
UC Irvine
ICS Technical Reports

Title
Synthesis from VHDL : Rockwell-counter case study

Permalink
https://escholarship.org/uc/item/261263r0

Authors
Gajski, Daniel
Lis, Joseph
Zanden, Nels Vander
et al.

Publication Date
1990-04-17

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/261263r0
https://escholarship.org/uc/item/261263r0#author
https://escholarship.org
http://www.cdlib.org/

Notice: This Material
may be protected
by Copyright Law
(Title 17 U.S.C.)

_Synthesis from VHDL:

Rockwell-Gmnter

Oise Study

Prof. Daniel Pajski
Joseph Lis --

Nels V and er Zand en
Allen Wu

Technical Report 90-09

Dept. of Information & Computer Science
University of California

Irvine, CA 92717
(714) 856-7063

Abstract: This report describes the design process and synthesis tools used in
the UC Irvine CADLAB design environment to design a
representative benchmark. The steps taken and rationale used in
each stage of the design process are discussed. The benchmark is
initially described using a VHDL behavioral description; results
produced by each intermediate tool are presented, showing the
system flow and integration of tools. The final silicon layout is
performed in 3 micron CMOS technology.

TABLE OF CONTENTS

1. Introduction 1

2. Problem Description 1

3. Original VHDL Model ... 5

4. VSS VHDL Model ... 6

4.1. Modifications Made 6

4.2. Structured Modeling Considerations 9

5. High-Level Synthesis Results .. 10

5.1. Processing Steps ... 10

5.2. Synthesis Results 10

6. Logic Optimization by MILO 14

6.1. Overview ... 14

6.2. Processing Steps 14

6.3. Delay and Area Results 16

7. Layout by SLAM 18

8. Conclusion 21

9. Acknowledgements 21

10. References 22

April 17, 1990 Page i

1. Introduction

This case study describes the design process and synthesis tools used in the
UC Irvine CADLAB design environment to design a representative benchmark.
The benchmark presented is a divide-by-3328 counter design. This document
will present the steps taken and rationale used in the following stages of the
design process: high-level or behavioral synthesis performed by the VHDL
Synthesis System (VSS) [LisGa88], logic optimization performed by the MILO
system [VZGa88], partitioning performed by the SLAM system [WuGa90], and
layout synthesis by LES [LinGa87].

Figure 1 shows the system flow. Input to VSS is a VHDL behavioral
description. VSS generates a register-transfer-level (RTL) structural description
which is passed to MILO. MILO attempts to optimize the RTL design and
generates the underlying gate-level logic for RTL components. MILO outputs a
structural RTL VHDL netlist with a gate-level description for the RTL
components. Finally, the SLAM system determines how to part ion the design
for layout. SLAM produces a layout description in the CIF format.

2. Problem Description

A block diagram of this conceptual design is shown in Figure 2. There are
four input and one output ports used for external communication. CLK is the
system clock. RST is a one bit control line (active high) which indicates that a
synchronous reset is to be performed. LDE is a one bit control line (active high)
which indicates that a data value DTI (an integer in the range 0 to 4095) is to
be loaded into the counter.

The circuit to be synthesized has the following specification:

(1) The counter has a start count of 0 and a terminal count of 3327.

(2) For each clock (CLK) strobe, the counter increases by 208. If the count is
greater than 3327, the counter will start at the previous beginning of the
count plus 26 (in this case 0 + 26); if the previous beginning of the count
plus 26 is greater than 207, then the count will start at the previous
sequence plus 1.

April 17, 1990 Page 1

April 17, 1990

Dfficription

vss

RTL Netlist

l\1ILO

Optinized

Netlist

SLAM

Layout

Figure 1: System Architecture

Page 2

(3) Portions of the first two sequences are shown in Figure 3. There will be a
total of 26 sequences. The counter counts the first column of the first
sequence top to bottom, then the second column, and so on. When it
reaches 3327, it will wrap around back to 0.

(4) The counter also has an active high load enable (LDE), which loads a data
value (DTI) synchronously with the rising edge of the clock. The state
machine must adjust to the new state so as to keep the same counting
sequence.

(5) The counter must also have a synchronous reset (RST).

