Note

Synthesis of 2 H -1-benzopyran derivatives with a strongly electron-withdrawing substituent at 6-position

Ali Ramazani* \& Golam Reza Fattahi-Nujokamberi
Chemistry Department, Zanjan University, P.O.Box 313, Zanjan Iran

Received 30 March 2000; accepted (revised) 11 April 2001

5-Bromo- and 5-nitro-2-hydroxybenzaldehyde react with the acetylenic ester $\mathbf{1}\left(\mathrm{R}=\mathrm{Me}\right.$ and $\left.\mathrm{Bu}^{i}\right)$ in the presence of triphenylphosphine to give the corresponding 6 -substituted $2 \mathrm{H}-1$ -benzopyran-2,3-dicarboxylic esters 4 . Isolated yields in the onepot preparation of compounds $\mathbf{4}$ are excellent. Reaction mechanism for the formation of compouds $\mathbf{4}$ is proposed. The structures of compounds $4 \mathrm{a}-\mathrm{c}$ have been confirmed by IR, MS and ${ }^{\mathrm{I}} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectroscopy and elemental analyses.

2 H -1-Benzopyrans (2 H -chromenes) are important intermediates in the synthesis of many natural products ${ }^{1}$ and medicinal agents ${ }^{2}$ including some potassium-channel activating drugs ${ }^{3,4}$. A feature common to all these compounds is the presence of a strongly electron-withdrawing substituent at 6position of the $2 \mathrm{H}-1$-benzopyran ring ${ }^{3,4}$. Literature preparations of $2 \mathrm{H}-1$-benzopyrans having electronwithdrawing substituents generally give low to moderate yields of product ${ }^{5-7}$ and this prompted us to investigate improved procedures toward these compounds. Recently, we have established the utility of vinylphosphonium salts for heterocyclic synthesis ${ }^{8,9}$. In this note, we wish to report a practical and highly efficient procedure for preparing $2 \mathrm{H}-1$ chromene derivatives $\mathbf{4 a - c}$ with a strongly electronwithdrawing substituent at 6 -position.

Many examples are known in which a heterocyclic alkene is formed from a phosphorane connected with a carbonyl group by a chain containing a heteroatom ${ }^{10-13}$. The formation of chromene 4 from salicylaidehyde, acetylenic ester and triphenylphosphine as reported here involves initial addition of triphenylphosphine to the acetylenic ester 1 and concomitant protonation of the $1: 1$ adduct, followed by attack of the anion of 2 to vinyl-triphenylphosphonium cation to form phosphorane 3 , which cyclises to 4 (Scheme I).

The structures of compounds $4 \mathrm{a}-\mathrm{c}$ were deduced from their elemental analyses and their ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$

Scheme I

NMR spectra. The mass spectra of these compounds displayed molecular ion peaks at $\mathrm{m} / \mathrm{z} 293,377$ and 326 , respectively.

In conclusion, vinyltriphenylphosphonium salts have been shown to be useful precursors for preparing 2 H -1-chromene derivatives with a strongly electronwithdrawing substituent at 6 -position. The one-step nature of the present procedure makes it an interesting alternative to multistep approaches ${ }^{12,13}$.

Experimental Section

Melting points were measured on an Electrothermal 9100 apparatus and are uncorrected. Elemental analyses were performed using a Heraeus CHN-O-Rapid analyzer. IR spectra were recorded on a Shimadzu IR-460 spectrometer; ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra on a JEOL EX-90A spectrometer at 90 and 22.6 MHz , respectively, and mass spectra on a Finnigan-Matt 8430 mass spectrometer operating at an ionization potential of 70 eV .

General procedure for the preparation of $\mathbf{2 H - 1}$ benzopyrans 4a-c : To a magnetically stirred solution of triphenylphosphine ($0.524 \mathrm{~g}, 2$ mmoles) and 2hydroxybenzaldehyde derivative (2 mmoles) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(12 \mathrm{~mL})$ was added dropwise, a mixture of the acetylenic ester (2 mmoles) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(4 \mathrm{~mL})$ at -10 ${ }^{\circ} \mathrm{C}$ over 15 min . The reaction mixture was then allowed to warm up to room temperature and stirred for 24 hr . The solvent was removed under reduced pressure and the viscous residue was purified by silica gel (Merck silica gel $60,230-400$ mesh) column chromatography using ethyl acetate-hexane (1:4) as eluent. The solvent was removed under reduced pressure and products 4a-c were obtained as colourless crystals. The characterisation data of the chromenes $\mathbf{4}$ are given below.

