form 

where X is a new variable, and to 
which two rules and (both wi th 
associative-commutative outermost symbols) may be 
applied. 

3 . S Y N T H E S I S 

Like other theorem-proving methods, completion 
can be applied to the task of automatic program syn­
thesis f rom specifications. The completion procedure 
itself does the " fo ld ing " ( that is, the introduct ion of 
recursive calk) based upon the axiomatization of the 
problem domain. Other work on the synthesis of recur­
sive programs includes [Burstall-Darlington-77, Manna-
Waldinger-80, Clark-81, Hogger-81]. Specifications are 
expressed as rewrite rules, i.e. as directed equations or 
equivalences. The importance of using equivalences in 
specifications, rather than implications has been pointed 
out in [Kowalski-79, Hogger-81], and others. Heuristic 
aspects of the synthesis problem are not addressed in 
this paper. 

Assume that we wish to synthesize a program for 
some function (or predicate) /, and are given an 
axiomatization £ of the problem domain. We can start 
the completion procedure off w i th and run it un t i l a 
program R is generated that computes / . (In our 
examples, we wi l l skip the first stage of completion, 
start ing off w i th already oriented rules for £, and 
considering crit ical pairs as necessary.) The monotonic 
well-founded ordering supplied to the completion pro­
cedure should ensure that terms containing 
"specif ication" symbols are greater than corresponding 
terms containing the defined goal symbol, which in tu rn 
should be greater than the constant true. The choice of 
ordering guides the synthesis and wi l l affect the pro­

gram derived. Given the " r i g h t " ordering, the pro­
cedure wi l l find a program, if it does not abort on 
account of inabi l i ty to orient any equation into a rule, 
and if a program exists that does not require auxil iary 
definitions. (See [Dershowitz-85].) When auxiliary pro-
cedures are needed, their definition may be supplied by 
the user. 

As a simple example of the use of completion to 
" f o l d " and "un fo ld , " we synthesize an efficient program 
to reverse a list, given the naive version that uses 
append (cf. the same problem in [Burstal l-Darl ington-
77]). The naive program is 

reverse (nil) -^ nil (1) 
reverse(AX) append (reverse (X), A nil) (2) 

The synthesis requires a definit ion of the auxiliary func­
tion rev: 

append(reverse (Y)fZ) rev(Y,Z), (3) 

the append system of Section 1: 

append (nil ,V) V (4) 
append (U,nil) U (5) 

append(AUy) A • append (U ,V), (6) 

and the theorem (associativity of append): 

append (append (X ,Y),Z) append(X, append(Y,Z))(7) 

Completion proceeds as follows: The left-hand sides 
of rules (3) and (5) can be unified by lett ing Z in (3) be 
nil and V in (5) be reverse(Y). That generates the crit­
ical pair 

reverse (Y) = rev (Y,nil). 

Since we want reverse to use rev, the ordering supplied 
to the completion procedure should make anything con­
taining reverse bigger than a term that does not. That 
way, the above equation is oriented into a rule 

reverse (Y) - rev (Y .nil). (8) 

The next step is to overlap the naive reverse program 
with the definit ion of rev. Uni fy ing the left-hand side 
of (1) wi th the subterm reverse (Y) of (3), by let t ing 
y = n i l , gives rise to the crit ical pair 

append (nil,Z) = rev (nil,Z), 

the left side of which reduces, using (4), to just Z. 
There being only one possible way to orient the equa­
tion Z=rev(nil,Z) into a (terminating) reduction, that 
pair results in the rule 

rev (nil,Z) Z. (9) 

Overlapping (3) now wi th the left-hand side of (2), let­
t ing Y=A.X gives the cri t ical pair 

append (append (reverse (X), A nil),Z) = rev(AX,Z). 

Associativity of append (7) comes in here, rewr i t ing the 
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left side to append (reverse (X), append (A ni l ,Z)) , which 
becomes rev(X,AZ) by applying (6), (4), and (3). 
Wi th an appropriate ordering (one that begins by look­
ing at the first argument of rev, on which the intended 
program recurs), that gives the rule 

rev(AX,Z) rev(X,AZ). (10) 

The three rules generated by completion, viz. (8-
10), serve as a functional program for reverse, one that 
does not itself use append: 

This program is complete, since Y covers all lists for 
reverse and (nil ,Z) and (A X ,Z) cover all possible 
pairs of lists for rev. The program is terminat ing, since 
completion used a well-founded ordering to the rules. 

