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ABSTRACT
In this lecture many applications process high volumes of streaming data, among them Internet traffic
analysis, financial tickers, and transaction log mining. In general, a data stream is an unbounded data
set that is produced incrementally over time, rather than being available in full before its processing
begins. In this lecture, we give an overview of recent research in stream processing, ranging from
answering simple queries on high-speed streams to loading real-time data feeds into a streaming
warehouse for off-line analysis.

We will discuss two types of systems for end-to-end stream processing: Data Stream Manage-
ment Systems (DSMSs) and Streaming Data Warehouses (SDWs). A traditional database manage-
ment system typically processes a stream of ad-hoc queries over relatively static data. In contrast, a
DSMS evaluates static (long-running) queries on streaming data, making a single pass over the data
and using limited working memory. In the first part of this lecture, we will discuss research problems
in DSMSs, such as continuous query languages, non-blocking query operators that continually react
to new data, and continuous query optimization.The second part covers SDWs, which combine the
real-time response of a DSMS by loading new data as soon as they arrive with a data warehouse’s
ability to manage Terabytes of historical data on secondary storage.

KEYWORDS
Data stream Management Systems,Stream Processing,Continuous Queries,Streaming
Data Warehouses
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Introduction

Many applications process high volumes of streaming data.Examples include Internet traffic analysis,
sensor networks, Web server and error log mining, financial tickers and on-line trading, real-time
mining of telephone call records or credit card transactions, tracking the GPS coordinates of moving
objects, and analyzing the results of scientific experiments. In general, a data stream is a data set that
is produced incrementally over time, rather than being available in full before its processing begins.
Of course, completely static data are not practical, and even traditional databases may be updated
over time. However, new problems arise when processing unbounded streams in nearly real time. In
this lecture, we survey these problems and their solutions.

1.1 OVERVIEW OF DATA STREAM MANAGEMENT

We use network monitoring as a running example. Figure 1.1 illustrates a simple IP network with
high-speed routers and links in the core, and hosts (clients and servers) at the edge. A large network
contains thousands of routers and links, and its core links may carry many thousands of packets
per second; in fact, optical links in the Internet backbone can reach speeds of over 100 million
packets per second [Johnson et al., 2008]. The traffic flowing through the network is itself a high-
speed data stream, with each data packet containing fields such as a timestamp, the source and
destination IP addresses, and ports.Other network monitoring data streams include real-time system
and alert logs produced by routers, routing and configuration updates, and periodic performance
measurements. Examples of performance measurements are the average router CPU utilization over
the last five minutes and the number of inbound and outbound packets of various types over the last
five minutes. Understanding these data streams is crucial for managing and troubleshooting a large
network. However, it is not feasible to perform complex operations on high-speed streams or to
keep transmitting Terabytes of raw data to a data management system. Instead, we need scalable and
flexible end-to-end data stream management solutions, ranging from real-time low-latency alerting
and monitoring, ad-hoc analysis and early data reduction on raw streaming data, to long-term
analysis of processed data.

We will discuss two complementary techniques for end-to-end stream processing: Data
Stream Management Systems (DSMSs) and Streaming Data Warehouses (SDWs). Figure 1.2
compares DSMSs, SDWs and traditional data management systems in terms of data rates on the
y-axis, and query complexity and available storage on the x-axis.Traditional data warehouses occupy
the bottom left corner of the chart, as they are used for complex off-line analysis of large amounts of
relatively static, historical data (warehouse updates are usually batched together and applied during
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Figure 1.1: A simple network.

downtimes). Database Management Systems (DBMSs) handle somewhat more dynamic workloads,
consisting of ad-hoc queries and data manipulation statements, i.e., insertions, updates and deletions
of a single row or groups of rows. On the other hand, DSMSs lie in the top right corner as they
evaluate continuous queries on data streams that accumulate over time. In applications such as trou-
bleshooting a live network, the data rates may be so high that only the simplest continuous queries
that require very little working memory and per-tuple processing are feasible, such as simple filters
and simple aggregates over non-overlapping windows. Furthermore, we may have to return approx-
imate answers over an incrementally maintained sample of the stream. Other streaming sources,
such as sensor networks, may have lower data rates. If so, it may be possible to answer more complex
queries on-line, such as aggregates over sliding windows of recent data. Even then, a DSMS needs
to do all the data processing in main memory due to the high overhead of disk I/O. Finally, SDWs
[Golab et al., 2009a], also known as Active Data Warehouses [Polyzotis et al., 2008], combine the
real-time response of a DSMS (by attempting to load and propagate new data across materialized
views as soon as they arrive) with a data warehouse’s ability to manage Terabytes of historical data
on secondary storage. In network monitoring, an SDW may store traffic streams that have been
pre-aggregated or otherwise pre-processed by a DSMS, as well as various network performance and
configuration feeds that arrive with a wide range of inter-arrival times, e.g., once a minute to once
a day.

Table 1.1 summarizes the differences between DBMSs and DSMSs. The processing model
of a DBMS is pull-based or query-driven, in which short-lived queries are executed once (when
posed) by “pulling” the current state of the database. In a DSMS, the processing model is push-
based or data-driven, where continuous queries are issued once and generate new results as new
data arrive. That is, rather than evaluating transient (asked once and then “forgotten”) queries on
persistent data, a DSMS evaluates persistent queries on transient, append-only data. For example,
in network monitoring, some continuous queries may run for several minutes or several hours to
troubleshoot specific problems; other queries gather routine performance measurements and may
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� ✁✂ ✄☎ ✆✝ ✞ ✞ ✟
✠ ✞ ✡ ☛☞ ✌ ✍ ✎ ☞ ✠ ✁ ✡ ☞ ✌ ✁ ✠ ✂

✏ ✞ ✠ ✆ ☞ ✌
✠ ✞ ✡ ☛☞ ✌ ✍ ✆

Figure 1.2: Comparison of Data Stream Management Systems and Streaming Data Warehouses with
traditional database and warehouse systems.

Table 1.1: Summary of differences between a DBMS and a DSMS.

DBMS DSMS
Data persistent relations streams, time windows

Data access random sequential, one-pass
Updates arbitrary append-only

Update rates relatively low high, bursty
Processing model query-driven (pull-based) data-driven (push-based)

Queries one-time continuous
Query plans fixed adaptive

Query optimization one query multi-query
Query answers exact exact or approximate

Latency relatively high low

run for weeks or even months. Query processing strategies are also different. A DBMS typically has
(random) access to all the data during query execution and employs a fixed query plan to generate
exact answers. In contrast, a DSMS must process a data stream in one sequential pass, using limited
working memory, and may adjust its query plans in response to changes in the data. Since DSMSs
must support many continuous queries that run for a long period of time, multi-query optimization
becomes important. Furthermore, DSMSs may generate approximate answers and must do so with
strict latency requirements.
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Figure 1.3: Abstract reference architecture of a DSMS.

Figure 1.3 shows an abstract system architecture of a DSMS. On the left, an input buffer
captures the streaming inputs. Optionally, an input monitor may collect various statistics such as
inter-arrival times or drop some incoming data in a controlled fashion (e.g., via random sampling) if
the system cannot keep up.The working storage component temporarily stores recent portions of the
stream and/or various summary data structures needed by queries. Depending on the arrival rates,
this ranges from a small number of counters in fast RAM to memory-resident sliding windows.Local
storage may be used for metadata such as foreign key mappings, e.g., translation from numeric device
IDs that accompany router performance data to more user-friendly router names. Users may directly
update the metadata in the local storage, but the working storage is used only for query processing.
Continuous queries are registered in the query repository and converted into execution plans; similar
queries may be grouped for shared processing. While superficially similar to relational query plans,
continuous query plans also require buffers, inter-operator queues and scheduling algorithms to
handle continuously streaming data. Conceptually, each operator consumes a data stream and returns
a modified stream for consumption by the next operator in the pipeline. The query processor may
communicate with the input monitor and may change the query plans in response to changes in the
workload and the input rates. Finally, results may streamed to users, to alerting or event-processing
applications, or to a SDW for permanent storage and further analysis.

Next, we summarize the differences between a traditional data warehouse and a SDW in
Table 1.2.The fundamental difference is the higher frequency and asynchronous nature of updates—
rather than refreshing the entire warehouse periodically, a SDW attempts to load new data as they
arrive so that any applications or triggers that depend on the data can take immediate action.
Furthermore, a SDW makes recent and historical data available for analysis. This requires, among
other things, a fast Extract-Transform-Load (ETL) process and efficient update propagation across
layers of materialized views in order to keep up with the inputs.
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Table 1.2: Summary of differences between a traditional data warehouse
and a SDW.

Traditional data warehouse SDW
Update frequency low high

Update propagation synchronized asynchronous
Data historical recent and historical

ETL process complex fast, light-weight

Figure 1.4: Abstract reference architecture of a SDW.

In Figure 1.4, we illustrate an abstract system architecture of a SDW. Data streams or feeds
arrive periodically from various sources, often in the form of text or gzipped files. An update sched-
uler decides which file or batch of files to load next. The data then pass through an ETL process,
as in traditional data warehouses. Examples of ETL tasks include unzipping compressed files, and
simple data cleaning and standardization (e.g., converting strings to lower or upper case or convert-
ing timestamps to GMT). Base tables are sourced directly from the raw files, while derived tables
correspond to materialized views (over base or other derived tables). Base and derived tables are
usually partitioned by time so that arrivals of new data only affect the most recent partitions. Fur-
thermore, users may specify (or the system may automatically infer) partition dependencies between
derived tables and their sources. For instance, if a base table B is partitioned into 5-minute chunks
and a derived table D is partitioned by hour (e.g., perhaps D computes hourly aggregates on B),
then we know that the most recent partition of D depends on the twelve most recent partitions of B.
Partition dependencies enable efficient update propagation in an SDW, as we can identify specific
derived table partitions that need to be updated in response to an update of a base table. In addition
to choosing raw files to load, the scheduler is also responsible for choosing which derived table to
update next.
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1.2 ORGANIZATION
The remainder of this lecture is organized as follows. Chapter 2 covers DSMSs. We begin with a
discussion of data models and query languages that take into account the temporal and unbounded
nature of data streams. We will discuss concepts such as temporal windows, semantics of continuous
queries that are issued once and updated over time, and SQL-based as well as workflow-based
approaches to querying data streams. We then discuss DSMS query processing techniques for the
data-driven computation model, including designing operators that continually react to new data
and scheduling these operators to minimize various metrics such as throughput or memory usage.
We also discuss novel query optimization issues in DSMSs, including adapting to changes in system
conditions during the lifetime of a continuous query, load shedding and multi-query optimization.

We remark that instead of designing a new system for data stream management, we can
construct one using a DBMS along with triggers and application code to simulate data-driven pro-
cessing and continuous queries [Arasu et al., 2004b; Babcock et al., 2002; Stonebraker et al., 2005].
One problem with this approach is the overhead associated with DBMS functionalities that are
not essential for stream processing, such as recovery logging (data streams are not stored persis-
tently) or concurrency control (data streams are usually append-only and are generated by a single
“writer”). Another issue is that triggers do not scale to streaming speeds and rich continuous queries
[Abadi et al., 2003].

Next, in Chapter 3, we discuss SDWs. A fundamental difference between an SDW and a tra-
ditional warehouse is that the former must load new data and propagate changes across materialized
views as soon as possible. We will overview recent approaches to speeding up the Extract-Transform-
Load (ETL) process so that new data can be loaded efficiently and new update scheduling and
propagation techniques for maximizing data freshness. We will also discuss query processing issues
in an SDW.

Finally, we conclude in Chapter 4.
We note of existing related books and surveys on on-line data stream algorithms

[Muthukrishnan, 2005], data stream mining [Aggarwal, 2007; Garofalakis et al., 2010], data stream
algorithms, languages and systems [Chaudhry et al., 2005], and query processing on data streams
[Babcock et al., 2002; Chakravarthy and Jiang, 2009; Golab and Özsu, 2003a]. To the best of our
knowledge, this is the first survey of end-to-end data stream management, covering real-time stream
processing in DSMSs and historical data stream collection in SDWs.

