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Abstract: This report describes the design process and synthesis tools used in 
the UC Irvine CADLAB design environment to design a 
representative benchmark. The steps taken and rationale used in 
each stage of the design process are discussed. The benchmark is 
initially described using a VHDL behavioral description; results 
produced by each intermediate tool are presented, showing the 
system flow and integration of tools. The final silicon layout is 
performed in 3 micron CMOS technology. 
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1. Introduction 

This case study describes the design process and synthesis tools used in the 
UC Irvine CADLAB design environment to design a representative benchmark. 
The benchmark presented is a divide-by-3328 counter design. This document 
will present the steps taken and rationale used in the following stages of the 
design process: high-level or behavioral synthesis performed by the VHDL 
Synthesis System (VSS) [LisGa88], logic optimization performed by the MILO 
system [VZGa88], partitioning performed by the SLAM system [WuGa90], and 
layout synthesis by LES [LinGa87]. 

Figure 1 shows the system flow. Input to VSS is a VHDL behavioral 
description. VSS generates a register-transfer-level (RTL) structural description 
which is passed to MILO. MILO attempts to optimize the RTL design and 
generates the underlying gate-level logic for RTL components. MILO outputs a 
structural RTL VHDL netlist with a gate-level description for the RTL 
components. Finally, the SLAM system determines how to part ion the design 
for layout. SLAM produces a layout description in the CIF format. 

2. Problem Description 

A block diagram of this conceptual design is shown in Figure 2. There are 
four input and one output ports used for external communication. CLK is the 
system clock. RST is a one bit control line (active high) which indicates that a 
synchronous reset is to be performed. LDE is a one bit control line (active high) 
which indicates that a data value DTI (an integer in the range 0 to 4095) is to 
be loaded into the counter. 

The circuit to be synthesized has the following specification: 

(1) The counter has a start count of 0 and a terminal count of 3327. 

(2) For each clock (CLK) strobe, the counter increases by 208. If the count is 
greater than 3327, the counter will start at the previous beginning of the 
count plus 26 (in this case 0 + 26); if the previous beginning of the count 
plus 26 is greater than 207, then the count will start at the previous 
sequence plus 1. 
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(3) Portions of the first two sequences are shown in Figure 3. There will be a 
total of 26 sequences. The counter counts the first column of the first 
sequence top to bottom, then the second column, and so on. When it 
reaches 3327, it will wrap around back to 0. 

( 4) The counter also has an active high load enable (LDE), which loads a data 
value (DTI) synchronously with the rising edge of the clock. The state 
machine must adjust to the new state so as to keep the same counting 
sequence. 

(5) The counter must also have a synchronous reset (RST). 

RST ........ ... 

Control 
C-Ounter Value 

Logic - C-Omputation 
Data Path -- ~ 14-i 

DTI 

LDE 

Ip 

~ Current 

CLK -- ~ C-Ounte.r 
Value 

~ 

DTO 

Figure 2: Divide by 3328 Block Diagram 
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0000 0026 0052 0078 0104 0130 0156 0182 0208 0001 0027 ... 0183 0209 
0208 0234 0390 0209 
0416 0442 0598 0417 
0624 0650 0806 0625 
0832 0858 1014 0833 
1040 1066 1222 1041 
1248 1274 1430 1249 
1456 1482 1638 1457 
1664 1690 1846 1665 
1872 1898 2054 1873 
2080 2106 2262 2081 
2288 2314 2470 2289 
2496 2522 2678 2497 
2704 2730 2886 2705 
2912 2938 3094 2913 
3120 3146 3172 3198 3224 3250 3276 3302 3121 
---------------------------------------------------- ----------------------
3328 3354 3380 3406 3432 3458 3484 3510 3329 3355 . . . 3511 

Figure 3: Divide by 3328 O:mnt Sequence 
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3. Original VHDL Model 

Figure 4 shows the _original VHDL description provided for the divide-by-
3328 counter. 

