
SYNTHESIS BY C O M P L E T I O N *

Nachum Dershowitz
Department of Computer Science

University of Illinois
Urbana, IL 61801

U.S.A.

A B S T R A C T

The Knuth-Bendix completion procedure was introduced as a
means of deriving canonical term-rewriting systems to serve as deci­
sion procedures for given equational theories. The procedure gen­
erates new rewrite rules to resolve ambiguities resulting from exist­
ing rules that overlap. We propose using this procedure to syn­
thesize logic programs, as well as functional programs, from
specifications and domain knowledge expressed as equivalence-
preserving rewrite rules. An implementation is underway.

1 . I N T R O D U C T I O N

A (first-order) functional (applicative) program is a
set of directed equations, used to compute by replacing
instances of left-hand sides wi th the value of the r ight-
hand sides. For example, the following is a program for
concatenating two lists of elements:

where <= has the declarative meaning "is equal" (nil is
the empty list and • denotes the cons function). Given
the term

it wi l l compute the result of appending the two ele­
ments a and 6 in the list a.b.nil [with parentheses,
that should be a(bnil)] to the front of the list
c.d.e.nil. A logic program [Kowalski-74] is a set of
Horn clauses used as a pattern-directed program that
searches for output terms that satisfy a given goal for
given input terms. In this paradigm, the append pro-
gram would be expressed in two statements:

*This research was supported in part by the National Science
Foundation under Grant MCS 83-07755 and in part by the Israeli
Ministry of Defense while the author was at the Department of
Mathematics and Computer Science, Bar-Han University, Ramat-
Gan, Israel.

where : — has the declarative meaning "is implied by" .
Given a goal

append (a b nil ,c d e nil ,Z),

this program computes the appended list
Z=a.b.c.d.e.nil. Throughout this paper we follow the
convention of using lower case for constants and upper
case for free (universally quantified) variables.

A rewrite system is a set of directed equations (or
equivalences) used as a nondeterministic pattern-
directed program that returns as output a simplified
term equal to a given input term. (See [Huet-Oppen-80]
for a survey.) For example, the following is a three-rule
rewrite system for append:

Rules may be applied in any order to any matching sub-
term unt i l no further applications are possible. Thus,
applying the rules to the term

append {a nil,nil),

one gets either the rewrite sequence

append (a nil ,nil) a append (nil ,nil) a nil,

or (using only the second rule) simply

append (a nil ,nil) a nil.

Such pattern-directed functional programming is avail­
able in SASL [Turner-79], HOPE [Burstall-MacQueen-
Sannella-80], OBJ2 [Futatsugi,et al.-84], rewrite
languages [Hoffmann-O'Donnell-82], and PLANNER-like
languages.

In this paper, we describe how the Knuth-Bendix
completion procedure [Knuth-Bendix-70] may be used to
generate programs f rom their (equational) specifications.
The completion procedure was originally suggested as a
means of generating rewrite systems that can be used to
decide the val id i ty of identities in equational theories.
Given a finite set of equations and a monotonic, well-
founded ordering on terms, the procedure generates

N. Dershowitz 209

new rules that follow from . Each rule generated
by the procedure is a reduction wi th respect to i.e.

whenever (t rewrites to / ') by a single appli­
cation of the rule, and each rule is sound for
follows from £ by "replacing equals by equals." Imple­
mentations of the completion procedure include REVE
[Lescanne-83], RRL at GE [Kapur-Sivakumar-83], and
FORMEL at 1NRIA [Hullot-80].

A rewrite system synthesized by the completion
procedure (and not containing nested defined symbols
on left-hand sides) can be translated into a terminat ing
functional program in a straightforward manner—with
the pattern-directed invocation eliminated, if desired.
For example, the above rewrite system for append could
translate to

Function definitions can be translated into Horn clauses
in the standard manner [by encoding a rule like

as a clause f(X)=Z :- h{X)=Y,
g(Y)=Z]. Logic programs differ from functional ones in
that output variables in a goal are instantiated by
unification with the head of a clause. Rewrite rules
equating conjunctions correspond to Horn clauses which
may be used to solve goals in that way. For example, a
rule of the form

corresponds to the two Horn clauses (one for each con­
junct that appears on only one side):

a rule P-->true corresponds to the assertion P. In this
way, the above logic-program for append follows from
the two-rule system:

Note that , in general, a logic program formed from a
rewrite system in this way is not guaranteed to ter­
minate when backtracking is employed in the search for
solutions to a given goal.