We conclude this section with a list of selected DSMSs and SDWs that we will discuss in the
remainder of this lecture. We will focus on systems that extend the relational model to continuous
queries on streaming data. However, we remark that there exists a class of related systems that
perform event processing and pattern matching on streams [Agrawal et al., 2008; Demers et al.,
2007; Wu et al., 2006]. These systems are based on the finite state machine model, which is outside
the scope of this lecture.

• Aurora [Abadi et al., 2003; Balakrishnan et al., 2004; Carney et al., 2003; Tatbul et al., 2003]
and its distributed version Borealis [Abadi et al., 2005; Balazinska et al., 2005; Hwang et al.,
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2007; Tatbul et al., 2007; Xing et al., 2005, 2006] are based on the workflow model. Rather
than specifying continuous queries in an SQL-like language, users build boxes-and-arrows
dataflow diagrams that are then translated into continuous query plans.

• CAPE [Liu et al., 2005; Rundensteiner et al., 2004; Wang and Rundensteiner, 2009;
Zhu et al., 2004] is a general-purpose DSMS that emphasizes adaptive query processing and
quality-of-service guarantees on the streaming results.

• GS Tool [Cormode et al., 2004; Cranor et al., 2003; Golab et al., 2008b; Johnson et al.,
2005a,b,c, 2008] is a light-weight DSMS designed for high-speed network monitoring. It
supports a limited subset of SQL, as well as user-defined aggregate functions, sampling, and
distributed operation to handle high data rates.

• NiagaraCQ [Chen et al., 2000, 2002] is an early systems for evaluating a large number of
continuous queries consisting of selections,projections and joins. Its main focus is on scalability
and multi-query optimization.

• Nile [Ghanem et al., 2007, 2010; Hammad et al., 2004] is a general-purpose DSMS, focusing
on issues such as sliding window query processing, multi-query optimization, and maintaining
materialized views of the results of continuous queries.

• PIPES [Krämer,2007; Krämer and Seeger, 2004,2009] is a data stream processing framework
implemented in Java,providing streaming operators based on a temporal algebra, and a runtime
system components such as operator scheduling and query re-optimization.

• STREAM [Arasu et al., 2006; Babcock et al., 2002, 2004a,b; Babu and Widom, 2004;
Motwani et al., 2003] is a general-purpose stream engine that employs a novel SQL-based
continuous query language.

• Stream Mill [Bai et al., 2006] is a flexible DSMS, whose unique feature is that it allows
user-defined functions to be written in SQL rather than an external language.

• TelegraphCQ [Chandrasekaran and Franklin, 2004; Chandrasekaran et al., 2003;
Deshpande and Hellerstein, 2004; Reiss and Hellerstein, 2005] is a stream system based on
PostgreSQL DBMS and focuses on adaptive query processing and combining real-time and
historical data.

• DataDepot [Golab et al., 2009a,b] is a streaming data warehouse developed at AT&T Labs-
Research. It features real-time data loading, update scheduling, and efficient update propaga-
tion via partition dependencies.
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C H A P T E R 2

Data Stream Management
Systems

In this chapter, we discuss DSMSs, including stream data models, query languages and semantics,
and query processing and optimization.

2.1 PRELIMINARIES
2.1.1 STREAM MODELS

For the purpose of this lecture, data streams have the following properties:

• They are sequences of records, ordered by arrival time or by another ordered attribute such as
generation time (which is likely to be correlated with, but not equivalent to, the arrival time),
that arrive for processing over time instead of being available a priori;

• They are produced by a variety of external sources, meaning that a DSMS has no control over
the arrival order or the data rate;

• They are produced continually and, therefore, have unbounded, or at least unknown, length.
Thus, a DSMS may not know if or when the stream “ends”.

We distinguish between base streams produced by the sources and derived streams produced
by continuous queries and their operators [Arasu et al., 2006]. In either case, we model individual
stream items as relational tuples with a fixed schema. For instance, an Internet traffic stream (more
specifically, a TCP or UDP packet stream) may have the following schema, where size indicates
the number of bytes of data contained in each packet and timestamp is the packet generation time:

<timestamp, source IP address, source port, destination IP address,

destination port, size>.

Since there may be multiple connections between the same pair of nodes (IP addresses and ports)
over time, the first five fields form a key. We may also tag each tuple with its arrival time in addition
to the generation time; this is useful for measuring the response time of the DSMS (i.e., the time it
takes to produce results in response to the arrival of a new tuple) [Abadi et al., 2003]. On the other
hand, a stream of router CPU utilization measurements may have the following schema, with new
measurements arriving from each router every five minutes (here, timestamp and router ID are a
key):
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<timestamp, router ID, cpu_usage>.

Some models require a stream to be totally ordered, whereas others do not distinguish among
items having the same value of the ordering attribute. Recently, a unified model was proposed that
allows both alternatives [Jain et al., 2008].

In practice, base streams are almost always append-only in the sense that previously arrived
items (i.e., those with previously seen keys) are never modified; in the remainder of this lecture, we
assume that every base stream is append-only. However, derived streams may or may not be append-
only. For instance, consider the following query, Q1, over an Internet traffic stream S (assume that
timestamp is the packet generation time measured in seconds, similar to a Unix timestamp):

Q1: SELECT minute, source_IP_address, SUM(size) AS total_traffic

FROM S

GROUP BY timestamp/60 AS minute, source_IP_address

At the end of each one-minute window, this query computes the total traffic originating from
each source IP address during the given window (we will discuss continuous query semantics and
languages in more detail later in this chapter).Thus,minute and source_IP_address are a key for
the output stream of this query. However, since packets may arrive late, incorrect total_traffic
values may be returned if they are computed eagerly right at the end of every minute, say, accord-
ing to the local clock. One solution is to produce revised answers [Ryvkina et al., 2006] that take
late arrivals into account, meaning that the output stream may contain updates to previously seen
total_traffic values. Note that this example is meant only to illustrate that derived streams may
not be append-only. As we will discuss later in this chapter, there are other ways of dealing with
out-of-order arrivals, such as buffering.

Data streams often describe underlying “signals”. Let S : [1...N ] → R be a signal, represented
as a mapping from a discrete domain to the reals. For example, one signal carried by an Internet
packet stream maps each source IP address to the total number of bytes sent from that address (i.e.,
N = 232 since an IP address is 32 bits long); another maps each destination IP address to the total
number of bytes received by it. There are at least four ways in which a data stream can represent a
signal [Gilbert et al., 2001; Hoffmann et al., 2007; Muthukrishnan, 2005]:

• In the aggregate model, each stream item contains a range value for a particular value in the
domain of S.

• In the cash register model, each stream item contains a partial non-negative range value for a
particular value in the domain of S. Hence, to reconstruct the signal A, we need to aggregate
the partial range values for each domain value.

• The turnstile model generalizes the cash register model by allowing the partial range values to
be negative.

• In the reset model, each stream item contains a range value for a particular value in the domain
of S, which replaces all previous range values for this domain value.
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The Internet packet stream examples correspond to the cash register model since the underly-
ing signals (e.g., total traffic per source and total traffic per destination) are computed by aggregating
data from individual packets, while router CPU measurements are examples of the reset model since
new measurements effectively replace old ones (assuming that the domain of the signal consists of
all the routers being monitored). Alternatively, in the router CPU example, a signal whose domain
elements are labeled with the router id and the 5-minute measurement window corresponds to the
aggregate model: each domain value occurs exactly once in the stream, assuming that there is exactly
one measurement from each router in each 5-minute window. The turnstile model usually appears
in derived streams, e.g., a difference of two cash-register base streams.

2.1.2 STREAM WINDOWS

From the system’s point of view, it is infeasible to store an entire stream. From the user’s point of
view, recently arrived data may be more useful. This motivates the use of windows to restrict the
scope of continuous queries. Windows may be classified according the following criteria.

1. Direction of movement: Fixed starting and ending points define a fixed window. Moving starting
and ending points (either forward or backward) creates a sliding window. The starting and
ending points typically slide in the same direction, although it is possible for both to slide
outwards, starting from a common position (creating an expanding window), or for both to
slide inwards, starting from fixed, positions (creating a contracting window). One fixed point
and one moving point define a landmark window. Usually, the starting point is fixed, and the
ending point moves forward in time. There are a total of nine possibilities as the beginning
and ending points may independently be fixed, moving forward or moving backward.

2. Definition of contents: Logical or time-based windows are defined in terms of a time interval,
e.g., a time-based sliding window may maintain the last ten minutes of data. Physical (also
known as count-based or tuple-based ) windows are defined in terms of the number of tuples,
e.g., a count-based sliding window may store the last 1000 tuples. When using count-based
windows in queries with a GROUP BY condition, it may be useful to maintain separate windows
of equal size for each group, say, 1000 tuples each, rather than a single window of 1000 tuples;
these are referred to as partitioned windows [Arasu et al., 2006]. The most general type is a
predicate window [Ghanem et al., 2006], in which an arbitrary logical predicate (or SQL query)
specifies the contents. Predicate windows are analogous to materialized views. For example,
consider an on-line auction that produces three types of tuples for each item being sold: a
“begin” tuple, zero or more “bid” tuples, followed by an “end” tuple that is generated when
the item has been sold, presumably to the highest bidder. Assume that each tuple contains
a timestamp, an item id, a type (being, bid or end), and other information such as the bid
amount. A possible predicate window over this auction stream keeps track of all items that
have not yet been sold. New items enter the window when their “begin” tuples appear; sold
items “fall out” of the window when their “end” tuples appear.
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3. Frequency of movement: By default, a time-based window is updated at every time tick, and a
count-based window is updated when a new tuple arrives. A jumping window is updated every
k ticks or after every kth arrival. Note that a count-based window may be updated periodically,
and a time-based window may be updated after some number of new tuples have arrived; these
are referred to as mixed jumping windows [Ma et al., 2005]. If k is equal to the window size,
then the result is a series of non-overlapping tumbling windows [Abadi et al., 2003].

In practice, tumbling windows, such as the one-minute windows in query Q1 from Sec-
tion 2.1.1, are popular due to the simplicity of their implementation—at the end of each window,
the query resets its state and starts over. Forward-sliding windows (time-based and count-based)
are also appealing due to their intuitive semantics, especially with joins and aggregation, as we will
discuss below. However, sliding windows are more difficult to implement than tumbling windows;
over time, a continuous query must insert new tuples into a window and remove expired tuples that
have fallen out of the window range.

2.2 CONTINUOUS QUERY SEMANTICS AND OPERATORS
2.2.1 SEMANTICS AND ALGEBRAS

In a DSMS, queries are issued once and run continuously, incrementally producing new results over
time. Let Q be a continuous query, whose inputs are one or more append-only data streams and
zero or more relations. For now, assume that relations are static throughout the lifetime of the query
(we will relax this assumption in Section 2.2.4). Let Q(τ) be the result of Q at time τ . Intuitively,
we want Q to produce “correct” answers at any point in time, taking into account all the data that
have arrived so far.

Definition 2.1 At any time τ , Q(τ) must be equal to the output of a corresponding traditional
database query, in which all references to streams are replaced by relations constructed from prefixes
of the streams up to time τ .

Optionally, the output may be refreshed periodically, in which case the variable τ in the above
definition ranges over the refresh times rather than each time tick.

Two types of continuous query algebras have been proposed in the literature, both based
on relational algebra. In a stream-to-stream algebra, each operator consumes one or more streams
(and zero or more relations) and incrementally produces an output stream [Cranor et al., 2003;
Krämer and Seeger, 2009]. In a mixed algebra [Arasu et al., 2006; Ghanem et al., 2010], there are
three sets of operators: those which produce a relation from a stream (e.g., sliding windows), those
which produce a relation from one or more input relations (i.e., the standard relational algebraic
operators), and those which produce a stream from a relation. Conceptually, at every time tick, an
operator converts its input to relations, computes any new results, and converts the results back a
stream that can be consumed by the next operator. Since the converted relations change over time,
a natural way of switching back to a stream is to report the difference between the current result
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and the result computed one time tick ago. This is similar to computing a set of changes (insertions
and/or deletions) required to update a materialized view.

2.2.2 OPERATORS

We now introduce common continuous query operators, deferring a discussion of continuous query
processing and optimization in Section 2.4. First, we need to define two important concepts: mono-
tonicity and non-blocking execution.

