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Abstract

We study the reactive synthesis problem for hyperproperties given as formulas of the tempo-

ral logic HyperLTL. Hyperproperties generalize trace properties, i.e., sets of traces, to sets

of sets of traces. Typical examples are information-flow policies like noninterference, which

stipulate that no sensitive data must leak into the public domain. Such properties cannot be

expressed in standard linear or branching-time temporal logics like LTL, CTL, or CTL∗. Fur-

thermore, HyperLTL subsumes many classical extensions of the LTL realizability problem,

including realizability under incomplete information, distributed synthesis, and fault-tolerant

synthesis. We show that, while the synthesis problem is undecidable for full HyperLTL, it

remains decidable for the ∃∗, ∃∗∀1, and the linear ∀∗ fragments. Beyond these fragments, the

synthesis problem immediately becomes undecidable. For universal HyperLTL, we present a

semi-decision procedure that constructs implementations and counterexamples up to a given

bound. We report encouraging experimental results obtained with a prototype implementa-

tion on example specifications with hyperproperties like symmetric responses, secrecy, and

information flow.

1 Introduction

Hyperproperties [9] generalize trace properties in that they not only check the correctness

of individual computation traces in isolation, but relate multiple computation traces to each

other. HyperLTL [8] is a logic for expressing temporal hyperproperties, by extending linear-

time temporal logic (LTL) with explicit quantification over traces. HyperLTL has been used

to specify a variety of information-flow and security properties. Examples include classical

security properties like non-interference [32] and observational determinism [38], as well as

quantitative information-flow properties [7], symmetries in hardware designs, and formally

verified error correcting codes [26]. For example, observational determinism can be expressed

as the HyperLTL formula ∀π∀π ′. (Iπ = Iπ ′) → (Oπ = Oπ ′), stating that, for every pair
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of traces, if the observable inputs are the same, then the observable outputs must be same as

well.

In reactive synthesis, we automatically construct an implementation that is guaranteed

to satisfy a given specification. A fundamental difference to verification is that there is no

human programmer involved: in verification, the programmer would first produce an imple-

mentation, which is then verified against the specification. In synthesis, the implementation is

directly constructed from the specification. Because there is no programmer, it is crucial that

the specification contains all desired properties of the implementation: the synthesized imple-

mentation is guaranteed to satisfy the given specification, but nothing is guaranteed beyond

that. The added expressive power of HyperLTL over LTL is very attractive for synthesis:

with synthesis from hyperproperties, we can guarantee that the implementation does not

only accomplish the desired functionality, but is also free of information leaks, is symmetric,

is fault-tolerant with respect to transmission errors, etc.

More formally, the reactive synthesis problem asks for a strategy, that is a tree which

branches on environment inputs and whose nodes are labeled by the system output. Collecting

the inputs and outputs along a branch of the tree, we obtain a trace. If the set of traces

collected from the branches of the strategy tree satisfies the specification, we say that the

strategy realizes the specification. The specification is realizable iff there exists a strategy

tree that realizes the specification. With LTL specifications, we get trees where the trace on

each individual branch satisfies the LTL formula. With HyperLTL, we get trees where the

traces between different branches are in a specified relationship. This is dramatically more

powerful.

Consider, for example, the well-studied distributed version of the reactive synthesis prob-

lem, where the system is split into a set of processes, where each only sees a subset of the

inputs. The distributed synthesis problem for LTL can be expressed as the standard (non-

distributed) synthesis problem for HyperLTL, by adding for each process the requirement

that the process output is observationally deterministic in the process input. HyperLTL syn-

thesis thus subsumes distributed synthesis. The information-flow requirements realized by

HyperLTL synthesis can, however, be much more sophisticated than the observational deter-

minism needed for distributed synthesis. Consider, for example, the dining cryptographers

problem [6]: three cryptographers Ca, Cb, and Cc sit at a table in a restaurant having dinner

and either one of the cryptographers or, alternatively, the NSA must pay for their meal. Is

there a protocol where each cryptographer can find out whether it was a cryptographer who

paid or the NSA, but cannot find out which cryptographer paid the bill?

Synthesis from LTL formulas is known to be decidable in doubly exponential time [39].

The fact that the distributed synthesis problem is undecidable [40] immediately eliminates

the hope for a similar general result for HyperLTL. However, since LTL is obviously a

fragment of HyperLTL, this immediately leads to the question whether the synthesis problem

is still decidable for fragments of HyperLTL that are close to LTL but go beyond LTL: when

exactly does the synthesis problem become undecidable? From a more practical point of view,

the interesting question is whether semi-algorithms for distributed synthesis [16,28], which

have been successful in constructing distributed systems from LTL specifications despite the

undecidability of the general problem, can be extended to HyperLTL?

In this paper, we answer the first question by studying the ∃∗, ∃∗∀1, and the linear ∀∗

fragment. We show that the synthesis problem for all three fragments is decidable, and the

problem becomes undecidable as soon as we go beyond these fragments. In particular, the

synthesis problem for the full ∀∗ fragment, which includes observational determinism, is

undecidable.

123



Synthesis from hyperproperties 139

We answer the second question by studying the bounded version of the synthesis problem

for the ∀∗ fragment. In order to detect realizability, we ask whether, for a universal HyperLTL

formula ϕ and a given bound n on the number of states, there exists a representation of the

strategy tree as a finite-state machine with no more than n states that satisfies ϕ. To detect

unrealizability, we check whether there exists a counterexample to realizability of bounded

size. We show that both checks can be effectively reduced to SMT solving.

1.1 Related work

HyperLTL [8] is a successor of the temporal logic SecLTL [14] used to characterize temporal

information flow. The model-checking [8,25,26], satisfiability [18,19,21], monitoring prob-

lem [1–4,22–24,33,34], and the first-order extension [31] of HyperLTL have been studied

before. In [11], it has been shown that existential quantification in a HyperLTL formula can

be reduced to strategic choice. An extensive study of the hierarchy of hyperlogics beyond

HyperLTL has been initiated in [10].

We base our algorithms on well-known synthesis algorithms such as bounded synthesis

[28] that itself is an instance of Safraless synthesis [36] for ω-regular languages. A further

technique that we adapt for hyperproperties is the bounded unrealizability method [29,30].

Hyperproperties [9] can be seen as a unifying framework for many different properties

of interest in multiple distinct areas of research. Information-flow properties in security

and privacy research are hyperproperties [8]. HyperLTL subsumes logics that reason over

knowledge [8]. Information flow in distributed systems is another example of hyperproperties,

and the HyperLTL realizability problem subsumes both the distributed synthesis problem

[27,40] as well as synthesis of fault-tolerant systems [30]. In circuit verification, the semantic

independence of circuit output signals on a certain set of inputs, enabling a range of potential

optimizations, is a hyperproperty.

This article is an extended version of [20], including previously omitted proofs. Addi-

tionally, we show that HyperLTL realizability extends many previous extensions to LTL

realizability, including realizability under incomplete information [35], distributed synthesis

[27,40], and fault-tolerant synthesis [30].

1.2 Structure of this article

We introduce HyperLTL and necessary preliminaries in Sect. 2. In Sect. 3 we define the

realizability problem for HyperLTL and demonstrate the expressiveness compared to classical

extensions of LTL realizability. In the following section, we investigate the decidability for

the realizability problem, where we characterize fragments based on the quantifier prefix. In

Sects. 5 and 6 we give algorithms for the bounded realizability and unrealizability problem

of universal HyperLTL, i.e., we bound the size of the system and environment, respectively,

in order to derive a semi-decision procedure. We report on experimental evaluation of our

prototype synthesis tool on a variety of benchmarks, involving distributed architectures,

fault-tolerance, and secrecy properties.

123
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2 Preliminaries

2.1 HyperLTL

HyperLTL [8] is a temporal logic for specifying hyperproperties. It extends LTL by quan-

tification over trace variables π and a method to link atomic propositions to specific traces.

The set of trace variables is V . Formulas in HyperLTL are given by the grammar

ϕ ::= ∀π. ϕ | ∃π. ϕ | ψ, and

ψ ::= aπ | ¬ψ | ψ ∨ ψ | ψ | ψ U ψ,

where a ∈ AP and π ∈ V . The alphabet of a HyperLTL formula is 2AP. We allow the

standard boolean connectives ∧, →, ↔ as well as the derived LTL operators release ϕ R

ψ ≡ ¬(¬ϕ U ¬ψ), eventually ϕ ≡ true U ϕ, globally ϕ ≡ ¬ ¬ϕ, and weak until

ϕ W ψ ≡ ϕ ∨ (ϕ U ψ).

The semantics is given by the satisfaction relation �T over a set of traces T ⊆ (2AP)ω.

We define an assignment Π : V → (2AP)ω that maps trace variables to traces. Π[i,∞] is

the trace assignment that for every π maps Π to the trace Π(π)[i,∞], i.e., it removes the

first i items from the traces.