- Rockwell Counter Benchmark 

Original Behavioral (process) description 

Copyright (c) 1990 by Joe Lis 

entity STMAR is 

port ( CLK : in BIT; 

RST: in BIT; 

LDE: in BIT; 

DTI : in INTEGER range 0 to 4095; 

DTO : out INTEGER range 0 to 4095 

) ; 
endSTMAR; 

architecture BEH of STMAR is 

begin 

process 

begin 

wait until CLK'EVENT and CLK = '1'; 

if (RST = 'l') then DTO < = O; 
elsif (LDE = '1 ') then DTO < = DTI; 

elsif (DTO = 3327) then DTO < = O; 

elsif ((DTO + 208) <= 3327) then DTO <= DTO + 208; 

elsif(((DTO + 208- 3328) + 26) <= 207) then DTO <= (DTO + 208- 3328) + 26; 

else DTO < = (DTO + 208 - 3328) + 26 - 207; 

end if; 

end process; 

end BEH; 

April 17, 1990 
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4. VSS VHDL Moclel 

4.1. Modifications Made 

The following modifications were made to original description: 

(1) The process description using sequential statements was converted to a 
description with concurrent statements in order to conform to Structured 
Modeling guidelines [LisGa89a][LisGa89b]. An explanation of our reasoning 
for this modeling style is given in the next subsection. 

(2) A DTOJlEG variable was added to correct a modeling error in the original 
description involving a port declaration (the output port DTO may not be 
read within a process body). 

(3) Assignment to the output port is made via a signal assignment. This 
follows the Structured Modeling practice of using variables to represent 
values involved in data operations (which may require storage elements) 
and signals to represent the transfer of stored values (via wires) to the 
output port. 

( 4) The Graph Compiler for VSS does not perform constant propagation 
optimizations currently. In order to reduce the amount of unnecessary 
hardware that would be generated for computations such as the addition 
and subtraction of constants, these optimizations were performed manually 
on the input description. (The next version of VSS will include constant 
propagation.) 

( 5) Transfer operations (statements of the form <output> <= <input>) were 
expressed as <output> <= <value> + 0. This modification enabled us to 
use a Component Synthesis Algorithm which identifies mutually exclusive 
operations in a dataflow (concurrent) description so that functional units 
can be shared. 

Figure 5 shows a behavioral (process) description that can be synthesized 
by the VSS system. An equivalent datafiow (block) description which is 
preferred when using our Structured Modeling methodology is shown in Figure 
6. 
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-- Rockwell Counter Benchmark 

Modified Behavioral (process) description 

Copyright (c) 1990 by Joe Lis 

entity STMAR is 

port (CLK : in CLOCK; 

RST: in RESET; 

LDE: in BIT; 

DTI: in INTEGER range 0 to 4095; 

DTO : out INTEGER range 0 to 4095 

) ; 
endSTMAR; 

--VSS: desigrutyle BEHAVIORAL 

architecture BEH of STMAR is 

begin 

process (CLK) 

variable DTO_REG: INTEGER range 0 to 4095; 

begin 

if (RST = 'l ') then DTO_REG := O; 

eJ.sif (LDE = '1 ') then DTO_REG := DTI; 

eJ.sif (DTO_REG = 3327) then DTO_REG := O; 

elsif (DTO_REG <= 3119) then DTO_REG := DTO_REG + 208; 

eJ.sif (DTO_REG < = 3301) then DTO_REG := DTO_REG - 3094; 

else DTO_REG := DTO_REG - 3301; 

End if; 
DTO < = DTO_REG; 

end processi 

end BEH; 

Figure 5: Synthesizable VIIDL Process Description 
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-- Rockwell Counter Benchmark 

Functional (block) description 

Copyright (c) 1990 by Joe Lis 

entity STM AR is 

port (CLK: in CLOCK; 

RST,LDE : in BIT; 

DTI : in INTEGER range 0 to 4095; 

DTO : out INTEGER range 0 to 4095 

); 
endSTMAR; 

--VSS: desig~tyle FUNCTIONAL 

architecture BEH of STMAR is 

begin 

block (CLK = '1' and not CLK'STABLE) 

signal DTO_REG: INTEGER range 0 to 4095 register; 

signal AO,Al ,A2,A3: BIT; 

begin 

AO < = not RST and LDE; 

Al < = not RST and not AO and (DTO_REG = 3327); 

A2 < = not RST and not AO and not Al and (DTO_REG < = 3119); 

A3 <=not RST and not AO and not Al and not A2 and (DTO_REG <= 3301); 

with (RST & AO & Al & A2 & A3) select 

DTO_REG <= guarded 

0 + 0 when B"lOOOO" I B"OOlOO", 

DTI + 0 when B"OlOOO", 

DTO_REG + 208 when B"OOOlO", 

DTO_REG - 3094· when B"OOOOl", 

DTO_REG - 3301 when B"OOOOO"; 

DTO < = DTOJlEG; 

end block; 

end BEH; 

Figure 6: Synthesizable VHDL Block Description 
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4.2. Structured Modeling Omsiderations 

This design is clas_sified as a fundional description in our Structured 
Modeling design style taxonomy. We define a functional design as one which 
consists of combinational logic as well as storage elements (registers, counters). 
A functional design is a "single state" design (see [LisGa89b]), where several 
events (synchronous and/or asynchronous) may occur concurrently. In 
investigating the alternatives for modeling such a design using VHDL, we have 
come to the conclusion that the block construct is the most appropriate method 
for describing such a mixture of concurrent events. Some reasons for this 
decision include: 

(1) Clock (CLK) and reset (RST) signals can be identified usmg subtypes 
defined within our VHDL synthesis package. 