Definition 2.2 A continuous query or continuous query operator Q is monotonic if Q(τ) ⊆ Q(τ ′)

for all τ ≤ τ ′.

For example, simple selection over a single stream or a join of several streams are monotonic
(recall our assumption that base streams are append-only). To see this, note that when a new tuple
arrives, it either satisfies the (selection or join) predicate or it does not, and the satisfaction condition
does not change over time. Thus, at any point in time, all the previously returned results remain in
Q(τ). On the other hand, continuous queries with negation or set difference are non-monotonic,
even on append-only streams.

Definition 2.3 A continuous query or continuous query operator Q is non-blocking if it does not
need to wait until it has seen the entire input before producing results.

Some operators have blocking and non-blocking implementations; of course, only the latter
are used in DSMSs since we do not know when we will have seen the entire input. For instance,
traditional SQL queries with aggregation are blocking since they scan the whole relation and then
return the answer. However, on-line aggregation [Hellerstein et al., 1997; Law et al., 2004], where
partial answers are incrementally returned as they are computed over the data seen so far, is non-
blocking.Note that Definitions 2.2 and 2.3 are related:Q is monotonic if and only if it is non-blocking
[Law et al., 2004].

The simplest continuous query operators are stateless; examples include duplicate-preserving
projection, selection, and union. These operators process new tuples on-the-fly without storing any
temporary results, either by discarding unwanted attributes (projection) or dropping tuples that do
not satisfy the selection condition (technically, the union operator temporarily buffers the inputs to
ensure that its output stream is ordered). Figure 2.1(a) shows a simple example of selection (of all
the “a” tuples) over the character stream S1.

A non-blocking, pipelined join (of two character streams, S1 and S2) [Wilschut and Apers,
1991] is illustrated in Figure 2.1(b). A hash-based implementation maintains hash tables on both
inputs. When a new tuple arrives on one of the inputs, it is inserted into its hash table and probed
against the other stream’s hash table to generate results involving the new tuple, if any. Joins of more
than two streams and joins of streams with a static relation are straightforward extensions. In the
former, for each arrival on one input, the states of all the other inputs are probed in some order
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[Golab and Özsu, 2003b; Viglas et al., 2003]. In the latter, new arrivals on the stream trigger the
probing of the relation [Balazinska et al., 2007].

Since maintaining hash tables on unbounded streams is not practical, most DSMSs only
support window joins. Query Q2 below is an example of a tumbling window join (on the attribute
attr) of two streams, S1 and S2, where the result tuples must satisfy the join predicate and belong to
the same one-minute tumbling window. Similar to Q1, tumbling windows are created by grouping
on the timestamp attribute. At the end of each window, the join operator can clear its hash tables
and start producing results for the next window.

Q2: SELECT *

FROM S1, S2

WHERE S1.attr = S2.attr

GROUP BY S1.timestamp/60 AS minute

One disadvantage of Q2 is that matching tuples, whose timestamps are only a few seconds
apart but happen to fall into different tumbling windows, will not be reported. Another option is
a sliding window join [Golab and Özsu, 2003b; Kang et al., 2003], where two tuples join if they
satisfy the join predicate and if their timestamps are at most one window length, call it w, apart. A
sliding window join may be expressed in a similar way to Q3 below:

Q3: SELECT *

FROM S1, S2

WHERE S1.attr = S2.attr

GROUP BY |S1.timestamp - S2.timestamp| <= w

Alternatively, if the query language allows explicit specification of sliding windows (e.g., using
the SQL:1999 RANGE keyword), Q3 may be expressed as follows:

Q4: SELECT *

FROM S1 [RANGE w], S2 [RANGE w]

WHERE S1.attr = S2.attr

Note that tumbling window joins are simpler to evaluate since we can clear the hash tables
at the end of every window and start over. In contrast, sliding window joins need to maintain their
hash tables over time, by inserting new tuples as they arrive and removing old tuples (we will discuss
how to do this efficiently in Section 2.5.2).

Figure 2.1(c) shows a COUNT aggregate. When a new tuple arrives, we increment the stored
count and append the new result to the output stream. If the aggregate includes a GROUP BY clause,
we need to maintain partial counts for each group (e.g., in a hash table) and emit a new count for
a group whenever a new tuple with this particular group value arrives. Since aggregates on a whole
stream may not be of interest to users, DSMSs support tumbling and/or sliding window aggregates.
For efficiency, window aggregates are typically implemented to return new results periodically rather
than reacting to each new tuple. Query Q1 is an example of a tumbling aggregate (with grouping
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Figure 2.1: Simple continuous query operators: (a) - selection, (b) - join, (c) - count, (e) - negation.

on the source IP address) that produces a batch of results at the end of each one-minute window.
We will discuss optimizing sliding window aggregates in Section 2.5.3.

Note that the type of aggregate being computed determines the amount of state that we need to
store and the per-tuple processing time. An aggregate f is distributive if, for two disjoint multi-sets X

and Y ,f (X ∪ Y ) = f (X) ∪ f (Y ).Distributive aggregates, such as COUNT,SUM,MAX and MIN,may be
computed incrementally using constant space and time (per tuple). For instance, SUM is evaluated by
storing the current sum and continually adding to it the values of new tuples as they arrive. Moreover,
f is algebraic if it can be computed using the values of two or more distributive aggregates using
constant space and time (e.g., AVG is algebraic because AVG = SUM/COUNT). Algebraic aggregates
are also incrementally computable using constant space and time. On the other hand, f is holistic

if, for two multi-sets X and Y , computing f (X ∪ Y ) exactly requires space proportional to the size
of X ∪ Y . Examples of holistic aggregates include TOP-k, QUANTILE, and COUNT DISTINCT. For
instance, we need to maintain the multiplicities of each distinct value seen so far to (exactly) identify
the k most frequent item types at any point in time.This requires �(n) space, where n is the number
of stream tuples seen so far—consider a stream with n − 1 unique values and one of the values
occurring twice.
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In practice, we can obtain approximate answers to holistic aggregates on data streams us-
ing several methods. One is to maintain a (possibly non-uniform) sample of the stream. Sam-
pling is used for approximating COUNT DISTINCT [Gibbons, 2001; Pavan and Tirthapura, 2005],
QUANTILE [Manku et al., 1999], and TOP k [Demaine et al., 2002; Estan and Varghese, 2002;
Gibbons and Matias, 1998; Manku and Motwani, 2002] queries. Another possibility is to avoid
storing frequency counters for each distinct value seen so far by periodically evicting counters having
low values [Liu et al., 2006b; Manku and Motwani, 2002; Metwally et al., 2005]. This is a possi-
ble approach for computing TOP k queries, so long as frequently occurring values are not missed
by repeatedly deleting and re-starting counters. A related space-reduction technique may also be
used for approximate quantile computation where the rank of a subset of values is stored along
with corresponding error bounds (rather than storing a sorted list of all the frequency counters for
exact quantile calculation) [Gilbert et al., 2002; Greenwald and Khanna, 2001]. Finally, hashing is
another way of reducing the number of counters that need to be maintained. Stream summaries
created using hashing are referred to as sketches. Examples include the following.

• A Flajolet-Martin (FM) sketch [Alon et al., 1996; Flajolet and Martin, 1983] is used for
COUNT DISTINCT queries. It uses a set of hash functions hj that map each value v onto the
integral range [1, . . . , log U ] with probability Pr[hj (v)=l] = 2−l , where U is the upper bound
on the number of possible distinct values. Given d distinct items in the stream, each hash
function is expected to map d/2 items to bucket 1, d/4 items to bucket 2, and so on with all
buckets above log d expected to be empty. Thus, the highest numbered non-empty bucket is
an estimate for the value log d. The FM sketch approximates d by averaging the estimate of
log d (i.e., the largest non-zero bit) from each hash function.

• A Count-Min (CM) sketch [Cormode and Muthukrishnan, 2004] is a two-dimensional array
of counters with dimensions d by w. There are d associated hash functions, h1 through hd ,
each mapping stream items onto the integral range [1, . . . , w]. When a new tuple arrives with
value v, the following cells in the array are incremented: [i, hi(v)] for = 1 to d. An estimate
of the count of tuples with value v can be obtained by taking the minimum of values found
in cells [i, hi(v)] for i = 1 to d. The approximate counts can then be used to compute TOP k

queries.

So far, we have shown relational-like query operators and briefly discussed how a DSMS may
evaluate them. Other operators in a DSMS may include the following.

• A buffered sort operator [Abadi et al., 2003] buffers the incoming stream for a specified length
of time, call it l, and outputs the stream in sorted order on some attribute, typically the
generation timestamp. Tuples that arrive more than l time units late are dropped.

• Many DSMSs include built-in sampling operators, either for specific techniques such as ran-
dom sampling [Abadi et al., 2003; Motwani et al., 2003],or for expressing various user-defined
sampling methods [Johnson et al., 2005a].



2.2. CONTINUOUS QUERY SEMANTICS AND OPERATORS 17

• User-defined aggregate functions (UDAFs) are supported by most DSMSs. They are of-
ten used to add application-specific functionalities to general-purpose DSMSs, such as ap-
proximate versions of complex aggregates and data mining algorithms, as described above
[Cormode et al., 2004; Law et al., 2004; Muthukrishnan, 2005]. A UDAF specification re-
quires at least two components: how to initialize any intermediate state before processing and
how to update the state (and, optionally, report an up-to-date answer) when a new tuple ar-
rives. Additionally, a UDAF over a sliding window needs to specify how to update the state
when a tuple expires from the window.

2.2.3 CONTINUOUS QUERIES AS VIEWS

Up to now, we have discussed non-blocking and monotonic operators that incrementally produce
new results over time. We now introduce continuous query operators whose output streams contain
new results as well as updates to existing results. Conceptually, these operators produce “deltas”
to a view of the current result (possibly, with the help of separate relation-to-stream operators),
which may be materialized and maintained by an application that receives the streaming output
[Ghanem et al., 2010].

We begin with (duplicate-preserving) negation, or set difference, of two character streams, S1

and S2. As illustrated in Figure 2.1(d), we want to maintain a materialized view of characters in the
prefix of S1 that we have seen so far that do not occur in the prefix of S2 that we have seen so far.
Initially, we return “a”, “b”, and “d” as soon as they arrive on S1 since they do not have counterparts in
S2. When “d” arrives on S2, we remove its S1-counterpart from the result by appending a negative

tuple [Arasu et al., 2006; Ghanem et al., 2007, 2010; Golab and Özsu, 2005] to the output, denoted
by d̄ in the illustration. When “b” arrives on S2 later, we need another negative tuple (denoted by
b̄) to remove its S1-counterpart from the result.

Another example of negative tuples in the output stream involves removing old tuples from
sliding windows. Recall queries Q3 and Q4, which use windows to limit the state of the join operator.
Both of these queries are monotonic and keep producing new join results over time. Now, suppose
that we also want to remove old join results involving tuples that have expired from their windows
(i.e., tuples more than w time units old). Figure 2.2 shows an example where the sliding windows
have moved forward, causing “f ” to expire from S1 and “c” to expire from S2. Given that both of
these tuples have created join results in the past, the join operator must now produce corresponding
negative tuples. An application can now treat the output stream as a sequence of updates to a
materialized view.

As the above example shows, windows can play two roles in a DSMS: implicit (internal) and
explicit (external) [Golab, 2006]. Implicit windows are used to limit the memory requirements of
operators such as joins, as in Q3 and Q4. However, tuples do not expire from the result set when they
expire from their windows, and, therefore, monotonic operators that use implicit windows remain
monotonic. On the other hand, as illustrated in Figure 2.2, explicit windows can be thought of as
non-monotonic operators that consume the input streams, and, in addition to propagating each tuple
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Figure 2.2: Maintaining a materialized view of a sliding window join.

to the next operator in the query plan, produce a negative tuple whenever a “positive” tuple expires.
Negative tuples must then be processed by each operator in the plan to “undo” previously reported
results. As a result, the output stream, when interpreted as a sequence of “deltas” to a materialized
view, must correspond to the result of an equivalent traditional query executed over the current state
of the sliding windows (not to the result of an equivalent query that operates over prefixes of the
inputs, as in Definition 2.1). We will discuss the processing of negative tuples in Section 2.4.3.

