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Synthesis, Characterization, and Microwave
Absorption Properties of Reduced
Graphene Oxide/Strontium Ferrite/
Polyaniline Nanocomposites
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Abstract

Strontium ferrite nanoparticles were prepared by a coprecipitation method, and reduced graphene oxide/strontium

ferrite/polyaniline (R-GO/SF/PANI) ternary nanocomposites were prepared by in situ polymerization method. The

morphology, structure, and magnetic properties of the ternary nanocomposites were investigated by X-ray powder

diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), TEM, Raman, and VSM. The microwave-absorbing

properties of the composites were measured by a vector network analyzer. The XRD patterns show the single

phase of strontium hexaferrite without other intermediate phases. TEM photographs reveal that strontium ferrite

nanoparticles are uniformly dispersed on the surfaces of R-GO sheets. The R-GO/SF/PANI nanocomposite exhibited

the best absorption property with the optimum matching thickness of 1.5 mm in the frequency of 2–18 GHz. The

value of the maximum RL was −45.00 dB at 16.08 GHz with the 5.48-GHz bandwidth. The excellent absorption

properties of R-GO/SF/PANI nanocomposites indicated their great potential as microwave-absorbing materials.
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Background

In recent years, the rapid growth of electronic equipment
has put humans in increasing contact with each other, but
it also results in serious electromagnetic pollution in civil
and military applications, which is known as electromag-
netic interference (EMI). EMI not only affects the func-
tioning of electronic equipment but also causes harmful
effects to the health of humans [1, 2]. To solve the EMI
problem, the development of microwave-absorbing mate-
rials with strong absorption over a broad frequency range
is required urgently. Over the past decades, ferrite ab-
sorbers [3–5], ferroelectric materials [6, 7], conductive
polymers [8–10], and composite materials [11, 12] have
been researched, but the traditional microwave-absorbing
materials cannot meet all of the requirements such as
strong absorption, wide range of absorption frequency,
thin thickness, and light weight at the same time [13]. The
previous reports have demonstrated that incorporating

magnetic particles and dielectric material achieves great
enhancement in microwave absorption properties [14–18].
Saini and coworkers reported a composite of polyaniline-

coated M-Ba-ferrite powders, the composite obtained
improving microwave absorption properties due to the
interaction and interfacial polarization between polyaniline
and M-Ba-ferrite [19]. Yuan and coworkers synthesized
polyaniline (PANI)/SrFe12O19 composites by in situ
polymerization, and their results indicated that the con-
ductivity of PANI on SrFe12O19 dramatically affected the
microwave properties [20]. However, the percolation
threshold of PANI is high because of low compatibility
and low aspect ratio of the conducting polymer. Moreover,
the dispersion of magnetic particle in the composites is
also a bottleneck problem. These drawbacks of the
composites restrict their application in the microwave
absorption field. As the thinnest and most lightweight
material in the carbon world, reduced graphene oxide
(R-GO), which has extremely a high specific surface
area and unique two-dimensional structure, may be the
best candidate of electromagnetic wave-absorbing materials
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[21, 22]. Adding R-GO into the PANI/magnetic particles
composites might be an efficient way to overcome these
disadvantages due to its high specific surface area and
excellent electronic conductivity. The novel ternary
composites consisting of R-GO, different magnetic par-
ticles, and PANI have been seldom reported so far. Fur-
thermore, the contributions of impedance match and
interfacial effects to enhance the microwave absorption
performance were also explored.
Therefore, in this paper, we attempted to synthesize

the novel kind of R-GO/SF/PANI nanocomposites. The
morphology and structure of the ternary nanocompos-
ites were investigated. Furthermore, the contributions of
impedance match and synergistic effects to enhance the
microwave absorption properties were explored in detail.