Π �T aπ if a ∈ Π(π)[0]

Π �T ¬ϕ if Π �T ϕ

Π �T ϕ ∨ ψ if Π �T ϕ or Π �T ψ

Π �T ϕ if Π[1,∞] �T ϕ

Π �T ϕ U ψ if ∃i ≥ 0. Π[i,∞] �T ψ ∧ ∀0 ≤ j < i . Π[ j,∞] �T ϕ

Π �T ∃π. ϕ if there is some t ∈ T such that Π[π �→ t] �T ϕ

Π �T ∀π. ϕ if for all t ∈ T holds that Π[π �→ t] �T ϕ

We write T � ϕ for {} �T ϕ where {} denotes the empty assignment. Two HyperLTL

formulas ϕ and ψ are equivalent, written ϕ ≡ ψ if they have the same models. A HyperLTL

formula ϕ is denoted satisfiable if there is a set of traces T which satisfies ϕ, i.e., T � ϕ. The

satisfiability problem is undecidable for general HyperLTL formulas but becomes decidable

if we renounce ∀∗∃∗ formulas which alternate the quantifier from ∀ to ∃ [18]. For an LTL

formula ϕ, we denote by ϕ[π ] the quantifier-free HyperLTL formula where every proposition

a is replaced by aπ .

(In)dependence is a hyperproperty that we will use multiple times in this article, thus,

we define the following syntactic sugar. Given two disjoint subsets of atomic propositions

C ⊆ AP and A ⊆ AP, we define independence as the following HyperLTL formula

D
π,π ′

A �→C :=

(

∨

a∈A

(aπ � aπ ′)

)

R

(

∧

c∈C

(cπ ↔ cπ ′)

)

, (1)

which requires that the valuations of propositions C on traces π and π ′ have to be equal until

and including the point in time where there is a difference in the valuation of some proposition

in A. Prefacing universal quantification, that is, the formula ∀π∀π ′. D
π,π ′

A �→C guarantees that

every proposition c ∈ C solely depends on propositions in A.
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Synthesis from hyperproperties 141

2.2 Strategies

A strategy f : (2I )∗ → 2O maps sequences of input valuations 2I to an output valuation

2O . The behavior of a strategy f : (2I )∗ → 2O is characterized by an infinite tree, called

computation tree, that branches by the valuations of I and whose nodes w ∈ (2I )∗ are

labeled with the strategic choice f (w). For an infinite word w = w0w1w2 · · · ∈ (2I )ω, the

corresponding trace is defined as ( f (ǫ)∪w0)( f (w0)∪w1)( f (w0w1)∪w2) · · · ∈ (2I∪O)ω.

We lift the set containment operator ∈ to the containment of a trace w = w0w1w2 · · · ∈

(2I∪O)ω in a strategy tree induced by f : (2I )∗ → 2O , i.e., w ∈ f if, and only if, f (ǫ) =

w0 ∩ O and f ((w0 ∩ I ) · · · (wi ∩ I )) = wi+1 ∩ O for all i ≥ 0. The set of traces produced

by f , written traces( f ), is {w | w ∈ f }. We define the satisfaction of a HyperLTL formula

ϕ (over propositions I ∪ O) on strategy f , written f � ϕ, as traces( f ) � ϕ. Thus, a strategy

f is a model of ϕ if the set of traces of f is a model of ϕ.

3 HyperLTL synthesis

In this section, we introduce the realizability problem for HyperLTL and compare its expres-

siveness to various previous extensions of the LTL realizability problem.

Definition 1 (HyperLTL Realizability) A HyperLTL formula ϕ over atomic propositions

AP = I ∪̇ O is realizable if there is a strategy f : (2I )∗ → 2O that satisfies ϕ.

The fragment of HyperLTL with only a single, universal quantifier ∀π. ϕ is equivalent to

the LTL realizability problem of ϕ. With two universal quantifiers, one can express relations

between traces in the execution tree, thus, one can express the LTL realizability problem with

restricted information flow like incomplete information [35], distributed synthesis [27,40],

and fault-tolerant synthesis [13,30].

3.1 Incomplete information

The realizability problem with incomplete information [35] is a tuple 〈ϕ, I , O, H〉, where

ϕ is an LTL formula, I is a set of input propositions, O is a set of output propositions, and

H ⊆ I is a set of hidden inputs not observable by the system. Thus, a realizing strategy

f : (2I\H )∗ → 2O has a computation tree that only branches by I\H . In order to evaluate ϕ,

which may include propositions H , the computation tree is widened [35] by H . In HyperLTL,

we can verify that a strategy f ′ : (2I )∗ → 2O has the same output-behavior as a H -widened

strategy f by checking f ′ � ∀π∀π ′. D
π,π ′

I\H �→O .

Theorem 1 The HyperLTL realizability problem subsumes the LTL realizability with incom-

plete information problem.

Proof Given 〈ϕ, I , O, H〉, the following HyperLTL formula over inputs I and outputs O is

equirealizable.

∀π∀π ′. ϕ[π ] ∧ D
π,π ′

I\H �→O

⊓⊔
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env

p1 p2

a b

c d

(a)An architecture of two processes that spec-
ify process p1 to produce c from a and p2 to
produce d from b.

env

p1 p2

a a, b

c d

(b)The same architecture as on the left, where
the inputs of process p2 are changed to a and
b.

Fig. 1 Distributed architectures

3.2 Distributed synthesis

The distributed synthesis problem was introduced by Pnueli and Rosner [40] and introduces

the concept of architectures as a constraint on the information flow. An architecture is a set

of processes P , with distinct environment process penv ∈ P , such that the processes produce

outputs synchronously, but each process bases its decision only on the history of valuation

of inputs that it observes.

Formally, a distributed architecture A is a tuple 〈P, penv, I, O〉 where P is a finite set

of processes with distinguished environment process penv ∈ P . The functions I : P → 2AP

and O : P → 2AP define the inputs and outputs of processes. While processes may share the

same inputs (in case of broadcasting), the outputs of processes must be pairwise disjoint, i.e.,

for all p �= p′ ∈ P it holds that O(p) ∩ O(p′) = ∅. W.l.o.g. we assume that I(penv) = ∅.

We denote by P− = P\{penv} the set of processes excluding the environment process.

The distributed realizability problem for architectures without information forks [27]

is decidable. Intuitively, an information fork is a situation where two distinct processes

p, p′ ∈ P receive environment inputs I and I ′ (may be transitive through other processes)

such that both observe inputs that the other process does not observe, i.e., there exist i ∈ I

and i ′ ∈ I ′ such that i /∈ I ′ and i ′ /∈ I . We depict two example architectures in Fig. 1. The

architecture in Fig. 1a contains an information fork while the architecture in Fig. 1b does not.

Furthermore, the processes in Fig. 1b can be ordered linearly according to the subset relation

on the inputs.

Theorem 2 The HyperLTL realizability problem subsumes the distributed LTL realizability

problem.

Proof Given a distributed realizability problem 〈ϕ, A〉, the following HyperLTL formula

over inputs O(penv) for P− and outputs
⋃

p∈P− O(p) is equirealizable:

∀π∀π ′. ϕ[π] ∧
∧

p∈P−

D
π,π ′

I(p)�→O(p)

⊓⊔

3.3 Asynchronous distributed synthesis

The asynchronous system model [42] is a generalization of the synchronous model discussed

previously. In this model, we have a global scheduler, controlled by the environment, that
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decides when and which processes are scheduled. The resulting distributed realizability

problem is already undecidable for LTL specifications and systems with more than one

process [42].

Theorem 3 The HyperLTL realizability problem subsumes the asynchronous distributed LTL

realizability problem.

Proof Let A = 〈P, penv, I, O〉 be a distributed architecture. To model scheduling, we intro-

duce an additional set Sched = {sched p | p ∈ P−} of atomic propositions. The valuation of

sched p indicates whether system process p is currently scheduled or not. A process p ∈ P−

may observe whether it is scheduled or not, that is, it may depend on sched p . The environ-

ment can decide at every step which processes to schedule. When a process is not scheduled,

its output behavior does not change [28]. As the scheduling is controlled by the environment,

we assume that every process is infinitely often scheduled, as otherwise, the environment

wins by simply not scheduling any process.

Given an asynchronous distributed realizability problem 〈ϕ, A〉, the following HyperLTL

formula over inputs O(penv) ∪ Sched and outputs
⋃

p∈P− Op is equirealizable:

∀π∀π ′.