Finally, we note that in the queries-as-views approach, the DSMS itself usually does not
materialize the views. Continuous queries produce streams of updates over time, but it is up to the
user or application to maintain the final result.

2.2.4 SEMANTICS OF RELATIONS IN CONTINUOUS QUERIES

The query-as-view model can also help understand the semantics of continuous queries that reference
non-static relations.Suppose that we want to join a stream,bounded by a (explicit or implicit) window,
with a relation. For example, the stream tuples may contain a timestamp, an internal router ID, and
a performance measurement such as CPU usage; the relation may have mappings from router IDs
to alphanumeric names. Clearly, we may need to insert new mappings into the relation when adding
new routers to the network, and/or delete old mappings when old routers are retired (updates may be
modeled as deletions followed by insertions). If we want to maintain a view of the current answer at
all times, deletions from the relation must produce negative tuples so that the join operator can undo
all the current results that have been produced using the deleted tuple. This is similar to producing
a negative tuple in Figure 2.2, in response to expirations from the sliding windows. Similarly, after
adding a tuple to the relation, we need to probe the sliding window and generate new results based
on the stream tuples that have already arrived. That is, we are treating the relation as an explicit
window (more specifically, an explicit predicate window—recall Section 2.1.2).

Another, more efficient, solution is to make the changes to the relation visible only to tuples
that will arrive in the future, effectively treating relations as implicit windows. That is, when a
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new tuple is added to the relation, we do not probe the sliding window to generate join results
with any stream tuples that have already arrived; instead, new stream tuples that will arrive in the
future will probe the new state of the relation. Similarly, after deleting a tuple from the relation,
we do not need to produce any negative tuples. These types of relation updates are referred to as
non-retroactive [Golab and Özsu, 2005]. Though non-retroactive updates may not be appropriate
in all applications, they are useful in the above network monitoring example. When an old router
is removed from the relation, there is no need to expire any of its measurements that have already
been generated. Similarly, when a new router is inserted into the relation before it starts producing
measurements, then there are no prior measurements to join with this new tuple.

Note that there is an important restriction on non-retroactive updates: once we delete a row
from the relation with a particular key, we cannot later add a row with the same key. For example,
if we remove a router ID, but do not delete the CPU usage measurements that have been produced
for this router, then inserting a new router that has the same router ID makes it seem that the old
CPU usage statistics refer to the new router.

2.3 CONTINUOUS QUERY LANGUAGES
Most DSMSs employ declarative query languages with SQL-like syntax, possibly with additional
keywords for windows and novel operators such as sampling or relation-to-stream conversion. One
exception is SQuAl, the graphical boxes-and-arrows language used in the Aurora DSMS; however,
it, too, supports non-blocking relational-like operators such as selection, projection, union, join and
group-by-aggregation. Of course, as discussed earlier, although the surface syntax may be similar to
SQL, the semantics and operator implementations of continuous queries are considerably different
from traditional one-time queries.

We will survey selected features of SQL-like languages below. First, we remark that most
DSMSs use variants of CREATE STREAM statements to specify the schema and source (e.g., port
number) of streaming inputs. Systems that also support relational input allow tables to be defined
using the standard CREATE TABLE command.

2.3.1 STREAMS, RELATIONS AND WINDOWS

GSQL [Cranor et al., 2003] is used by the GS Tool and is a representative of simple, purely stream-
to-stream languages with monotonic operators only. It supports a restricted subset of non-blocking
versions of standard relational operators and requires all the inputs (and output) to be streams.
GSQL has direct support only for tumbling windows that are specified by grouping on a timestamp
attribute and must be used with joins and aggregation. However, sliding window aggregates, as well
as join of streams with relations, may be encoded as UDAFs. Q1 and Q2 were written in a syntax
similar to GSQL.

CQL [Arasu et al., 2006], which is used by the STREAM DSMS, is a powerful language
that supports streams, relations, sliding windows, and negative tuples. It contains three types of
operators: relation-to-relation operators that are similar to standard relational operators, sliding
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windows that convert streams to time-varying relations, and three relation-to-stream operators:
Istream, Dstream and Rstream. The Istream operator compares the current output of the query
(represented as a relation) with the output as of the current time minus one and returns only the
new results. In contrast, at any time, Dstream returns all the results that existed in the answer set
at the current time minus one but do not exist at the current time. That is, Dstream returns all the
negative tuples required to maintain a materialized view of the result. Finally, Rstream streams out
the entire result at any given time.

In contrast to GSQL’s tumbling-only windows, CQL supports sliding windows to convert
streams to relations. Time-based windows of length N are specified with the [RANGE N] keyword
following the reference to a stream. Count-based windows are denoted as [ROWS N] and partitioned
windows on some attribute attr (recall Section 2.1.2) as [PARTITION BY attr ROWS N]. Win-
dows containing only those tuples whose timestamps are equal to the current time are denoted as
[NOW], and a prefix of a stream up to now can be turned into a relation using [RANGE UNBOUNDED]

or [ROWS UNBOUNDED].
To illustrate CQL’s windows and relation-to-stream operators, consider a simple selection

over a network traffic stream S:

Q5: SELECT Istream(*)

FROM S [RANGE UNBOUNDED]

WHERE source_IP_address = "1.2.3.4"

Since this query is monotonic, it suffices to output new results at every time tick (using
Istream), calculated over all the data that have arrived so far. Since this query is stateless, another
way to express is by returning all the tuples that satisfy the selection predicate at any instant of time
(using Rstream), over a NOW window of tuples that have arrived at that time instant:

Q6: SELECT Rstream(*)

FROM S [NOW]

WHERE source_IP_address = "1.2.3.4"

Note that using Rstream and unbounded windows with the above queries gives a different
and arguably less desirable result—at any point in time, we repeatedly receive all the packets from IP
address 1.2.3.4 that have arrived up to now. In general, the problem with repetitions in the output of
Rstream is that other operators in the plan may not be able to process it properly, as it is neither an
append-only stream of new results nor a stream of positive and negative deltas [Ghanem et al., 2010].
CQL also provides syntactic shortcuts: windows are unbounded by default; Istream is the default
relation-to-stream operator for monotonic queries, etc. Applying these shortcuts, the above queries
may be written simply as SELECT * FROM S WHERE Source_IP_address = "1.2.3.4".

In CQL, joins are usually expressed using Istream and sliding windows. In this case, the
windows are implicit sinceIstream only generates new results.To express joins over explicit windows
such as those in Figure 2.2, we need to write two queries, one with Istream (positive deltas)
and one with Dstream (negative deltas), and merge their results. Notably, the SyncSQL language



2.3. CONTINUOUS QUERY LANGUAGES 21

[Ghanem et al., 2010] used in the Nile system can return both positive and negative tuples in a
single query with the SELECT STREAMED keyword.

So far, we have given examples of queries with windows whose default behaviour is to slide
whenever new tuples arrive. However, jumping windows are often used with aggregation for per-
formance reasons; additionally, users may find it easier to deal with periodic output rather than a
continuous output stream. CQL as well as the ESL language [Bai et al., 2006] used in Stream Mill
support aggregates over jumping windows via the SLIDE construct. For example, Q7 computes the
total traffic originating from each source over the last five minutes, with new results returned every
minute:

Q7: SELECT Rstream(source_IP_address, SUM(size))

FROM S [RANGE 5 min SLIDE 1 min]

GROUP BY source_IP_address

Note that in the CQL version of this query, as shown above, we need to use Rstream to
ensure that the complete result is produced every minute.

2.3.2 USER-DEFINED FUNCTIONS

Most stream query languages support user-defined functions written in an external language.
ESL allows SQL-based user-defined aggregates (UDAs). An ESL UDA consists of three parts:
INITIALIZE, ITERATE and TERMINATE. The first part initializes the required state, which must be
stored in tables. The ITERATE statement is executed whenever a new tuple arrives. The TERMINATE
statement is evaluated at the end of the input; a non-blocking UDA has an empty TERMINATE

statement since it incrementally produces results as new tuples arrive.
Below, we show an example of a UDA that computes the average over a count-based tumbling

window of size 200 (this example originally appeared in the ESL user manual, available at http://
magna.cs.ucla.edu/stream-mill/doc/esl-manual.pdf). The current sum and count will
be maintained in the state table. When the first tuple arrives, the INITIALIZE statement simply
updates the state variables. The ITERATE statement is slightly more complex. At the end of every
tumbling window (where Cnt % 200 = 0), it updates the state and returns the average.The first tuple
of the new tumbling window (where Cnt % 200 = 1) overwrites the previous window’s state.

AGGREGATE Tumbling_window_avg(Next Int): Real {

TABLE State(Tsum Int, Cnt Int);

INITIALIZE: {

INSERT INTO State VALUES (Next, 1);

}

ITERATE: {

UPDATE State

SET Tsum = Tsum + Next, Cnt = Cnt + 1;

INSERT INTO Return

http://magna.cs.ucla.edu/stream-mill/doc/esl-manual.pdf
http://magna.cs.ucla.edu/stream-mill/doc/esl-manual.pdf
http://magna.cs.ucla.edu/stream-mill/doc/esl-manual.pdf
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SELECT Tsum/Cnt FROM STATE

WHERE Cnt % 200 = 0;

INSERT INTO State VALUES (Next, 1)

WHERE Cnt % 200 = 1;

}

TERMINATE: {}

}

2.3.3 SAMPLING

CQL and SQuAl provide built-in random sampling. SQuAl includes a DROP operator, whereas
CQL provides a SAMPLE keyword. For example, to obtain a one percent random sample of a stream
S, we write SELECT * FROM S SAMPLE(1). GSQL provides a framework for expressing various
sampling methods [Johnson et al., 2005a]. Users are required to write functions that describe the
sampling technique, which are then referenced in the HAVING, CLEANING WHEN and CLEANING BY

clauses. These clauses specify when to reset the state of the given sampling operator and which
groups to return in the sample. ESL does not provide a separate sampling operator, but, similarly to
GSQL, user-defined sampling algorithms may be written as UDAFs.

2.3.4 SUMMARY

Table 2.1 summarizes the continuous query languages discussed in this section in terms of their
inputs and outputs, and the window types that they support; for a broader comparison, we refer the
interested reader to an article by Cherniack and Zdonik [2009]. Note that GSQL natively supports
only streaming inputs and only tumbling windows, but relation inputs and sliding window aggregates
may be incorporated via user-defined functions.

Table 2.1: Summary of selected continuous query languages.

Language/ Inputs Outputs Supported Windows
System

CQL/STREAM Streams, Positive deltas, Tumbling, Sliding, Jumping
Relations Negative deltas,

Relations
ESL/Stream Mill Streams, Streams Tumbling, Sliding, Jumping

Relations
GSQL/GS Tool Streams Streams Tumbling

SQuAl/Aurora Streams, Streams Tumbling, Sliding, Jumping
Relations

SyncSQL/Nile Streams, Streams, Deltas, Tumbling, Sliding, Jumping
Relations Relations
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2.4 STREAM QUERY PROCESSING
In this section, we discuss how a DSMS evaluates continuous queries. As in a DBMS, after a query
is issued, it is translated from a declarative specification into a logical query plan containing logical
operators (unless the user submits the logical query plan directly into the DSMS, as in the Aurora
system). The logical plan may be statically optimized (e.g., some operators may be re-ordered)
before being turned into a physical plan with concrete physical operators (e.g., a logical join operator
may become a non-blocking hash join). Since multiple continuous queries may be running at any
given time, we may choose to construct a single plan for all the queries and share memory and/or
computation whenever possible. Furthermore, the DSMS may re-optimize the physical query plan
over time.

Figure 2.3 illustrates a plan for two queries: 1) a join of streams S1 and S2 with a selection
predicate on S1, and 2) an aggregate on S2. A plan for one or more continuous queries is a directed
acyclic graph (DAG), with nodes corresponding to (non-blocking, pipelined) operators and edges
corresponding to data flow across operators. Each plan receives data from one or more sources, and it
produces one or more output streams, one per query. Note that buffers and queues are required at the
inputs and between operators to handle continuously arriving data. Also, note that the S2-buffer is
shared by two queries. When new tuples arrive on S1, they are retrieved from the input queue by the
selection operator, and tuples that satisfy the selection predicate are passed to the next queue. The
join operator must process tuples from the selection queue and the S2 input queue, by inserting them
into the appropriate state and probing the other state. Similarly, the aggregation operator processes
new tuples by updating its state and pushing an updated result on its output stream; optionally, new
results may be generated periodically.