Methods

Graphene oxide (GO) was prepared from purified natural
graphite by using modified Hummers method as reported
elsewhere [23]. In brief, this method consists of stirring
graphite powder in a solution with strong oxidizing agents
such as potassium permanganate (KMnO4, 99.5 %) and
concentrated sulfuric acid (H2SO4, 98 %). After oxidation,
the precipitate was collected by centrifugation and then
was washed with distilled water and ethanol to remove
metal ions and excess acid until the pH = 7. Then the
precipitate was dried at 60 °C for 12 h in vacuum. The
product was exfoliated under sonication for about 2 h
to ensure most graphite oxide was exfoliated to single-layer
graphene oxide.
Desired amounts of strontium nitrate (Sr(NO3)2) and

iron nitrate (Fe(NO3)3), with Fe3+/Sr2+ molar ratio of 10.5,
were mixed to yield a clear aqueous solution. The mixed
solution was added dropwise to the aqueous solution of
10 % excess of sodium hydroxide (NaOH) and sodium
carbonate (Na2CO3) using vigorous stirring to obtain the
precipitate. The pH and temperature of the solution dur-
ing coprecipitation were kept as 13 and 37 °C, respectively.
After precipitation, the precipitate was obtained by filtrat-
ing and washed with distilled water and ethanol. Then the
precipitate was dried at 60 °C in vacuum for 24 h to obtain
the precursor. The precursor was calcined at 500 °C for
10 h and then calcined at 900 °C for 2 h to obtain stron-
tium ferrite (SF) nanoparticles.
Cetyltrimethylammonium bromide (CTAB) was added

into the GO solution with constant stirring to form a
homogeneous dispersion (m(CTAB):m(GO) = 0.8 %).
As-prepared SF nanoparticles (m(GO)/m(SF) = 2, 5, 7,
10 %) were added into the above dispersion with vigorous
stirring for 12 h. Then hydrazine hydrate (m (hydrazine
hydrate)/m(GO) = 0.7) was added into the suspension.
Then the suspension was heated at 95 °C with stirring
for 1 h. The suspension was centrifugally washed using
distilled water and ethanol. The resulting product was

dried at 60 °C in vacuum for 12 h to obtain R-GO/SF
nanocomposites.
One milliliter aniline monomer and R-GO/SF nano-

composites (m(AN):m(R-GO/SF) = 2:1) were added in
35 ml hydrochloric acid solution (0.1 mol L−1). Then the
mixture solution was dispersed by ultrasonic wave for
30 min. Ammonium persulfate (2.49 g) was dissolved in
15 ml hydrochloric acid solution (0.1 mol L−1). The am-
monium persulfate solution was then slowly added drop-
wise to the above mixture solution with stirring for 12 h.
The reaction mixture was centrifugally washed using
distilled water and ethanol. The resulting product was
dried at 60 °C in vacuum for 24 h to obtain R-GO/SF/
PANI nanocomposites. The samples with different weight
ratios of 2, 5, 7, and 10 % of GO and SF were denoted as
R-GO/SF/PANI-1, R-GO/SF/PANI-2, R-GO/SF/PANI-3,
and R-GO/SF/PANI-4, respectively.

Characterization

The resulting powder was characterized by X-ray powder
diffraction (XRD) using a diffractometer (RIGAKU, model
D/max) with CuKα radiation of wavelength λ = 1.5418 Å.
Its morphology was studied with a field emission scanning
electron microscope (JEOL, model JSM-7001F) and a
transmission electron microscope (JEOL, model JEM
2001). Fourier transform infrared spectroscopy (FT-IR) for
the prepared samples were carried out using the infrared
spectrophotometer (NICOLET, model NEXUS 670) in the
range from 4000 to 400 cm−1. Raman spectra were
measured using a laser Raman spectrometer (Thermo
Fisher, model DXR) at a 663-nm wavelength incident
laser light. Magnetization measurements were taken at
room temperature (293 K) using a vibrating sample
magnetometer (LDJ, model 9600–1). The complex per-
mittivity (εr ¼ ε

0
−jε

00
) and permeability (μr ¼ μ

0
−jμ

00
) of

the samples were measured by a microwave vector net-
work analyzer (AGILENT, model N5244A) in the fre-
quency range 2–18 GHz by using coaxial reflection/
transmission technique. The samples for vector net-
work analyzer were pressed to be toroidal samples with
OD 7 mm, ID 3.04 mm, and height at 3 mm according
to the mass ration 1:1 of paraffin and R-GO/SF/PANI
nanocomposites.

