Synthesis of 3,4-Disubstituted 2H-1-Benzopyrans Through C-C Bond Formation via Electrophilic Cyclization

Shilpa A. Worlikar; Tanay Kesharwani; Tuanli Yao and Richard C. Larock*
Department of Chemistry, Iowa State University, Ames, Iowa 50011

Supporting Information

Page(s)
General S2
$\mathrm{Pd} / \mathrm{Cu}$-catalysed reaction of phenyl propargyl ether with aryl halides S2-S3
$\mathrm{Pd} / \mathrm{Cu}$-catalyzed reaction of terminal alkynes with iodobenzene S4-S5
$\mathrm{PPh}_{3} /$ DEAD-promoted formation of substituted phenyl propargylic ethers S5-S6
Iodocyclization of substituted propargylic aryl ethers S6-S11
PhSeBr cyclization of substituted propargylic aryl ethers S12-S13
3-(4-Fluoro-3-methylphenylethynyl)-4-phenyl-2H-benzopyran (44) S13
1,4-Dihydro-2,5-dioxacyclopenta[a]naphthalen-3-one (45) S14
References S14
Copies of ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra S15-S76

General. The ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were recorded at 300 and 75.5 MHz or 400 and 100 MHz respectively. Thin layer chromatography was performed using 60 mesh silica gel plates, and visualization was effected with short wavelength UV light (254 nm). All melting points are uncorrected. All high resolution mass spectra were recorded using EI at 70 eV . All reagents were used directly as obtained commercially unless otherwise noted.

Preparation of starting materials.

General procedure for the palladium/copper-catalyzed reaction of phenyl propargyl ether with aryl halides. To a solution of 2.5 mmol of the aryl halide in $\mathrm{Et}_{3} \mathrm{~N}$ $(15 \mathrm{ml})$ was added $\mathrm{PdCl}_{2}\left(\mathrm{PPh}_{3}\right)_{2}(2 \mathrm{~mol} \%)$, which was then stirred for $5 \mathrm{~min} . \mathrm{CuI}(1.5$ mol \%) was then added and the flask was sealed and flushed with Ar. The reaction was stirred for 20 min . A solution of 3.0 mmol of phenyl propargyl ether in 2 mL of $\mathrm{Et}_{3} \mathrm{~N}$ was then added dropwise and the reaction mixture was allowed to stir at room temperature for the desired time. After the reaction was over, the resulting solution was diluted with $\mathrm{H}_{2} \mathrm{O}(10 \mathrm{ml})$ and extracted with diethyl ether (3 x 15 mL). The combined ether fractions were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under vacuum to yield the crude product. The crude product was purified by flash chromatography on silica gel using ethyl acetate/hexanes as the eluent.

Phenyl 3-p-tolylprop-2-yn-1-yl ether (4). This compound was obtained as a white solid: mp 71-72 ${ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 2.30(\mathrm{~s}, 3 \mathrm{H}), 4.86(\mathrm{~s}, 2 \mathrm{H}), 6.94-7.08$ $(\mathrm{m}, 5 \mathrm{H}), 7.18-7.33(\mathrm{~m}, 4 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 21.7,56.9,83.5,87.5,115.2$,
$119.5,121.6,129.3,129.7,132.0,139.0,158.1$; IR (neat, cm^{-1}) 3032, 2914, 1598, 1490, 1214, 1029; HRMS m/z 222.10477 (calcd $\mathrm{C}_{16} \mathrm{H}_{14} \mathrm{O}, 222.10447$).

3-(4-Methoxyphenyl)prop-2-yn-1-yl phenyl ether (5). This compound was obtained as a light brown solid: $\mathrm{mp} 61-62{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 3.77(\mathrm{~s}, 3 \mathrm{H}), 4.88(\mathrm{~s}$, $2 \mathrm{H}), 6.81(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.95-7.03(\mathrm{~m}, 3 \mathrm{H}), 7.27-7.38(\mathrm{~m}, 4 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (75 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 55.4,56.8,82.7,87.2,114.0,114.5,115.1,121.5,129.6,133.5,158.0,160.0 ; \mathrm{IR}$ (neat, cm^{-1}) 3042, 2919, 1598, 1506, 1239, 1024; HRMS m/z 238.09979 (calcd $\mathrm{C}_{16} \mathrm{H}_{14} \mathrm{O}_{2}$, 238.09938).

3-(2-Methoxyphenyl)prop-2-yn-1-yl phenyl ether (6). This compound was obtained as a yellow oil: ${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 3.77(\mathrm{~s}, 3 \mathrm{H}), 4.90(\mathrm{~s}, 2 \mathrm{H}), 6.77-6.86(\mathrm{~m}$, $2 \mathrm{H}), 6.95$ (t, $J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.02$ (d, $J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.20-7.30(\mathrm{~m}, 3 \mathrm{H}), 7.36(\mathrm{dd}, J=$ 7.6, 1.6 Hz, 1H); ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 55.7,56.9,83.6,88.1,110.6,111.4$, $115.1,120.4,121.3,129.4,130.2,133.8,157.9,160.2$; $\operatorname{IR}\left(\right.$ neat $\left.\mathrm{cm}^{-1}\right) 3057,3032,2934$, 2243, 1603, 1270, 1024; HRMS m/z 238.09968 (calcd $\mathrm{C}_{16} \mathrm{H}_{14} \mathrm{O}_{2}, 238.09938$).