⎛

⎝

∧

p∈P−

sched p[π ]

⎞

⎠ → ϕ[π ] ∧
∧

p∈P−

D
π,π ′

(I(p)∪{sched p})�→O(p)

∧
∧

p∈P−

¬sched p[π ] →

⎛

⎝

∧

o∈O(p)

oπ ↔ oπ

⎞

⎠

⊓⊔

3.4 Symmetric synthesis

A special case of distributed synthesis is symmetric synthesis [15], which, additionally to

distributivity, requires that all system processes act exactly the same if they are given the same

inputs. Formally, symmetric synthesis requires a symmetric architecture 〈P, penv, I, O〉

where for each process p ∈ P−, |I(p)| = n and |O(p)| = m for some n, m ∈ N. We

assume an implicit ordering of inputs and output per process and use the notation I(p) j and

O(p) j to access the j-th input and output of process p ∈ P−, respectively. Then, we can

express the symmetry constraint as an LTL formula

∧

p,p′∈P−

⎛

⎝

∨

1≤ j≤n

I(p) j � I(p′) j

⎞

⎠ R

⎛

⎝

∧

1≤ j≤m

O(p) j ↔ O(p′) j

⎞

⎠ (sym)

Theorem 4 The HyperLTL realizability problem subsumes the symmetric (distributed) LTL

realizability problem.

Proof Given a symmetric realizability problem over architecture A and specifications

ϕ1, . . . , ϕk for the k processes the following HyperLTL formula over inputs O(penv) for

P− and outputs
⋃

p∈P− O(p) is equirealizable:

∀π∀π ′.
∧

1≤i≤k

ϕi [π ] ∧
∧

p∈P−

D
π,π ′

I(p)�→O(p)
∧ sym[π]

⊓⊔
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3.5 Fault-tolerant synthesis

We consider another extension to the distributed synthesis problem where we incorporate

the possibility that communication between processes may be subject to faults, such as

Byzantine faults [29,30]. In the distributed synthesis formulation above, communication

from some process p to p′ was encoded as an atomic proposition a such that a ∈ O(p)

and a ∈ I(p′). In the fault-tolerance encoding, we split this connection into a sending part

as ∈ O(p) and a receiving part ar ∈ I(p′) where ar ∈ O(penv) is a proposition controlled

by the environment. To relate as and ar , we add the assumption (as ↔ ar ) to the LTL

specification. This encoding uses more atomic propositions and additional LTL constraints

but is otherwise equivalent to the one presented before.

This increased flexibility, that is, being able to specify communication using temporal

logic, allows us to express unreliable communication. For example, using the assumption

(as ↔ ar ) specifies a delay of one time step on the receiver, ar specifies a stuck-at-one

fault, and ⊤ specifies a Byzantine fault where the environment takes over the communication.

This alone is not enough though: if a process gets such a specification it knows which receiving

propositions present actual values and which one is subject to a fault. Thus, the processes

are challenged in multiple architectures, where each architecture may have a different set of

communication faults as well as specifications: depending on the type of failure, the overall

system may only be expected to satisfy a weaker property then the original, non-faulty one.

Formally, the fault-tolerant realizability problem is a tuple 〈A, ϕ1, . . . , ϕn〉, where A is a

distributed architecture with the property that every process receives only environment inputs,

i.e., I(p) ⊆ O(penv) for all p ∈ P−, and ϕ1, . . . , ϕn are LTL formulas. For Byzantine

fault-tolerance, ϕi =
∧

(s,r)∈Ri
(s ↔ r) → ψi where Ri ⊆ O × I are the non-faulty

communication of architecture i and ψi is the LTL specification that should be ensured.

As an example, consider the architecture

〈{penv, p1, p2, p3}, penv, {p1 �→ {a}, p2 �→ {a}, p3 �→ {b, c}},

{penv �→ {a, b, c}, p1 �→ {x}, p2 �→ {y}, p3 �→ {z}}〉 (2)

with specifications ϕ1 = ((x ↔ b) ∧ (y ↔ c)) → ψ , ϕ2 = (y ↔ c) → ψ , and ϕ3 =

(x ↔ b) → ψ . This example specification asserts that ψ holds in all three architectures

depicted in Fig. 2, i.e., if either p1
x
−→ p3 or p2

y
−→ p3 fails, but not both of them. Hence,

process p3 cannot know whether the information given via propositions b or c is correct.

Theorem 5 The HyperLTL realizability problem subsumes the fault-tolerant LTL realizability

problem.

Proof Given 〈A, ϕ1, . . . , ϕn〉, the following HyperLTL formula over inputs O(penv) and

outputs
⋃

p∈P− Op is equirealizable:

∀π∀π ′.
∧

1≤i≤n

ϕi [π ] ∧
∧

p∈P−

D
π,π ′

I(p)�→O(p)

⊓⊔

4 Deciding HyperLTL synthesis

In this section, we identify fragments of HyperLTL for which the realizability problem is

decidable. Our findings are summarized in Table 1.

123



Synthesis from hyperproperties 145

penv p3

p1

p2

z

x
b

y

c

a

a

(a) non-faulty

penv p3

p1

p2

z

x

y

c

a

a

b

(b) p1 � p3

penv p3

p1

p2

z

x
b

y

a

a

c

(c) p2 � p3

Fig. 2 Visual interpretation of a fault-tolerance specification: on the left is the original (non-faulty) architecture

where the communication between p1 → p3 and p2 → p3 is intact. The two architectures on the right

represent the case where either p1 � p3 or p2 � p3. In this case, the receiving propositions b and c,

respectively, are controlled by the environment. In fault-tolerant synthesis, we search for strategies for processes

p1, p2, and p3 such that the specification is satisfied in all architectures

Table 1 Summary of decidability results

∃∗ ∀∗ linear ∀∗ ∃∗∀1 ∃∗∀>1 ∀∗∃∗

PSpace-complete Undecidable Non-elem. 3ExpTime Undecidable Undecidable

We base our investigation on the structure of the quantifier prefix of the HyperLTL for-

mulas. We call a HyperLTL formula ϕ (quantifier) alternation-free if the quantifier prefix

consists solely of either universal or existential quantifiers. We denote the corresponding

fragments as the (universal) ∀∗ and the (existential) ∃∗ fragment, respectively. A HyperLTL

formula is in the ∃∗∀∗ fragment, if it starts with arbitrarily many existential quantifiers, fol-

lowed by arbitrarily many universal quantifiers. Analogously for the ∀∗∃∗ fragment. For a

given natural number n, we refer to a bounded number of quantifiers with ∀n , respectively

∃n . The ∀1 realizability problem is equivalent to the LTL realizability problem.

4.1 ∃
∗ Fragment

We show that the realizability problem for existential HyperLTL is PSpace-complete. We

reduce the realizability problem to the satisfiability problem for bounded one-alternating

∃∗∀2HyperLTL [18], i.e., finding a trace set T such that T � ϕ.

Lemma 1 An existential HyperLTL formula ϕ = ∃π1 · · · ∃πn . ψ is realizable if, and only if,

ϕsat := ∃π1 · · · ∃πn .∀π∀π ′. ψ ∧ D
π,π ′

I �→O is satisfiable.

Proof Assume f : (2I )∗ → 2O realizes ϕ, that is f � ϕ. Let T = traces( f ) be the set of

traces generated by f . It holds that T � ϕ and T � ∀π, π ′. D
π,π ′

I �→O . Therefore, T witnesses

the satisfiability of ϕsat . For the reverse direction, assume that ϕsat is satisfiable. Let S be a

set of traces that satisfies ϕsat . We construct a strategy f : (2I )∗ → 2O as

f (σ ) =

{

w|σ | ∩ O if σ is a prefix of some w|I with w ∈ S, and

∅ otherwise.
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where w|I denotes the trace restricted to I , meaning that wi ∩ I for all i ≥ 0. Note that if

there are multiple candidates w ∈ S, then w|σ | ∩ O is equal across all of them due to the

required determinism ∀π∀π ′. D
π,π ′

I �→O . By construction, all traces in S are contained in f , and

together with S � ϕ, it holds that f � ϕ as the sets of sets of traces satisfying the existential

formula ϕ are upward closed. ⊓⊔

Theorem 6 Realizability of existential HyperLTL specifications is decidable.

Proof The formula ϕsat from Lemma 1 is in the ∃∗∀2 fragment, for which satisfiability is

decidable [18]. ⊓⊔

Corollary 1 Realizability of existential HyperLTL specifications is PSpace-complete.

Proof Given an existential HyperLTL formula, we gave a linear reduction to the satisfiability

of the ∃∗∀2 fragment in Lemma 1. The satisfiability problem for a bounded number of

universal quantifiers is in PSpace [18]. Hardness follows from LTL satisfiability [43], which

is equivalent to the ∃1 fragment. ⊓⊔

4.2 ∀
∗ Fragment

In the following, we will use the distributed synthesis problem defined before, i.e., the problem

whether there is an implementation of processes in a distributed architecture (cf. Fig. 1) that

satisfies an LTL formula.

Theorem 7 The synthesis problem for universal HyperLTL becomes undecidable as soon as

we have more than one universal quantifier.