(2) The VHDL block statement provides a convenient template which allows 
the synthesis tool to identify the storage class and function of various 
signals. Following the Structured Modeling guidelines, the block guard is 
used to represent an event such as a positive edge transition of the CLK 
signal. 

Conversely, the process description seems to be more appropriate for 
describing sequential, multi-state designs. The design model for such designs 
consists of a cleanly partitioned control unit/data path pair. The process 
description for the benchmark of this particular case study presents the 
following problems for synthesis: 

(1) Identification of clocked storage elements is difficult. While the VHDL 
dataflow description style provides the guarded signal assignment in which 
the clock event can be expressed in the block guard (an explicit control of 
any assignment made to the guarded signal), no comparable construct exists 
in the VHDL behavioral description st.yle. 

(2) Assignments to the same signal/variable are distributed among conditional 
branches. Unlike the dataflow descriptions, where a single conditional 
assignment statement is used to associate a value and a condition under 
which a variable is to be assigned that value, the synthesis tool must derive 
these conditional assignments from the control flow of a behavioral 
description. 
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5. High-Level Synthesis Results 

5.1. Processing Steps 

The VSS system was used to synthesize the divide-by-3328 benchmark. 
This involved the following steps: 

(1) The original description was converted manually to a description usmg 
concurrent statements (see Figure 6). 

(2) VSS is invoked using the description shown in Figure 6. 

(3) VSS used the Component Synthesis Algorithm (CSA) (RuGa89] to 
determine if functional units can be shared due to mutually exclusive 
execution of operations. The CSA algorithm produces VHDL behavioral 
descriptions for MUX and ALU select logic as shown in Figure 4. 

( 4) The VHDL descriptions of the select logic are synthesized using additional 
invocations of VSS. The structural descriptions produced by all VSS runs 
are manually combined. 

5.2. Synthesis Results 

Figure 7 shows the netlist composed of GENUS [Dutt88] generic 
components produced by VSS. 

The right half of the schematic shows the data path synthesized to perform 
the counter value computations. Currently, constants are treated as single word 
ROMs in the VSS system. The current implementation of the SLAM system 
considers them as input ports. 

The left half of the schematic consists of glue logic used to select data 
inputs and ALU functions. The COMP ARA TOR LOG IC block consists of 
random logic used to compute the conditional bits derived from the conditional 
expressions of the VHDL input description. 
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Figure 7: Structure Produced. by VSS 

Figure 8 presents the VHDL behavioral description produced by the CSA 
algorithm. This description specifies the behavior of the ALU select logic, while 
Figure 9 show:s the logic generated by VSS for the VHDL description of Figure 
8. 
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--======================================================= 
- DECODER NODE: node id = 84 

-- NUMBER OF FUNCTION SELECT LINES: 2 

- Function Select Line 1- is ADD 

-- Function Select Line 2 is SUB 

-- TRUTH TABLE: 

--======================================================= 
G62I Function 

10000 I ADD 

01000 I ADD 

00100 I ADD 

00010 I ADD 

00001 j SUB 

00000 I SUB 

entity DECODER84 is 

port ( 

C62_0,C62_1,C62-2,C62-3,C62_4: in BIT; 

ADD,SUB: out BIT) ; 

End DECODER84; 

--VSS: design.....style COMBINATIONAL 

architecture dataflow of DECO D ER84 is 

begin 

ADD<= 

( C62_4 and (not C62_3) and (not C62-2) and (not C62_1) and (not C62-0) ) or 

( (not C62_4) and C62_3 and (not C62_2) and (not C62-l) and (not C62_0) ) or 

( (not C62_4) and (not C62_3) and C62_2 and (not C62_1) and (not C62_0) ) or 

( (not C62_4) and (not C62_3) and (not C62_2) and C62_1 and (not C62_0) ); 

