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Abstract
Enantioenriched 2,3,4-trisubstituted thiochromanes have been synthesized by using a cupreine-
catalyzed tandem Michael addition–Henry reaction between 2-mercaptobenzaldehydes and β-
nitrostyrenes. Good diastereoselectivities and enantioselectivities were obtained for the title
compounds, which may be further improved through a single recrystallization (up to 98% de and>
99% ee).
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Chromanes are an important class of compounds that are found in many biologically active
natural products.[1] Thiochromanes, the sulfur analogues of chromanes, have also been
reported to possess important biological activities.[2] There are also reports that the
replacement of the oxygen atom in chromanes with a sulfur atom results in enhanced
bioactivities.[2d,f] Some representative examples are collected in Figure 1. Tertatolol (1) has
been shown to have affinity to 5HTA1 receptors in human and rat brains.[2a,b] Thiochromane
derivative 2 also displays a mixed binding affinity to dopamine D2, D3 and 5HTA1 receptors,
[2d] whereas thiochromane derivative 3 shows potent anti-HIV activity.[2e]

Owing to their biological activities, several asymmetric methods have been developed for the
synthesis of these compounds, which include asymmetric reduction of thiochroman-4-ones,
[3] enzymatic resolution of racemic 4-hydroxythiochromanes or 4-acyloxythiochromanes,[4]
and enantioselective alkylation of thiochromanes via conjugate addition.[5] Last year Wang
and co-workers reported an enantioselective tandem Michael–aldol reaction for the synthesis
of thiochromenes catalyzed by a proline derivative.[6] Most recently, the same group also
reported a quinine thiourea-catalyzed tandem Michael–aldol reaction for synthesis of
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thiochromanes.[7] Nonetheless, even with these progresses, an enantioselective method for the
synthesis of 3-amino-4-hydroxythiochromanes (such as 2) is still lacking.

Recently, as part of our continued interest in enantioselective organocatalysis,[8] we reported
a highly enantioselective Henry reaction[9] for the synthesis of α-hydroxyphosphonates by
using cupreine derivatives as the catalysts.[10] During this study, we envisioned that a tandem
[11] Michael–Henry reaction may be achieved if the starting material has both a nucleophilic
and an electrophilic site, such as 2-mercaptobenzaldehyde. Although tandem Michael–Henry
reactions are known in the literature,[12] only very recently have Hayashi and co-workers
reported a catalytic enantioselective method.[13] Moreover, the synthesis of thiochromanes by
using this tandem reaction has never been studied.[14] Herein, we report an organocatalytic,
enantioselective tandem Michael–Henry reaction for the direct synthesis of 2-aryl-3-nitro-4-
hydroxythiochromanes.

By using 2-mercaptobenzaldehyde (8) and β-nitrostyrene (9) as the model compounds, we
initially studied the tandem Michael–Henry reaction using 5 mol% of DABCO as the catalyst
at room temperature (entry 1, Table 1). We were pleased to find that the reaction was completed
in just 5 min and only two diastereomers of the expected 2-phenyl-3-nitro-4-
hydroxythiochromane (10a) were obtained in a ratio of 70:30, according to the 1H NMR
analysis of the crude product. Encouraged by this result, we further screened some readily
available alkaloid catalysts 4–7 (Figure 2) in an effort to develop an enantioselective reaction,
and the results are summarized in Table 1.

As shown in Table 1, with 5 mol% loading of quinine (4) in diethyl ether, the reaction of 8 and
9 proceeds smoothly, and complete conversion was achieved in just 5 min (entry 2). The same
two diastereomers were formed in a ratio of 75:25. However, the ee value of the major
diastereomer was only 8% for the enantiomer of 10a [i.e., the (2S,3R,4S)-stereo-isomer].
Catalyst 5 (9-O-benzylcupreine) also produces a similar diastereoselectivity (67:33) with a
modest ee value of 29%, but with 10a as the major product of the major diastereomer (entry
3). In contrast, cupreine (6) proved to be a good catalyst for this reaction, and an ee value of
75% for 10a was obtained under similar conditions (entry 4). As expected, catalyst 7, the
diastereomer of 6, yielded 10a in similar diasteroselectivity and enantioselectivity as 6, except
that the enantiomer of 10a was obtained (entry 5). The reaction conditions were further
optimized for 6. Screening of some common organic solvents (toluene, CHCl3, and EtOAc,
entries 6–8) revealed that ether (entry 4) is the best one in terms of both diastereoselectivity
and enantioselectivity.

It was also found that the reaction temperature has subtle effects on the reaction (entries 9–
11): the highest enantioselectivity of 86% was obtained by carrying out the reaction at −10°C
(entry 10), whereas higher (entries 5 and 9) or lower temperatures (entry 11) all led to inferior
ee values. In contrast, the diastereoselectivity of this reaction is essentially not affected by the
reaction temperature (entries 5, 9, and 11). Since the reaction proceeds very quickly under the
optimized conditions (−10°C in ether), 5 mol% of catalyst loading seems unnecessary. Indeed,
the reaction with only 2 mol% loading gave similar results (entries 12 and 10). It should be
pointed out that the major diastereomer is a crystalline compound and the diastereoselectivity
and enantioselectivity may be easily improved by recrystallization from hexane/EtOAc. For
example, the diastereoselectivity and enantioselectivity of compound 10a were improved to
94:6 and > 99% ee, respectively, after a single recrystallization (entry 12, values in
parentheses).