Proof In the ∀∗ fragment (and thus in the ∃∗∀∗ fragment), we can encode a distributed

architecture [40], for which LTL synthesis is undecidable. In particular, we can encode the

architecture shown in Fig. 1a. This architecture basically specifies c to depend only on a

and analogously d on b. That can be encoded by D
π,π ′

{a}�→{c} and D
π,π ′

{b}�→{d}. The LTL synthesis

problem for this architecture is undecidable [40], i.e., given an LTL formula over I = {a, b}

and O = {c, d}, we cannot automatically construct processes p1 and p2 that realize the

formula. ⊓⊔

4.3 Linear ∀
∗ fragment

As we have already seen in Theorem 2, we can represent distributed architectures in Hyper-

LTL by using the dependency formulas D
π,π ′

I �→O . In this section, we do the reverse direction.

Given a HyperLTL formula ϕ, we try to find an equivalent formula which has the dis-

tributed form ∀π.∀π ′. ϕ′ ∧ (dep) where ϕ′ only uses the path variable π and where (dep) is

a conjunction of dependency formulas. These formulas can then be translated to distributed

architectures on which we can use the already existent techniques to deal with the synthesis

problem. In particular, we can check whether the resulting distributed synthesis problem has

an information fork. If this is not the case, the problem is decidable [27].

For finding the distributed form, we need to find the “LTL-part” ϕ′ of the HyperLTL

property ϕ. We call this collapsing ϕ to ϕ′. This transformation collapses the univer-

sal quantifier into a single one and renames the path variables accordingly. For example,

∀π1∀π2. aπ1 ∨ aπ2 is transformed into an equivalent ∀1 formula ∀π. aπ ∨ aπ . How-

ever, this transformation does not always produce equivalent formulas as ∀π1∀π2. (aπ1 ↔
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aπ2) is not equivalent to its collapsed form ∀π. (aπ ↔ aπ ). Let ϕ be ∀π1 · · · ∀πn . ψ . We

define the collapsed formula of ϕ as collapse(ϕ) := ∀π.ψ[π1 �→ π][π2 �→ π] . . . [πn �→ π]

where ψ[πi �→ π ] replaces all occurrences of πi in ψ with π . Although the collapsed term

is not always equivalent to the original formula, we can use it as an indicator whether it is

possible at all to express a universal formula with only one quantifier as stated in the following

lemma.

Lemma 2 Either ϕ ≡ collapse(ϕ) or ϕ has no equivalent ∀1 formula.

Proof Suppose there is some ψ ∈ ∀1 with ψ ≡ ϕ. We show that ψ ≡ collapse(ϕ). Let

T be an arbitrary set of traces. Let T = {{w} | w ∈ T }. Because ψ ∈ ∀1, T � ψ is

equivalent to ∀T ′ ∈ T . T ′ � ψ , which is by assumption equivalent to ∀T ′ ∈ T . T ′ � ϕ.

Now, ϕ operates on singleton trace sets only. This means that all quantified paths have

to be the same, which yields that we can use the same path variable for all of them. So

∀T ′ ∈ T . T ′ � ϕ ↔ T ′ � collapse(ϕ) that is again equivalent to T � collapse(ϕ). Because

ψ ≡ collapse(ϕ) and ψ ≡ ϕ it holds that ϕ ≡ collapse(ϕ). ⊓⊔

Now that we have the ϕ′-part of the distributive form, we need to find the variable depen-

dencies. More precisely, given a formula ϕ, we seek for variable dependencies of the form

D
π,π ′

J �→{o} with J ⊆ I for every output o ∈ O . These J ′s can be brute-forced. For doing

so, we just check for each case the equivalence between ϕ and ∀π.∀π ′. collapse(ϕ) ∧ (dep)

where (dep) is the conjunction of all D
π,π ′

J �→{o}. If this is the case and furthermore, the D
π,π ′

Ji �→{oi }

constraints can be ordered such that Ji ⊆ Ji+1 for all i , we have a linear architecture. Linear

architectures are architectures without information fork. Thus, they are decidable. We define

the linear fragment to encompass exactly these linear architectures. All in all, there are three

steps to check whether ϕ is in the linear fragment:

1. First, we have to add input-determinism to the formula ϕdet := ∀π.∀π ′. ϕ∧ D
π,π ′

I �→O . This

preserves realizability as strategies are input-deterministic.

2. Find for each output variable oi ∈ O possible sets of variables Ji on which the oi

depend, such that Ji ⊆ Ji+1. To check whether the choice of J ’s is correct, we test if

∀π.∀π ′. collapse(ϕ) ∧
∧

oi ∈O D
π,π ′

Ji �→{oi }
is equivalent to ϕdet . This equivalence check is

decidable as both formulas are in the universal fragment [18].

3. Finally, we construct the corresponding distributed realizability problem with linear archi-

tecture. We define the distributed architecture A = 〈P, penv, I, O〉 with P = {pi | oi ∈

O} ∪ {penv}, I(pi ) = Ji , O(pi ) = {oi }, and O(penv) = I . The LTL specification for the

distributed synthesis problem is collapse(ϕ)

Definition 2 (linear fragment of ∀∗) In the context of a synthesis problem with inputs I and

outputs O , a formula ϕ is in the linear fragment of ∀∗ iff for all oi ∈ O there is a Ji ⊆ I such

that ∀π.∀π ′. ϕ ∧ D
π,π ′

I �→O ≡ ∀π.∀π ′. collapse(ϕ) ∧
∧

oi ∈O D
π,π ′

Ji �→{oi }
and Ji ⊆ Ji+1 for all i .

Note that each ∀1 formula ϕ (or ϕ is collapsible to a ∀1 formula) is in the linear fragment

because we can set all Ji = I and additionally collapse(ϕ) = ϕ holds.

An example of a formula in the linear fragment of ∀∗ is ϕ = ∀π, π ′. D
π,π ′

{a}�→{c} ∧ (cπ ↔

dπ ) ∧ (bπ ↔ eπ ) with I = {a, b} and O = {c, d, e}. The corresponding formula

asserting input-deterministism is ∀π.∀π ′. ϕdet = ϕ ∧ D
π,π ′

I �→O . One possible choice of J ’s is

{a, b} for c, {a} for d and {a, b} for e. Note, that one can use either {a, b} or {a} for c as

∀π.∀π ′. D
π,π ′

{a}�→{d}∧(cπ ↔ dπ ) implies ∀π.∀π ′. D
π,π ′

{a}�→{c}. However, the apparent alternative
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{b} for e would yield an undecidable architecture with information fork. It holds that ϕdet

and ∀π.∀π ′. collapse(ϕ)∧ D
π,π ′

{a,b}�→{c} ∧ D
π,π ′

{a}�→{d} ∧ D
π,π ′

{a,b}�→{e} are equivalent and, thus, that

ϕ is in the linear fragment.

Theorem 8 The realizability of the linear fragment of HyperLTL is decidable.

Proof It holds that ∀π.∀π ′. ϕ ∧ D
π,π ′

I �→O ≡ ∀π.∀π ′. collapse(ϕ) ∧
∧

oi ∈O D
π,π ′

Ji �→{oi }
for some

Ji ’s. The LTL distributed realizability problem for collapse(ϕ) in the constructed architecture

A is equivalent to the HyperLTL realizability of ϕ as the architecture A represents exactly the

input-determinism represented by formula
∧

oi ∈O D
π,π ′

Ji �→{oi }
. The architecture is linear and,

thus, the realizability problem is decidable. ⊓⊔

Corollary 2 The realizability problem of the linear fragment of HyperLTL can be checked in

non-elementary time.

The reason for this is that solving the distributed synthesis problem takes non-elementary

time in the amount of variables. Surprisingly, this runtime is not (more than linearly) depen-

dent on the amount of quantifiers as they are directly reduced to two.

4.4 ∃
∗
∀
1 Fragment

In this fragment, we consider arbitrary many existential trace quantifiers followed by a single

universal trace quantifier. This fragment turns out to be still decidable. We solve the realiz-

ability problem for this fragment by reducing it to a decidable fragment of the distributed

realizability problem for LTL.

Theorem 9 Realizability of ∃∗∀1HyperLTL specifications is decidable.

Proof Let ϕ be ∃π1 · · · ∃πn .∀π ′. ψ . We reduce the realizability problem of ϕ to the distributed

realizability problem for LTL. Intuitively, we use a two-process distributed architecture where

the first process p is supposed to produce the traces for the leading existential quantification

and the second process p′ represents the realizing strategy. The architecture is depicted in

Fig. 3.