SUB<= 

( (not C62_4) and (not C62_3) and (not C62_2) and (not C62_1) and C62_0 ) or 

( (not C62_4) and (not C62_3) and (not C62_2) and (not C62_1) and (not C62_0) ); 

end dataflow; 

Figure 8: VIIDL Description of ALU Function Select Logic 
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Figure 9: Structure Synthesized for the ALU Fm1ction Select L-Ogic 
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6. Logic Optinization by l\1ILO 

6.1. Overview 

The results of high-level synthesis were passed to the logic optimization 
phase in the form of a VHDL structural description (netlist ). The MILO 
(VZGa88) system is designed to first perform optimization at a microarchitecture 
level and then at a logic level. The structure generated by VSS consists of two 
types of logic: regular and random. Regular components are those whose 
structure is repetetive (ie., ALUs, registers). These components will usually be 
laid out using bit-slicing. Because of their regular structure, little or no 
improvement will usually result from optimizing their internal logic. Therefore 
these components are left untouched. Other components do not have a regular 
structure and are thus random components. Random components (AND gates, 
NOR gates, decoders, etc.), that do not have the bit-sliced layout feature, can 
often be combined into a single component and then optimized. 

Microarchitecture optimization attempts to eliminate inefficiencies with 
regular-type components and make area/time tradeoffs for register transfer level 
(RTL) components. Examples of microarchitecture optimizations include 
replacing a ripple carry adder with a carry-lookahead adder to meet time 
constraits, and merging a subtractor and adder into an ALU. The 
microarchitecture optimizer is currently being implemented. 

Logic optimization attempts to group random logic in the design and 
optimize it as a unit. For example, random logic along the critical path can be 
grouped and optimized for time. Random logic along non-critical paths can be 
grouped and optimized for area. The logic optimizer also performs technology 
mapping and sizes the transistors for each gate. MILO outputs a modified 
netlist consisting of regular components and random logic that has been grouped 
and optimized. 

6.2. Processing Steps 

The design must first be partitioned into components of regular logic or 
random logic. This partitioning will be performed automatically by the 
microarchitecture part of MILO. Since this part of MILO is not yet complete, 
the partitioning was done manually for this benchmark. The regular 
components in this benchmark are the two multiplexors, the ALU, and the 
register. All of the other components (including gates and comparators) were 
combined into a single component and then passed through the logic optimizer. 
This partitioning is shown in Figure 10. The four regular components were not 
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touched and were simply passed to SLAM "as is" along with the single random 
logic component that was passed through the logic optimizer. Thus MILO will 
output to SLAM a VHDL netlist consisting of five components. 

r 
I 
I 
I 
I MUXI 

I SELECT LOGIC 

I MUX2 

SELECT LOGIC 

ALU 

SELECT LOGIC 

5 

OOMPARATOR 

LOGlC 

, 
I 
I 
I 
l 
I 
I 
i 
I 
I 
J 
I 
I 
I 
I 
I 
I 
I 
I 

I 
I 
I 

L - - - -- ..I 

RANDOMWGIC 

0 208 3094 

MUXI r MUX2 
I 
I 

-+--- I __________ _, 

2 

---1--- ALU 
2 +!-

12 

DTOJlEG 

REGULAR LOGIC 

Figure 10: Partitioning of design by l\1ILO 

3301 

The logic optimizer takes as its input a set of boolean equations. The 
boolean equation language (IIF for Irvine Intermediate Format) includes 
constructs for sequential logic so that components such as counters and registers 

April 17, 1990 Page 15 



MUX1 

OTO 

MUX2 

Figure 12: Layout Produced by the SLAM System 
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can be described in addition to combinational logic. All microarchitecture 
components (such as comparators) that have been designated as random 
components must be flattened into IIF. Each microarchitecture component's IIF 
description is generated automatically by the ICDB component database from a 
set of parameters. For example, in the case of the comparator the parameters 
are: 1) the type of component desired (in this case, a comparator), 2) the 
number of bits (12 bits in this example) and 3) the function desired (less than or 
equal to). 