Results and Discussion

Structure and Morphology Analysis

The preparation of the R-GO/SF/PANI nanocomposites
is illustrated in Fig. 1. As it is well known that the sur-
face of GO contain many oxygenated functional groups
(such as –OH and –COOH) and show electrostatic in
solution, we believe that CTAB as a cationic surfactant
can play an important role in the dispersion of R-GO in
aqueous solution. The interaction of CTAB with R-GO
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is assumed to be electrostatic in nature, which helps to
break the van der Waals forces between the layers of
GO [24]. It is known to us that the surface charge of
metal oxide is positive below the pH of the point of zero
charge (PZC), while it becomes negative above PZC.
Since the surface of magnetite has PZC of pH = 6 [25].
The GO solution is weakly acidic; when SrFe12O19 is dis-
persed in GO solution, the surface of SrFe12O19 with
positive charge is attracted by the surface of GO with
electronegativity and automatic assembly on the surface
of GO sheets and forming R-GO/SF nanocomposites. In
the preparation process of R-GO/SF/PANI nanocompos-
ites, the co-initiator additive HCl (0.1 mol L−1) makes
the solution acidic in condition; Cl−1 is absorbed and
compensates the positive charge on SrFe12O19 nanopar-
ticles. Finally, the surface of SrFe12O19 gathering nega-
tive charge and the surface of R-GO/SF nanocomposites
are electronegative. Aniline monomers are converted to
cationic anilinium ions in acidic conditions, which is
absorbed on the surface of SrFe12O19 composites and po-
lymerized to form R-GO/SF/PANI nanocomposites [26].
Besides, Singh demonstrated that the solid state charge
transfer between R-GO and PANI is also conducive to
form the stable R-GO/SF/PANI nanocomposites [27].
Figure 2 shows the XRD patterns of GO, SrFe12O19, R-

GO/SF nanocomposites, R-GO/SF/PANI nanocomposites,
and PANI. As show in Fig. 2, the XRD pattern of the PANI
shows amorphous nature in a partially crystalline state
with two diffraction peaks at 20.15° and 25.34° [28, 29].
From the XRD curve of GO in Fig. 2(a), it can be seen

that the appearance of strong sharp diffraction peak at
2θ = 10.96° is corresponding to the (001) plane of GO
[19], which means that natural graphite has been oxidized
into GO with regular crystal structure and high-degree
oxidation [30]. Figure 2(b) shows the XRD pattern of
SrFe12O19; it can be seen that SrFe12O19 is M-type ferrite
(PDF Card no.33-1340). The series sharp diffraction peaks
of SrFe12O19 at 2θ = 30.2°, 32.1°, 34.1°, 37.0°, 40.3°, and
42.3° are assigned to the (100), (008), (107), (114), (008),
(200), and (201) crystal planes, respectively [31, 32].
Figure 2(c) shows the XRD pattern of R-GO/SF nano-
composites in which the characteristic diffraction peaks
of SrFe12O19 can be clearly observed. Compared with
the standard diffraction peak characteristic spectral
lines of SrFe12O19, the diffraction peak of R-GO/SF
nanocomposites shifts towards lower 2θ and the dif-
fraction peak of GO in the R-GO/SF nanocomposites
disappeared. Based on previous reports [33], GO is ef-
fectively reduced to R-GO under the effect of reducing
agent hydrazine hydrate, and the lamellar dispersion of
R-GO in R-GO/SF composites is well. The characteristic
diffraction peak of SrFe12O19 in the R-GO/SF composites
shift slightly towards lower 2θ, in which it can be deduced
that SrFe12O19 has been successfully assembled on the
surface of R-GO sheets [34, 35]. In Fig. 2(d), not only
the characteristic diffraction peaks of R-GO/SF nano-
composites were observed but also the characteristic
diffraction peaks of PANI [33], which means the pres-
ence of R-GO, SrFe12O19, and PANI in the R-GO/SF/
PANI nanocomposites.
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Fig. 1 Schematic representation of the preparation of the R-GO/SF/PANI nanocomposites
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Figure 3 shows the FT-IR spectra of PANI, R-GO/SF
nanocomposites, and R-GO/SF/PANI nanocomposites.
The characteristic absorption peak of oxygen-containing
functional groups on the GO is not observed in the FT-IR
spectrum of R-GO/SF nanocomposites (Fig. 3(c)), indicat-
ing that GO is effectively reduced into R-GO. In Fig. 3(c),
the characteristic absorption peak at 1660 cm−1 is attri-
bute to the C=C skeleton vibration of the sp2 hybridized
of unoxidized graphite [36]. The FT-IR spectrum of R-
GO/SF/PANI nanocomposites is shown in Fig. 3(b). It
can be clearly observed the characteristic absorption
peak of PANI from the curve of Fig. 3(c). The characteristic
peaks at 1635 and 1567 cm−1 are attributed to the stretch-
ing vibration of quinoid and benzenoid rings on PANI
molecular chain, respectively [26]. The characteristic
peak at 1417 cm−1 is corresponding to the stretching
mode of N–Q–N where Q represents the benzenoid
ring [37]. The characteristic peak at 1344 and 1295 cm−1