For every existential trace quantifier π , we introduce a copy of every atomic proposition for

the distributed realizability problem, written aπ for a ∈ AP. We use the same notation for sets

of atomic propositions, e.g., I π = {iπ | i ∈ I }. Process p has no inputs, thus, produces only

a single trace, and it controls the outputs
⋃

1≤i≤n

(I πi ∪ Oπi ). Using an appropriate valuation

of its outputs, process p selects the paths in the strategy tree corresponding to the existential

trace quantifiers ∃π1 · · · ∃πn . Thus, those output propositions of process p have to encode

an actual path in the strategy tree produced by p′. To ensure this, we add the LTL constraint

(I πi = I ) → (Oπi = O) that asserts that if the inputs correspond to some path in the

strategy tree, the outputs on those paths have to be the same. The resulting architecture Aϕ is

〈{penv, p, p′}, penv, {p �→ ∅, p′ �→ I },

{penv �→ I , p �→
⋃

1≤i≤n

(I πi ∪ Oπi ), p′ �→ O}〉.

It is easy to verify that Aϕ does not contain an information fork, thus the realizability problem

is decidable [27]. The LTL specification θ is ψ∧
∧

1≤i≤n (I πi = I ) → (Oπi = O) where

we replace every aπ by aπ for existential traces and aπ ′ to a in ψ . The implementation of
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Fig. 3 Visualization of the

architecture used in the ∃∗∀1

reduction in the proof of

Theorem 9

env

p p′

∅ I

⋃

1≤i≤n

(Iπi ∪ Oπi )
O

process p′ (if it exists) is a realizing strategy for the HyperLTL formula (process p producing

witnesses for the ∃ quantifiers): Assume that there are realizing strategies for 〈Aϕ, θ〉, i.e.,

f p : (2∅)∗ → 2
⋃

1≤i≤n(I πi ∪Oπi ) and f p′ : (2I )∗ → 2O . f p′ is a realizing strategy for ϕ as well:

By the HyperLTL semantics, we have to show that there is a trace assignment Π : V∃ →

traces( f p′) such that for all t ∈ traces( f p′) it holds that Π[π ′ → t] �traces( f p′ ) ψ . We define

Π in the following. Note that traces( f p) is a singleton set and let tp ∈
(

2
⋃

1≤i≤n(I πi ∪Oπi )
)ω

be the corresponding trace. For every πi ∈ {π1, . . . , πn}, we define Π(πi ) = tp|I πi where

we replace aπi by a for every a ∈ AP. This, together with θ shows that ψ holds for every

chosen path t ∈ traces( f p′) for π ′.

Conversely, a model for ϕ can be used as an implementation of p and p′: Let f : (2I )∗ →

2O be a realizing strategy of ϕ. We use f as a strategy for p′. We construct the single trace

produced by p using the existential trace assignment Π : V∃ → traces( f ). Let t1, . . . , tn ∈

traces( f ) be the corresponding traces. We construct a single trace tp by replacing propositions

a ∈ AP by aπi for every ti and the subsequent union of the resulting traces (which now have

pairwise disjoint propositions). Due to the construction, f p satisfies
∧

1≤i≤n (I πi = I ) →

(Oπi = O) and thus, the distributed architecture satisfies θ . Hence, the distributed synthesis

problem 〈Aϕ, θ〉 has a solution if, and only if, ϕ is realizable. ⊓⊔

4.5 ∀
∗
∃

∗ Fragment

The last fragment to consider are formulas in the ∀∗∃∗ fragment. Whereas the ∃∗∀1 fragment

remains decidable, the realizability problem of ∀∗∃∗ turns out to be undecidable even when

restricted to only one quantifier of both sorts (∀1∃1).

Theorem 10 Realizability of ∀∗∃∗HyperLTL is undecidable.

Proof We will prove this theorem by reducing Post’s Correspondence Problem (PCP) [41]

to synthesizing an ∀1∃1 formula. This proof follows the one from [18]. In PCP, we are given

two lists α and β of same length which consist of finite words from some alphabet Σ . For

example, α, with α1 = a, α2 = ab and α3 = bba and β, with β1 = baa, β2 = aa and

β3 = bb. Here αi denotes the i th element of the list, and αi, j denotes the j th symbol of

the i th element. In this example, α3,1 corresponds to b. PCP is the problem to find an index

sequence (ik)1≤k≤K with K ≥ 1 and 1 ≤ ik ≤ n for all k, such that αi1 . . . αiK
= βi1 . . . βiK

.

We denote the finite words of a PCP solution with iα and iβ , respectively. It is a useful

intuition to think of the PCP instance as a set of n domino stones. A possible solution for this

PCP instance would be (3, 2, 3, 1), since this stone sequence produces the same word, i.e.,

bbaabbbaa = iα = iβ .
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Let a PCP instance with Σ = {a1, a2, . . . , an} and two lists α and β be given. We

choose our set of atomic propositions as follows: AP := I ∪̇ O with I := {i} and O :=

(Σ ∪{ȧ1, ȧ2, . . . , ȧn}∪ #)2, where we use the dot symbol to encode that a stone starts at this

position of the trace. We write ã if we do not care if this symbol is an a or ȧ and use ∗ as

syntactic sugar for an arbitrary symbol of the alphabet.

We encode the PCP instance into a HyperLTL formula that is realizable if and only if the

PCP instance has a solution as follows:

ϕreduc := ϕsol(π) ∧ ∀π∃π ′. ϕrel(π) →ϕis++(π, π ′)

∧ ϕstart(ϕstone&shift(π, π ′), π)

– ϕsol(π) := iπ → (
∨n

i=1(ȧi , ȧi )π ) ∧ (
∨n

i=1(ãi , ãi )π ) U (#, #)π . Here, we associate

the left part of the pairs with the upper (α) part of the domino stones and the right part

with the lower (β) part of the domino stones. And only taking the left side of the pairs

along the path π we should get iα , respectively for iβ . Therefore, this formula essentially

states that the path which has i encodes our solution and has iα = iβ . The # symbols

at the end are placeholders for ensuring that the sequence has a finite size.

– ϕrel(π) := ¬iπ U iπ . This defines the set of relevant traces trough our strategy tree.

They can be imagined being parallel to each other or thought of as the solution trace i

but with some additional ¬i in front.

– ϕis++(π, π ′) := (¬iπ ∧ ¬iπ ′) U ( iπ ∧ ¬iπ ′ ∧ iπ ′). This defines that a trace π ′ is

a successor of π . It essentially states that π ′ has exactly one more ¬i at the beginning

than π , i.e., it is the next parallel trace.

– Essentially, we now want π ′ to be exactly π but with the first stone removed and the rest

shifted to the front. This can be best illustrated with the example from above. The full

sequence at the trace i represents the solution with the outputs

(ḃ, ḃ)(b, b)(a, ȧ)(ȧ, a)(b, ḃ)(ḃ, b)(b, ḃ)(a, a)(ȧ, a)(#, #)(#, #) . . .

The next trace, which is the one with ¬i in front and then i is

(ȧ, ȧ)(b, a)(ḃ, ḃ)(b, b)(a, ḃ)(ȧ, a)(#, a)(#, #)(#, #) . . .

Note that now the symbols are not aligned any more because the first stone did not have

an equal length of the upper and lower part. We continue this sequence by removing the

next stones:

(ḃ, ḃ)(b, b)(a, ḃ)(ȧ, a)(#, a)(#, #)(#, #) . . .

(ȧ, ḃ)(#, a)(#, a)(#, #)(#, #) . . .

(#, #)(#, #) . . .

Now, the formula ϕstone&shift(π, π ′) encodes that π ′ is π with the first stone removed and

the rest shifted as illustrated in the example. This can be done with a disjunction over all

possible stones. See [18] for more details.

– ϕstart(ϕ, π) := ¬iß U ϕ ∧ iπ cuts off the irrelevant prefix until ϕ starts. This irrelevant

prefix is exactly the part where the ¬i appear. We are only interested in looking at the

i part of the traces because they are not shared by the different relevant traces.

– We furthermore assume that only singletons are allowed what can be achieved by a

disjunction for each pair of atomic propositions. See [18] as well.
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With this construction, we now force by the synthesis algorithm to yield a list of paths

which represent the PCP solution step-wise. To get the list of stones used for this PCP solution,

we can just examine the first path (with i) and look at the outputs. As we know that the

dots above the letters indicate a new stone, we can slice the sequence iα to αi1 . . . αiK
and

same for iβ . This shows that we can solve PCP if we can solve the synthesis problem for

∀1∃1 formulas. ⊓⊔

5 Bounded realizability

We propose an algorithm to synthesize strategies from specifications given in universal

HyperLTL by searching for finite generators of realizing strategies. We encode this search

as a satisfiability problem for a decidable constraint system.

5.1 Transition systems

A transition system S is a tuple 〈S, s0, τ, l〉 where S is a finite set of states, s0 ∈ S is

the designated initial state, τ : S × 2I → S is the transition function, and l : S → 2O

is the state-labeling or output function. We generalize the transition function to sequences

over 2I by defining τ ∗ : (2I )∗ → S recursively as τ ∗(ǫ) = s0 and τ ∗(w0 · · · wn−1wn) =

τ(τ ∗(w0 · · · wn−1), wn) for w0 · · · wn−1wn ∈ (2I )+. A transition system S generates the

strategy f if f (w) = l(τ ∗(w)) for every w ∈ (2I )∗. A strategy f is called finite-state if

there exists a transition system that generates f .