To test the substrate scope of this new tandem reaction, the reaction of various 2-
mercaptobenzaldehydes[15] and β-nitrostyrenes was studied under the optimized conditions
using 2 mol% of cupreine (6) as the catalyst. The results are collected in Table 2.
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As shown in Table 2, the reaction of 2-mercaptobenzaldehyde with various β-nitrostyrenes all
give excellent yields of the desired products (≥ 94%, entries 2–9). According to NMR analyses
of the crude products, only two diastereomers were formed, even though three stereogenic
centers were generated. The diastereoselectivities were in the range of 68:32 to 77:23, and the
ee values of the major enantiomers were from 72 to 86%. β-Nitrostyrenes with electron-
withdrawing substituents on the ortho, meta or para positions afford thiochromanes with
slightly inferior enantioselectivities (entries 3–6), except for the 2-bromo substrate (entry 2),
for which the product was obtained in 85% ee. Besides the prototype 2-mercaptobenzaldehyde,
substituted 2-mercaptobenzaldehydes also react with β-nitrostyrenes. For example, the reaction
of 2-mercapto-4-methoxybenzaldehyde and β-nitrostyrene (entry 10) and 4-bromo-β-
nitrostyrene (entry 11) both give similar diastereoselectivities (ca. 70:30) and
enantioselectivities (ca. 80% ee). These results are comparable with those of 2-
mercaptobenzaldehyde (entry 1). Similar results were also observed when 4-methyl-2-
mercaptobenzaldehyde (entry 12) and 4-chloro-2-mercaptobenzaldehyde (entry 13) and β-
nitrostyrene were used; except that the yields (ca. 85%) and ee values (ca. 75%) were slightly
lower. As with compound 10a (entry 1), all these diastereomeric mixtures cannot be separated
by column chromatography; however, they may be readily separated by recrystallization. As
shown in Table 2 (data in parentheses), after a single recrystallization using hexane/EtOAc,
the major diastereomers of thiochromanes 10a–m may be obtained in very good diastereomeric
purity (dr ≥ 87:13) and high optical purity (>99% ee in several cases).

The absolute configuration of major diastereomer was assigned on the basis of the X-ray
crystallographic analysis on compound 10b (CCDC deposition number: 647961). The
stereochemistry of the major trans,trans-isomer is 2R,3S,4R.[16] A mechanism as shown in
Scheme 1 is proposed to explain the observed results. The mercapto group of the
mercaptoaldehyde is deprotonated by the catalyst and the newly formed anion is associated
with the catalyst through charge interactions. When β-nitrostyrene approaches this complex,
the nitro group will form hydrogen bonds with the two hydroxy groups of the curpreine. Among
the two possible orientations of the alkene substrate (Scheme 1), the re face approach is favored
(left structure), as the unfavourable steric interaction between the phenyl group and the catalyst
backbone is avoided. The attack of the sulfide anion onto the re face of the β-nitrostyrene leads
to the observed major enantiomer of the product.

To show the utility of this method in the preparation of enantioenriched 3-amino-4-
hydroxythiochromanes,[2d] the nitro compound 10a obtained in this study was reduced with
hydrogen gas under the catalysis of palladium/carbon. As shown in Eq. (1), the reaction leads
to the desired amino derivative 11 in good yield and with complete retention of the
stereochemistry.
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(1)

In summary, we have developed a tandem Michael–Henry reaction of 2-
mercaptobenzaldehydes and β-nitrostyrenes by using cupreine (6) as the catalyst. Chiral 2-
aryl-3-nitrothiochroman-4-ols have been synthesized with enantioselectivities up to 86% and
diastereomeric ratios up to 78:22. A single recrystallization of the diastereomeric mixture from
hexane/EtOAc enhances both the enantioselectivities (up to >99% ee) and
diastereoselectivities (up to 98% de). These products are useful for the synthesis of biologically
active thiochromane derivatives, such as compound 2.

Experimental Section
General Experimental Procedure

A solution of β-nitrostyrene (9, 0.2 mmol) and cupreine (6, 1.25 mg, 0.004 mmol) in anhydrous
diethyl ether (5.0 mL) was stirred at −10°C for 2 min. After which, a precooled solution (−10°
C) of 2-mercaptobenzaldehyde (8, 0.22 mmol) in anhydrous diethyl ether (5.0 mL) was added
over a period of 1 min. The reaction mixture was then stirred at the same temperature for 5
min. The solvent was removed at 0°C under reduced pressure. The crude mixture was subjected
to flash column chromatography over silica gel (eluted with 9:1 hexane/EtOAc and then
EtOAc) to furnish a mixture of two diastereomers, which was further recrystallized using a
mixture of hexane and ethyl acetate to afford 2,3,4-trisubstituted thiochromanes 10a–m as
colorless crystals. The compounds were fully characterized by 1H, 13C NMR, microanalysis
and optical rotation data.
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Figure 1.
Some biologically active thiochromane derivatives.
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Figure 2.
Catalysts screened for the tandem Michael-Henry reaction.
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Scheme 1.
Proposed transition states.
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