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Abstract - We address the problem of transforming a
behavioral specification so that synthesis of a testable imple-
mentation from the new specification requires significantly
less area and partial scan cost than synthesis from the origi-
nal specification.

A two-stage objective function, that estimates the area
and testability of the final implementation, and also captures
enabling effects of the transformations, is developed. Opti-
mization is done using a new randomized branch and bound
steepest descent algorithm. Application of the transforma-
tion algorithm on several examples demonstrates significant
simultaneous improvement in both area and testability of
the final implementations.

I  Introduction

A Motivation

Recently, the importance of addressing testability
early in the design process has been established [3]. While
several scheduling, assignment, and allocation algorithms for
testability enhancement have been proposed, only a very
limited attention has been paid to exploring the relationship
between other high level synthesis tasks, such as transforma-
tions and partitioning, and testability.

Clearly, it is important to evaluate the potential of
transformations for testability improvements during the high
level design process. In this paper, we present a technique
which uses a variety of transformations to reduce the area
overhead required by Design-For-Testability (DFT) tech-
niques to make the final implementation high testable. Dur-
ing testability optimization, area minimization and timing
(throughput) constraints are simultaneously targeted.

In the last few years, numerous high level synthesis
approaches which address testability at the behavioral level
have been reported [3]. While several systems target Built-In-
Self-Test (BIST) and hierarchical testability as the test strat-
egy, a majority of high level synthesis techniques explore the
relationship between hardware sharing and sequential Auto-
matic Test Pattern Generation (ATPG) methods. The presence
of loops in a sequential circuit is a major source of problems
for sequential ATPG. Partial scan is an effective technique to
break loops in the circuit by scanning a subset of flip-flops
(FFs) [3]. Empirical evidence shows that breaking all non-
trivial (with at least two FFs) sequential cycles is an effective
heuristic for making a circuit highly testable [3]. In this paper,
we minimize the number of scan registers required to break
all non-trivial loops in the datapath, and use this number as a
measure of testability.

We illustrate the use of transformations for testability
optimization using the control data flow graph (CDFG) of the
4th order parallel IIR filter, shown in Fig. 1.  It is assumed that
each operation takes one clock cycle. The available time is six
control cycles. The critical path is also six cycles long. To meet
the timing constraints, the minimal resource allocation
requires 3 multipliers (three multiplications have to be sched-
uled in the first control step), 2 adders (two additions must
be scheduled simultaneously in the second control step), and
2 subtracters (two subtractions must be scheduled in third
control step simultaneously).

The result of scheduling and assignment, using an
existing behavioral test synthesis system, BETS [4], is shown
in Fig. 1. For instance, the first operation, a multiplication by
k9, is assigned to multiplier m3, and scheduled in control
cycle 1, shown by the tuple (m3, 1). BETS performs schedul-
ing and assignment considering simultaneously testability
overhead and area. The resulting minimum feedback set con-
tains four scan registers shown shaded in Fig. 2. As reported
in Table 1 (row 4IIR.20), the resulting circuit is highly test-
able.

It can be shown that it is impossible to reduce the
number of scan registers using any other scheduling algo-
rithms. Consider the lower biquad in Fig. 1. In order to break
the loops in the corresponding part of the datapath, at least
two scan registers are required. If the register file of the trans-
fer unit on which delay D1 is assigned is selected, then all the
CDFG loops are broken. However, in this case another scan
register is required to break assignment loops which are
formed when the two ‘+’ operations have to be assigned to
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Fig. 1: Motivational example for demonstrating use of
transformation for testability: 4th order parallel IIR filter.



the same adder A2. If the input variable to the transfer unit is
not selected for scanning, then it is obvious that at least two
scan registers are needed just for breaking the CDFG loops.
Similarly, it can be shown that a minimum of two scan regis-
ters are needed for the upper biquad in Fig. 1. Note that the
variables corresponding to delays can not share the same
scan register because they are simultaneously alive in the
first control step.