corresponds to N–H bending and asymmetric C–N
stretching mode for benzenoid ring, respectively [38]. The
peak at 1123 cm−1 is attributed to aromatic C–H inplane
bending mode [39]. Compared with the FT-IR spectrum
of PANI (Fig. 3(a)), the characteristic peaks in the FT-IR
spectrum of R-GO/SF/PANI nanocomposites are slightly
red shifted and observe the C=C skeleton vibration on
R-GO. The reasons of the FT-IR spectrum of R-GO/
SF/PANI nanocomposite red shift may have three
points: (1) the π molecular orbital of PANI overlaps the
empty d-orbital of Fe3+ in strontium ferrite to form the
σ-bond where metal ions play a role of the electron pair

acceptor; (2) the π* molecular orbital of PANI overlaps
the empty d-orbital of Fe3+ to form the π-bond, in
which the Fe3+ is the electron pair donor; and (3) the
presence of solid state charge transfer in R-GO and
PANI, R-GO as the cation acceptor, the surface of sheets
has electronegativity, but the existence of emeraldine salt
form of PANI as cation having electropositivity. Therefore,
the electron transfer balance between the PANI molecular
chain and surface of R-GO easily forms electron transfer
complex [27].
The FESEM and TEM images of SrFe12O19 nanopar-

ticles, R-GO/SF nanocomposites, and R-GO/SF/PANI
ternary nanocomposites are shown in Fig. 4. Figure 4a
shows the micromorphology of SrFe12O19 nanoparticles;
the hexagonal structure of ferrite can be clearly observed
and aggregate due to the magnetic dipole interaction
between ferrite particles [38]. The average particle size
induced from the TEM micrograph was in the range
50–100 nm. The selected area electron diffraction
(SAED) pattern further indicates that the ferrite particle
is highly crystalline with M-type ferrite. The FESEM
image of R-GO/SF nanocomposites shown in Fig. 4b
clearly displays that R-GO sheets are transparent and
wrinkled. It also can be seen that SrFe12O19 nanoparti-
cles are uniformly dispersed on the surface of R-GO
sheets. In order to observe the micromorphology of
SrFe12O19 nanoparticles, R-GO/SF nanocomposites,
and R-GO/SF/PANI ternary nanocomposites, the
FESEM and TEM images are shown in Fig. 4. In the
TEM image of R-GO/SF/PANI nanocomposites shown
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Fig. 2 XRD patterns of (a) GO, (b) SrFe12O19, (c) R-GO/SF nanocomposites, (d) R-GO/SF/PANI nanocomposites, and (e) PANI
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in Fig. 4d, it can be observed that the surface of R-GO/
SF nanocomposites is uniformly coated by PANI mo-
lecular chains.
Figure 5 shows the Raman spectra of GO, R-GO/SF

nanocomposites, and R-GO/SF/PANI nanocomposites.