Dimethyl 6-nitro-2H-1-benzopyran-2,3-dicarboxylate 4a : Colourless crystals, m.p. $143-44^{\circ} \mathrm{C}$; yield 92%; $\operatorname{IR}(\mathrm{KBr})\left(v_{\max }, \mathrm{cm}^{-1}\right): 1728(\mathrm{C}=0), 1691(\mathrm{C}=0)$, $1227(\mathrm{C}-\mathrm{O})$ and $1198(\mathrm{C}-\mathrm{O}) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right): \delta 3.73$ and $3.89\left(6 \mathrm{H}, 2 \mathrm{~s}, 2 \times \mathrm{OCH}_{3}\right), 5.94(1 \mathrm{H}, \mathrm{s}, 2-\mathrm{H}), 7.12(1$ $\left.\mathrm{H}, \mathrm{d}, J_{8 \mathrm{H} .7 \mathrm{H}}=8.95 \mathrm{~Hz}, 8-\mathrm{H}\right), 7.54(1 \mathrm{H}, \mathrm{s}, 4-\mathrm{H}), 8.13(1$ $\left.\mathrm{H}, \mathrm{d}, J_{5 \mathrm{H} .7 \mathrm{H}}=2.95 \mathrm{~Hz}, 5-\mathrm{H}\right), 8.18\left(1 \mathrm{H}, \mathrm{dd}, J_{7 \mathrm{H} .8 \mathrm{H}}=8.95\right.$ $\left.J_{7 \mathrm{H} .5 \mathrm{H}}=2.95 \mathrm{~Hz}, 7-\mathrm{H}\right) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 52.57$ and $52.97\left(2 \mathrm{OCH}_{3}\right), 72.56(\mathrm{C} 2) ; 117.24,124.73,127.86$ and $131.85(4 \mathrm{CH}), 119.76$ and 122.98(C3 and C 4 a$)$, 142.73 (C6), $158.73(\mathrm{C} 8 \mathrm{a}), 163.86$ and $168.38(2$ $\mathrm{C}=\mathrm{O}$); MS (m/z, \%): 293($\mathrm{M}^{+}, 21$); 234($\mathrm{M}^{+}-\mathrm{CO}_{2} \mathrm{Me}$, 100), $188\left(\mathrm{M}^{+}-\mathrm{CO}_{2} \mathrm{Me}-\mathrm{NO}_{2}, 78\right)$. Analysis: Calc. for $\mathrm{C}_{13} \mathrm{H}_{11} \mathrm{NO}_{7}$ (293.24): $\mathrm{C}, 53.25 ; \mathrm{H}, 3.78 ; \mathrm{N}, 4.78$. Found: C, 53.4; H, 3.4; N, 4.5\%.

Di-tert-butyl 6-nitro-2H-1-benzopyran-2,3-dicarboxylate $4 \mathbf{b}$: Colourless crystals, m.p. $145-46^{\circ} \mathrm{C}$; yield 95%; $\operatorname{IR}(\mathrm{KBr}) \quad\left(\nu_{\max }, \quad \mathrm{cm}^{-1}\right): \quad 1730(\mathrm{C}=\mathrm{O})$, $1691(\mathrm{C}=\mathrm{O}), 1250(\mathrm{C}-\mathrm{O}) ; 1155(\mathrm{C}-\mathrm{O}) .{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right)$ $: \delta 1.39$ and $1.62\left(18 \mathrm{H}, 2 \mathrm{~s}, 2 \times \mathrm{CMe}_{3}\right), 5.81(1 \mathrm{H}, \mathrm{s}, 2-$ H), $7.09\left(1 \mathrm{H}, \mathrm{d}, J_{8 \mathrm{H} .7 \mathrm{H}}=9.84 \mathrm{~Hz}, 8-\mathrm{H}\right), 7.41(1 \mathrm{H}, \mathrm{s}, 4-$ H) , $8.11\left(1 \mathrm{H}, \mathrm{d}, J_{5 \mathrm{H} .7 \mathrm{H}}=2.86,5-\mathrm{H}\right), 8.16(1 \mathrm{H}, \mathrm{dd}$, $\left.J_{7 \mathrm{H} .8 \mathrm{H}}=9.84 J_{7 \mathrm{H} .5 \mathrm{H}}=2.86 \mathrm{~Hz}, 7-\mathrm{H}\right) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right)$: $\delta 29.16$ and $29.36\left(6 \mathrm{CH}_{3}\right.$ of $\left.2 \times \mathrm{CMe}_{3}\right) ; 74.44(\mathrm{C} 2)$, 83.60 and $84.62\left(2 \mathrm{C}\right.$ of $\left.2 \times \mathrm{CMe}_{3}\right) ; 118.17,125.75$, 128.76 and $131.41(4 \mathrm{CH}), 121.39$ and $126.76(\mathrm{C} 3$ and C4a), 143.70(C6), 160.40(C8a), 163.94 and 168.38 (2 $\mathrm{C}=\mathrm{O})$; MS (m/z, \%): 377($\left.\mathrm{M}^{+}, 26\right), \quad 321\left(\mathrm{M}^{+}\right.$ $\left.-\mathrm{CH}_{2}=\mathrm{CMe}_{2}, 27\right), 276\left(\mathrm{M}^{+}-\mathrm{CO}_{2} \mathrm{Bu}^{t}, 12\right), 265\left(\mathrm{M}^{+}-2\right.$ $\left.\mathrm{CH}_{2}=\mathrm{CMe}_{2}, 14\right), 219\left(\mathrm{M}^{+}-\mathrm{NO}_{2}-2 \mathrm{CH}_{2}=\mathrm{CMe}_{2}, 61\right)$, $175\left(\mathrm{M}^{+}-\mathrm{NO}_{2}-2 \mathrm{CH}_{2}=\mathrm{CMe}_{2}-\mathrm{CO}_{2}, 17\right)$. Analysis: Calc
for $\mathrm{C}_{19} \mathrm{H}_{23} \mathrm{NO}_{7}$ (377.40): $\mathrm{C}, 60.47 ; \mathrm{H}, 6.14 ; \mathrm{N}, 3.71$. Found: C, 60.7; H, 6.0; N, 3.5\%.