A rewrite system is complete (as a functional or
logic program) if the patterns on the left-hand sides of
its rules cover all possible (variable-free) input values.
One can determine that a program is complete, and all
cases are covered, using methods described in [Thiel-84,
Dershowitz-85, Kounalis-Zhang-85].

Not all rewrite systems correspond to functional or
logic programs. Rewrite rules wi th nested defined sym­
bols on their left-hand side do not have a straightfor­
ward analogue in all functional languages. And
equivalences between formulae other than conjunctions
do not have Horn clause counterparts. [Dershowitz-85]
describes how a restricted form of completion, called
"narrowing," can be used as an interpreter for logic
programs expressed as rewrite rules that are not neces­
sarily Horn clauses.

210 N. Dershowitz

In general, the completion procedure may go on
generating an inf inite number of new rules. But , some­
times, despite the backtracking in Step [1], a particular
choice of (partial) ordering forces the whole pro-
cedure to fail w i th all equations unorientable. On the
other hand, as long as the completion procedure does
not terminate in failure, for any equation M=N that
follows (logically) from the given rules R (considered as
equations), the procedure wi l l eventually generate
enough rules for M and N to reduce to the identical
term. For this to be the case, the procedure must exe­
cute fairly, by which we mean that no orientable equa­
tion remains in £ forever.

The completion procedure has been extended
[Peterson-Stickel-81, Fages-83] to rewrite systems that
contain associative-commutative function symbols (pos­
sibly wi th ident i ty element) by considering a somewhat
extended notion of crit ical pair and a unification algo­
r i thm for associative-commutative symbols. If / is an
associative-commutative symbol, then crit ical pairs are
also formed f rom overlapped terms of the form

where X is a new variable, and to
which two rules and (both wi th
associative-commutative outermost symbols) may be
applied.

3 . S Y N T H E S I S

Like other theorem-proving methods, completion
can be applied to the task of automatic program syn­
thesis f rom specifications. The completion procedure
itself does the " fo ld ing " (that is, the introduct ion of
recursive calk) based upon the axiomatization of the
problem domain. Other work on the synthesis of recur­
sive programs includes [Burstall-Darlington-77, Manna-
Waldinger-80, Clark-81, Hogger-81]. Specifications are
expressed as rewrite rules, i.e. as directed equations or
equivalences. The importance of using equivalences in
specifications, rather than implications has been pointed
out in [Kowalski-79, Hogger-81], and others. Heuristic
aspects of the synthesis problem are not addressed in
this paper.

Assume that we wish to synthesize a program for
some function (or predicate) /, and are given an
axiomatization £ of the problem domain. We can start
the completion procedure off w i th and run it un t i l a
program R is generated that computes / . (In our
examples, we wi l l skip the first stage of completion,
start ing off w i th already oriented rules for £, and
considering crit ical pairs as necessary.) The monotonic
well-founded ordering supplied to the completion pro­
cedure should ensure that terms containing
"specif ication" symbols are greater than corresponding
terms containing the defined goal symbol, which in tu rn
should be greater than the constant true. The choice of
ordering guides the synthesis and wi l l affect the pro­

gram derived. Given the " r i g h t " ordering, the pro­
cedure wi l l find a program, if it does not abort on
account of inabi l i ty to orient any equation into a rule,
and if a program exists that does not require auxil iary
definitions. (See [Dershowitz-85].) When auxiliary pro-
cedures are needed, their definition may be supplied by
the user.