Consider now how transformations can be used to
simultaneously reduce the area and testability cost of the
design. A sequence of transformations shown in Fig. 3.a-c is
applied, so that eventually the CDFG shown in Fig. 3.c is
obtained. First, algebraic transformations are applied to the
CDFG in Fig. 1. to obtain the functionally equivalent CDFG
shown in Fig. 3.a. It can be shown that there is a correspon-
dence between the coefficients ci and ki used in the two struc-
tures. The next transformation applied is the scaling
operation [33], where two feedforward cuts are multiplied by
β and 1/β, to obtain the CDFG shown in Fig. 3.b. Finally,
retiming is used to relocate the delay D3 to three new posi-
tions D5, D6, and D7. In addition, the CDFG is pipelined by
introducing a delay D8, which is retimed back across the
multiplication by c9. The final CDFG, shown in Fig. 3.c, is sig-
nificantly more suitable for BETS to produce a testable imple-
mentation.

The schedule and assignment obtained by BETS is
shown in Fig. 3.c. Although not targeted, the throughput is
also improved, since the critical path is reduced to five con-
trol steps, and the schedule uses five control steps. The result-
ing datapath is shown in Fig. 4. As shown in row 4IIR.20 in
Table 1, only one scan register is sufficient to break all loops
in the datapath, and the data path is highly testable. The
hardware requirements are reduced to only two multipliers,
one adder and one subtracter.s.

Fig. 2: The datapath of the initial 4th order parallel IIR filter.
When the shaded registers are scanned, all loops in the
datapath are broken.
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B Paper Organization

The rest of the paper is organized in the following
way. In the remainder of this section, we outline the compu-
tational and hardware models used and the testing strategy
targeted. After a survey of the related work in Section 2, we
give an overview of the new approach in Section 3. We
explain the transformational mechanism in Section 4. Next,

Fig. 3: The sequence of transformations for the simultaneous
optimization of testability and area. First (a) associativity
and the inverse element law are applied; next (b) scaling
transformation; and (c) retiming. The corresponding
datapath is shown in Fig. 4.
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Fig. 4: The datapath of the transformed 4th order parallel IIR.
Only one scan register (shaded) is required to break all loops
in the datapath, compared with 4 scan register in the initial
design.
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we present two components of the optimization approach: an
objective function and an optimization algorithm, and
describe the HITS system, the CAD implementation of the
proposed transformation approach. Finally, we demonstrate
the effectiveness of HITS on a set of benchmark examples.

C Computational Model, Hardware Model, and
Testability Assumptions

We assume a synchronous data flow computation
model [8], which is often used in high level synthesis. We
adopt the dedicated register-file model, in which all registers
are grouped in a number of register files. Each register file is
connected to only one input of an execution unit, while each
execution unit can send data to an arbitrary number of regis-
ters files. The register file model is widely used in general
purpose architectures as well as custom ASIC designs.

We target testability assuming a single stuck-at fault
model, and gate-level sequential ATPG. It is widely accepted
that the elimination of all sequential loops, beside self-loops,
is often sufficient to achieve high testability. We target the
elimination of all non-trivial sequential loops only in the
data-path, assuming full scan of the control logic. For major-
ity of numerically-intensive designs, the data-path com-
pletely dominates the area and FF requirements of the design
[14, 2].

II  Previous Related Work
Related work is outlined along two lines of research:

high level synthesis techniques for testability and transfor-
mations.

The mandatory tasks during high level synthesis are
allocation, scheduling, and assignment [27], all of which have
been shown to have significant impact on the testability of
the synthesized designs. Existing high level synthesis for
testability techniques can be broadly classified according to
the testing methodology targeted: BIST, gate-level sequential
ATPG, or hierarchical test pattern generation. Four most
notable efforts which target BIST have been reported in [12,
6]. Several research groups have developed high level syn-
thesis systems which target sequential ATPG testability.
These systems synthesize data paths without loops, by using
proper scheduling and assignment, and scan registers to
break loops [4].

Transformations have been successfully used in high
level synthesis for optimization of variety of goals [36, 5, 33].

III  Simultaneous Area and Testability Improvement
Using Transformations

The proposed behavioral synthesis approach for
simultaneous optimization of area and testability was mainly
influenced by principles of reusability, modular design, and
easy user-interaction. The outlined goals resulted in the fol-
lowing organization (Fig. 5.) of the HITS (HIgh level synthe-
sis system for TeStability and area optimization) system.

HITS has three main components: library of transformations,
objective function calculation routines, and the optimization
algorithm.