In general, an operator may produce zero, one or more result tuples for each incoming tuple.
As in traditional DBMSs, we define the selectivity of an operator as the average number of outputs
produced by a single input tuple. For example, selection predicates have selectivity between zero and
one, while joins may have a selectivity greater than one. Other statistics relevant to continuous query
optimization include the stream arrival rates and the per-tuple processing time of each operator.
Note that knowing the stream arrival rates and the selectivity of each operator allows us to estimate
each operator’s output rate.

2.4.1 SCHEDULING

Suppose that the DSMS has chosen a physical plan and started to execute it. At any given time,
there may be many tuples in the input and inter-operator queues, especially if the stream arrival
rates are bursty. Thus, the DSMS scheduler must decide which tuples to process next. A simple
scheduling strategy is to allocate a time slice to each operator in round-robin fashion or to execute
each operator in round-robin fashion until it has processed all the tuples in its queue(s). Another
simple technique, first-in-first-out, is to process one tuple at a time in order of arrival, such that
each tuple is processed to completion by all the operators in the plan. However, while this strategy
ensures good response time (i.e., the difference between the generation time of a result and the
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Figure 2.3: A simple continuous query plan.

arrival time of the original tuple), scheduling one tuple at a time may incur too much overhead.
Instead, we can achieve low latency by scheduling operators that produce results with the highest
rate (i.e., those which produce the most results per unit time) [Carney et al., 2003; Sharaf et al.,
2008; Viglas and Naughton, 2002]. Similar algorithms have also appeared for minimizing average
slowdown, which is the ratio between the tuple response time and the shortest possible processing
time, assuming that there is no contention for resources [Sharaf et al., 2008].

On the other hand, we may want to minimize runtime memory usage by limiting the number
of tuples that wait in queues. If so, it is best to give priority to operators with low processing cost and
low selectivity—such operators will quickly clear out their queues and will not deposit many result
tuples in the next queue [Babcock et al., 2004a].

2.4.2 HEARTBEATS AND PUNCTUATIONS

We now discuss other types of tuples that may flow through a continuous query plan, namely those
which help deal with out-of-order arrivals and help “keep the pipeline moving”. Since DSMSs
process data arriving from external sources, some tuples may arrive late or out-of-order with respect
to their generation time (a simple but often inadequate solution could be to implicitly order the
stream by arrival time). Furthermore, we may not receive data from a source (e.g., a remote sensor
or a router) for some time, which could mean that there are no new data to report or that the source
is down. If there is a bound on the amount of time that a tuple may be late, we can simply buffer the
inputs (recall Aurora’s buffered sort operator from Section 2.2.2). However, the buffer time may be
unknown or variable over time.
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One solution to some of these problems is to embed control tuples in the data stream, called
punctuations [Tucker et al., 2003]. A punctuation is a special tuple that contains a predicate that is
guaranteed to be satisfied by the remainder of the data stream. For instance, a punctuation with the
predicate timestamp > 1262304000 guarantees that no more tuples will arrive with timestamps
below the given Unix time; of course, if this punctuation is generated by the source, then it is useful
only if tuples arrive in timestamp order. Punctuations that govern the timestamps of future tuples
are typically referred to as heartbeats [Johnson et al., 2005b; Srivastava and Widom, 2004a].

Another application of punctuations is to reduce the amount of state that operators need
to store and prevent operators from doing unnecessary work [Ding and Rundensteiner, 2004;
Ding et al., 2004; Fernandez-Moctezuma et al., 2009; Li et al., 2006b, 2005a]. For a simple ex-
ample, consider a sliding window hash join of two streams on some attribute attr . If a punctuation
arrives on one of the input streams with the predicate attr != a1 AND attr != a2, we can im-
mediately remove tuples with those attr-values from both hash tables. Recently, punctuations have
also been used to encode dynamic access control policies on data streams [Nehme et al., 2008] and
to carry user-defined annotations [Nehme et al., 2009].

In addition to punctuations and heartbeats generated by sources, the query plan itself may
need to produce heartbeats to avoid pipeline stalls and delayed results [Li et al., 2008]. Consider
query Q8, over an Internet packet stream S, which computes the total traffic to destination protocol
80 over 60-second tumbling windows.

Q8: SELECT minute, SUM(size)

FROM S

WHERE destination_port <= 80

GROUP BY timestamp/60 AS minute

A sample input is illustrated in Figure 2.4. The input attributes are
<timestamp, port, size>; other attributes such as IP addresses are not relevant to this
example. Suppose that the current tumbling window has started at time 8:01:00 and will end at
time 8:01:59. From the point of view of a query operator, time advances when a new tuple appears
in its queue. At time 8:01:45, the SUM operator has seen the four tuples illustrated on the right
(with port numbers between 1 and 80). The next tuple arrives at 8:02:00 and signals the end of
the current tumbling window; recall our assumption of ordered arrival. However, this tuple is not
passed to the SUM operator, so it does not know that the window has ended until the next tuple
arrives at time 8:02:15. Only then can the aggregate operator output the sum. On the other hand,
consider a strategy where the selection operator sends a heartbeat up to the SUM operator if it has
not propagated any results for some period of time, say, ten seconds. In this case, time advances
whenever a regular tuple or a heartbeat arrives. Here, the 8:02:15 tuple triggers a heartbeat with
the same timestamp, which indicates to the SUM operator that the current tumbling window has
ended.
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Figure 2.4: A continuous query with selection and tumbling window aggregation.

2.4.3 PROCESSING QUERIES-AS-VIEWS AND NEGATIVE TUPLES

In addition to “regular” tuples, punctuations and heartbeats, a continuous query plan may need to
process negative tuples if operating in the queries-as-views mode (recall Section 2.2.3). Negative
tuples may be implemented by adding a “sign” field to the schema of the stream and propagating this
field through all the query operators to the output stream. As we will show, most operators require
new physical variants to handle negative tuples [Ghanem et al., 2007; Golab and Özsu, 2005].

Consider the query plan shown in Figure 2.5, which evaluates a sliding window join over
explicit windows. That is, at any time, the output stream must contain all the deltas that are required
to construct a view of the current join result, taking into account only those tuples that are currently in
the windows. The figure shows how a tuple that has expired from the Stream 1 window is processed
by all the operators. New tuples are routed to the corresponding explicit window operators.These are
physical operators that store the window and propagate all the incoming tuples as well as negative
tuples up to the next operator. A count-based explicit window may be implemented as a circular
array; each new tuple evicts the oldest tuple in the window, and the evicted tuple is passed to the
next operator in the plan in the form of a negative tuple. A time-based explicit window may be
implemented as a linked list, with insertions to the head and expirations from the tail. Note that
time-based windows may contain a different number of tuples at different times, and that expirations
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σ σ

Figure 2.5: Maintaining a view over a sliding window join using negative tuples.

are independent from arrivals of new tuples. Thus, an explicit time-based window operator needs to
periodically check if the oldest tuple has expired, and, if so, generate a corresponding negative tuple.

The negative tuples that have been generated by explicit window operators must then be
processed by the remaining operators. Selection is an example of an operator that processes negative
tuples in exactly the same way as regular tuples—it passes them to the next operator if they satisfy
the selection predicate, or it drops them otherwise. The join operator also handles negative tuples in
the same way as regular tuples to “undo” previous results. Note that a single negative tuple consumed
by the join operator may result in zero, one or more negative tuples on the output stream, just as a
single regular tuple may produce zero or many join results. Furthermore, the join operator needs to
remove the corresponding regular tuple from its state (e.g., hash table) so that this tuple does not
produce any new results in the future.

Now suppose that the query plan in Figure 2.5 includes an aggregation operator on top of
the join. Some aggregates can easily handle negative tuples. For example, COUNT simply decrements
the stored count for each negative tuple seen. On the other hand, while MAX is easy to compute on
an unbounded stream or a tumbling window (we simply keep track of the largest value so far), it
becomes harder when negative tuples or expirations are involved. In Figure 2.6, we give an example
of finding the largest value in a sliding window, with tuples and their values shown on a time axis. At
time t1, the window spans all but the youngest tuple (with a value of 61), which has not yet arrived.
The maximum at this time is 75. At time t2, the youngest tuple arrives, but its value is smaller than
the maximum, so the answer does not change. However, at time t3, the window slides past the oldest
tuple with a value of 75, i.e., the corresponding negative tuple arrives. At that time, we need to find
the new maximum value, which is 73. In the worst case, this requires storing the entire window.

(A simple optimization to reduce the memory requirements of sliding window MAX is to
remove a tuple with value v if there is another tuple in the window with a value greater than v

and a younger timestamp. For example, in Figure 2.5, when the tuple with value 73 arrives, we can
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Figure 2.6: Finding the maximum element in a sliding window.

remove the five previous tuples (with values 53, 67, 71, 68 and 67) from the state. Similar kinds
of optimizations have been proposed for more complex sliding window operators, such as skylines
[Lin et al., 2005; Tao and Papadias, 2006] and top-k [Mouratidis et al., 2006].)

One downside of the negative tuple approach to maintaining a view of a continuous query is
that twice as many tuples flow through the plan.While we cannot avoid negative tuples with operators
such as negation, which are non-monotonic even on unbounded streams, we do not require them
for monotonic operators, such as joins, over explicit time-based windows. The insight is to realize
that in some cases, we can “predict” when tuples will expire. Thus, rather than generating negative
tuples, operators can tag regular tuples with their expiration times. Applications can then maintain
materialized views by removing tuples whose expiration times are smaller than the current time.

We formalize this observation as follows [Golab and Özsu, 2005]. As before, let Q(τ) be the
result of a continuous query Q at time τ . For simplicity, assume that tuples arrive at the DSMS
instantaneously and that results are produced instantaneously. Let S(τ) be the multi-set of tuples
arriving on the input stream(s) of Q at time τ and let S(0, τ ) be the multi-set of tuples that have
arrived up to and including time τ . Next, let PS(τ ) be the new results of Q generated at time τ

(i.e., the positive delta) and let ES(τ ) be results that were in Q(τ − 1) but are not in Q(τ) (i.e., the
negative delta), given an input stream S. Let PS(0, τ ) and ES(0, τ ) be all the positive and negative
deltas, respectively, up to and including time τ . In the query-as-view mode, Q(τ) evolves as follows.

∀τ Q(τ + 1) = Q(τ) ∪ PS(τ + 1) − ES(τ + 1)

Now, continuous queries and their operators may be classified as follows.

• An operator is monotonic if ∀τ∀S ES(τ ) = ∅. That is, results never “expire”.

• An operator is weakest non-monotonic if ∀τ∀S ∃c ∈ N such that ES(τ ) = PS(τ − c). That is,
irrespective of the input S, every result expires c time units after being generated.

• An operator is weak non-monotonic if ∀τ and ∀S, S′ such that S(0, τ ) = S′(0, τ ), it is true that
∀t ∈ PS(0, τ ) ∃r such that t ∈ ES(r) ∧ t ∈ ES′(r). That is, we can determine when a result
tuple will expire at the time of its generation, but different result tuples may have different
“lifetimes”.
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• An operator is strict non-monotonic if ∃τ∃S, S′ such that S(0, τ ) = S′(0, τ ) and ∃r∃t ∈

PS(0, τ ) such that t ∈ ES(r) ∧ t /∈ ES′(r). That is, at least some results have expiration times
that depend upon future inputs and, therefore, cannot be predicted at generation time.

For example, selection over an explicit time-based window is weakest non-monotonic; a tuple
with a timestamp t that satisfies the selection predicate will need to be removed from a materialized
view of the output at time t + w, where w is the window length [Krämer and Seeger, 2009]. On
the other hand, a join of two explicit time-based windows is weak non-monotonic. To see this, note
that a join result expires when at least one of its input tuples expires.This creates results with various
lifetimes, as a new tuple from one stream may join with a recent tuple from the other stream or one
that is about to expire [Cammert et al., 2008]. Finally, note that queries over explicit count-based
windows are strict non-monotonic since expirations from a count-based window are triggered by new
tuples, whose arrival times are generally unpredictable. The significance of the above classification is
that weakest and weak non-monotonic operators produce results with predictable expiration times
and, therefore, do not need to produce explicit negative tuples.