As a simple example of the use of completion to
" f o l d " and "un fo ld , " we synthesize an efficient program
to reverse a list, given the naive version that uses
append (cf. the same problem in [Burstal l-Darl ington-
77]). The naive program is

reverse (nil) -^ nil (1)
reverse(AX) append (reverse (X), A nil) (2)

The synthesis requires a definit ion of the auxiliary func­
tion rev:

append(reverse (Y)fZ) rev(Y,Z), (3)

the append system of Section 1:

append (nil ,V) V (4)
append (U,nil) U (5)

append(AUy) A • append (U ,V), (6)

and the theorem (associativity of append):

append (append (X ,Y),Z) append(X, append(Y,Z))(7)

Completion proceeds as follows: The left-hand sides
of rules (3) and (5) can be unified by lett ing Z in (3) be
nil and V in (5) be reverse(Y). That generates the crit­
ical pair

reverse (Y) = rev (Y,nil).

Since we want reverse to use rev, the ordering supplied
to the completion procedure should make anything con­
taining reverse bigger than a term that does not. That
way, the above equation is oriented into a rule

reverse (Y) - rev (Y .nil). (8)

The next step is to overlap the naive reverse program
with the definit ion of rev. Uni fy ing the left-hand side
of (1) wi th the subterm reverse (Y) of (3), by let t ing
y = n i l , gives rise to the crit ical pair

append (nil,Z) = rev (nil,Z),

the left side of which reduces, using (4), to just Z.
There being only one possible way to orient the equa­
tion Z=rev(nil,Z) into a (terminating) reduction, that
pair results in the rule

rev (nil,Z) Z. (9)

Overlapping (3) now wi th the left-hand side of (2), let­
t ing Y=A.X gives the cri t ical pair

append (append (reverse (X), A nil),Z) = rev(AX,Z).

Associativity of append (7) comes in here, rewr i t ing the

N. Dershowitz 211

left side to append (reverse (X), append (A ni l ,Z)) , which
becomes rev(X,AZ) by applying (6), (4), and (3).
Wi th an appropriate ordering (one that begins by look­
ing at the first argument of rev, on which the intended
program recurs), that gives the rule

rev(AX,Z) rev(X,AZ). (10)

The three rules generated by completion, viz. (8-
10), serve as a functional program for reverse, one that
does not itself use append:

This program is complete, since Y covers all lists for
reverse and (nil ,Z) and (A X ,Z) cover all possible
pairs of lists for rev. The program is terminat ing, since
completion used a well-founded ordering to the rules.

4 . L O G I C P R O G R A M S

Suppose that we are given the following definition
of mult ipl icat ion (for natural numbers):

(1)
(2)

where + and x are associative and commutative (with
identities 0 and 1, respectively), and that we wish to
synthesize a program for integer division. We wi l l also
need the following four facts, expressed as simplification
rules:

(3)
(4)
(5)
(6)

Positive integers are represented in unary, as sums of
ones. (Associativity and commutat iv i ty are needed so
that U + W, for example, can be matched wi th
1 + 1 + 1 + 1, wi th U = V = l + l.)

The completion procedure starts off wi th the above
rules (1-6) and the specification

The procedure is also given a recursive path ordering
(see [Dershowitz-82]) in which function symbols are
ordered (from "heavier" to " l igh ter ") :
+ , 1,0, true. The synthesis proceeds is as follows:

By overlapping (1) on the specification (7) (uni­
fying y + 1 wi th M and Q w i th 0), we get

212 N. Dershowitz

5, F O R W A R D R E A S O N I N G

In this section, we synthesize a rewrite system that
can be used to search for an integral position P such
that the input value X lies between
for monotonically nondecreasing function / . The resul­
tant logic program computes by " forward reasoning"
[Kowalski-79], f rom facts towards the goal.

The following propositional calculus system (cf.
[Hsiang-Dershowitz-83]) can provide addit ional logical
capability for specifications:

Note that the left-hand side of a rewrite rule becomes
the list of premisses of a clause used for forward-
reasoning.