4 . L O G I C P R O G R A M S 

Suppose that we are given the following definition 
of mult ipl icat ion (for natural numbers): 

(1) 
(2) 

where + and x are associative and commutative (with 
identities 0 and 1, respectively), and that we wish to 
synthesize a program for integer division. We wi l l also 
need the following four facts, expressed as simplification 
rules: 

(3) 
(4) 
(5) 
(6) 

Positive integers are represented in unary, as sums of 
ones. (Associativity and commutat iv i ty are needed so 
that U + W, for example, can be matched wi th 
1 + 1 + 1 + 1, wi th U = V = l + l.) 

The completion procedure starts off wi th the above 
rules (1-6) and the specification 

The procedure is also given a recursive path ordering 
(see [Dershowitz-82]) in which function symbols are 
ordered ( from "heavier" to " l igh ter " ) : 
+ , 1,0, true. The synthesis proceeds is as follows: 

By overlapping (1) on the specification (7) (uni­
fying y + 1 wi th M and Q w i th 0), we get 
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5, F O R W A R D R E A S O N I N G 

In this section, we synthesize a rewrite system that 
can be used to search for an integral position P such 
that the input value X lies between 
for monotonically nondecreasing function / . The resul­
tant logic program computes by " forward reasoning" 
[Kowalski-79], f rom facts towards the goal. 

The following propositional calculus system (cf. 
[Hsiang-Dershowitz-83]) can provide addit ional logical 
capability for specifications: 

Note that the left-hand side of a rewrite rule becomes 
the list of premisses of a clause used for forward-
reasoning. 

To derive a binary search program, we introduce 
the following definition of halving: 
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Given values for X, A, and N, along with programs for 
/ and +, this program computes P such that 
search (P) holds. Start ing from the axiom pos(A,N), it 
tests inequalities to add new facts of the form pos(P,Y), 
unt i l the fact pos(P,1), and its consequence search(P), 
are generated. 

6 . A U X I L I A R Y P R O C E D U R E S 

The above approach requires that a program be 
specified equationally. That means that it may be 
necessary to give recursive definitions of predicates 
appearing in specifications. (There is a comparable 
need of definitions for verification purposes in [Boyer-
Moore-79].) For example, the following insertion-sort 
program 

requires the addit ional rules 

along wi th "more p r im i t i ve" rules for inequality. 

The specification for the above program may be 
stated as a conjunction of the requirements that the list 
Z be ordered in nondecreasing order and that it be a 
permutation of the list X: 

ordered(Z) & permuted(X,Z) --> sorted (X ,Z).(1) 

Given the facts 

ordered (nil) -► true (2) 

(an empty list is ordered) and 

permuted (X ,X) --> true (3) 

(any list is a permutat ion of itself), the desired base case 

sorted (nil,nil) -> .true (4) 

is generated. 

To generate the recursive case, an auxiliary 
definition is required. To indicate the desire to sort a 
list by first sort ing its ta i l , the following definition is 
added: 

From this, completion generates the following sequence 
of rules: Using the definition of 

Using the associativity and commutat iv i ty of = (mean­
ing equivalence) in overlapping the fact U=U --> false 
with (6), adding —sorted(X,Y) to both sides of the 
rules, gives 

(7) 
after simplifying the resultant left side w i th 
U=false -->U. Overlapping the fact V &U-+U w i th (7) 
adds the conjunct sorted (X ,Y) to both sides. Then 
simplifying the resulting critical pair, using proposi­
tion al rules, gives 

(8) 

The latter is the desired recursive call. 

The next stage is to synthesize the auxiliary pro-
gram. Adding the fact 

permuted (A X ,AY) --> permuted (X X) (9) 

wil l generate the two base cases 

Generating the recursive case of inserted requires much 
more information about ordered. The predicate ordered 
can be defined in terms of smaller: 

i.e. a list beginning with an element B is ordered if 
(and only if) B is smaller than each element in the 
remainder of the list and the remainder is itself ordered. 
The predicate smaller can be defined by 

In addit ion, one needs to know that 

This fact must either be given as true, or can itself be 
proved using the completion procedure. (For the use of 

completion for inductive theorem proving, see, for 
example, [Huet-Oppen-80].) The result is 
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7. I M P L E M E N T A T I O N 

An implementation of these ideas is underway at 
the University of Il l inois. It is being embedded wi th in 
the rewrite system environments REVE [Lescanne-83] 
and RRL [Kapur-Sivakumar-83]. In practice, we have 
not encountered any diff iculty in using the well-founded 
orderings supplied w i th these systems to successfully 
guide the synthesis of programs. Pruning fut i le paths, 
on the other hand, is a diff icult problem. 
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