Substituted propargyl ether 7 was prepared according to a literature procedure. ${ }^{1}$
3,5-Di-tert-butylphenyl propargyl ether (8). To a solution of 2.06 g of 3,5 -di-tertbutylphenol $(10.0 \mathrm{mmol})$ in dry acetone $(50 \mathrm{ml})$ was added propargyl bromide (11.0 $\mathrm{mmol})$ and anhydrous $\mathrm{K}_{2} \mathrm{CO}_{3}(11.0 \mathrm{mmol})$. The resulting mixture was refluxed for 24 h . The reaction mixture was diluted with $\mathrm{H}_{2} \mathrm{O}(20 \mathrm{ml})$ and extracted with diethyl ether (3 x 20 ml). The combined ether layers were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure. The residue was purified by flash chromatography on silica gel (7:1 hexane/EtOAc) to afford 1.68 g of the indicated compound 7 (69% yield) as a yellow oil: ${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.30(\mathrm{~s}, 18 \mathrm{H}), 2.42(\mathrm{t}, J=2.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.63(\mathrm{~d}, J=2.4$
$\mathrm{Hz}, 2 \mathrm{H}), 6.83(\mathrm{~d}, J=1.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.05(\mathrm{~d}, J=1.5 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $31.5,35.0,55.7,75.4,79.1,109.4,115.7,152.2,157.3$; IR (neat, cm^{-1}) $3298,2939,1588$, 1424, 1285, 1050; HRMS m/z 244.18311 (calcd $\mathrm{C}_{17} \mathrm{H}_{24} \mathrm{O}, 244.18272$).

General procedure for the palladium/copper-catalyzed reaction of terminal

 alkynes with iodobenzene. To a solution of 4.5 mmol of iodobenzene in $\mathrm{Et}_{3} \mathrm{~N}(15 \mathrm{ml})$, was added $\mathrm{PdCl}_{2}\left(\mathrm{PPh}_{3}\right)_{2}(2 \mathrm{~mol} \%)$, and $\mathrm{CuI}(1.5 \mathrm{~mol} \%)$, and the mixture was stirred for 30 min under Ar. A solution of 3.0 mmol of the terminal alkyne in 2 mL of $\mathrm{Et}_{3} \mathrm{~N}$ was then added dropwise and the reaction mixture was allowed to stir at room temperature for the desired time. After the reaction was over, the resulting solution was diluted with $\mathrm{H}_{2} \mathrm{O}$ $(10 \mathrm{ml})$ and extracted with diethyl ether $(3 \times 15 \mathrm{~mL})$. The combined ether fractions were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under vacuum to yield the crude product. The crude product was purified by flash chromatography on silica gel using ethyl acetate/hexanes as the eluent.4-(3-Phenylprop-2-yn-1-yloxy)benzaldehyde (9). This compound was obtained as a brown solid: mp $86-87{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 5.00(\mathrm{~s}, 2 \mathrm{H}), 7.14(\mathrm{~d}, J=8.8$ $\mathrm{Hz}, 2 \mathrm{H}), 7.25-7.32(\mathrm{~m}, 3 \mathrm{H}), 7.41-7.44(\mathrm{~m}, 2 \mathrm{H}), 7.87(\mathrm{~d}, \mathrm{~J}=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 9.90(\mathrm{~s}, 1 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 57.0,82.9,88.1,115.4,122.0,128.5,129.1,130.6,132.0$, 132.1, 162.8, 191.0; IR (neat, cm^{-1}) 3078, 2827, 1690, 1598, 1250, 1009; HRMS m/z 236.08409 (calcd $\mathrm{C}_{16} \mathrm{H}_{12} \mathrm{O}_{2}, 236.08373$).

3,5-Di-tert-butylphenyl 3-phenylprop-2-yn-1-y1 ether (10). This compound was obtained as a light yellow solid: mp $54-55{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 1.32$ (s, $18 \mathrm{H}), 4.91(\mathrm{~s}, 2 \mathrm{H}), 6.91(\mathrm{~d}, J=1.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.06(\mathrm{t}, J=1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.26-7.31(\mathrm{~m}, 3 \mathrm{H})$, 7.41-7.45 (m, 2H); ${ }^{13} \mathrm{C}$ NMR (75 MHz, CDCl_{3}) δ 31.7, 35.2, 56.8, 84.5, 87.2, 109.6,
$115.8,122.6,128.5,128.8,132.0,152.4,157.6$; IR (neat, cm^{-1}) $3081,2963,1591,1362$, 1297, 1051; HRMS m/z 320.21446 (calcd $\mathrm{C}_{23} \mathrm{H}_{28} \mathrm{O}, 320.21402$).