RST

Control
C-Ounter Value

Logic - C-Omputation
Data Path -- ~ 14-i

DTI

LDE

Ip

~ Current

CLK -- ~ C-Ounte.r
Value

~

DTO

Figure 2: Divide by 3328 Block Diagram

April 17, 1990 Page 3

0000 0026 0052 0078 0104 0130 0156 0182 0208 0001 0027 ... 0183 0209
0208 0234 0390 0209
0416 0442 0598 0417
0624 0650 0806 0625
0832 0858 1014 0833
1040 1066 1222 1041
1248 1274 1430 1249
1456 1482 1638 1457
1664 1690 1846 1665
1872 1898 2054 1873
2080 2106 2262 2081
2288 2314 2470 2289
2496 2522 2678 2497
2704 2730 2886 2705
2912 2938 3094 2913
3120 3146 3172 3198 3224 3250 3276 3302 3121
-- ----------------------
3328 3354 3380 3406 3432 3458 3484 3510 3329 3355 . . . 3511

Figure 3: Divide by 3328 O:mnt Sequence

April 17, 1990 Page 4

3. Original VHDL Model

Figure 4 shows the _original VHDL description provided for the divide-by-
3328 counter.

- Rockwell Counter Benchmark

Original Behavioral (process) description

Copyright (c) 1990 by Joe Lis

entity STMAR is

port (CLK : in BIT;

RST: in BIT;

LDE: in BIT;

DTI : in INTEGER range 0 to 4095;

DTO : out INTEGER range 0 to 4095

) ;
endSTMAR;

architecture BEH of STMAR is

begin

process

begin

wait until CLK'EVENT and CLK = '1';

if (RST = 'l') then DTO < = O;
elsif (LDE = '1 ') then DTO < = DTI;

elsif (DTO = 3327) then DTO < = O;

elsif ((DTO + 208) <= 3327) then DTO <= DTO + 208;

elsif(((DTO + 208- 3328) + 26) <= 207) then DTO <= (DTO + 208- 3328) + 26;

else DTO < = (DTO + 208 - 3328) + 26 - 207;

end if;

end process;

end BEH;

April 17, 1990

Figure 4: Original VHDL Description

Page 5

4. VSS VHDL Moclel

4.1. Modifications Made

The following modifications were made to original description:

(1) The process description using sequential statements was converted to a
description with concurrent statements in order to conform to Structured
Modeling guidelines [LisGa89a][LisGa89b]. An explanation of our reasoning
for this modeling style is given in the next subsection.

(2) A DTOJlEG variable was added to correct a modeling error in the original
description involving a port declaration (the output port DTO may not be
read within a process body).

(3) Assignment to the output port is made via a signal assignment. This
follows the Structured Modeling practice of using variables to represent
values involved in data operations (which may require storage elements)
and signals to represent the transfer of stored values (via wires) to the
output port.

(4) The Graph Compiler for VSS does not perform constant propagation
optimizations currently. In order to reduce the amount of unnecessary
hardware that would be generated for computations such as the addition
and subtraction of constants, these optimizations were performed manually
on the input description. (The next version of VSS will include constant
propagation.)

(5) Transfer operations (statements of the form <output> <= <input>) were
expressed as <output> <= <value> + 0. This modification enabled us to
use a Component Synthesis Algorithm which identifies mutually exclusive
operations in a dataflow (concurrent) description so that functional units
can be shared.

Figure 5 shows a behavioral (process) description that can be synthesized
by the VSS system. An equivalent datafiow (block) description which is
preferred when using our Structured Modeling methodology is shown in Figure
6.

April 17, 1990 Page6

-- Rockwell Counter Benchmark

Modified Behavioral (process) description

Copyright (c) 1990 by Joe Lis

entity STMAR is

port (CLK : in CLOCK;

RST: in RESET;

LDE: in BIT;

DTI: in INTEGER range 0 to 4095;

DTO : out INTEGER range 0 to 4095

) ;
endSTMAR;

--VSS: desigrutyle BEHAVIORAL

architecture BEH of STMAR is

begin

process (CLK)

variable DTO_REG: INTEGER range 0 to 4095;

begin

if (RST = 'l ') then DTO_REG := O;

eJ.sif (LDE = '1 ') then DTO_REG := DTI;

eJ.sif (DTO_REG = 3327) then DTO_REG := O;

elsif (DTO_REG <= 3119) then DTO_REG := DTO_REG + 208;

eJ.sif (DTO_REG < = 3301) then DTO_REG := DTO_REG - 3094;

else DTO_REG := DTO_REG - 3301;