The characteristic features in the Raman spectrum of
GO are the so-called D band, which locate at around
1310 cm−1, corresponding to the breathing mode of
k-point phonons of A1g, and the G band at 1598 cm−1 is
attributed to the tangential stretching mode of the E2g

Fig. 4 FESEM images of a SrFe12O19 nanoparticles, b R-GO/SF nanocomposites and TEM images of c R-GO/SF nanocomposites and

d R-GO/SF/PANI nanocomposites

Fig. 3 FT-IR spectra of (a) PANI, (b) R-GO/SF/PANI nanocomposites, and (c) R-GO/SF nanocomposites
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phonons of sp2 atoms [40]. The characteristic D and G
peaks of R-GO being present in the Raman spectra of
R-GO/SF nanocomposites and R-GO/SF/PANI nano-
composites and the intensity of peaks decreased with
an increase in R-GO content. In Fig. 5(a, b, c), it can be
observed that the G band of R-GO/SF nanocomposites
and R-GO/SF/PANI nanocomposites (clarity declined
due to overlap of the characteristic peaks of PANI) ex-
perienced a shift of about 9 cm−1 and 8 cm−1 compared
to R-GO, respectively, indicating the presence of charge
transfer among R-GO, SF, and PANI. This is consistent
with the previous reports [28, 41].

Magnetic Properties

Figure 6a shows hysteresis loop of SrFe12O19 nanoparti-
cles. SrFe12O19 magnetic nanoparticles are the permanent
magnet and show the ferromagnetic, the hysteresis loop
with high saturation magnetization (Ms) and the value is
67.15 emu g−1, which is close to the theoretical value of
the saturation magnetization of M-type strontium ferrite
(74.3 emu g−1). This fully shows that the preparation of
SrFe12O19 nanoparticles are pure phase and no nonmag-
netic impurity phase α-Fe2O3 exist in the product; it is
consistent with the XRD analysis [26]. The coercivity (Hc)
and remanence (Mr) of SrFe12O19 are 6022 Oe and
39.09 emu · g−1, respectively. The squareness ratio (S) was
calculated by the Stoner-Wohlfarth model, S =Mr/Ms =
0.58, the value of S is slightly higher than the previous
work [42, 43], which means SrFe12O19 has more excel-
lent magnetic properties. Figure 6b shows hysteresis
loops of SrFe12O19 nanocomposites, and the magnetic
parameters are shown in Table 1. It can be observed
that the saturation and remanent magnetization are

dropped dramatically with an increase in the nonmag-
netic R-GO and PANI and decreased with increase in
the R-GO content of the composites; the coercivity of
R-GO/SF/PANI nanocomposites declined slightly com-
pared with pure SrFe12O19 magnetic nanoparticles; it
also decreased with the increase in the R-GO content
of the composites and gradually showed the magnetic
characteristic of paramagnetic; the phenomenon is
similar with a previous work [41].

Microwave Absorption Properties

The complex permittivity real part (ε′) and imaginary
part (ε″) of R-GO/SF/PANI nanocomposites with differ-
ent rations are shown in Fig. 7a, b, respectively. In Fig. 7,
it can be seen that the ε′ and ε″ values of nanocompos-
ites with different rations decreased with an increase in
frequency and increased with an increase in the R-GO
content. As shown in Fig. 7a, it can be seen that the ε′

values of R-GO/SF/PANI-1, R-GO/SF/PANI-2, R-GO/
SF/PANI-3, and R-GO/SF/PANI-4 decreased gradually
from 9.58 to 5.61, 13.58 to 9.61, 19.56 to 9.65, and 22.06
to 13.87, respectively. In Fig. 7b, it can be observed that
the ε″ values of R-GO/SF/PANI-1, R-GO/SF/PANI-2,
R-GO/SF/PANI-3, and R-GO/SF/PANI-4 decrease grad-
ually from 7.09 to 1.96, 11.10 to 5.96, 15.99 to 3.39,
and 18.94 to 4.08, respectively. The dielectric loss of
the composites could be explicated by the Debye theory
[17, 21, 44, 45]. The ε″ is known as