The search mechanism invokes the move generation
algorithm. which generates sequences of transformations
and applies them using the library of transformations, and
evaluates them using the fast objective function. Finally, it
selects one of the sequences and propose it to the search
mechanism. The search mechanism considers the proposed
aggregate transformations, and after optional use of accurate
objective functions, decides about accepting the transforma-
tion. The search is continued or terminated by the search
mechanism strategy.

IV  Transformational Mechanisms
In this section, we introduce transformations which

were found to be particularly effective in addressing testabil-
ity at the behavioral level. Transformations are classified into
three groups: atomic, global, and integrated.

A Atomic Transformations

Atomic transformations consists of a single axiomatic
transformation rule at a single position in the CDFG. All
atomic transformations can be categorized into three groups:
algebraic laws, redundancy manipulation techniques, and control
flow transformations. We currently use four atomic algebraic
transformations (commutativity, associativity, distributivity,
and the inverse element law), one redundancy manipulation
transformation (common subexpression replication), and one
control flow transformations (local retiming). All the listed
transformations are retargeted to optimize testability. The
details of examples how those transformations are used to
optimize te3stability are given in the technical report version
of this paper. Here, for the sake of brevity, we explain in more
details local retiming.

Retiming is a transformation where the number of
delays on each output edge of an operation is reduced by
one, while the number of delays on each input edge is
increased by one, or vice versa. Fig. 6. introduces the applica-
tion of retiming for testability. The assumed available time is
two control cycles. The only type of operation which belongs
to both loops is shift. However, due to the timing constraints
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Fig. 5: The conceptual structure of the new approach for
testability optimization using transformations.



imposed by the data dependences, both shifts must be sched-
uled in the second control step and their input variables can-
not share the same scan register.

Consider now the functionally equivalent CDFG after
the application of retiming, where in the left loop the delay is
moved across the shift operation. Now the two shift opera-
tions can be scheduled in two different control steps, thereby
allowing sharing of the scan registers, denote by the crossed
edges in Fig. 6.b. Therefore, the test overhead is reduced from
two scan registers to one.

B Global Transformations

Global transformations consists of application of a sin-
gle transformation mechanism on several places (most often
the whole) of the computation. As global transformations we
use algebraic speed-up (CZAR) [7], the Leiserson-Saxe retim-
ing and loop unfolding. We illustrate the use of this class of
transformations using loop unfolding.

Time loop unfolding is a popular control flow trans-
formation. While initially only one iteration of the computa-
tion is considered, after the unfolding by factor k, (k+1)
iteration are simultaneously considered during the conse-
quent high level synthesis steps.

Time loop unfolding can directly reduce testability
overhead. Fig. 7. supports this claim. Initially, the assumed
available time is 2 control steps. At least two scan registers
are needed. This is so, because the only common operation
present in both CDFG loops is addition. Since both the addi-
tions must be scheduled in the first control step, they can not

Fig. 6: Retiming for testability optimization. The crossed
edges in the transformed CDFG are variables stored in the
same scan register.
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Fig. 7: Unfolding for scheduling. Although unfolding is
mainly an enabling transformation, in several scenarios it
directly results in the reduction of the required number of
scan registers. The crossed edges in the unfolded CDFG can
be stored in the same scan register.
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share the same execution unit, and their input variables can-
not share the same register.

However, if two iterations are considered simulta-
neously, as provided by time loop unfolding and shown in
Fig. 7.b, only one scan register is required to break all loops in
the corresponding datapath. After the application of unfold-
ing, four control steps are available for scheduling two itera-
tions of the computations. Note that unfolding enabled two
variables from two different iterations of the two loops to
share the same scan register, since they do not have overlap-
ping lifetimes.

C Integrated Transformations

Integrated transformations consist of several transfor-
mations being simultaneously applied on a part of the com-
putation or the whole computation. Currently, we use only
one integrated transformation, introduced in [15]. The appli-
cation domain of this transformation are linear computa-
tions. An arbitrary linear computation (after the application
of this transformation) is transformed in one of several
canonical forms (e.g. cascade form or parallel form). While,
the canonical forms do not necessarily result in a highly test-
able design, it can be shown that the consequent application
of local transformations often result in CDFGs which have
highly testable implementations.

V  Objective Function
In order to satisfy these demanding and contradictory

requirements, we selected an objective function which explic-
itly targets the three key aspects of evaluating the design at
the behavioral level.