End if;
DTO < = DTO_REG;

end processi

end BEH;

Figure 5: Synthesizable VIIDL Process Description

April 17, 1990 Page 7

-- Rockwell Counter Benchmark

Functional (block) description

Copyright (c) 1990 by Joe Lis

entity STM AR is

port (CLK: in CLOCK;

RST,LDE : in BIT;

DTI : in INTEGER range 0 to 4095;

DTO : out INTEGER range 0 to 4095

);
endSTMAR;

--VSS: desig~tyle FUNCTIONAL

architecture BEH of STMAR is

begin

block (CLK = '1' and not CLK'STABLE)

signal DTO_REG: INTEGER range 0 to 4095 register;

signal AO,Al ,A2,A3: BIT;

begin

AO < = not RST and LDE;

Al < = not RST and not AO and (DTO_REG = 3327);

A2 < = not RST and not AO and not Al and (DTO_REG < = 3119);

A3 <=not RST and not AO and not Al and not A2 and (DTO_REG <= 3301);

with (RST & AO & Al & A2 & A3) select

DTO_REG <= guarded

0 + 0 when B"lOOOO" I B"OOlOO",

DTI + 0 when B"OlOOO",

DTO_REG + 208 when B"OOOlO",

DTO_REG - 3094· when B"OOOOl",

DTO_REG - 3301 when B"OOOOO";

DTO < = DTOJlEG;

end block;

end BEH;

Figure 6: Synthesizable VHDL Block Description

April 17, 1990 Page8

4.2. Structured Modeling Omsiderations

This design is clas_sified as a fundional description in our Structured
Modeling design style taxonomy. We define a functional design as one which
consists of combinational logic as well as storage elements (registers, counters).
A functional design is a "single state" design (see [LisGa89b]), where several
events (synchronous and/or asynchronous) may occur concurrently. In
investigating the alternatives for modeling such a design using VHDL, we have
come to the conclusion that the block construct is the most appropriate method
for describing such a mixture of concurrent events. Some reasons for this
decision include:

(1) Clock (CLK) and reset (RST) signals can be identified usmg subtypes
defined within our VHDL synthesis package.

(2) The VHDL block statement provides a convenient template which allows
the synthesis tool to identify the storage class and function of various
signals. Following the Structured Modeling guidelines, the block guard is
used to represent an event such as a positive edge transition of the CLK
signal.

Conversely, the process description seems to be more appropriate for
describing sequential, multi-state designs. The design model for such designs
consists of a cleanly partitioned control unit/data path pair. The process
description for the benchmark of this particular case study presents the
following problems for synthesis:

(1) Identification of clocked storage elements is difficult. While the VHDL
dataflow description style provides the guarded signal assignment in which
the clock event can be expressed in the block guard (an explicit control of
any assignment made to the guarded signal), no comparable construct exists
in the VHDL behavioral description st.yle.

(2) Assignments to the same signal/variable are distributed among conditional
branches. Unlike the dataflow descriptions, where a single conditional
assignment statement is used to associate a value and a condition under
which a variable is to be assigned that value, the synthesis tool must derive
these conditional assignments from the control flow of a behavioral
description.

April 17, 1990 Page9

5. High-Level Synthesis Results

5.1. Processing Steps

The VSS system was used to synthesize the divide-by-3328 benchmark.
This involved the following steps:

(1) The original description was converted manually to a description usmg
concurrent statements (see Figure 6).

(2) VSS is invoked using the description shown in Figure 6.

(3) VSS used the Component Synthesis Algorithm (CSA) (RuGa89] to
determine if functional units can be shared due to mutually exclusive
execution of operations. The CSA algorithm produces VHDL behavioral
descriptions for MUX and ALU select logic as shown in Figure 4.

(4) The VHDL descriptions of the select logic are synthesized using additional
invocations of VSS. The structural descriptions produced by all VSS runs
are manually combined.

5.2. Synthesis Results

Figure 7 shows the netlist composed of GENUS [Dutt88] generic
components produced by VSS.