To derive a binary search program, we introduce
the following definition of halving:

N. Dershowitz 213

Given values for X, A, and N, along with programs for
/ and +, this program computes P such that
search (P) holds. Start ing from the axiom pos(A,N), it
tests inequalities to add new facts of the form pos(P,Y),
unt i l the fact pos(P,1), and its consequence search(P),
are generated.

6 . A U X I L I A R Y P R O C E D U R E S

The above approach requires that a program be
specified equationally. That means that it may be
necessary to give recursive definitions of predicates
appearing in specifications. (There is a comparable
need of definitions for verification purposes in [Boyer-
Moore-79].) For example, the following insertion-sort
program

requires the addit ional rules

along wi th "more p r im i t i ve" rules for inequality.

The specification for the above program may be
stated as a conjunction of the requirements that the list
Z be ordered in nondecreasing order and that it be a
permutation of the list X:

ordered(Z) & permuted(X,Z) --> sorted (X ,Z).(1)

Given the facts

ordered (nil) -► true (2)

(an empty list is ordered) and

permuted (X ,X) --> true (3)

(any list is a permutat ion of itself), the desired base case

sorted (nil,nil) -> .true (4)

is generated.

To generate the recursive case, an auxiliary
definition is required. To indicate the desire to sort a
list by first sort ing its ta i l , the following definition is
added:

From this, completion generates the following sequence
of rules: Using the definition of

Using the associativity and commutat iv i ty of = (mean­
ing equivalence) in overlapping the fact U=U --> false
with (6), adding —sorted(X,Y) to both sides of the
rules, gives

(7)
after simplifying the resultant left side w i th
U=false -->U. Overlapping the fact V &U-+U w i th (7)
adds the conjunct sorted (X ,Y) to both sides. Then
simplifying the resulting critical pair, using proposi­
tion al rules, gives

(8)

The latter is the desired recursive call.

The next stage is to synthesize the auxiliary pro-
gram. Adding the fact

permuted (A X ,AY) --> permuted (X X) (9)

wil l generate the two base cases

Generating the recursive case of inserted requires much
more information about ordered. The predicate ordered
can be defined in terms of smaller:

i.e. a list beginning with an element B is ordered if
(and only if) B is smaller than each element in the
remainder of the list and the remainder is itself ordered.
The predicate smaller can be defined by

In addit ion, one needs to know that

This fact must either be given as true, or can itself be
proved using the completion procedure. (For the use of

completion for inductive theorem proving, see, for
example, [Huet-Oppen-80].) The result is

214 N. Dershowitz

7. I M P L E M E N T A T I O N

An implementation of these ideas is underway at
the University of Il l inois. It is being embedded wi th in
the rewrite system environments REVE [Lescanne-83]
and RRL [Kapur-Sivakumar-83]. In practice, we have
not encountered any diff iculty in using the well-founded
orderings supplied w i th these systems to successfully
guide the synthesis of programs. Pruning fut i le paths,
on the other hand, is a diff icult problem.

A C K N O W L E D G E M E N T

1 thank Alan Josephson for his crit ical readings and
crit ical implementation work.

REFERENCES

[Boyer-Moore-79] Boyer, R. S., and Moore, J S. A Com-
mutational Logic. Academic Press, New York , 1979.

[Burstall-Darlington-77] Burstal l , R. M., and Darl ington,
J. "A transformation system for developing recursive
programs". J. of the Association for Computing
Machinery, Vo l . 24, No. 1 (Jan. 1977), pp. 44-67.

[Burstall-MacQueen-Sannella-80] Burstal l , R. M., Mac-
Queen, D. B., and Sannella, D. T. " H O P E : An experi­
mental applicative language". Conference Record of
the 1980 LISP Conference, Stanford, CA (1980), pp.
136-143.

[Clark-81] Clark, K. L. "The synthesis and verification
of logic programs", Research Report DOC 81/36,
Department of Comput ing, Imperial College, London,
England, Sept. 1981.

[Dershowitz-82] Dershowitz, N. "Orderings for term-
rewri t ing systems". J. Theoretical Computer Science,
Vol. 17, No. 3 (Mar. 1982), pp. 279-301.