5.2 Overview

We first sketch the synthesis procedure and then proceed with a description of the intermediate

steps. Let ϕ be a universal HyperLTL formula ∀π1 · · · ∀πn . ψ . We build the automaton Aψ

whose language is the set of tuples of traces that satisfy ψ . We then define the acceptance of

a transition system S on Aψ by means of the self-composition of S. Lastly, we encode the

existence of a transition system accepted by Aψ as an SMT constraint system.

Example 1 Throughout this section, we will use the following (simplified) running example.

Assume we want to synthesize a system that keeps decisions secret until it is allowed to

publish. Thus, our system has three input signals decision, indicating whether a decision

was made, the secret value, and a signal to publish results. Furthermore, our system has two

outputs, an undisclosed output internal that stores the value of the last decision, and a public

output result that indicates the result. No information about decisions should be inferred until

publication. To specify the functionality, we propose the LTL specification

(decision → (value ↔ internal))

∧ (¬decision → (internal ↔ internal))

∧ (publish → (internal ↔ result)). (3)

The solution produced by the LTL synthesis tool BoSy [17], shown in Fig. 4a, clearly violates

our intention that results should be secret until publish: Whenever a decision is made, the

output result changes as well.
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s0

{res, int}

s1

∅

¬dec ∨ val

dec ∧ ¬val

dec ∧ val

¬dec ∨ ¬val

(a)

s0

{res}

s1

{res, int}

s2

∅

¬pub ∧ (¬dec ∨ ¬val)

dec ∧ val

dec ∧ ¬val ∧ ¬pub

¬dec ∨ val

pub ∧ (¬dec ∨ ¬val)
¬pub ∧ ¬val

pub ∧ ¬val

∨ ¬dec ∧ val

dec ∧ pub ∧ ¬val

dec ∧ val

(b)

Fig. 4 Synthesized Moore transition systems based on the specification given in Example 1

We formalize the property that no information about the decision can be inferred from

result until publication as the HyperLTL formula

∀π∀π ′. (publishπ ∨ publishπ ′) R (resultπ ↔ resultπ ′). (4)

It asserts that for every pair of traces, the result signals have to be the same until (if ever)

there is a publish signal on either trace. A solution satisfying both, the functional specification

and the hyperproperty, is shown in Fig. 4b. The system switches states whenever there is a

decision with a different value than before and only exposes the decision in case there is a

prior publish command.

We proceed with introducing the necessary preliminaries for our algorithm.

5.3 Automata

A universal co-Büchi automaton A over finite alphabet Σ is a tuple 〈Q, q0, δ, F〉, where Q

is a finite set of states, q0 ∈ Q the designated initial state, δ ⊆ Q × Σ × Q is the transition

relation, and F ⊆ Q is the set of rejecting states. Given an infinite word σ ∈ Σω, a run of

σ on A is a finite or infinite path q0q1q2 · · · ∈ (Q∗ ∪ Qω) where for all i ≥ 0 it holds that

(qi , σi , qi+1) ∈ δ. A run is accepting, if it contains only finitely many rejecting states, i.e.,

either the run is finite or there exists a i ≥ 0 such that for all j ≥ i it holds that q j /∈ F . A

accepts a word σ , if all runs of σ on A are accepting. The language of A, written L(A), is the

set {σ ∈ Σω | A accepts σ }. We represent automata as directed graphs with vertex set Q and

a symbolic representation of the transition relation δ as propositional formulas B(Σ). The

rejecting states in F are marked by double lines. The automata for the LTL and HyperLTL

specifications from Example 1 are depicted in Fig. 5.

5.4 Run graph

The run graph of a transition system S = 〈S, s0, τ, l〉 on a universal co-Büchi automaton

A = 〈Q, q0, δ, F〉 is a directed graph 〈V , E〉 where V = S × Q is the set of vertices and

E ⊆ V × V is the edge relation with

((s, q), (s′, q ′)) ∈ E iff

∃i ∈ 2I . ∃o ∈ 2O . (τ (s, i) = s′) ∧ (l(s) = o) ∧ (q, i ∪ o, q ′) ∈ δ.
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q0

q1 q2

q3

qe

⊤

¬dec ∧ ¬int

∨ dec ∧ ¬val

int

¬dec ∧ int

∨ dec ∧ val

¬int

pub

(int � res)

⊤

(a) Automaton accepting the language defined
by the LTL formula in (3)

q0 qe

¬pubπ ∧ ¬pubπ′

∧ resπ ↔ resπ′

resπ � resπ′

⊤

(b) Automaton accepting the language defined
by the HyperLTL formula in (4)

Fig. 5 Universal co-Büchi automata recognizing the languages from Example 1

A run graph is accepting if every path (starting at the initial vertex (s0, q0)) has only finitely

many visits of rejecting states. To show acceptance, we annotate every reachable node in the

run graph with a natural number m, such that any path, starting in the initial state, contains

less than m visits of rejecting states. Such an annotation exists if, and only if, the run graph

is accepting [28].

5.5 Self-composition

The model checking of universal HyperLTL formulas [26] is based on self-composition.

Let prji be the projection to the i-th element of a tuple. Let zip denote the usual func-

tion that maps an n-tuple of sequences to a single sequence of n-tuples, for example,

zip([1, 2, 3], [4, 5, 6]) = [(1, 4), (2, 5), (3, 6)], and let unzip denote its inverse. The tran-

sition system Sn is the n-fold self-composition of S = 〈S, s0, τ, l〉, if Sn = 〈Sn, sn
0 , τ ′, ln〉

and for all s, s′ ∈ Sn , α ∈ (2I )n , and β ∈ (2O)n we have that τ ′(s, α) = s′ and ln(s) = β iff

for all 1 ≤ i ≤ n, it holds that τ(prji (s), prji (α)) = prji (s
′) and l(prji (s)) = prji (β). If T

is the set of traces generated by S, then {zip(t1, . . . , tn) | t1, . . . , tn ∈ T } is the set of traces

generated by Sn .

We construct the universal co-Büchi automaton Aψ such that the language of Aψ is

the set of words w such that unzip(w) = Π and Π �∅ ψ , i.e., the tuples of traces that

satisfy ψ . We get this automaton by dualizing the non-deterministic Büchi automaton for

¬ψ [28], i.e., changing the branching from non-deterministic to universal and the acceptance

condition from Büchi to co-Büchi. Hence, S satisfies a universal HyperLTL formula ϕ =

∀π1 · · · ∀πn . ψ if the traces generated by self-composition Sn are a subset of L(Aψ ).

Lemma 3 A transition system S satisfies the universal HyperLTL formula ϕ =

∀π1 · · · ∀πn . ψ , if, and only if, the run graph of Sn on Aψ is accepting.

5.6 Synthesis

Let S = 〈S, s0, τ, l〉 and Aψ = 〈Q, q0, δ, F〉. We encode the synthesis problem as an SMT

constraint system. Therefore, we use uninterpreted function symbols to encode the transition

system and the annotation. For the transition system, those functions are the transition function

τ : S × 2I → S and the labeling function l : S → 2O . The annotation is split into two parts,
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a reachability constraint λB : Sn × Q → B indicating whether a vertex in the run graph is

reachable and a counter λ# : Sn × Q → N that maps every reachable vertex to the maximal

number of rejecting vertices visited by any path starting in the initial vertex. The resulting

constraint asserts that there is a transition system with an accepting run graph.

∀s, s′ ∈ Sn .∀q, q ′ ∈ Q.∀i ∈ (2I )n .
(

λB(s, q) ∧ τ ′(s, i) = s′ ∧ (q, i ∪ l(s), q ′) ∈ δ

)

→ λB(s′, q ′) ∧ λ#(s′, q ′) � λ#(s, q)

where � is > if q ′ ∈ F and ≥ otherwise.

Theorem 11 The constraint system is satisfiable with bound b if, and only if, there is a

transition system S of size b that realizes the HyperLTL formula.

We extract a realizing implementation by asking the satisfiability solver to generate a model

for the uninterpreted functions that encode the transition system.

6 Bounded unrealizability

So far, we focused on the positive case, providing an algorithm for finding small solutions, if

they exist. In this section, we shift to the case of detecting if a universal HyperLTL formula

is unrealizable. We adapt the definition of counterexamples to realizability for LTL [29] to

HyperLTL in the following. Let ϕ be a universal HyperLTL formula ∀π1 · · · ∀πn . ψ over

inputs I and outputs O , a counterexample to realizability is a set of input traces P ⊆ (2I )ω

such that for every strategy f : (2I )∗ → 2O the labeled traces P f ⊆ (2I∪O)ω satisfy

¬ϕ = ∃π1 · · · ∃πn .¬ψ .