General procedure for the triphenylphosphine/diethyl azodicarboxylate-

 promoted formation of the substituted phenyl propargylic ethers. To a solution of 1.31 g of $\mathrm{PPh}_{3}(5.0 \mathrm{mmol})$ in dry benzene $(15 \mathrm{ml})$ was added the substituted propargylic alcohol (5.0 mmol) and the substituted phenol (5.0 mmol) under an inert atmosphere with stirring. Diethyl azodicarboxylate $(0.87 \mathrm{~g}, 5.0 \mathrm{mmol})$ was then added slowly and the reaction mixture was stirred at r.t. for 18 to 36 h . After the reaction was complete, the solvent was evaporated under reduced pressure and the crude product was purified by flash chromatography on silica gel using hexanes/ethyl acetate as the eluent.3-tert-Butylphenyl 3-phenylprop-2-yn-1-y1 ether (11). This compound was obtained as a yellow oil: ${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.30(\mathrm{~s}, 9 \mathrm{H}), 4.86(\mathrm{~s}, 2 \mathrm{H}), 6.83$ (dd, $J=8.0,2.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.96-7.02(\mathrm{~m}, 1 \mathrm{H}), 7.08(\mathrm{t}, J=1.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.19-7.25(\mathrm{~m}, 4 \mathrm{H})$, 7.39-7.42 (m, 2H); ${ }^{13} \mathrm{C}$ NMR (75 MHz, CDCl_{3}) $\delta 31.4,34.8,56.6,84.3,87.2,111.2$, $113.1,118.6,122.4,128.4,128.7,129.1,131.9,153.0,157.7$; IR (neat, cm^{-1}) 3067, 2955, 2868, 1588, 1485, 1270, 1029; HRMS m/z 264.15187 (calcd $\mathrm{C}_{19} \mathrm{H}_{20} \mathrm{O}, 264.15142$).

3-(Cyclohex-1-enyl)prop-2-yn-1-yl phenyl ether (12). This compound was obtained as a dark brown oil: ${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.53-1.62(\mathrm{~m}, 4 \mathrm{H}), 2.04-2.10(\mathrm{~m}, 4 \mathrm{H})$, $4.77(\mathrm{~s}, 2 \mathrm{H}), 6.10-6.13(\mathrm{~m}, 1 \mathrm{H}), 6.93-6.98(\mathrm{~m}, 2 \mathrm{H}), 7.24-7.30(\mathrm{~m}, 2 \mathrm{H}), 7.40-7.70(\mathrm{~m}$, $1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 21.5,22.3,25.7,29.0,56.7,81.3,89.1,115.0,120.0$, 121.3, 129.5, 136.1, 157.9; IR (neat, cm^{-1}) 3032, 2919, 2217, 1593, 1485, 1219; HRMS $\mathrm{m} / \mathrm{z} 212.12047$ (calcd $\mathrm{C}_{15} \mathrm{H}_{16} \mathrm{O}, 212.12012$).

1-Naphthyl 3-phenylprop-2-yn-1-yl ether (13). This compound was obtained as a light brown solid: mp $50-51{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 5.08(\mathrm{~s}, 2 \mathrm{H}), 6.99(\mathrm{~d}, J=$ 7.4 Hz, 1H), 7.26-7.49 (m, 9H), 7.77-7.80(m, 1H), 8.30-8.33(m, 1H); ${ }^{13} \mathrm{C}$ NMR (75 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 57.2,84.2,87.5,105.9,121.2,122.4,122.6,125.6,125.9,126.0,126.7$, $127.7,128.5,128.9,132.0,134.8,153.8$; IR (neat, cm^{-1}) 3057, 2914, 1577, 1398, 1229, 1091; HRMS m/z 258.10497 (calcd $\mathrm{C}_{19} \mathrm{H}_{14} \mathrm{O}, 258.10447$).

General procedure for iodocyclization. To a solution of 0.25 mmol of the ether and 3 mL of $\mathrm{CH}_{3} \mathrm{NO}_{2}$, 2.0 equiv of NaHCO_{3} and 3.0 equiv of I_{2} dissolved in 2 mL of $\mathrm{CH}_{3} \mathrm{NO}_{2}$ was added gradually. The reaction mixture was allowed to stir at room temperature for the desired time. Alternatively, to a solution of 0.25 mmol of the ether and 3 mL of $\mathrm{CH}_{3} \mathrm{NO}_{2}$ at -25 to $-30{ }^{\circ} \mathrm{C}$, 1.5 equiv of ICl dissolved in 2 mL of $\mathrm{CH}_{3} \mathrm{NO}_{2}$ was added gradually. The reaction mixture was allowed to stir at -25 to $-30^{\circ} \mathrm{C}$ for the desired time. The excess I_{2} or ICl was removed by washing with satd aq $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$. The mixture was then extracted by diethyl ether ($3 \times 10 \mathrm{~mL}$). The combined ether layers were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under vacuum to yield the crude product, which was purified by flash chromatography on silica gel using hexanes/ethyl acetate as the eluent.

3-Iodo-4-phenyl-2H-benzopyran (2). This compound was obtained as a pale yellow solid: mp 99-100 ${ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 5.06(\mathrm{~s}, 2 \mathrm{H}), 6.61(\mathrm{dd}, J=7.7,1.6$ $\mathrm{Hz}, 1 \mathrm{H}), 6.76(\mathrm{dt}, J=7.7,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.85(\mathrm{dd}, J=8.0,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.14(\mathrm{dd}, J=7.9$, $1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.18-7.22(\mathrm{~m}, 2 \mathrm{H}), 7.39-7.46(\mathrm{~m}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (75 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 75.1$, $91.2,116.1,121.7,124.2,126.5,128.3,128.7,129.5,129.7,140.0,142.0,153.3$; IR (neat, cm^{-1}) 3062, 2904, 1475, 1219, 1029, 994; HRMS m/z 333.98600 (calcd $\mathrm{C}_{15} \mathrm{H}_{11} \mathrm{IO}$, 333.98547).