The right half of the schematic shows the data path synthesized to perform
the counter value computations. Currently, constants are treated as single word
ROMs in the VSS system. The current implementation of the SLAM system
considers them as input ports.

The left half of the schematic consists of glue logic used to select data
inputs and ALU functions. The COMP ARA TOR LOG IC block consists of
random logic used to compute the conditional bits derived from the conditional
expressions of the VHDL input description.

April 17, 1990 Page 10

MUX1

SELECT' LOGIC

MUX2

SELECT' LOGIC

ALU

SELECT' Lcx;IC

5

COMPARATOR

LOGIC

0 208 3094 3301

MUX2

---1---
2

ALU
+/-

12

DTO_llEG.

Figure 7: Structure Produced. by VSS

Figure 8 presents the VHDL behavioral description produced by the CSA
algorithm. This description specifies the behavior of the ALU select logic, while
Figure 9 show:s the logic generated by VSS for the VHDL description of Figure
8.

April 17, 1990 Page 11

--===
- DECODER NODE: node id = 84

-- NUMBER OF FUNCTION SELECT LINES: 2

- Function Select Line 1- is ADD

-- Function Select Line 2 is SUB

-- TRUTH TABLE:

--===
G62I Function

10000 I ADD

01000 I ADD

00100 I ADD

00010 I ADD

00001 j SUB

00000 I SUB

entity DECODER84 is

port (

C62_0,C62_1,C62-2,C62-3,C62_4: in BIT;

ADD,SUB: out BIT) ;

End DECODER84;

--VSS: design.....style COMBINATIONAL

architecture dataflow of DECO D ER84 is

begin

ADD<=

(C62_4 and (not C62_3) and (not C62-2) and (not C62_1) and (not C62-0)) or

((not C62_4) and C62_3 and (not C62_2) and (not C62-l) and (not C62_0)) or

((not C62_4) and (not C62_3) and C62_2 and (not C62_1) and (not C62_0)) or

((not C62_4) and (not C62_3) and (not C62_2) and C62_1 and (not C62_0));

SUB<=

((not C62_4) and (not C62_3) and (not C62_2) and (not C62_1) and C62_0) or

((not C62_4) and (not C62_3) and (not C62_2) and (not C62_1) and (not C62_0));

end dataflow;

Figure 8: VIIDL Description of ALU Function Select Logic

April 17, 1990 Page 12

Figure 9: Structure Synthesized for the ALU Fm1ction Select L-Ogic

April 17, 1990 Page 13

6. Logic Optinization by l\1ILO

6.1. Overview

The results of high-level synthesis were passed to the logic optimization
phase in the form of a VHDL structural description (netlist). The MILO
(VZGa88) system is designed to first perform optimization at a microarchitecture
level and then at a logic level. The structure generated by VSS consists of two
types of logic: regular and random. Regular components are those whose
structure is repetetive (ie., ALUs, registers). These components will usually be
laid out using bit-slicing. Because of their regular structure, little or no
improvement will usually result from optimizing their internal logic. Therefore
these components are left untouched. Other components do not have a regular
structure and are thus random components. Random components (AND gates,
NOR gates, decoders, etc.), that do not have the bit-sliced layout feature, can
often be combined into a single component and then optimized.

Microarchitecture optimization attempts to eliminate inefficiencies with
regular-type components and make area/time tradeoffs for register transfer level
(RTL) components. Examples of microarchitecture optimizations include
replacing a ripple carry adder with a carry-lookahead adder to meet time
constraits, and merging a subtractor and adder into an ALU. The
microarchitecture optimizer is currently being implemented.

Logic optimization attempts to group random logic in the design and
optimize it as a unit. For example, random logic along the critical path can be
grouped and optimized for time. Random logic along non-critical paths can be
grouped and optimized for area. The logic optimizer also performs technology
mapping and sizes the transistors for each gate. MILO outputs a modified
netlist consisting of regular components and random logic that has been grouped
and optimized.