1. Testability Cost (MFVS). Estimated test hardware
requirements, in our case the size of the minimum
feedback set of registers which break all loops in the
datapath;

2. Scheduling Difficulty (SD). Estimated scheduling
difficulties due to Area (amount and structure of
datapath components) and Timing (throughput) goals
and constraints

3. Transformation Difficulty (TD). Suitability of the CDFG
for the consequent application of transformations.

Testability Cost. (MFVS) is equal to the number of
feedback vertices required to break all loops, besides self-
loops, in the data-dependency and compatibility graph
(DDCG). The DDCG and the testability cost are reused from
the BETS system [5], where they were supporting scheduling
ands assignment for testability.

SD is proportional to the expected cost of the datapath
area. First, the expected quantities of primary datapath com-
ponents are estimated using the compatibility edges of the
DDCG. For each type of hardware unit, the estimated num-
ber of instances is the proportional to the number of corre-
sponding instances in the DDCG and the inverse value of the



cumulative sum of the weights of all corresponding compati-
bility edges. This information is used as the input in the sta-
tistical model for layout prediction developed in [2].

TD is proportional to the weighted change in the
number of further transformations which can be applied on
the graph after the application of a particular transforma-
tions. The weight is proportional to importance of applying
consequent transformation on the particular node of the
CDFG. Experimentally derived formula for quantifying the
importance has the following as input parameters: the slack
of the operation, size of the strongly connected component to
which it belongs, the cardinality of the transitive fan-in and
transitive fan-out set, and the cost and delay (number of con-
trol steps required that the operation is executed).

The three components are weighted by three empiri-
cally derived factors. We conclude the section by the pseudo-
code description of the fast objective function:

Fast_Objective_Function FOF (CDFG) {
    Form DDCG;
    SD =  Scheduling_Difficultiy();
    MFVS = Testability_Cost();
    TD = Transformation Difficult();
    FOF = γ1 * SD + γ2 * MFVS + γ3 (t) * TD;
  }

VI  Optimization Algorithm
As we already described in Section 3, the optimization

algorithm has two components: move selection algorithm
and search strategy. The first component, move selection
algorithm, is captured by the following pseudo-code:

Move_Selection_Algorithm (CDFG) {
Randomly select the number of global and local moves;
Select and apply global moves;
Evaluate FOF; If the FOF increased by more than 10%

terminate move;
Select and apply global moves;
Evaluate FOF;
}

The search algorithm uses a dynamic randomized
deepest decent search mechanism and is described using the
following pseudo-code:.

Search_Strategy_Algorithm
Initialization(); Integrated Transformation();
if (new_FOF < Current AOF) {
if (new_AOF < Current AOF) update Best_Cost and

Current_Best_Solution; }
   Initialize criteria1, criteria2;
   while (criteria1 is satisfied) {
     while (criteria2 is satisfied) {
Move_Selection_Algorithm (CDFG)
if (new_FOF < Current AOF) {
if (new_AOF < Current AOF) update Best_Cost and

Current_Best_Solution;}
update criteria 2;
} }

The Initialization routine sets as the best current solu-
tion the initial solution, and sets as the best cost the initial
cost. Criteria for stopping the Move_Selection_Algorithm
(CDFG) and the whole search are either user dictated time
limit or requested size of the datapath and the number of
scan registers.

VII  HITS and Experimental Results
The proposed transformations, objective functions

and optimization algorithms are used as the core of HITS
(HIgh level Transformation-based synthesis system for teSt-
ability optimization). The input to HITS is a functional speci-
fication of the application in an applicative stream-oriented
Silage language [14]. The input is parsed using the Hyper
parser, and the computation is stored in the Hyper CDFG for-
mat [14]. HITS operates on the Hyper CDFG format.

The transformed CDFG is given as input to the BETS
behavioral test synthesis system [4], which performs alloca-
tion, scheduling, and assignment, targeting simultaneously
area and testability, while satisfying throughput constraints.
The output of BETS is an annotated CDFG, where each node
and edge attributes have corresponding scheduling and
assignment information. The annotated CDFG is further pro-
cessed by the Hyper hardware mapping tool. The output of
the hardware mapper is an RT-level structural VHDL
description of the design. The VHDL description is trans-
lated using the BETS translator to the Logic III format, which
is the input to the OASIS system. A gate-level netlist
(ISCAS89 format) and physical layout are produced using the
OASIS system. The gate-level netlist is used as the input to
the HITEC sequential ATPG tool [11].