Figure 1. X-ray structure of compound 2
3-Iodo-4-(4-methylphenyl)-2H-benzopyran (24). This compound was obtained as a pale brown solid: $\mathrm{mp} 68-69{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 2.23(\mathrm{~s}, 3 \mathrm{H}), 4.87(\mathrm{~s}, 2 \mathrm{H})$, $6.46(\mathrm{dd}, J=7.7,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.58(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.66(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.89-$ $6.98(\mathrm{~m}, 3 \mathrm{H}), 7.07(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 21.6,75.2,91.1$, $116.1,121.7,124.4,126.6,129.4,129.5,129.7,137.1,138.1,142.0,153.5$; IR (neat, cm^{-} $\left.{ }^{1}\right) 3032,2914,2842,1475,1219,999$; HRMS m/z 348.00051 (calcd $\mathrm{C}_{16} \mathrm{H}_{13} \mathrm{IO}$, 348.00112).

3-Iodo-4-(4-methoxyphenyl)-2H-benzopyran (25). This compound was obtained as a pale brown solid: mp $110-111{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 3.85(\mathrm{~s}, 3 \mathrm{H}), 5.05(\mathrm{~s}$, $2 \mathrm{H}), 6.66(\mathrm{dd}, J=7.7,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.77(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.84(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H})$, $6.96(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.11-7.17(\mathrm{~m}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 55.5,75.2$, $91.4,114.1,116.1,121.7,124.6,126.6,129.7,130.8,132.3,141.7,153.5,159.5$; IR (neat, cm^{-1}) 2955, 2918, 2833, 1505, 1244, 1171, 1037; HRMS m/z 363.99640 (calcd $\left.\mathrm{C}_{16} \mathrm{H}_{13} \mathrm{IO}_{2}, 363.99603\right)$.

3-Iodo-4-(4-nitrophenyl)-2H-benzopyran (26). This compound was obtained as a yellow solid: mp 140-142 ${ }^{\circ} \mathrm{C}$ (decomp.); ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 5.07(\mathrm{~s}, 2 \mathrm{H}), 6.50$ (dd, $J=7.7,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.79(\mathrm{dt}, J=7.8,0.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.88(\mathrm{dd}, J=8.2,0.9 \mathrm{~Hz}, 1 \mathrm{H})$,
$7.19(\mathrm{dt}, J=8.0,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.41(\mathrm{dd}, J=6.9,1.9 \mathrm{~Hz}, 2 \mathrm{H}), 8.32(\mathrm{dd}, J=6.9,1.8 \mathrm{~Hz}$, $2 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 75.0,91.8,116.5,122.0,123.4,124.1,125.9,130.4$, 130.8, 140.4, 146.6, 147.8, 153.2; IR (neat, cm^{-1}) 3093, 2837, 1926, 1593, 1516, 1337, 1219; HRMS m/z 378.97119 (calcd $\mathrm{C}_{15} \mathrm{H}_{10} \mathrm{INO}_{3}, 378.97055$).

3-Iodo-4-(2-methoxyphenyl)-2H-benzopyran (27). This compound was obtained as a light brown solid: mp 111-113 ${ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 3.75(\mathrm{~s}, 3 \mathrm{H}), 5.01-5.13$ $(\mathrm{m}, 2 \mathrm{H}), 6.57(\mathrm{dd}, J=7.8,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.74(\mathrm{dt}, J=7.6,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.83(\mathrm{dd}, J=7.1$, $1.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.96-7.14(\mathrm{~m}, 4 \mathrm{H}), 7.37-7.42(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 55.9$, $74.9,92.7,111.6,116.0,121.0,121.7,123.8,126.1,129.0,129.5,130.0,131.0,139.5$, 153.2, 156.9; IR (neat, cm^{-1}) 2955, 2918, 1505, 1244, 1171, 1037; HRMS m/z 363.99644 (calcd $\mathrm{C}_{16} \mathrm{H}_{13} \mathrm{IO}_{2}, 363.99603$).

3-Iodo-6-methyl-4-phenyl-2H-benzopyran (28). This compound was obtained as a brown oil: ${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 2.10(\mathrm{~s}, 3 \mathrm{H}), 5.01(\mathrm{~s}, 2 \mathrm{H}), 6.41(\mathrm{~s}, 1 \mathrm{H}), 6.75(\mathrm{~d}$, $J=8.2, \mathrm{~Hz}, 1 \mathrm{H}), 6.94(\mathrm{~d}, J=8.2, \mathrm{~Hz}, 1 \mathrm{H}), 7.17-7.20(\mathrm{~m}, 2 \mathrm{H}), 7.40-7.46(\mathrm{~m}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 20.8,75.1,91.4,115.8,124.1,126.8,128.2,128.6,129.5$, $130.2,131.0,140.1,142.1,151.1$; IR (neat, cm^{-1}) 3052, 2914, 1741, 1485, 1229, 999; HRMS m/z 348.00155 (calcd $\mathrm{C}_{16} \mathrm{H}_{13} \mathrm{IO}, 348.00112$).