ε
″ ¼ εs−ε∞ð Þ � ωτ= 1þ ω

2
τ
2

� �

þ σ=ωε0 ð1Þ

where σ is the dc conductive of the composites. Due to
the recovery of the electric conductivity after chemical
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Fig. 5 Raman spectra of (a) GO, (b) R-GO/SF nanocomposites, and (c) R-GO/SF/PANI nanocomposites
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reduction and thinning, the increased polarization caused
by the abundant surface functional groups enhances the
dielectric loss. On the contray, R-GO constract more
conductive paths in the composites for electron trans-
port, which maks a significant contribution to dielectric
loss [44].
Figure 8 shows the complex permeability real part (μ′)

and imaginary part (μ″) of R-GO/SF/PANI nanocompos-
ites with different rations as a function of frequency over

2–18 GHz. It can be seen that the complex permeability
real part (μ′) and imaginary part (μ″) of R-GO/SF/PANI
nanocomposites with different rations have the same trend
and change in volatility; the values of μ′ change have small
amplitude and little influence by the R-GO content and
fluctuating in the range of 1–1.05; the values of μ″ fluctu-
ation tendency is clear and fluctuating in the range of 0–1.
Calculation for the microwave absorption of the

composites was carried out based on the experimentally
determined complex permittivity and permeability. The
reflection loss (RL) can be calculated as [17]:

RL ¼ 20 log
zin−1
zin þ 1

�

�

�

�

�

�

�

�

ð2Þ

Here, the normalized input impedance Zin of microwave
absorption layer is as follow
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Fig. 6 The magnetization hysteresis loops of a SrFe12O19 nanoparticles and b R-GO/SF/PANI nanocomposites with different rations

Table 1 Magnetic parameters of R-GO/SF/PANI nanocomposites

Sample no. Ms (emu g−1) Hc(Oe) Mr (emu −1)

R-GO/SF/PANI-1 15.75 5854 9.28

R-GO/SF/PANI-2 14.23 5756 8.36

R-GO/SF/PANI-3 12.46 5720 7.40

R-GO/SF/PANI-4 12.16 5692 7.23
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zin ¼
ffiffiffiffi

μr

εr

r

tanh j
2πfd
c

ffiffiffiffiffiffiffiffi

μrεr
p

� �

ð3Þ

where f is the frequency of incident electromagnetic
wave, d is the absorber thickness, c is the velocity of
light, and εr and μr are the complex permittivity and per-
meability of the composites medium, respectively. Figure 9
shows reflection loss curves of R-GO/SF/PANI nanocom-
posites with different components at matching thickness
of 3 mm. As shown in Fig. 9, it can be observed that R-
GO/SF/PANI-2 possesses the best absorbing properties.
The maximum RL of R-GO/SF/PANI-2 nanocompos-
ite is −28.95 dB at 7.52 GHz, and the bandwidth of
below −10 dB is 4.74 GHz. The absorbing property of
R-GO/SF/PANI-1 nanocomposite is the worst, and the
maximum RL value is only −8.56 dB. The values of the
maximum RL are −19.04 dB at 6.04 GHz with the

2.04 GHz bandwidth and −15.06 dB at 6.36 GHz with
the 3.52-GHz bandwidth for the R-GO/SF/PANI-3 and
R-GO/SF/PANI-4, respectively.
The real and imaginary part of complex permittivity

and dielectric loss tangent of R-GO/SF/PANI-2 nano-
composite are shown in Fig. 10a, c, respectively. As
shown in Fig. 10a, it can be observed that the complex
permittivity real part (ε′) is exponential decline in the
frequency range of 2–18 GHz and the values decrease
from 13.58 to 9.61. The imaginary part also shows the
same variation and the values decrease from 11.10 to
5.96. The reasons of the complex permittivity real and
imaginary part varying with frequency may be attributed
to the following two points. (1) With an increase in the
frequency of external reverse electric field, the induction
charge phase of R-GO/SF/PANI-2 nanocomposite behind
the external electric field and results in electromagnetic