Proposition 1 A universal HyperLTL formula ϕ = ∀π1 · · · ∀πn . ψ is unrealizable if, and

only if, there is a counterexample P to realizability.

Proof Let P be a counterexample to realizability. Assume for contradiction that ϕ is realizable

by a strategy f . By definition of P , we know that P f � ∃π1 · · · ∃πn .¬ψ . This means

that there exists an assignment ΠP : V → P f with ΠP �P f ¬ψ , which is equivalent to

ΠP �P f ψ . Therefore, not all assignments Π : V → P f satisfy Π �P f ψ , which implies

that P f
� ∀π1 · · · ∀πn . ψ = ϕ. Hence, f � ϕ, which concludes the contradiction.

Let ϕ be unrealizable. We show that the set P = (2I )ω is a counterexample to realiz-

ability. Let f : (2I )∗ → 2O be an arbitrary strategy, and let P f be the corresponding set

of labeled traces. From the unrealizability of ϕ, we now that f � ∀π1 · · · ∀πn . ψ . Thus,

there exists a trace assignment ΠP : V → P f with ΠP �P f ¬ψ , which is equivalent to

P � ∃π1 · · · ∃πn .¬ψ . ⊓⊔

Despite being independent of strategy trees, there are in many cases finite representations

of P . Consider, for example, the unrealizable specification ϕ1 = ∀π∀π ′. (iπ ↔ iπ ′),

where the set P1 = {∅ω, {i}ω} is a counterexample to realizability. As a second example,

consider ϕ2 = ∀π∀π ′. (oπ ↔ oπ ′) ∧ (iπ ↔ oπ ) with conflicting requirements on o.

P1 is a counterexample to realizability for ϕ2 as well: By choosing a different valuation of

i in the first step of P1, the system is forced to either react with different valuations of o

(violating the first conjunct), or not correctly repeating the initial value of i (violating the

second conjunct).
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Fig. 6 Counterexample strategy

for (5)

s0 s1

o/i
¬o/i

o/¬i

¬o/¬i

There are, however, already linear specifications where the set of counterexample traces

is not finite and depends on the strategy tree [30]. For example, the specification

∀π. (oπ ↔ iπ ) (5)

is unrealizable as the system cannot predict future values of the environment. There is no

finite set of traces witnessing this: For every finite set of traces, there is a strategy tree such that

(oπ ↔ iπ ) holds on every such trace. On the other hand, there is a simple counterexample

strategy, that is a strategy that observes output sequences and produces inputs, depicted in

Fig. 6. In this example, the counterexample strategy inverts the outputs given by the system,

thus it is guaranteed that (o � i) for every system strategy.

We combine those two approaches, selecting counterexample traces and using strategic

behavior. A k-counterexample strategy for ∀nHyperLTL observes k output sequences and

produces k inputs, where k is a new parameter. We require that k is at least the number of

universal quantifiers n. The counterexample strategy is winning if (1) either the traces given

by the system player do not correspond to a strategy, or (2) the body of the HyperLTL formula

is violated for any n subset of k traces. Regarding property (1), consider the two traces where

the system player produces different outputs initially. Clearly, those two traces cannot be

generated by any system strategy since the initial state (root labeling) is fixed.

We reduce the search for a k-counterexample strategy to LTL synthesis. For every atomic

proposition a ∈ AP, we produce k copies a1, . . . , ak . We use the same notation for sets of

atomic propositions, e.g., I j = {i j | i ∈ I } for 1 ≤ j ≤ k. The search for a k-counterexample

strategy can be reduced to LTL synthesis using k-tuple input propositions Ok , k-tuple output

propositions I k , and the formula

strategic(I k, Ok) →
∨

P⊆{1,...,k} with |P|=n

¬ψ[P],

where ψ[P] denotes the replacement of aπi
by the Pi th position of the combined input/output

k-tuple. The formula strategic(I k, Ok) enforces that the behavior of the system player is

strategic and is defined as

∧

1≤ j1< j2≤k

(

∨

i∈I

(i j1 � i j2)

)

R

(

∧

o∈O

(o j1 ↔ o j2)

)

.

This is an instance of the formula (sym) given in Sect. 3.

Theorem 12 A universal HyperLTL formula ϕ = ∀π1 · · · ∀πn . ψ is unrealizable if there is a

k-counterexample strategy for some k ≥ n.

Proof Fix ϕ and let fcex : (2Ok
)+ → 2I k

be a k-counterexample strategy. Assume for con-

tradiction that f : (2I )∗ → 2O is a strategy realizing ϕ. Let f k : (2I k
)∗ → 2Ok

be the
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strategy that represents the k-fold self-composition of f (adapting atomic propositions as

described earlier). By combining f and fcex , we get an infinite sequence t ∈ (2I k∪Ok
)ω:

t0 = f (ǫ) ∪ fcex( f (ǫ)), t1 = f ( fcex( f (ǫ))) ∪ fcex( f ( fcex( f (ǫ)))), . . . This sequence rep-

resents a k-tuple cexk = (I ∪ O)k . As f k satisfies strategic(I k, Ok), there is a n-tuple cexn

build from elements of cexk such that for the corresponding trace assignment Π it holds that

Π � ¬ψ . This contradicts our assumption that f is a realizing strategy. ⊓⊔

7 Evaluation

We implemented a prototype synthesis tool, called BoSyHyper,1 for universal HyperLTL

based on the bounded synthesis algorithm described in Sect. 5. Furthermore, we implemented

the search for counterexamples proposed in Sect. 6. Thus, BoSyHyper is able to characterize

realizability and unrealizability of universal HyperLTL formulas.

We base our implementation on the LTL synthesis tool BoSy [17]. For efficiency, we

split the specifications into two parts, a part containing the linear (LTL) specification, and

a part containing the hyperproperty given as HyperLTL formula. Consequently, we build

two constraint systems, one using the standard bounded synthesis approach [28] and one

using the approach described in Sect. 5. Before solving, those constraints are combined into

a single SMT query. This results in a much more concise constraint system compared to the

one where the complete specification is interpreted as a HyperLTL formula. For solving the

SMT queries, we use the Z3 solver [12]. We continue by describing the benchmarks used in

our experiments.

7.1 Symmetric mutual exclusion

Our first example demonstrates the ability to specify symmetry in HyperLTL for a simple

mutual exclusion protocol. Let r1 and r2 be input signals representing mutually exclusive

requests to a critical section and g1/g2 the respective grants to enter the section. Every

request should be answered eventually (ri → gi ) for i ∈ {1, 2}, but not at the same

time ¬(g1 ∧ g2). The minimal LTL solution is depicted in Fig. 7a. It is well known

that no mutex protocol can ensure perfect symmetry [37], thus when adding the symmetry

constraint specified by the HyperLTL formula ∀π∀π ′. (r1π � r2π ′) R (g1π ↔ g2π ′) the

formula becomes unrealizable. Our tool produces the counterexample shown in Fig. 7b. By

adding another input signal tie, that breaks the symmetry in case of simultaneous requests

and modifying the symmetry constraint ∀π∀π ′. ((r1π � r2π ′) ∨ (tieπ � ¬tieπ ′))R(g1π ↔

g2π ′) we obtain the solution depicted in Fig. 7c. We further evaluated the same properties on

a version that forbids spurious grants, which are reported in Table 2 with prefix full.

7.2 Distributed and fault-tolerant systems

In Sect. 4 we presented a reduction of arbitrary distributed architectures to HyperLTL. As

an example for our evaluation, consider a setting with two processes, one for encoding input

signals and one for decoding. Both processes can be synthesized simultaneously using a single

HyperLTL specification. The (linear) correctness condition states that the decoded signal is

always equal to the inputs given to the encoder. Furthermore, the encoder and decoder should

1 BoSyHyper is available at https://www.react.uni-saarland.de/tools/bosy/.
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g1 g2

⊤

⊤

(a) Non-symmetric solution

⊤/r1πr2πr1π′r2π′

(b) Counterexample to sym-
metry

g1 g2

tie ¬tie

⊤

⊤

(c) Symmetry breaking solu-
tion

Fig. 7 Synthesized solution of the mutual exclusion protocols

solely depend on the inputs and the encoded signal, respectively. Additionally, we can specify

desired properties about the encoding like fault-tolerance [30] or Hamming distance of code

words [26]. An example solution for 2 input bits and 3 encoded bits is shown in Fig. 8. For

the encoding, we required that for every change in the input, two encoding bits change. The

synthesized solution uses a parity bit as the third encoded bit and the encoding and decoding

parts are strictly independent. The results are reported in Table 2 where i- j-x means i input

bits, j encoded bits, and x represents the property. The property is either tolerance against a

single Byzantine signal failure or a guaranteed Hamming distance of code words.