6-tert-Butyl-3-iodo-4-phenyl-2H-benzopyran (29). This compound was obtained as a pale yellow solid: mp $84-86{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 1.11(\mathrm{~s}, 9 \mathrm{H}), 5.03(\mathrm{~s}, 2 \mathrm{H})$, $6.63(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.79(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.16(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.18-7.22(\mathrm{~m}$, 2H), 7.37-7.48 (m, 3H); ${ }^{13} \mathrm{C} \operatorname{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 31.4,34.3,75.2,90.9,115.4$, $123.5,123.8,126.6,128.3,128.6,129.5,140.1,142.4,144.5,151.1$; IR (neat, cm^{-1}) 3052 , 2950, 1485, 1357, 1229, 1004; HRMS m/z 390.04856 (calcd $\mathrm{C}_{19} \mathrm{H}_{19} \mathrm{IO}, 390.04807$).

3-Iodo-6-methoxy-4-phenyl-2H-benzopyran (30). This compound was obtained as a pale brown solid: mp $81-82{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 3.59(\mathrm{~s}, 3 \mathrm{H}), 4.99(\mathrm{~s}, 2 \mathrm{H})$, $6.19(\mathrm{~d}, J=2.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.69(\mathrm{dd}, J=8.7,2.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.79(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.18-$ $7.23(\mathrm{~m}, 2 \mathrm{H}), 7.38-7.46(\mathrm{~m}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 55.8,75.3,92.4,112.5$, $114.4,116.6,125.1,128.4,128.8,129.5,140.0,142.1,147.4,154.3$; IR (neat, cm^{-1}) 2991, 2924, 2822, 1572, 1480, 1301, 1198; HRMS m/z 363.99663 (calcd $\mathrm{C}_{16} \mathrm{H}_{13} \mathrm{IO}_{2}$, 363.99603).

6-Chloro-3-iodo-4-phenyl-2H-benzopyran (31). This compound was obtained as a brown solid: mp $89-90{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 5.07(\mathrm{~s}, 2 \mathrm{H}), 6.59(\mathrm{~d}, J=2.6$ $\mathrm{Hz}, 1 \mathrm{H}), 6.79(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.09(\mathrm{dd}, J=8.6,2.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.19(\mathrm{dd}, J=7.8,1.9 \mathrm{~Hz}$ 2H), 7.43-7.48 (m, 3H); ${ }^{13} \mathrm{C} \operatorname{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 75.3,93.0,117.4,125.3,126.1$, 126.7, 128.6, 129.0, 129.4, 129.5, 139.4, 141.2, 151.9; IR (neat, cm^{-1}) 2919, 2848, 1477, 1403, 1093, 638; HRMS m/z 367.94723 (calcd $\mathrm{C}_{15} \mathrm{H}_{10} \mathrm{ClIO}, 367.94649$).

3-Iodo-4-phenyl-2H-benzopyran-6-carbaldehyde (32) and 3-(iodophenyl-methylene)-2,3-dihydrobenzofuran-5-carbaldehyde (33). These compounds were obtained as a light brown solid as a $2: 1$ mixture: ${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 5.07(\mathrm{~s}$, $2 \mathrm{H}), 5.19(\mathrm{~s}, 1 \mathrm{H}), 6.95(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.11(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 3 \mathrm{H}), 7.19-7.23(\mathrm{~m}, 3 \mathrm{H})$, 7.31-7.40 (m, 4H), 7.47-7.49 (m, 2H), $7.70(\mathrm{dd}, J=8.3,1.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.90(\mathrm{~d}, J=8.7 \mathrm{~Hz}$, $2 \mathrm{H}), 9.68(\mathrm{~s}, 1 \mathrm{H}), 9.92(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 75.5,80.1,92.7,98.49$, 99.4, 115.9, 116.9, 123.8, 128.1, 128.5, 128.7, 128.8, 129.0, 129.1, 129.3, 130.7, 130.9, $131.8,132.2,139.2,141.0,147.2,158.6,162.7,190.7,190.9$; IR (neat, cm^{-1}) 3057, 2827, 1690, 1598, 1234, 1157; HRMS m/z 361.98090 (calcd $\mathrm{C}_{16} \mathrm{H}_{11} \mathrm{IO}_{2}, 361.98038$).

5,7-Di-tert-butyl-3-iodo-4-phenyl-2H-benzopyran (34). This compound was obtained as a yellow solid: mp 142-143 ${ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 0.89(\mathrm{~s}, 9 \mathrm{H})$, $1.31(\mathrm{~s}, 9 \mathrm{H}), 4.81(\mathrm{~s}, 2 \mathrm{H}), 6.89(\mathrm{~d}, J=1.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.12(\mathrm{~d}, J=2.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.24-7.27$ (m, 4H); ${ }^{13} \mathrm{C}$ NMR (75 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 31.3,32.1,35.2,36.8,7.8,85.0,109.5,119.9$, $122.7,127.6,128.0,131.1,143.7,143.9,149.8,152.5,157.2$; IR (neat, cm^{-1}) 2955, 2893, 1593, 1444, 1403, 1004; HRMS m/z 446.11117 (calcd C $\mathrm{C}_{23} \mathrm{H}_{27} \mathrm{IO}, 446.11067$).

7-tert-Butyl-3-iodo-4-phenyl-2H-benzopyran (35). This compound was obtained as a light brown solid: mp 97-98 ${ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 1.30(\mathrm{~s}, 9 \mathrm{H}), 5.09(\mathrm{~s}, 2 \mathrm{H})$, $6.59(\mathrm{~d}, J=4.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.83(\mathrm{dd}, J=8.1,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.93(\mathrm{~d}, J=1.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.21-$ $7.25(\mathrm{~m}, 2 \mathrm{H}), 7.40-7.44(\mathrm{~m}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (75 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 31.3,35.0,75.3,90.1$, 113.3, 118.7, 121.8, 126.1, 128.3, 128.7, 129.5, 140.2, 142.0, 153.1, 153.8; IR (neat, cm ${ }^{1}$) 2965, 2904, 2356, 1603, 1485, 1004; HRMS m/z 390.04856 (calcd $\mathrm{C}_{19} \mathrm{H}_{19} \mathrm{IO}$, 390.04807).