a

b

Fig. 7 Behavior of a real and b imaginary part of the permittivity of R-GO/SF/PANI-1, R-GO/SF/PANI-2, R-GO/SF/PANI-3, and R-GO/SF/PANI-4 com-

posites as a function of frequency over 2–18 GHz
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oscillation [46], the values of ε′ and ε″ decrease with an
increase frequency. (2) The dielectric performance of
the composites is influenced by the space charge
polarization. The space charge polarization is associated
with the heterogeneity and present at the interface
among the components of the composites. The differ-
ence in dielectric constants among the components of
R-GO/SF/PANI-2 nanocomposite is responsible for the
generation of space charge polarization. The space
charge polarization decreases with an increase in the
frequency, which results in the values of ε′ and ε″ de-
crease with an increase in frequency [27]. The dielectric
loss tangent (tanδε) also shows the same trend and the
values decrease from 0.82 to 0.62.
The real and imaginary part of complex permeability

curves of R-GO/SF/PANI-2 nanocomposite in the fre-
quency range of 2–12 GHz were measured and shown

in Fig. 10b. As shown in Fig. 10b, it can be seen that the
real part (μ′) almost is a constant in whole range, and
the values of μ′ are floating around 1 and the floating
modest. The imaginary part (μ″) in whole range of 2–
12 GHz shows the obvious fluctuation and the values
are fluctuating between 1.03 and 0.01. In Fig. 10d, the
magnetic loss tangent also shows the similar trend.
Generally, the magnetic loss of magnetic materials is
originated from hysteresis loss, domain-wall resonance,
eddy current effect, and natural resonance [47]. The
hysteresis loss of strontium ferrite in R-GO/SF/PANI-2
nanocomposite can be ignored in the frequency range
of 2–18 GHz, the domain-wall resonance of strontium
ferrite usually occurs in lower frequency than the GHz
range [48, 49]. Therefore, Eddy current effect and nat-
ural resonance are the main magnetic loss of R-GO/SF/
PANI-2 nanocomposite.

b

a

Fig. 8 Behavior of a real and b imaginary part of the permeability of R-GO/SF/PANI-1, R-GO/SF/PANI-2, R-GO/SF/PANI-3, and R-GO/SF/PANI-4

composites as a function of frequency over 2–18 GHz
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The magnetic loss caused due to Eddy current effect

can be calculated as [50] C0 ¼ μ
00
μ

0� �

−2
f−1. The skin-effect

criterion shows that the values of C0 should be constant
when the frequency varies, if the magnetic loss results
from Eddy current effect. Figure 11 shows the curve of C0

with frequency for R-GO/SF/PANI-2 nanocomposite. As
shown in Fig. 11, it can be observed that C0 significantly
decreased at the frequency range of 2–6 GHz. However,
Co is approximated constant in the frequency range of
6–18 GHz. Therefore, the magnetic losses of 2–6 and
6–18 GHz are mainly caused by natural resonance and
eddy current effect, respectively. Therefore, the reson-
ance peak observed at 3.84 GHz is caused by natural
resonance [50]. The other resonance peaks observed at
6–18 GHz are caused by Eddy current effect.
In order to study the microwave absorption per-

formance in-depth, Fig. 12 shows the reflection losses
of R-GO/SF/PANI-2 nanocomposite with different
matching thickness of 1.5, 2.0, and 2.5 mm. As shown
in Fig. 12, R-GO/SF/PANI-2 nanocomposite has the best
microwave-absorbing properties and the maximum RL
value is −45.00 dB at 16.08 GHz, the reflection loss of
R-GO/SF/PANI-2 nanocomposite below −10 dB at
12.52–18.00 GHz with the bandwidth of 5.48 GHz.
When the matching thickness is up to 2.0 mm, the
bandwidth with the reflection loss of R-GO/SF/PANI-2
nanocomposite below −10 dB is up to 5.84 GHz at
9.88–10.32 GHz and 10.48–15.88 GHz, but the max-
imum reflection loss is −32.42 dB at 12.48 GHz. When
the matching thickness is 2.5 mm, the maximum reflec-
tion loss is shifted to 10.44 GHz and the value is