6.2. Processing Steps

The design must first be partitioned into components of regular logic or
random logic. This partitioning will be performed automatically by the
microarchitecture part of MILO. Since this part of MILO is not yet complete,
the partitioning was done manually for this benchmark. The regular
components in this benchmark are the two multiplexors, the ALU, and the
register. All of the other components (including gates and comparators) were
combined into a single component and then passed through the logic optimizer.
This partitioning is shown in Figure 10. The four regular components were not

April 17, 1990 Page 14

touched and were simply passed to SLAM "as is" along with the single random
logic component that was passed through the logic optimizer. Thus MILO will
output to SLAM a VHDL netlist consisting of five components.

r
I
I
I
I MUXI

I SELECT LOGIC

I MUX2

SELECT LOGIC

ALU

SELECT LOGIC

5

OOMPARATOR

LOGlC

,
I
I
I
l
I
I
i
I
I
J
I
I
I
I
I
I
I
I

I
I
I

L - - - -- ..I

RANDOMWGIC

0 208 3094

MUXI r MUX2
I
I

-+--- I __________ _,

2

---1--- ALU
2 +!-

12

DTOJlEG

REGULAR LOGIC

Figure 10: Partitioning of design by l\1ILO

3301

The logic optimizer takes as its input a set of boolean equations. The
boolean equation language (IIF for Irvine Intermediate Format) includes
constructs for sequential logic so that components such as counters and registers

April 17, 1990 Page 15

MUX1

OTO

MUX2

Figure 12: Layout Produced by the SLAM System

April 17, 1990 Page 20

can be described in addition to combinational logic. All microarchitecture
components (such as comparators) that have been designated as random
components must be flattened into IIF. Each microarchitecture component's IIF
description is generated automatically by the ICDB component database from a
set of parameters. For example, in the case of the comparator the parameters
are: 1) the type of component desired (in this case, a comparator), 2) the
number of bits (12 bits in this example) and 3) the function desired (less than or
equal to).

6.3. Delay and Area Results

Figure 11 shows the delay and area statistics produced by the MILO system
for this benchmark.

April 17, 1990 Page 16

Delays and Area as reported by the logic optimizer:

Minimum clock width: 142.5 ns
Worst delay to output pin DTO[ll]: 5.5 ns
Worst delay to output pin DTO[lO]: 3.9 ns
Worst delay to output pin DT0[9]: 3.0 ns
Worst delay to output pin DT0[8]: 3.0 ns
Worst delay to output pin DT0[7]: 3.58 ns
Worst delay to output pin DT0[6]: 3.18 ns
Worst delay to output pin DT0[5]: 3.80 ns
Worst delay to output pin DT0[4]: 3.18 ns
Worst delay to output pin DT0[3]: 3.18 ns
Worst delay to output pin DT0[2]: 3.00 ns
Worst delay to output pin DTO[l]: 3.00 ns
Worst delay to output pin DTO[O]: 3.18 ns
Worst setup delay for input pin RST 142.72 ns
Worst setup delay for input pin DTI[ll] 22.80 ns
Worst setup delay for input pin DTI[lO] 37.30 ns
Worst setup delay for input pin DTI[9] 39.80 ns
Worst setup delay for input pin DTI[8] 47.10 ns
Worst setup delay for input pin DTI[7] 54.80 ns
Worst setup delay for input pin DTI[6] 61.80 ns
Worst setup delay for input pin DTI(5] 69.40 ns
Worst setup delay for input pin DTI(4] 76.95 ns
Worst setup delay for input pin DTI(3] 84.40 ns
Worst setup delay for input pin DTI[2] 92.75 ns
Worst setup delay for input pin DTI[l] 100.25 ns
Worst setup delay for input pin DTI(O] 93.45 ns
Worst setup delay for input pin LDE 132.70 ns
Total Transistor Area: 41,664 square microns (3 micron technology)
Total Number of Transistors: 1052

. Figure 11: l\1ILO Delay and Area Statistics

April 17, 1990 Page 17

7. Layout by SLAM

SLAM [WuCG90] is an architecture driven layout synthesis system that
takes VHDL structural netlists as input and performs three described partition
steps to generate a floorplan for the sliced layout architecture. The target
architecture (Sliced Layout Architecture) combines bit-sliced stacks and glue
logic blocks. The architecture-driven layout synthesis methodology operates in a
completely top-down fashion that implements three partition phases for layout
generation of the register-transfer schematics:

(1) Component partitioning: The purpose of component partitioning is to
determine the best suited layout style (bit-slice or glue-logic) for each
component. First, components must be partitioned by type since some
components such as counters, registers and ALUs are sliceable while
decoders and encoders are not. Furthermore, small size components can be
implemented in two ways. For example, a 2 or 4 bit ALU can be
implemented as a set of boolean equations using NAND and NOR logic
gates or as a bit-sliced unit. The synthesis of the layout architecture is
influenced by stack shape, placement of components inside the stack,
position of the I/ 0 ports, and the amount of routing needed to connect
components.