7-Chloro-3-iodo-4-phenyl-2H-benzopyran (36). This compound was obtained as a light brown solid: mp 90-91 ${ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 5.06(\mathrm{~s}, 2 \mathrm{H}), 6.52(\mathrm{~d}, J=$ $8.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.72(\mathrm{dd}, J=8.4,2.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.85(\mathrm{~d}, J=2.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.16-7.19(\mathrm{~m}, 2 \mathrm{H})$, 7.41-7.48 (m, 3H); ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 75.3,91.2,116.5,121.9,122.7,127.4$, $128.5,128.8,129.4,134.7,139.6,141.3,154.0$; IR (neat, cm^{-1}) $2837,1588,1475,1413$, 1219, 999; HRMS m/z 367.94720 (calcd $\mathrm{C}_{15} \mathrm{H}_{10} \mathrm{ClIO}, 367.94649$).

5-Chloro-3-iodo-4-phenyl-2H-benzopyran (37). This compound was obtained as a light brown solid: mp 73-74 ${ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 4.94(\mathrm{~s}, 2 \mathrm{H}), 6.88-6.91$ (m, 2H), $7.10(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.17-7.20(\mathrm{~m}, 2 \mathrm{H}), 7.34-7.38(\mathrm{~m}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (75 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 76.0,92.8,115.2,123.3,125.0,128.0,128.1,129.7,129.9,131.7,140.4$,
141.3, 156.6; IR (neat, cm^{-1}) 3052, 2937, 1588, 1444, 1239, 999; HRMS m/z 367.94725 (calcd $\mathrm{C}_{15} \mathrm{H}_{10} \mathrm{ClIO}, 367.94649$).

3-Iodo-7-methoxy-4-phenyl-2H-benzopyran (38) and 3-iodo-5-methoxy-4-phenyl-

2H-benzopyran (39). These compounds were obtained as a light brown solid as a 2:3 mixture: ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 3.22(\mathrm{~s}, 3 \mathrm{H}), 3.76(\mathrm{~s}, 2 \mathrm{H}), 4.93(\mathrm{~s}, 2 \mathrm{H}), 5.04(\mathrm{~s}$, $1 \mathrm{H}), 6.31(\mathrm{dd}, J=8.6,2.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.37-6.47(\mathrm{~m}, 2 \mathrm{H}), 6.50-6.62(\mathrm{~m}, 2 \mathrm{H}), 7.12-7.21(\mathrm{~m}$, 4H), 7.28-7.47 (m, 6H); ${ }^{13} \mathrm{C} \operatorname{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 55.6,55.8,75.3,75.8,87.0,89.0$, 101.7, 106.1, 107.4, 109.2, 115.1, 117.8, 127.0, 127.6, 127.7, 128.2, 128.5, 128.6, 129.5, $130.2,140.2,140.5,141.8,143.4,154.7,156.0,156.1,161.0$; $\mathrm{IR}^{\left(\mathrm{neat}, \mathrm{cm}^{-1}\right) 3016,2934 \text {, }}$ 2827, 1608, 1465, 1270; HRMS m/z 363.99664 (calcd $\mathrm{C}_{16} \mathrm{H}_{13} \mathrm{IO}_{2}, 363.99603$).

4-(1-Cyclohexenyl)-3-iodo-2H-benzopyran (40). This compound was obtained as a light brown oil: ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 1.65-1.76(\mathrm{~m}, 4 \mathrm{H}), 2.05(\mathrm{~m}, 2 \mathrm{H}), 2.18-$ $2.20(\mathrm{~m}, 2 \mathrm{H}), 4.93(\mathrm{~s}, 2 \mathrm{H}), 5.60-5.62(\mathrm{~m}, 1 \mathrm{H}), 6.79(\mathrm{dd}, J=8.0,0.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.86(\mathrm{dt}, J=$ $7.6,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.06(\mathrm{dd}, J=7.7,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.13(\mathrm{dt}, J=7.7,1.7 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 22.2,22.8,25.3,27.6,74.7,89.2,116.1,121.7,122.8,125.6,129.3$, $129.5,137.5,143.5,153.6$; IR (neat, cm^{-1}) 3027, 2914, 1598, 1475, 1209, 1034; HRMS $\mathrm{m} / \mathrm{z} 338.01726$ (calcd $\mathrm{C}_{15} \mathrm{H}_{15} \mathrm{IO}, 338.01677$).

4-Hydroxymethyl-3-iodo-2H-benzopyran (42). This compound was obtained as a yellow solid: mp $62-63{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 2.06(\mathrm{~s}, 1 \mathrm{H}), 4.64(\mathrm{~s}, 2 \mathrm{H}), 4.86$ $(\mathrm{s}, 2 \mathrm{H}), 6.82(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.92-6.98(\mathrm{~m}, 1 \mathrm{H}), 7.18(\mathrm{dt}, J=8.0,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.41$ (dd, $J=7.7,1.1 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 66.0,75.0,93.8,116.4,121.8$, 122.1, 124.3, 129.9, 137.3, 153.7; IR (neat, cm^{-1}) 3334, 2934, 1480, 1444, 1219, 1009; HRMS m/z 287.96514 (calcd $\mathrm{C}_{10} \mathrm{H}_{9} \mathrm{IO}_{2}, 287.96473$).