Of course, even if we do not propagate negative tuples through a query plan, operators still
need to purge expired tuples from their state, and, if applicable, generate new answers. For example,
returning to Figure 2.6, the sliding window MAX operator may not be explicitly notified of expirations
via negative tuples; instead, it needs to maintain the entire window and periodically check if the oldest
tuple has expired. Similarly, the join operator needs to remove expired tuples from its state even if
not explicitly signaled to do so by negative tuples.

2.5 STREAM QUERY OPTIMIZATION

Having discussed the basics of continuous query processing, we now present common DSMS query
optimization strategies. As in a traditional DBMS, the objective is to find an efficient query plan.
However, rather than minimizing the number of disk accesses, a continuous query plan should
minimize the processing cost per unit time in order to keep up with the inputs [Kang et al., 2003].
Some techniques to achieve this are similar to those used in traditional DBMSs, such as reordering
operators in a way that “filters out” as many tuples as possible early in the pipeline; others are specific
to the resource-constrained, long-running nature of streaming queries. Independently, as discussed
in Section 2.4.1, we may treat a DSMS as a real-time system and employ scheduling algorithms that
optimize various quality-of-service metrics.

2.5.1 STATIC ANALYSIS AND QUERY REWRITING

We begin with a discussion of static analysis and optimization. When a DSMS receives a declarative
query or a logical query plan, the first step is to ensure that the query can be evaluated in a non-
blocking fashion using finite memory. Most DSMSs simply do not allow potentially “unsafe” queries
such as joins of unbounded streams. However, some of these queries may, in fact, be executed using
limited memory [Arasu et al., 2004a].
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Consider two unbounded streams: S(A, B, C) and T (D, E). The query
πA(σA=D∧A>10∧D<20(S × T )) may be evaluated in bounded memory whether or not the
projection preserves duplicates. To preserve duplicates, for each integer i between 11 and 19, we
maintain the count of tuples in S such that A = i and the count of tuples in T such that D = i.
To remove duplicates, we store flags indicating which tuples have occurred such that S.A = i

and T .D = i for i ∈ [11, 19]. Conversely, the query πA(σA=D(S × T )) is not computable in
finite memory either with or without duplicates. Interestingly, πA(σA>10S) is computable in finite
memory only if duplicates are preserved; in which case, we simply place each S-tuple with A > 10 on
the output stream as soon as it arrives. On the other hand, the query πA(σB<D∧A>10∧A<20(S × T ))

is computable in bounded memory only if duplicates are removed: for each integer i between 11

and 19, we need to maintain the current minimum value of B among all the tuples in S such that
A = i and the current maximum value of D over all tuples in T .

Now, suppose that there is a logical plan for one or more queries. As in traditional DBMSs,
we may try to rewrite the plan to improve efficiency. Many well-known rewriting rules apply,
e.g., performing selections before joins and evaluating inexpensive predicates before complex ones
[Babu et al., 2004a; Golab et al., 2008b]. New rules have also been proposed for novel continuous
query operators.For example, selections and explicit time-based windows commute but not selections
and explicit count-based windows [Arasu et al., 2006] (to see this, note that an explicit count-based
window generates a negative tuple whenever a new tuple arrives; if we execute a selection operator
first, it may drop some tuples and prevent the window operator from producing the required negative
tuples).

Finally, some rewritings are possible if certain constraints can be guaranteed to hold on the
input(s). For example, we can compute a join of unbounded streams using very little memory if we
know that matching tuples, if any, arrive at most t time units apart [Babu et al., 2004b]. In some
cases, we can eliminate sliding window joins altogether [Golab et al., 2008a].

2.5.2 OPERATOR OPTIMIZATION - JOIN

Next, we discuss optimizing physical implementation of various operators, beginning with the join.
First, recall that joins are often evaluated on implicit or explicit sliding windows. In both cases,

the expired tuples need to be removed over time. One solution is to check for expired tuples after
every time tick. However, this may be expensive and unnecessary. For instance, in a hash join, it may
be necessary to check each hash bucket for expired tuples. Alternatively, when a new tuple arrives to
the join operator and is inserted into its hash bucket (and then probes the corresponding hash bucket
of the other window), the expired tuples can be removed from that particular bucket. Another choice
is to perform expiration periodically; in which case, the join operator may encounter expired tuples
during the probing stage and need to ignore them (expired tuples may be identified by comparing
their timestamps to the current time) [Golab and Özsu, 2003b]. Thus, periodic expiration reduces
the cleanup costs but increases the memory usage and join processing costs.
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Another opportunity for optimization involves joins of multiple streams. Suppose that we
need to join S1, S2 and S3 on a common attribute. When a new tuple arrives on S1, there are two
choices: probe S2 first or probe S3 first. If S2 is expected to produce fewer matches than S3, S2

should be probed first to minimize the number of intermediate results [Golab and Özsu, 2003b;
Viglas and Naughton, 2002; Viglas et al., 2003] and “short-circuit” the join operation as soon as
possible [Yang and Papadias, 2008].

2.5.3 OPERATOR OPTIMIZATION - AGGREGATION

Recall from Section 2.4.3 that maintaining the result of a sliding window aggregate function at
all times is difficult because it is necessary to react to every new and expired tuple. Re-computing
the aggregate periodically by grouping on the time attribute is a more efficient and often more
user-friendly solution (users may find it easier to deal with periodic output rather than a continuous
output stream [Arasu and Widom, 2004; Chandrasekaran and Franklin, 2003]). Below, we describe
several types of data structures called synopses that store enough state to efficiently re-compute various
aggregates.

Figure 2.7 illustrates a prefix synopsis that stores pre-computed values over prefixes of the
stream [Arasu and Widom, 2004].This synopsis is suitable for subtractable aggregate functions such
as SUM and COUNT. An aggregate f is subtractable if, for two multi-sets X and Y such that X ⊇ Y ,
f (X − Y ) = f (X) − f (Y ) [Cohen, 2006]. A prefix synopsis is associated with three parameters: s,
which is the time between updates (re-computations), b, which defines the longest window covered
by the synopsis (i.e., the synopsis allows us to compute the aggregate over any window length up
to b, so long as it is a multiple of s), and f , which is the type of aggregate function used to create
the synopsis. Let t be the last update time. The synopsis stores aggregate values over b prefixes:
f ([1, t]), f ([1, t − s]), f ([1, t − 2s]), . . . , f ([1, t − bs]). To compute f over a window of size ns

(where n < b) at time t , i.e., f ((t − ns, t]), we compute f ([1, t]) − f ([1, t − ns]). The example
shown in Figure 2.7 computes SUM over a window of size 7s using a prefix synopsis with b = 8 and
f = SUM. The next synopsis update, which takes place at time t + s, replaces f ([1, t − 8s]) with
f ([1, t + s]), where f ([1, t + s]) can be computed as f ([1, t]) + f ((t, t + s]). This can be done
efficiently by pre-computing f ((t, t + s]) incrementally as new tuples arrive.

An interval synopsis is used with distributive aggregates (recall Section 2.2.2) that are
not subtractable, such as MIN and MAX [Arasu and Widom, 2004; Bulut and Singh, 2003, 2005;
Zhang and Shasha, 2006; Zhu and Shasha, 2003]. An interval synopsis with parameters s, b, and f

(as defined for the prefix synopsis; additionally, assumes that b is a power of two) stores the values
of f over 2b intervals. In particular, there are b disjoint intervals of length s, b

2
disjoint intervals

of length 2s, and so on up to one interval of length bs. Figure 2.8 shows an interval synopsis with
b = 8 and f = MAX to compute MAX over a window of size 7s. To do this, we take the maximum
of the values stored in three disjoint intervals; in general, we need to access log b intervals. During
the next update at time t + s, we can drop f ((t − 8s, t − 7s]) because this interval now references
expired tuples. Furthermore, we insert f ((t, t + s]). As before, we can incrementally pre-compute
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Figure 2.7: A prefix synopsis.

Figure 2.8: An interval synopsis.

f ((t, t + s]) as new tuples arrive. Moreover, interval (t − s, t + s] is now full, and its value may be
computed as max(f ((t − s, t]), f ((t, t + s])).

Note that algebraic aggregates may be computed using the synopses of appropriate distributive
aggregates. For instance, since AVG = SUM/COUNT, a query computing the average may use SUM and
COUNT synopses.

Holistic aggregates may use an interval synopsis if it stores additional information per interval.
For instance, we can answer QUANTILE, TOP k, and COUNT DISTINCT queries by storing the full
frequency histogram in each interval. Alternatively, we can store a sketch (recall Section 2.2.2) in
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Figure 2.9: A basic interval synopsis.

each interval to obtain approximate answers [Arasu and Manku, 2004; Lee and Ting, 2006]. Of
course, this is possible only if we can merge sketches of non-overlapping intervals to produce a new
sketch. For example, we can merge two CM sketches simply by adding up the corresponding entries
in their arrays.

Technically, we may also store frequency counts or sketches in a prefix synopsis since many
sketches are subtractable. However, each interval of a prefix synopsis summarizes the entire stream
up to a certain point. Therefore, the synopsis may store counts of values that appeared a long time
ago and may never be seen again. This leads to excessive space usage and increased computation
costs. Additionally, given two sketches of the same size, one summarizing the interval [1, t + s]

and another summarizing (t, t + s], the latter should be more accurate since it does not have to
approximate the entire distribution of the stream.

We can reduce the space usage and update time of an interval synopsis by storing only the
b short intervals “at the bottom” [Golab et al., 2004; Krishnamurthy et al., 2006; Li et al., 2005b;
Zhu and Shasha, 2002]. The tradeoff is that querying such a synopsis is not as efficient as before:
we need to probe up to b intervals to compute the answer, up from log b intervals. We refer to this
modified synopsis as a basic interval synopsis. Figure 2.9 gives an example for b = 8 and a MAX query
over a window of length 7s.

Finally, we note that there exist synopses for approximating the current value of an aggregate
function at any time with bounded error. In contrast to basic interval synopses that maintain intervals
of equal size, the idea is to construct small intervals for recent data and longer intervals for older
data. This data structure is referred to as an Exponential Histogram and may be used for sliding win-
dow aggregates such as sum [Cohen and Strauss, 2003; Datar et al., 2002; Gibbons and Tirthapura,
2002], variance and k-medians clustering [Babcock et al., 2003], histograms [Qiao et al., 2003], and
order statistics [Lin et al., 2004; Xu et al., 2004].

2.5.4 MULTI-QUERY OPTIMIZATION

As we discussed above, aggregate queries over different window lengths and possibly different
SLIDE intervals [Golab et al., 2006b; Salehi et al., 2009] may share state and data structures. Simi-
larly, we can share state and computation across similar predicates and joins [Denny and Franklin,
2005; Dobra et al., 2002; Hammad et al., 2003; Hong et al., 2009; Zhang et al., 2005]. In general, a
DSMS may group similar queries and run a single query plan per group [Chen et al., 2000, 2002;
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Figure 2.10: Separate and shared query plans for Q1 and Q2.

Krishnamurthy et al., 2004; Wang et al., 2006]. Figure 2.10 shows some of the issues involved in
shared query plans. The first two plans correspond to executing queries Q1 and Q2 separately, in
which selections are evaluated before joins. The third plan executes both queries and evaluates the
join first, then the selections (note that the join operator effectively creates two copies of its output
stream). Despite sharing work across two queries, the third plan may be less efficient than separate
execution if only a small fraction of the join result satisfies the selection predicates σ1 through σ4. If
so, then the join operator will perform a great deal of unnecessary work over time. The fourth plan
addresses this problem by “prefiltering” [Golab et al., 2008b] the streams before they are joined.