(2) Stack partitioning: The goal of stack partitioning is to minimize the layout
area of the bit-sliced components. This is achieved by stack folding and
stack partitioning. Since bit-sliced units often have varying bit-widths, the
sliced layout architecture generates an empty space within the stack
bounding box. A folding method is used to fold small units into the empty
space and thus reduce the stack height. When the stack is too tall, the
stack can be partitioned into several stacks.

(3) Glue-logic partitioning: After forming the stack, a glue-logic partition
algorithm partitions the rectilinear area around the bit-sliced stack into
glue-logic blocks for generating the floorplan for the target architecture.
Furthermore, the algorithm partitions the glue-logic components into blocks
according to the given size, the critical paths, and the I/O pin locations.

SLAM uses a bit-sliced stack generator and a glue-logic generator to
generate the final layout. The bit-sliced stack generator is written in the L
language used in the GDT tool set. LES is a glue-logic generator targeted for

April 17, 1990 Page 18

two-metal CMOS technology. LES uses a two dimensional strip layout
architecture and lays out transistors according to the given size specification.
Moreover, LES can specify the I/ 0 pin positions along the left, right, top, and
bottom edges of the module.

For the divide by 3328 example, SLAM partitions two 12-bit multiplexers, a
12-bit ALU, and a 12-bit register into the datapath module and the control
section into glue-logic module. The datapath is laid out using the bit-sliced stack
generator while the glue-logic module is laid out using LES. Finally, we used the
G DT global router to finish detailed routing between the bit-sliced stack and the
control unit.

Figure 12 shows the layout produced by the SLAM system for the divide by
3328 benchmark.

April 17, 1990 Page 19

MUX1

ADD/SUB

RANDOM
LOGIC

April 17, 1990

Figure 12: Layout Prcxluced by the SLAM System

Page 20

8. Conclusion

The Rockwell benchmark was synthesized for the SRC visit on February 15,
1990. The results represent the status of our tools as of that date. The layout
was performed in 3 micron technology. The total area of counter was 1600 X
1468 um while counting at a frequency of 7.042MHz.

9. AcknowledgelD3nts

We would like to thank Bob Larsen for his enthusiasm and support in this
effort. We would also like to acknowledge grants from Rockwell, Western
Digital, Silicon Systems, TRW, Texas Instruments, the California MICRO
program, NSF and SRC which have supported the development of design tools
used in this case study.

April 17, 1990 Page 21

10. References

[Dutt88] N. Dutt, "GENUS: A Generic Component Library for High Level
Synthesis", Technical Report 88-22, University of California at Irvine, Sept. 1988.

[DuHG89] N. Dutt, T. Hadley, D. Gajski, "BIF: A Behavioral Intermediate
Format for High Level Synthesis", Technical Report 89-03, University of
California at Irvine, Oct. 1989.

[LinGa87] S. Lin and D. Gajski, "LES: A Layout Expert System", 24th DAG,
1987.

[LisGa88] J. Lis and D. Gajski, "Synthesis from VHDL", IGCD 88, 1988.

[LisGa89a] J. Lis and D. Gajski, "VHDL Synthesis Using Structured Modeling",
26th DAG, 1989.

[LisGa89b] J. Lis and D. Gajski, "Structured Modeling for VHDL Synthesis",
Technical Report 89-14, University of California at Irvine, June 1989.

[RuGa89] E. Rundensteiner, D. Gajski, and L. Bic, "Technology Mapping for
Register Transfer Descriptions", Technical Report 89-42, University of California
at Irvine, December 1989.

[VZGa88] N. Vander Zanden and D. Gajski, "MILO: A Microarchitecture and
Logic Optimizer", 25th DAG, 1988.

[WuCG90] Wu, A. C. H., Chen, G. D. and Gajski, D., "Silicon Compilation from
Register-Transfer Schematics," Proc. ISCAS, 1990.

April 17, 1990 Page 22