Dimethyl 6-bromo-2H-1-benzopyran-2,3-dicarbo-
xylate 4c: Colourless crystals, m.p. $139-40^{\circ} \mathrm{C}$; yield $90 \% ; \operatorname{IR}(\mathrm{KBr})\left(\nu_{\max }, \mathrm{cm}^{-1}\right): 1749(\mathrm{C}=\mathrm{O}), 1712(\mathrm{C}=\mathrm{O})$, 1236(C-O), $1199(\mathrm{C}-\mathrm{O}) .^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right): \delta 3.58$ and $3.75\left(6 \mathrm{H}, 2 \mathrm{~s}, 2 \times \mathrm{OCH}_{3}\right), 5.70(1 \mathrm{H}, \mathrm{s}, 2-\mathrm{H}), 6.78(1$ $\left.\mathrm{H}, \mathrm{d}, J_{8 \mathrm{H} .7 \mathrm{H}}=8.21 \mathrm{~Hz}, 8-\mathrm{H}\right), 7.20\left(1 \mathrm{H}, \mathrm{d}, J_{5 \mathrm{H} .7 \mathrm{H}}=2.67\right.$, $5-\mathrm{H}), 7.27\left(1 \mathrm{H}, \mathrm{dd}, J_{7 \mathrm{H} .8 \mathrm{H}}=8.21 J_{7 \mathrm{H} .5 \mathrm{H}}=2.67 \mathrm{~Hz}, 7-\mathrm{H}\right)$, $7.33(1 \mathrm{H}, \mathrm{s}, 4-\mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right): \delta 52.10$ and $52.51\left(2 \mathrm{OCH}_{3}\right), 71.92(\mathrm{C} 2), 114.56(\mathrm{C} 6), 119.12$, $132.15,132.65$ and $135.10(4 \mathrm{CH}), 152.15(\mathrm{C} 8 \mathrm{a})$, 161.89 and $164.75(2 \mathrm{C}=\mathrm{O}) ; \mathrm{MS}(\mathrm{m} / \mathrm{z}, \%): 328\left(\mathrm{M}^{+}+\right.$ $2,20), 326\left(\mathrm{M}^{+}, 20.5\right), 267\left(\mathrm{M}^{+}-\mathrm{CO}_{2} \mathrm{Me}, 100\right)$, $188\left(\mathrm{M}^{+}-\mathrm{CO}_{2} \mathrm{Me}-\mathrm{Br}, 60\right)$. Analysis: Calc. for $\mathrm{C}_{13} \mathrm{H}_{11} \mathrm{BrO}_{5}$ (327.14): C, $48.13 ; \mathrm{H}, 3.39$. Found: C, 48.5 ; H, 3.1%.

Acknowledgement

This work was supported by the Zanjan University Research Council.

References

1 Ashwood V A, Buckingham R E, Cassidy F, Evans J M, Faruk E A. Hamilton T C, Nash D J, Stemp G \& Willcocks K, J Med Chem, 29, 1986, 2194.
2 Ishizawa T, Koga H, Sato H, Makino T, Taka N, Takahashi T, Sato T \& Nabata H, Bioorg Med Chem Lett, 4, 1994. 1995.

3 Ohta M, Koga H, Sato H \& Ishizawa T, Bioorg Med Chem Lett, 4, 1994, 2903.
4 Sato H, Koga H, Ishizawa T, Makino T, Taka N, Takahashi T, \& Nabata H, Bioorg Med Chem Lett, 5, 1995, 233.
5 Evans J M, Fake C S, Hamilton T C, Poyser R H \& Watts E A. J Med Chem, 26, 1983, 1582.

6 Timar T, Eszenyi T, Sebok P, Galomb V, Fazekas J. Istvan T, Kovach E \& Nagy E, Eur Patent 40965I, 1991, Chem Abstr. 114, 1991, 143146.
7 Burrell G, Cassidy F, Evans J M, Lightowler D \& Stemp G, J Med Chem, 33, 1990, 3023.
8 Yavari I, Ramazani A \& Esmaili A A, J Chem Res (S), 1997, 208.
9 Yavari 1, Esmailı A A, Ramazani A \& Bolbol-Amiri A A, Monatsh Chem (Chem Monthly), 128, 1997, 927, Chem Abstr, 127, 1997, 331384d.
10 Becker K B, Tetrahedron, 36, 1980, 1717.
11 Schweizer E E, Liehr J G \& Monaco D J, J Org Chem, 33, 1968, 2416.
12 Kleschick W A \& Heathcock C H, J Org Chem, 43, 1978, 1256.

13 Zbiral E. Synthesis, 1974, 775.