3-Iodo-4-phenyl-2H-benzo[$\boldsymbol{h}]$ chromene (43). This compound was obtained as a light brown solid: mp 104-105 ${ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 5.25(\mathrm{~s}, 2 \mathrm{H}), 6.77(\mathrm{~d}, J=8.5$ $\mathrm{Hz}, 1 \mathrm{H}), 7.21-7.25(\mathrm{~m}, 3 \mathrm{H}), 7.42-7.50(\mathrm{~m}, 5 \mathrm{H}), 7.68-7.71(\mathrm{~m}, 1 \mathrm{H}), 8.17-8.20(\mathrm{~m}, 1 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 75.6,88.1,118.8,120.8,122.2,124.0,124.3,126.0,127.1$, 127.7, 128.3, 128.7, 129.6, 134.3, 140.2, 142.7, 149.4; IR (neat, cm^{-1}) 3055, 2923, 2847, 1562, 1400, 1341; HRMS m/z 384.00158 (calcd $\mathrm{C}_{19} \mathrm{H}_{13} \mathrm{IO}, 384.00112$).

General procedure for the PhSeBr cyclizations. To a solution of 0.25 mmol of the substituted phenyl propargylic ether and $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \mathrm{~mL}), 0.375 \mathrm{mmol}$ of PhSeBr dissolved in 2 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was added dropwise. The mixture was allowed to stir at room temperature for the desired time. The reaction mixture was washed with 20 mL of water and extracted with diethyl ether ($3 \times 10 \mathrm{~mL}$). The combined ether layers were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under vacuum to yield the crude product, which was further purified by flash chromatography on silica gel using hexanes/ethyl acetate as the eluent.

4-Phenyl-3-phenylselenyl-2H-benzopyran (23). This compound was obtained as a brown oil: ${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 4.84(\mathrm{~s}, 2 \mathrm{H}), 6.84-6.87(\mathrm{~m}, 2 \mathrm{H}), 6.94(\mathrm{t}, J=7.4$ $\mathrm{Hz}, 1 \mathrm{H}), 7.12-7.25(\mathrm{~m}, 5 \mathrm{H}), 7.27-7.34(\mathrm{~m}, 4 \mathrm{H}), 7.40-7.44(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (75 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta$ 29.9, 71.1, 115.3, 121.4, 124.0, 128.2, 128.4, 128.8, 129.1, 129.2, 129.2, 129.3, 129.6, 134.6, 141.0, 158.4; IR (neat, cm^{-1}) 3052, 2919, 1582, 1480, 1224, 1024; HRMS $\mathrm{m} / \mathrm{z} 364.03707$ (calcd $\mathrm{C}_{21} \mathrm{H}_{16} \mathrm{OSe}, 364.03664$).

4-Methyl-3-phenylselenyl-2H-benzopyran (41). This compound was obtained as a brown solid: mp $54-55{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 2.66(\mathrm{~s}, 3 \mathrm{H}), 4.80(\mathrm{~s}, 2 \mathrm{H}), 6.83$ $(\mathrm{d}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 6.92(\mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.20-7.26(\mathrm{~m}, 4 \mathrm{H}), 7.42-7.44(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$

NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 30.1,72.1,115.2,121.3,125.4,127.6,128.4,129.5$ (2C), 129.7, 130.2, 132.5, 158.5; IR (neat, cm^{-1}) 3057, 2914, 2847, 1593, 1485, 1229; HRMS $\mathrm{m} / \mathrm{z} 302.02154$ (calcd $\mathrm{C}_{16} \mathrm{H}_{14} \mathrm{OSe}, 302.02099$).