To evaluate the proposed transformation methodol-
ogy, objective function and optimization algorithms, HITS
was applied to the behavioral descriptions of the following
designs: 4IIR - 4th order IIR filter, 5WDF - 5th order elliptical
wave digital filter, LIN3 - 5th order linear controller, ELLIP4 -
GE controller, and 8IIR - 8th order Avenhaus IIR filter.

Table 1 shows the results of applying HITS and BETS
to the designs. In the sequel, BETS refers to the implementa-
tion of the original CDFG using BETS when both testability
and area are considered during allocation, scheduling, and
assignment. HITS refers to the implementation obtained by
transforming the original CDFG using HITS, and synthesiz-
ing the transformed CDFG using BETS. The numerical suffix
after the name of design indicates the word-length of the
implementation. In all examples, except the last one, the
BETS and the HITS design required the same number of bits.
For the 8IIR example the word-length reduces after the appli-
cation of transformations from 14 to 12 bits. The columns
Hardware and Sample Period shows the number of execution
units (multipliers, adders, and subtracters), and the number
of clock cycles needed for both the BETS and HITS designs.
Note that while the number of clock cycles taken by both the
initial and final designs are maintained the same, the hard-
ware needed by the final design is always less than the corre-
sponding initial designs.



The column Scan/Tot FF reports the number of scan
FFs needed by BETS to synthesize a loop-free testable circuit,
and the total number of flip-flops, for the BETS and HITS
implementations. The number of scan FFs needed by BETS
for the transformed CDFGs produced by HITS (HITS) is sig-
nificantly smaller than the number of scan FFs needed by
BETS for the original CDFGs (BETS). The reduction in the
number of scan FFs ranges from a factor of 3 (5EWF) to a fac-
tor of 9 (LIN3). The average and median reductions are by
factors of 4.81 and 4.00 respectively.

The last four columns of Table 1. demonstrate that the
designs obtained using BETS and HITS are consistently
highly testable using the gate-level sequential ATPG tool
HITEC [11]. The total number of faults (column Faults), the
fault coverage obtained (column FC), the test efficiency
obtained (column TE), and the ATPG time taken in seconds
on a SUN Sparcstation2 (column ATPG Time) are shown in
Table 1. Fault coverage, Test Efficiency, and ATPG times
remain close for both initial and final designs. Only in the
case of LIN3, the test generation time was significantly
higher for the final design than for the initial design, by a fac-
tor of more than 20 times, which can be attributed to the
sharp drop in the number of scan FFs used for the final
implementation. Note that the HITS design needed signifi-
cantly smaller number of scan FFS than the BETS design to
achieve comparable high test efficiencies.

VIII  Conclusion
We introduce a transformation-based approach for

simultaneous optimization of testability and area. Experi-
mental results demonstrate significant savings in partial scan
overhead when the original specifications are transformed by
HITS before using the behavioral test synthesis system BETS
[4] to synthesize 100% testable designs.
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Table I: Experimental result of the application of the HITS system on 5 benchmark examples.

Design
Name

Design
Version

Hardware
Sample
Period

Scan/Tot
FF

Faults
F.C
(%)

T.E.
(%)

ATPG Time
(sec)

4IIR.20
BETS 2M,2A,2S 5 80/340 9716 96 100 224.9

HITS 2M,1A,1S 5 20/280 8936 95 99 503.6

5EWF.20
BETS 3M,2A 17 60/460 10916 98 100 233.2

HITS 2M,2A 17 20/340 7023 99 100 128.1

LIN3.16
BETS 5M,3A 13 144/400 14308 99 100 193.6

HITS 3M,2A 13 16/224 12157 95 99 4221.5

ELLIP4.24
BETS 5M,4A 8 120/480 12986 99 100 162.2

HITS 3M,2A 8 24/336 8478 98 100 146.9

8IIR.14
BETS 2M,3A,1S 34 182/462 9964 100 100 135.1

HITS 1M,1A 34 60/132 6233 99 100 187.7