[Dershowitz-85] Dershowitz, N. "Comput ing wi th
rewrite systems". Information and Control (1985, to
appear).

[Fages-83] Fages, F. "Formes canoniques dans les
algebras booleennes, et application a la demonstration
automatique en logique de premier ordre" , These,
Universite' de Paris V I , Paris, France, June 1983.

[Futatsugi,etal.-84] Futatsugi , K., Goguen, J. A., Jouan-
naud, J. P., and Meseguer, J. "Principles of OBJ2" ,
Centre de Recherche en Informatique de Nancy,
Nancy, France, 1984.

[Hoffmann-O'Donnell-82] Hoffmann, C. M., and
O'Donnell, M. J. "Programming wi th equations".
Transactions on Programming Languages and Sys­
tems, Vo l . 4, No. 1 (Jan. 1982), pp. 83-112.

[Hogger-81] Hogger, C. J. "Der ivat ion of logic pro­
grams". J. of the Association for Computing
Machinery, Vo l . 28, No. 2 (Apr. 1981), pp. 372-392.

[Hsiang-Dershowitz-83] Hsiang, J., and Dershowitz, N.
"Rewri te methods for clausal and non-clausal
theorem prov ing" . Proc. Tenth EATCS International
Colloquium on Automata, Languages and Program­
ming, Barcelona, Spain (July 1983), pp. 331-346.

[Huet-Oppen-80] Huet, G, and Oppen, D. C. "Equa­
tions and rewrite rules: A survey". In : Formal
Language Theory: Perspectives and Open Problems,

R. Book, ed. Academic Press, New York , 1980, pp.
349-405.

[Hullot-80] Hul lot, J. M. "Compi lat ion de formes
canoniques dans les the'ories equationnelles", These,
Universite' de Paris-Sud, Orsay, France, Nov. 1980.

[Kapur-Sivakumar-83] Kapur , D., and Sivakumar, G.
"Experiments wi th and architecture of RRL, a
rewrite rule laboratory". Proc. NSF Workshop on the
Rewrite Rule Laboratory, Schenectady, NY (Sept.
1983), pp. 33-56.

[Knuth-Bendix-70] K n u t h , D. E., and Bendix, P. B.
"Simple word problems in universal algebras". In :
Computational Problems in Abstract Algebra, J.
Leech, ed. Pergamon Press, 1970, pp. 263-297.

[Kounalis-Zhang-85] Kounalis, E., and Zhang, H. "A
general completeness test for equational
specifications", Unpublished report, Centre de
Recherche en Informatique de Nancy, Nancy, France,
1985.

[Kowalski-74] Kowalski , R. A. "Predicate logic as pro­
gramming language". Proc. IFIP Congress, Amster­
dam, The Netherlands (1974), pp. 569-574.

[Kowalski-79] Kowalski , R. A. Logic for Problem Solv­
ing. North-Hol land, Amsterdam, 1979.

[Lescanne-83] Lescanne, P. "Computer experiments wi th
the REVE term rewri t ing system generator". Proc.
Tenth Symposium on Principles of Programming
Languages, Aust in , TX (Jan. 1983), pp. 99-108.

[Manna-Waldinger-80] Manna, Z., and Waldinger, R. J.
"A deductive approach to program synthesis". ACM
Transactions on Programming Languages and Sys­
tems, Vol . 2, No. 1 (Jan. 1980), pp. 90-121.

[Peterson-Stickel-81] Peterson, G. E., and Stickel, M. E.
"Complete sets of reductions for some equational
theories". J. of the Association for Computing
Machinery, Vol . 28, No. 2 (Apr. 1981), pp. 233-264.

[Thiel-84] Thie l , J. J. "Stop losing sleep over incomplete
data type specifications". Proc. Eleventh Symposium
on Principles of Programming Languages, Salt Lake
Ci ty, UT (Jan. 1984).

[Turner-79] Turner , D. A. "SASL language manual" ,
University of St. Andrews, 1979.