3-(4-Fluoro-3-methylphenylethynyl)-4-phenyl-2H-benzopyran (44). To a solution of 0.17 g of 3-iodo-4-phenyl-2 H -benzopyran (2) $(0.5 \mathrm{mmol})$ in $\mathrm{Et}_{3} \mathrm{~N}(5 \mathrm{ml})$, was added $\mathrm{PdCl}_{2}\left(\mathrm{PPh}_{3}\right)_{2}(2 \mathrm{~mol} \%)$ and $\mathrm{CuI}(1.5 \mathrm{~mol} \%)$, and the mixture was stirred for 30 min under Ar. 0.6 Mmol of 5-ethynyl-2-fluorotoluene dissolved in 1 mL of $\mathrm{Et}_{3} \mathrm{~N}$ was then added dropwise and the reaction mixture was allowed to stir at room temperature for 24 h. The reaction was monitored by TLC and an additional 0.4 mmol of the 5-ethynyl-2fluorotoluene dissolved in 1 mL of $\mathrm{Et}_{3} \mathrm{~N}$ was added slowly under an inert atmosphere and the reaction mixture was further allowed to stir at room temperature for another 24 h . After the reaction was over, the resulting solution was diluted with $\mathrm{H}_{2} \mathrm{O}(5 \mathrm{ml})$ and extracted with diethyl ether ($3 \times 10 \mathrm{~mL}$). The combined ether fractions were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under vacuum to yield the crude product, which was purified by flash chromatography on silica gel using hexanes/ethyl acetate as the eluent to obtain the desired compound 44 in an 87% yield as a pale yellow solid: mp $79-80{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 2.18(\mathrm{~d}, J=1.6 \mathrm{~Hz}, 3 \mathrm{H}), 4.88(\mathrm{~s}, 2 \mathrm{H}), 6.81-6.93(\mathrm{~m}, 4 \mathrm{H})$, 6.97-7.05 (m, 2H), 7.10-7.21 (m, 1H), 7.39-7.45 (m, 5H); ${ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $14.6(\mathrm{~d}, J=3.4 \mathrm{~Hz}), 68.0,86.7(\mathrm{~d}, J=1.9 \mathrm{~Hz}), 95.1(\mathrm{~d}, J=0.8 \mathrm{~Hz}), 112.4,115.3(\mathrm{~d}, J=$ $9.4 \mathrm{~Hz}), 116.4,118.9(\mathrm{~d}, J=3.8 \mathrm{~Hz}), 121.8,124.3,125.3(\mathrm{~d}, J=18.2 \mathrm{~Hz}), 126.8,128.2$ $(\mathrm{d}, J=10.2 \mathrm{~Hz}), 129.8,130.2,130.8(\mathrm{~d}, J=8.4 \mathrm{~Hz}), 134.7(\mathrm{~d}, J=5.7 \mathrm{~Hz}), 136.6,140.8$, 154.6, 160.1, 162.6; IR (neat, cm^{-1}) 3047, 2919, 2192, 1480, 1224, 1106; HRMS m/z 340.12694 (calcd $\mathrm{C}_{24} \mathrm{H}_{17} \mathrm{FO}, 340.12634$).

1,4-Dihydro-2,5-dioxacyclopenta[a]naphthalen-3-one (45). To a solution of 0.14 g of 4-hydroxymethyl-3-iodo-2 H -benzopyran (42) (0.5 mmol) in DMF (5 ml) was added $\mathrm{PdCl}_{2}\left(\mathrm{PPh}_{3}\right)_{2}(5 \mathrm{~mol} \%)$ and $\mathrm{K}_{2} \mathrm{CO}_{3}$ (2 equiv), and the mixture was stirred for 6 h under an atmosphere of CO at $60{ }^{\circ} \mathrm{C}$. The reaction was monitored by TLC and, after completion of the reaction, the resulting solution was cooled to room temperature, diluted with ether (15 ml), and washed with brine (15 ml). The aqueous layer was extracted with diethyl ether ($3 \times 15 \mathrm{~mL}$). The combined ether fractions were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under vacuum to yield the crude product, which was purified by flash chromatography on silica gel using hexanes/ethyl acetate as the eluent to obtain the desired compound 45 in an 72% yield as a brown solid: $\mathrm{mp} 151-152{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $5.13-5.15(\mathrm{~m}, 4 \mathrm{H}), 6.92-6.99(\mathrm{~m}, 2 \mathrm{H}), 7.07(\mathrm{dd}, J=7.5,1.5 \mathrm{~Hz}, 1 \mathrm{H})$, $7.34(\mathrm{dt}, J=8.2,0.8 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 63.3,68.8,116.4,117.2$, $118.3,122.0,124.2,133.8,154.1,154.8,170.7$; IR (neat, cm^{-1}) 2361, 1744, 1666, 1449, 1336, 1181, 1052; HRMS m/z 188.04776 (calcd $\mathrm{C}_{11} \mathrm{H}_{8} \mathrm{O}_{3}, 188.04743$).

Reference

1. Pal, M.; Parasuraman, K.; Yeleswarapu, K. R. Org. Lett. 2003, 5, 349.

ELI6 9
99169
I $190^{\circ} \mathrm{L}$
c5 10°
を1 $\angle 0^{\circ} L \sqrt{-}$
$9992 \cdot$
$\rightarrow \angle 8 \mathrm{C}^{\circ}$
$786 z^{\circ}$
$\mathrm{stoc} \cdot L$
8EIEL
08 I げL
$982 t \cdot L=$
LEtt゚ー
zost：L

-1.5

$81700^{\circ} \mathrm{S}$
$\left.\begin{array}{l}2908^{\circ} 9 L \\ 008 \\ 80\end{array}\right]$
8ES90LL $=$
8828.16-

$5890^{\circ} \mathrm{S}$－
EEIS＇9
0 ［tS ${ }^{+} 9$
$160 L^{\circ} 9$
09129
$\angle 9 \varepsilon L \cdot 9$
$L \varepsilon t \angle 9$
$L E T L \cdot 9$
6158.9
$8858.9-$
Eと91＇ $4>$
L891＇\angle
$2+6 \mathrm{~T}^{\circ} L$
$6 \mathrm{Stc} \cdot L$
s $11 \mathrm{t}^{\circ} \angle-$

どもだL
$\operatorname{sss} \boldsymbol{v}^{\circ} L-$
$689 \boldsymbol{v}^{\circ}$－
$9+L \vdash^{*} L-$

2ess.911
$6916.1 Z 1$
49tĽ2
L9tLC2Z1—
$561+271 —$
0025821
1698.821

090を'Iも1 -
$9900^{\circ}+\mathrm{S} 1$

Ltt 896

IZEF*911-

$95 t E \cdot 2 E 1$
LESLESI-