42.61 dB, and the absorption bandwidth with the reflec-
tion loss below −10 dB is 4.28 GHz (from 8.48 to
12.76 GHz). According to the following formula [51]:
fm ¼ c

2πμ00d
, where fm is the frequency of the maximum

reflection loss peak and d is the matching thickness, it
is obvious that the matching thickness for absorbing
properties of nanocomposites has a regulatory role and
reflection loss peaks move to low frequency with the
increasing matching thickness.
The absorbing property of pure SrFe12O19 nanoparticles

is poor, the maximum reflection loss is only −6.50 dB, and
bandwidth under −10 dB is nearly 0 GHz [52]. The ab-
sorbing properties of PANI/SrFe12O19 nanocomposites
were improved when SrFe12O19 was packed by PANI,
the maximum reflection loss is up to −11.73 dB, and
bandwidth under −10 dB is 0.6 GHz [53]. The absorb-
ing properties of PANI/SrFe12O19 are far less than that
of R-GO/SF/PANI. Synergistic effects of R-GO, SF, and
PANI play an important role for enhancing the absorb-
ing properties of R-GO/SF/PANI nanocomposites.
Firstly, the 2D-structure R-GO with large specific sur-
face area can form a complete conductive network,
which can improve the dielectric loss. Moreover, the
absence of structure and residual functional groups on
the surface of R-GO can improve the matching charac-
teristics [54]. Secondly, the SF nanoparticles absorbed
on the surface of R-GO have high dispersion, which
can improve magnetic loss [55]. When the incident
electromagnetic wave hits the R-GO/SF/PANI nano-
composites, oscillating current was formed due to
movement of carrier of R-GO; dielectric relaxation and
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Fig. 11 The Co-f values of R-GO/SF/PANI-2 nanocomposite
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dielectric polarization are triggered because of interface
charge of R-GO. The SF nanoparticles absorbed on the
surface of R-GO can also be used as multi-pole
polarization center, strengthening the electronic
polarization of nanocomposites and regulating the inci-
dent electromagnetic wave, which is conducive to
strong absorption of electromagnetic wave [56]. Finally,
the presence of PANI coating layer enhances the Debye
dipole relaxation of R-GO, the conjugated electron
clouds of PANI molecular chains are transferred to R-
GO by electronic polarization to form electron tunnel-
ing between PANI and R-GO, which has the tunnel ef-
fect and enhances the absorption of R-GO/SF/PANI
nanocomposites for electromagnetic wave; this is re-
lated to the previous work [57, 58]. Moreover, the ab-
sorbing materials not only require a single high
dielectric loss and magnetic loss but also have excellent
matching characteristic, namely dielectric loss tangent
of the materials is close or equal to the magnetic loss
tangent. As shown in Fig. 10c, d, R-GO/SF/PANI nano-
composites have excellent matching characteristics,
which make a great contribution to improve
microwave-absorbing properties.

Conclusions

Strontium ferrite nanoparticles were well distributed and
firmly anchored onto the surface of the R-GO sheets by
use CTAB as surfactant, the R-GO/SF/PANI ternary
nanocomposites were successfully prepared by an in situ
polymerization. The synergistic effect among R-GO,
strontium ferrite, and PANI had great influence on en-
hance microwave absorption properties of R-GO/SF/
PANI ternary nanocomposites. The R-GO/SF/PANI-2

nanocomposite possessed the best absorption property.
The value of the maximum RL was up to −45.00 dB at
16.08 GHz with a matching thickness of 1.5 mm and the
absorption bandwidth with the RL below −10 dB
reached 5.8 GHz which covered the whole Ku band.
Hence, the R-GO/SF/PANI ternary nanocomposites are
promising as the applications of potential microwave ab-
sorber materials.
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