7.3 CAP Theorem

The CAP Theorem due to Brewer [5] states that it is impossible to design a distributed system

that provides Consistency, Availability, and Partition tolerance (CAP) simultaneously. This

example has been considered before [30] to evaluate a technique that could automatically

detect unrealizability. However, when we drop either Consistency, Availability, or Parti-

tion tolerance, the corresponding instances (AP, CP, and CA) become realizable, which the

previous work was not able to prove. We show that our implementation can show both, unre-

alizability of CAP and realizability of AP, CP, and CA. In contrast to the previous encoding

[30] we are not limited to acyclic architectures.

7.4 Long-term information flow

Previous work on model-checking hyperproperties [26] found that an implementation for the

commonly used I2C bus protocol could remember input values ad infinitum. For example, it

could not be verified that information given to the implementation eventually leaves it, i.e.,

is forgotten. This is especially unfortunate in high security contexts. We consider a simple

bus protocol which is inspired by the widely used I2C protocol. Our example protocol has

the inputs send for initiating a transmission, in for the value that should be transferred, and

an acknowledgment bit indicating successful transmission. The bus master waits in an idle

state until a send is received. Afterwards, it transmits a header sequence, followed by the

value of in, waits for an acknowledgement and then indicates success or failure to the sender

before returning to the idle state. We specify the property that the input has no influence

on the data that is send, which is obviously violated (instance NI1). As a second property,

we check that this information leak cannot happen arbitrary long (NI2) for which there is a

realizing implementation.
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Table 2 Results of BoSyHyper on the benchmarks sets described in Sect. 7

Benchmark Instance Result States Time [s]

Moore Mealy Moore Mealy

Symmetric mutex Non-sym Realizable 2 2 1.4 1.3

Sym Unrealizable (k = 2) 1 1 1.9 2.0

Tie Realizable 3 3 1.7 1.6

Full-non-sym Realizable 4 4 1.4 1.4

Full-sym Unrealizable (k = 2) 1 1 4.3 6.2

Full-tie Realizable 9 5 1 802.7 5.2

Encoder/decoder 1-2-Hamming-2 Realizable 4 1 1.6 1.3

1-2-Fault-tolerant Unrealizable (k = 2) 1 – 54.9 –

1-3-Fault-tolerant Realizable 4 1 151.7 1.7

2-2-Hamming-2 Unrealizable (k = 3) – 1 – 10.6

2-3-Hamming-2 Realizable 16 1 > 1 h 1.5

2-3-Hamming-3 Unrealizable (k = 3) – 1 – 126.7

CAP Theorem cap-2-linear Realizable 8 1 7.0 1.3

cap-2 Unrealizable (k = 2) 1 – 1 823.9 –

ca-2 Realizable – 1 – 4.4

ca-3 Realizable – 1 – 15.0

cp-2 Realizable 1 1 1.8 1.6

cp-3 Realizable 1 1 3.2 10.6

ap-2 Realizable – 1 – 2.0

ap-3 Realizable – 1 – 43.4

Bus protocol NI1 Unrealizable (k = 2) 1 1 75.2 69.6

NI2 Realizable 8 8 24.1 33.9

Dining cryptographers Secrecy Realizable – 1 – 82.4

They ran on a machine with a dual-core Core i7, 3.3 GHz, and 16 GB memory

7.5 Dining cryptographers

Recap the dining cryptographers problem introduced earlier. This benchmark is interesting

as it contains two types of hyperproperties. First, there is information flow between the three

cryptographers, where some secrets (sab, sac, sbc) are shared between pairs of cryptographers.

In the formalization, we have 4 entities: three processes describing the 3 cryptographers (outi )

and one process computing the result (pg), i.e., whether the group has paid or not, from outi .

Second, the final result should only disclose whether one of the cryptographers has paid or the

NSA. This can be formalized as a indistinguishability property between different executions.

For example, when we compare the two traces π and π ′ where Ca has paid on π and Cb

has paid on π ′, then the outputs of both have to be the same, if their common secret sab is

different on those two traces (while all other secrets sac and sbc are the same). This ensures

that from an outside observer, a flipped output can be either result of a different shared secret

or due to the announcement. Lastly, the linear specification asserts that pg ↔ ¬pNSA.

This question can be encoded as a synthesis problem for HyperLTL. What makes this

example particularly interesting is the combination of multiple information-flow require-

ments:
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Fig. 8 Representation of the solution for an encoder with 2 input bits and 3 encoded bits as And-Inverter-

Graph. The solution is produced by BoSyHyper where the specification is given as a single HyperLTL formula

specifying both, the encoder and the decoder, as well as the distributivity constraints. Note that although

BoSyHyper produces a global implementation, the implementation is actually distributed as decoder and

encoder do not share gates

1. The setting is distributed, we have four entities: The three cryptographers (Ca , Cb, and

Cc), where each cryptographer shares a secret bit with each other (denoted sab for the

shared secret of Ca and Cb). The fourth entity is the process that receives the output from

the cryptographers (outa , outb, and outc) and computes the result whether one of them

has paid the bill (output pg). Figure 9 gives a visual representation of this distributed

architecture.

2. The secrecy requirement is formalized as requiring indistinguishability between different

executions for an outside party (observing outa , outb, and outc). For example, when we

compare the two execution traces π and π ′ where Ca has paid on π and Cb has paid on

π ′. Then the outputs of both have to be the same, if their common secret sab is different

on those two traces (while all other secrets sac and sbc are the same). This ensures that
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Fig. 9 Architecture for the dining

cryptographers

Ca CcCb

penv

outa
outb outc

pg

pa, sab, sac pc, sbc, sac

pb, sab, sbc

pNSA

from an outside observer, a flipped output can be either result of a different shared secret

or due to the announcement.

We now formalize this as a HyperLTL synthesis problem. The set of atomic propositions is

partitioned into environment outputs I = {pNSA, pa, pb, pc, sab, sac, sbc} and system outputs

O = {outa, outb, outc, pg}. The functional (LTL) requirements are simple, assuming that

exactly one of pNSA, pa , pb, and pc is true, the output of pg is the negation of pNSA. As an

LTL formula
(

(pa ∨ pb ∨ pc ∨ pNSA) ∧ mutex(pa, pb, pc, pNSA)

)

→ (pg ↔ ¬pNSA)

The distributed architecture is encoded as a conjunction of HyperLTL formulas ensuring

independence of non-observable inputs, i.e.,

∀π.∀π ′.D
π,π ′

{pa ,sab,sac}�→{outa} ∧ D
π,π ′

{pb,sab,sbc}�→{outb}

∧D
π,π ′

{pc,sac,sbc}�→{outc}
∧ D

π,π ′

{outa ,outb,outc}�→{pg}

Lastly, the indistinguishability (exemplified for Ca and Cb) is formalized as

∀π∀π ′. ((pπ
a ∧ ¬pπ ′

a ) ∧ (¬pπ
b ∧ pπ ′

b ) ∧ (sπ
ab � sπ ′

ab) ∧ (sπ
bc ↔ sπ ′

bc ) ∧ (sπ
ac ↔ sπ ′

ac)

→ (outπa ↔ outπ
′

a ) ∧ (outπb ↔ outπ
′

b ))

for every pair of cryptographers.

Neither LTL synthesis nor its distributed variant can express the combination of those

requirements. Our HyperLTL synthesis tool BoSyHyper [20] is able to find a solution to this

problem. A closer look in the implementation reveals, that the tool has synthesized the XOR

scheme presented in the original solution [6].

7.6 Results

Table 2 reports on the results of the benchmarks. We distinguish between state-labeled

(Moore) and transition-labeled (Mealy) transition systems. Note that the counterexample

strategies use the opposite transition system, i.e., a Mealy system strategy corresponds to a

state-labeled (Moore) environment strategy. Typically, Mealy strategies are more compact,

i.e., need smaller transition systems and this is confirmed by our experiments. BoSyHyper is
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able to solve most of the examples, providing realizing implementations or counterexamples.

Regrading the unrealizable benchmarks we observe that usually two simultaneously gener-

ated paths (k = 2) are enough with the exception of the encoder example. Overall the results

are encouraging showing that we can solve a variety of instances with non-trivial information

flow.

8 Conclusion

In this paper, we have studied the reactive realizability problem for specifications given in

the temporal logic HyperLTL. We showed that this problem subsumes various extensions of

the LTL realizability problem: synthesis under incomplete information, distributed synthesis,

symmetric synthesis, and fault-tolerant synthesis can all be encoded in the synthesis problem

of HyperLTL. We gave a complete characterization of the decidable fragments based on

the quantifier prefix and, additionally, identified a decidable fragment in the, in general

undecidable, universal fragment of HyperLTL. Furthermore, we presented two algorithms

to detect realizable and unrealizable HyperLTL specifications, one based on bounding the

system implementation and one based on bounding the number of counterexample traces.

Our prototype implementation shows that our approach is able to synthesize systems with

complex information-flow properties.
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