For workloads consisting of a large number of queries with similar selection predi-
cates, predicate indexing is a useful optimization technique [Chandrasekaran and Franklin, 2003;
Demers et al., 2006; Fabret et al., 2001; Hanson et al., 1999; Krishnamurthy et al., 2006; Lim et al.,
2006; Madden et al., 2002b; Wu et al., 2004]. The idea is to build an index, such as a balanced tree,
for each attribute. When a new tuple arrives, we probe the predicate indices with the tuple’s attribute
values to find all the queries that are satisfied by this tuple.

2.5.5 LOAD SHEDDING AND APPROXIMATION

In some situations, a DSMS may not be able to evaluate all queries on every new tuple. One general
solution, which works particularly well for aggregates, is to report new answers less often or produce
approximate answers [Denny and Franklin, 2006], as already discussed. If this is not sufficient, the
DSMS may be forced to shed load by dropping a fraction of the input. The simplest load shedding
strategy is to randomly sample the input. Alternatively, semantic load shedding exploits properties
of the stream and/or the queries to drop “less important” tuples [Gedik et al., 2008; Tatbul et al.,
2003].

For an example of semantic load shedding, suppose that we are executing a sliding window
join, and we cannot keep up with the inputs or we do not have enough memory to store the windows.
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Suppose that our goal is to produce as many result tuples as we can. The idea is that tuples that
are about to expire or tuples that are not expected to produce many join results should be dropped
(in case of memory limitations [Das et al., 2005; Li et al., 2006a; Xie et al., 2005]), or inserted into
the join state but ignored during the probing step (in case of CPU limitations [Ayad et al., 2006;
Gedik et al., 2005]). Note that other objectives may be more appropriate in some cases, such as
obtaining a random sample of the join result [Srivastava and Widom, 2004b].

In general, if a DSMS needs to shed load, it should do so in a way that minimizes the drop
in accuracy. This problem becomes more difficult when multiple queries with many operators are
involved, as we must decide where in the query plan the tuples should be dropped. Clearly, dropping
tuples early in the plan is the most effective, but this affects the accuracy of many queries if the
plan is shared. On the other hand, load shedding later in the plan, after the shared sub-plans have
been evaluated and the only remaining operators are specific to individual queries, may have little
effect in reducing the system load. This gives rise to the problem of optimal placement of sampling
operators in multi-query plans. There are known results for random load shedding for windowed
aggregates [Babcock et al., 2004b] and for quality-of-service-driven load shedding for windowed
aggregates [Tatbul and Zdonik, 2006].

Another issue in this context is to decide how much load to shed. One possible approach is
to monitor the sizes of operator queues [Tu et al., 2006].

Finally, we note that it is not clear if an optimal query plan chosen without load shedding is
still optimal if load shedding is used. This turns out to be true for sliding window aggregates but not
for sliding window joins [Ayad and Naughton, 2004].

2.5.6 LOAD BALANCING

Instead of shedding load, it may be possible for a DSMS to defer it. For example, in some bursty
environments, it may be feasible to write some tuples to disk during overload and process them later
during quiet periods [Liu et al., 2006a; Reiss and Hellerstein, 2005].

Interestingly, some continuous queries may cause self-inflicted overload. For example, recall
query Q1, which computes the total traffic originating from each source IP address every minute. A
straightforward way of evaluating such a group-by-aggregation query is to immediately output the
new aggregate value for each group at the end of each tumbling window. Another approach, which
ensures a more balanced load at the expense of higher latency, is to output a new value for group g

only after we have seen at least one tuple belonging to g in the next window. In the GS Tool, this
approach is referred to as slow flush [Johnson et al., 2005c].

2.5.7 ADAPTIVE QUERY OPTIMIZATION

The per-unit-time cost of a continuous query plan may change over time for three reasons: 1) change
in the processing time of an operator due to a change in system conditions such as available CPU
or memory, 2) change in the selectivity of a predicate, and 3) change in the arrival rate of a stream
[Avnur and Hellerstein, 2000]. A DSMS may, therefore, change query plans on-the-fly, which may
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require transforming and migrating the state of operators in the old plan to operators in the new plan
[Babu and Widom, 2004; Babu et al., 2005; Deshpande and Hellerstein, 2004; Zhu et al., 2004].
Alternatively, instead of using a fixed query plan at any point in time, the Eddies approach routes
each tuple through all the query operators in some order that is independent of the evaluation order
of other tuples [Avnur and Hellerstein, 2000; Bizarro et al., 2005; Chandrasekaran and Franklin,
2003; Deshpande,2004; Gu et al., 2007; Madden et al., 2002b; Raman et al., 2003;Tok and Bressan,
2002]. In effect, the query plan is dynamically re-ordered to match the current system conditions.
This is accomplished by tuple routing policies that attempt to discover which operators are fast and
selective, and those operators are scheduled first. A recent extension adds queue length as the third
factor for tuple routing strategies in the presence of multiple distributed Eddies [Tian and DeWitt,
2003]. There is, however, an important trade-off between the resulting adaptivity and the overhead
required to route each tuple separately.

2.5.8 DISTRIBUTED QUERY OPTIMIZATION

Distributing a DSMS across a cluster of machines is necessary to deal with high-speed data streams.
There are two broad issues in distributed DSMS optimization: parallelizing and distributing the
system itself, and shifting some computation to the sources of the data. We discuss each issue below.

In terms of distributing the DSMS, there are at least two options: we can split the query
plan across multiple processing nodes, or we can partition the stream and let each node process a
subset of the data to completion [Abadi et al., 2005; Johnson et al., 2008]. Partitioning the query
plan involves assigning query operators to nodes [Xing et al., 2006] and may require re-balancing
over time [Liu et al., 2005; Shah et al., 2003; Xing et al., 2005]. Partitioning the data is usually done
once for a given query workload. The simplest stream partitioning method is to route incoming
tuples to processing nodes in a round robin fashion. However, this approach is suboptimal for may
classes of continuous queries, including joins and aggregates with grouping. For example, suppose
that we want to evaluate query Q1 from Section 2.1.1 in a distributed fashion because the incoming
stream is too fast to be processed by a single machine. Round-robin partitioning may assign tuples
with the same source IP address to different nodes. This means that each node may produce partial
sums for a number of groups, which will have to be combined to obtain the final answer at the end
of each window. On the other hand, if we split the stream by source IP address, each node will
have enough information to compute the final aggregate for some subset of IP addresses. Hence,
hash-based partitioning on the group-by attributes is more efficient.

Query processing at the sources, also known as in-network processing, can reduce the commu-
nication overhead between the sources and the DSMS, and the load on the DSMS. Distributive
aggregates over tumbling windows can be easily computed in this fashion—rather than sending all
the “raw” data to the DSMS, each source can pre-aggregate its data and send partial aggregates. The
DSMS then combines the partial aggregates into a final answer. Holistic aggregates, on the other
hand, cannot be pre-computed by the sources and merged at the DSMS. However, we can obtain
approximate answers to holistic aggregates using in-network processing by having each source pre-



2.5. STREAM QUERY OPTIMIZATION 37

compute a sketch. The DSMS can then combine the sketches and compute the final answer. This
procedure is very similar to merging sketches in a sliding window synopsis (recall Section 2.5.3).

There exist further optimization opportunities if the sources can communicate with each other
in addition to communicating directly with the DSMS [Madden et al., 2002a; Nath et al., 2004];
for example, the communication network of the sources and the DSMS may be a tree (with the
DSMS at the root). For distributive aggregates, rather than having each source send pre-aggregated
data directly to the DSMS, the sources can merge their pre-aggregated data with those of their
descendants.

The above techniques apply to queries that produce a time-evolving output stream, such as
aggregates over tumbling windows. Now, suppose that we want to maintain the latest result of
some function that requires input from a set of distributed sources. For instance, we may want
to keep track of the average speed of a set of vehicles. In a naive solution, each source gen-
erates a continuous stream of updates to its current speed. A more efficient solution is to keep
track of an approximate answer (with bounded error) by requesting updates from the sources, only
if the current answer exceeds the specified error bound [Babcock and Olston, 2003; Cheng et al.,
2005;Cormode and Garofalakis,2005;Cormode et al.,2005,2006;Das et al.,2004; Jain et al.,2004;
Keralapura et al., 2006; Manjhi et al., 2005; Olston et al., 2003; Sharfman et al., 2007].
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C H A P T E R 3

Streaming Data Warehouses

This chapter covers the design of Streaming Data Warehouses (SDWs). In some ways, an SDW faces
the same challenges as standard data warehouses, among them the need to store massive amounts
of data on disk for off-line analysis. However, SDWs must also deal with DSMS-like issues such as
reacting to continuously arriving data.

Recall the abstract system architecture from Figure 1.4. In order to load new data as quickly
as possible, it is essential to ensure the efficiency of the ETL process (for base tables) and the update
scheduling and propagation mechanism (for derived tables). We will discuss how to do so below,
along with some novel query processing issues that arise in an SDW.

3.1 DATA EXTRACTION, TRANSFORMATION AND
LOADING

When new data arrive at the warehouse, they may need to be transformed before being loaded into
their base tables. Simple ETL tasks such as unzipping compressed files and standardizing attribute
values are easy to perform in a streaming fashion. However, some parts of the ETL process may be
more complex. For instance, a common transformation joins new data with a disk-resident table R

that contains various descriptive attributes, such as human-readable router names corresponding to
numerical router IDs found in a network performance feed. In a traditional warehouse that performs
updates during downtimes, we can buffer new data in a temporary table and then join the entire
temporary table with R using a standard join operator. In an SDW, we need to perform the join
incrementally as new data arrive. We have already discussed joining streams with relations in the
previous chapter. However, in this context, the relation is on disk and must be paged into main
memory, which introduces new challenges. A simple solution is to build an index on R and probe it
for every new tuple. However, this random access of R may cost up to one disk I/O per new tuple.
Instead, an algorithm called Mesh Join has been proposed that continually scans R back and forth in
a sequential fashion, and it brings in one page at a time into memory [Polyzotis et al., 2008]. New
tuples are buffered only until they have seen all the pages of R. When a new tuple has joined with
all of R, it can leave the buffer and is ready to be loaded into its base table. The next new tuple then
enters the buffer and begins probing the part of R that is currently in memory. Note that the Mesh
Join does not require R to be indexed and allows one-to-many joins from the new data to R.

After a batch of tuples has gone through the required transformations, it can be loaded into
the corresponding base table. Base and derived tables in an SDW are usually partitioned by a
timestamp attribute so that insertions of new data only affect a small number of recent partitions
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Figure 3.1: Partitioning a table on a timestamp attribute.

Figure 3.2: Updating a partitioned derived table.

[Folkert et al., 2005; Golab et al., 2009a; Shivakumar and García-Molina, 1997]. Figure 3.1 shows
a simple example with four separately indexed partitions of size two each. At time eight, all four
partitions are full and contain tuples with timestamps in the specified range. At time ten, we replace
the oldest partition with new data. If tuples arrive in timestamp order, then each update requires
disk access to only one partition.

3.2 UPDATE PROPAGATION

An efficient ETL process ensures that new data are loaded into base tables as soon as possible. The
next step is to efficiently propagate changes across multiple layers of derived tables (materialized
views).Again, this problem is simpler in traditional warehouses that are updated during downtimes—
a brute force solution is to recompute all the views or at least those which cannot be maintained
incrementally. In an SDW, the idea is to avoid recomputing an entire derived table and, instead,
recompute only those partitions that have changed. In Figure 3.2, we show a new file being loaded
into (the most recent partition of ) a base table B (Step 1). If we know the partition dependencies
between B and the derived table D, as shown, then we can infer that only the most recent partition
of D needs to be updated (Step 2). Furthermore, if we know the partition dependencies in the other
direction, from D to B, we can infer that recomputing the most recent D-partition requires reading
data from the two most recent B-partitions (Step 3).
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Figure 3.3: Identifying out-of-date partitions of rolled-up tables in response to an update to a fact table.

The challenge in efficient update propagation is to identify which partitions of a derived
table may have changed after a base table has been updated. In some cases, we can use dimension
hierarchies to find partitions that need updating. Figure 3.3 shows that if daily sales data are added
to a fact table, then we can determine which partitions of the weekly and monthly roll-up tables are
out-of-date.