6.3. Delay and Area Results 

Figure 11 shows the delay and area statistics produced by the MILO system 
for this benchmark. 
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Delays and Area as reported by the logic optimizer: 

Minimum clock width: 142.5 ns 
Worst delay to output pin DTO[ll]: 5.5 ns 
Worst delay to output pin DTO[lO]: 3.9 ns 
Worst delay to output pin DT0[9]: 3.0 ns 
Worst delay to output pin DT0[8]: 3.0 ns 
Worst delay to output pin DT0[7]: 3.58 ns 
Worst delay to output pin DT0[6]: 3.18 ns 
Worst delay to output pin DT0[5]: 3.80 ns 
Worst delay to output pin DT0[4]: 3.18 ns 
Worst delay to output pin DT0[3]: 3.18 ns 
Worst delay to output pin DT0[2]: 3.00 ns 
Worst delay to output pin DTO[l]: 3.00 ns 
Worst delay to output pin DTO[O]: 3.18 ns 
Worst setup delay for input pin RST 142.72 ns 
Worst setup delay for input pin DTI[ll] 22.80 ns 
Worst setup delay for input pin DTI[lO] 37.30 ns 
Worst setup delay for input pin DTI[9] 39.80 ns 
Worst setup delay for input pin DTI[8] 47.10 ns 
Worst setup delay for input pin DTI[7] 54.80 ns 
Worst setup delay for input pin DTI[6] 61.80 ns 
Worst setup delay for input pin DTI(5] 69.40 ns 
Worst setup delay for input pin DTI(4] 76.95 ns 
Worst setup delay for input pin DTI(3] 84.40 ns 
Worst setup delay for input pin DTI[2] 92.75 ns 
Worst setup delay for input pin DTI[l] 100.25 ns 
Worst setup delay for input pin DTI(O] 93.45 ns 
Worst setup delay for input pin LDE 132.70 ns 
Total Transistor Area: 41,664 square microns (3 micron technology) 
Total Number of Transistors: 1052 

. Figure 11: l\1ILO Delay and Area Statistics 
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7. Layout by SLAM 

SLAM [WuCG90] is an architecture driven layout synthesis system that 
takes VHDL structural netlists as input and performs three described partition 
steps to generate a floorplan for the sliced layout architecture. The target 
architecture (Sliced Layout Architecture) combines bit-sliced stacks and glue
logic blocks. The architecture-driven layout synthesis methodology operates in a 
completely top-down fashion that implements three partition phases for layout 
generation of the register-transfer schematics: 

( 1) Component partitioning: The purpose of component partitioning is to 
determine the best suited layout style (bit-slice or glue-logic) for each 
component. First, components must be partitioned by type since some 
components such as counters, registers and ALUs are sliceable while 
decoders and encoders are not. Furthermore, small size components can be 
implemented in two ways. For example, a 2 or 4 bit ALU can be 
implemented as a set of boolean equations using NAND and NOR logic 
gates or as a bit-sliced unit. The synthesis of the layout architecture is 
influenced by stack shape, placement of components inside the stack, 
position of the I/ 0 ports, and the amount of routing needed to connect 
components. 

(2) Stack partitioning: The goal of stack partitioning is to minimize the layout 
area of the bit-sliced components. This is achieved by stack folding and 
stack partitioning. Since bit-sliced units often have varying bit-widths, the 
sliced layout architecture generates an empty space within the stack 
bounding box. A folding method is used to fold small units into the empty 
space and thus reduce the stack height. When the stack is too tall, the 
stack can be partitioned into several stacks. 

(3) Glue-logic partitioning: After forming the stack, a glue-logic partition 
algorithm partitions the rectilinear area around the bit-sliced stack into 
glue-logic blocks for generating the floorplan for the target architecture. 
Furthermore, the algorithm partitions the glue-logic components into blocks 
according to the given size, the critical paths, and the I/O pin locations. 

SLAM uses a bit-sliced stack generator and a glue-logic generator to 
generate the final layout. The bit-sliced stack generator is written in the L 
language used in the GDT tool set. LES is a glue-logic generator targeted for 
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two-metal CMOS technology. LES uses a two dimensional strip layout 
architecture and lays out transistors according to the given size specification. 
Moreover, LES can specify the I/ 0 pin positions along the left, right, top, and 
bottom edges of the module. 

For the divide by 3328 example, SLAM partitions two 12-bit multiplexers, a 
12-bit ALU, and a 12-bit register into the datapath module and the control 
section into glue-logic module. The datapath is laid out using the bit-sliced stack 
generator while the glue-logic module is laid out using LES. Finally, we used the 
G DT global router to finish detailed routing between the bit-sliced stack and the 
control unit. 

Figure 12 shows the layout produced by the SLAM system for the divide by 
3328 benchmark. 
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8. Conclusion 

The Rockwell benchmark was synthesized for the SRC visit on February 15, 
1990. The results represent the status of our tools as of that date. The layout 
was performed in 3 micron technology. The total area of counter was 1600 X 
1468 um while counting at a frequency of 7.042MHz. 
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