In general, partition dependencies may not be obvious from the SQL specification of a de-
rived table and may need to be explicitly stated by the user. For example, the DataDepot ware-
house [Golab et al., 2009a] requires each view definition to include SOURCE_LOWER_BOUNDS and
SOURCE_UPPER_BOUNDS values that determine the relationship between partitions of a derived table
and partitions of its source(s). Suppose that derived table D is sourced from a single base table B

having 8 partitions of length one day each. Figure 3.4(a) illustrates the simplest case, in which D

also consists of 8 partitions of one day each (in practice, D may have many more partitions than B).
The upper and lower bounds are the same; in other words, the P th partition of S is derived from the
P th partition of B. In Figure 3.4(b), D stores two days of data per partition, making the lower and
upper bounds P ∗ 2 and P ∗ 2 + 1, respectively. That is, two consecutive source partitions of one
day each are needed to compute one derived partition; the multiplication factor signifies a change
of scale from one-day to two-day partitions. This example is similar to a traditional roll-up table. In
Figure 3.4(c), D is a sliding window aggregate extending four days into the past, as specified by the
lower and upper bounds of P − 3 and P , respectively.

We note that partition dependencies can be thought of as tracing the lineage of a table and its
partitions. Coarse-grained (i.e., partition-based) lineage is sufficient for an SWD to ensure efficient
maintenance of derived tables, in contrast to tuple-based lineage tracing used in data exploration
[Cui and Widom, 2000], probabilistic data management [Widom, 2005], and multi-query opti-
mization [Krishnamurthy et al., 2006; Madden et al., 2002b].
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Figure 3.4: Examples of partition dependencies.

3.3 DATA EXPIRATION

As shown in Figure 3.1, an SDW maintains temporally partitioned tables and replaces old partitions
with new ones over time. These are similar to sliding windows maintained by a DSMS, but they
are usually much longer; some derived tables may store months or even years of historical data.
So far, we have used a single timestamp for partitioning and expiration, which implies that every
tuple in a warehouse table has the same lifetime. However, as we discussed in Section 2.4.3, weak
non-monotonic operators such as joins over explicit windows generate results with variable lifetimes.

Consider storing tuples with variable lifetimes in the partitioned table from Figure 3.1. At
time ten, we will insert new data into partition I1, as before. However, we may have to remove expired
tuples from each partition.To see this, note that it is no longer true that only tuples that were inserted
at times 1 and 2 will expire at time 10. Similarly, if we partition the table on the expiration timestamp
rather than the generation timestamp, we can limit expirations to a single partition, but we may have
to insert new tuples into every partition. This defeats the purpose of partitioning.

A better solution for storing tuples with variable lifetimes is a doubly-partitioned table on
the insertion and expiration timestamps [Golab et al., 2006c], an example of which is illustrated in
Figure 3.5. As in our previous example, there are four partitions that are updated every two time
units; however, tuples now have lifetimes between one and eight time units. Furthermore, the four
partitions are now created by dividing the insertion and expiration times into two ranges each. As
illustrated at the top of Figure 3.5, at time 8, partition I1 stores tuples that have arrived between times
one and four that will expire between times 9 and 12 (the other three partitions may be described
in a similar way). The update illustrated on the bottom of Figure 3.5 occurs at time ten, inserts new
tuples into I1 and I2, and deletes expired tuples from I1 and I3. Observe that I4 does not have to
be accessed during this update or during the next update at time 12. Then, the next two updates
at times 14 and 16 will insert into I3 and I4, and delete from I2 and I4 (I1 will not be accessed).
In general, increasing the number of partitions leads to more partitions not being accessed during
updates.

One problem with the doubly-partitioned table in Figure 3.5 is that its partitions may not
have equal sizes. For example, at time 8, I2 stores items that arrived between times one and 4 and
will expire between times 13 and 16. That is, I2 is empty at that time because there are no items
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Figure 3.5: Partitioning a table on two attributes: insertion and expiration timestamp.

whose lifetimes are larger than 8. As a result, the other three partitions are large and their update
costs may dominate the overall maintenance cost.

This problem can be addressed by changing the insertion and expiration times assigned to each
partition. An improved technique is shown in Figure 3.6 for the same parameters as before (tuple
have lifetimes of up to 8 time units and updates occur every two time units). Rather than dividing
the insertion and expiration time ranges chronologically, we now distribute updates in round-robin
fashion such that no partition incurs two consecutive insertions or expirations. For instance, the
update illustrated in Figure 3.6 takes place at time 10, inserts new tuples into I1 and I2, and expires
tuples from I1 and I3. The next update at time 12 inserts new tuples into I3 and I4, and deletes old
tuples from I2 and I4. Spreading consecutive updates over different partitions ensures that partitions
have similar sizes [Golab et al., 2006c].

3.4 UPDATE SCHEDULING
Having explained how an SDW propagates new data across derived tables, we now deal with the
issue of when to perform updates. In practice, external sources push new data into the warehouse, so
it is not feasible to request new data at a particular time of our choosing. Instead, we need to react
to new data. Ideally, we want to load a batch of data as soon as it arrives and update all the affected
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Figure 3.6: Another way of partitioning a table on the insertion and expiration timestamps.

derived tables. However, in practice, an SDW may receive tens or hundreds of data feeds and may
maintain hundreds of derived tables. Without a limit on the number of tables being updated in
parallel, we risk memory, CPU and disk arm thrashing, which severely impacts performance. One
way to control resource usage is by using a scheduler to invoke table updates [Bateni et al., 2009;
Golab et al., 2009b].

A scheduler requires an optimization metric to guide its decisions. Real-time systems typ-
ically aim to schedule jobs before their deadlines. In contrast, a natural metric for an SWD is to
minimize data staleness. There are several reasonable ways to define staleness [Adelberg et al., 1995;
Cho and Garcia-Molina, 2000; Labrinidis and Roussopoulos, 2001], one of which is to take the
difference between the current time and the most recent tuple loaded into a given table. If tables
have priorities, then minimizing priority-weighted staleness is more appropriate.

Figure 3.7 plots the staleness of a streaming warehouse table over time. Suppose that the first
batch of new data arrives at time 4 with tuples that have been produced up to time 3 (e.g., it may
have taken one unit of time for the data to arrive). Staleness accrues linearly until the data have
been loaded at time 5. At that time, staleness drops to two since data up to time 3 have been loaded.
Suppose that the next batch of data arrives at time 7, with data up to time 7, and that the third batch
arrives at time 9, with data up to time 9. Suppose that the SDW loads both batches at time 11 (e.g.,



3.5. QUERYING A STREAMING DATA WAREHOUSE 45

�

✁

✂

✄

☎

✆

✁� ✂ ✄ ☎ ✆ ✝ ✞ ✟ �✠

�

✡☛ ☞✌ ✍✎ ✌ ✏ ✏ ✑✒ ✎ ✓
✔ ☞✌ ✍✌ ✕☛ ✍✖ ✍✗ ✘ ✙

✡☛ ☞✌ ✍✎ ✚ ✖ ✌ ☞ ✎ ☞

✡☛ ☞✌ ✍✎ ✌ ✏ ✏ ✑✒ ✎ ✓
✔ ☞✌ ✍✌ ✛ ✎ ✍ ✜✎ ✎ ✢ ✍✗ ✘ ✌ ✢ ☞ ✍✗ ✣ ✙

✡☛ ☞✌ ✍✎ ✌ ✏ ✏ ✑✒ ✎ ✓
✔ ☞✌ ✍✌ ✛ ✎ ✍ ✜✎ ✎ ✢ ✍✗ ✣ ✌ ✢ ☞ ✍✗ ✤ ✙

� �

✡☛ ☞✌ ✍✎ ✚ ✖ ✌ ☞ ✎ ☞

✔ ☞✌ ✍✌ ✛ ✎ ✍ ✜✎ ✎ ✢ ✍ ✣ ✌ ✢ ☞ ✍ ✤ ✙

Figure 3.7: A plot of the staleness of a SDW table over time.

it may have been busy loading other tables and could not process the second batch right away). In
this case, staleness accrues linearly between time 5 and time 11, and drops to 2 at time 11 since data
up to time 9 have been loaded. Note that if the second batch of data did not arrive, and instead the
third batch arrived at time 9 with data generated between times 3 and 9, then the staleness function
would be exactly the same.

A simple greedy heuristic for minimizing priority-weighted staleness is as follows [Golab et al.,
2009b]. Of all the tables that are currently out-of-date, we update the one whose priority-weighted
staleness can be improved by the greatest amount per unit of processing time. Note that computing
the possible improvement in staleness requires the knowledge of view hierarchies. If a derived table
D is stale, and so are its sources, then attempting to update it gives a staleness improvement of zero
(we must update the sources first).

3.5 QUERYING A STREAMING DATA WAREHOUSE
Having discussed techniques for efficiently maintaining data in an SDW, we now turn to query
processing. The first issue is the overhead of partitioned tables. Suppose that table D receives new
data every 15 minutes and that we want to maintain a 2-year historical window. From the point
of view of updates, we can avoid accessing existing data by maintaining 15-minute partitions (each
update will be loaded into its own partition). However, this requires 4 ∗ 24 ∗ 365 = 35040 partitions
in total, and extracting data from a particular day requires accessing 96 separate partitions. On the



46 3. STREAMING DATA WAREHOUSES

other hand, daily partitions may be easier to manage, but they may have to be repeatedly re-computed
as new data arrive throughout the day. This may be solved by creating variable-sized partitions. For
example, we can partition the most recent data into 48 partitions of size 15 minutes each, and
partition the rest of the data by day [Golab et al., 2009b]. Of course, over time, the SDW needs to
roll-up the 15-minute partitions into daily partitions.

The second problem involves data availability and concurrency control. Given that tables are
updated frequently, we want to ensure that queries are not “blocked” by updates, and that queries read
consistent data even if an update occurs while a query is running. One solution is to use multi-version
concurrency control at the partition level [Golab et al., 2009b]. That is, for each table, we maintain
a partition directory with pointers to the current partitions. When updating a table, we create new
copies of all the partitions that have changed and construct a temporary partition directory that
points to the new copies. At the end of the update, we replace the old partition directory with the
new one and garbage-collect old partitions (provided that they are not being used by a query). When
a query is issued, it copies the current partition directory and uses it until it has read all the data.
An alternative solution is to take the latest update into account, provided that the query has not yet
accessed any partitions that were affected by the update [Golab et al., 2006a].

Finally, updating tables as soon as new data arrive may cause queries to read “unstable” par-
titions even with multi-version concurrency control. For example, suppose that a base table B is
partitioned by hour and receives new data every 15 minutes. If a new update arrives at the beginning
of an hour and starts a new partition, this partition will be updated three more times within the
next hour. Thus, running the same query on B at different times throughout the hour may give
different answers. A simple way to ensure more “stability” in the result is to omit partitions that are
not yet full when evaluating a query. To determine if a partition is full, we recursively check if all
of its source partitions are full; assuming that data arrive in timestamp order, a base table partition
spanning timestamps t1 through t2 is full if at least one tuple with a timestamp greater than t3 has
arrived. Of course, some queries may require access to all the available data, so an SDW should be
able to return “stable” or “unstable” results.
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C H A P T E R 4

Conclusions

In this lecture, we discussed end-to-end stream data management, including Data Stream Manage-
ment Systems for on-line query processing and Streaming Data Warehouses for off-line analysis.
We conclude with some directions for future work.

Chapter 2 focused on systems that extend the relational model and support relational-like
queries with selections, joins and aggregations.There has been some recent work on supporting other
types of queries on streaming data, such as pattern matching and event processing. Incorporating
these new operators in a general-purpose DSMS is an important practical problem.

As the amount of streaming data increases, DSMSs need to become even more scalable
than they are today. One solution is to take advantage of new hardware. For example, in network
management, we can perform some low-level data processing on routers and network interface cards
using fast content-addressable memories.

Streaming Data Warehouses have appeared very recently and will likely be improved over
time. Many aspects of SDWs require further research, including update scheduling strategies for
optimizing various objectives, and monitoring data consistency and quality as new data arrive.

There are a number of relevant issues that this lecture has not covered or has covered briefly.
Mining of data streams is one important topic that is not included. Another issue that is not included
is fault-tolerance. We also discuss the resource management and distributed processing issues only
briefly.
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