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Abstract 

Background: Pyrazoles have attracted particular attention due to the diverse biological activities associated with this 

heterocyclic system, and some have been shown to be cytotoxic to several human cell lines. Several drugs currently 

on the market have this heterocycle as the key structural motif, and some have been approved for the treatment of 

different types of cancer.

Results: 4,4ʹ-(Arylmethylene)bis(1H-pyrazol-5-ols) derivatives 3a–q were synthetized by a three components reaction 

of 3-methyl-1-phenyl-5-pyrazolone (1) with various benzaldehydes 2 catalyzed by sodium acetate at room tempera-

ture. The structures of all synthesized compounds were characterized by physicochemical properties and spectral 

means (IR and NMR) and were evaluated for their radical scavenging activity by DPPH assay and tested in vitro on 

colorectal RKO carcinoma cells in order to determine their cytotoxic properties. All 4,4ʹ-(arylmethylene)bis(1H-pyrazol-

5-ols) derivatives 3a–q were synthetized in high to excellent yield, and pure products were isolated by simple filtra-

tion. All compounds have good radical scavenging activity, and half of them are more active than ascorbic acid used 

as standard.

Conclusion: Several derivatives proved to be cytotoxic in the RKO cell line. In particular, compound 3i proved to be 

a very potent scavenger with an  IC50 of 6.2 ± 0.6 µM and exhibited an  IC50 of 9.9 ± 1.1 μM against RKO cell. Autophagy 

proteins were activated as a survival mechanism, whereas the predominant pathway of death was p53-mediated 

apoptosis.
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Introduction
Heterocycles are common structural units in marketed 

drugs and in targets in the drug discovery process. Nitro-

gen-containing rings play an especially important role in 

drug development because of their wide variety of thera-

peutic and pharmacological properties [1]. Pyrazoles 

and their derivatives have attracted particular attention 

because they have a wide variety of biological activities 

[2, 3], and several drugs currently on the market, have 

the pyrazole ring as the key structural motif [4]. Some 

pyrazole derivatives have been demonstrated to be cyto-

toxic on several human cell lines [5–8], and, at this time, 

several drugs that have pyrazoles in their structure have 
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been approved for the treatment of different types of can-

cer (see Fig. 1).

Edaravone, 3-methyl-1-phenyl-2-pyrazolin-5-one, (1) 

is a free radical scavenger approved for the treatment of 

amyotrophic lateral scleorosis (ALS) [9]. �e compound 

is known to have preventive effects on myocardial injury 

following ischemia and reperfusion in patients with acute 

myocardial infarction and in brain edema after ischemia 

and reperfusion injury in animal models and in stroke 

patients [10]. �ere are several epidemiological studies 

related to the incidence of ALS and the development of 

cancer, that have reported the identification of a set of 

genes or signaling cascades involved in both diseases [11]. 

Also, it is well-known that many natural and synthesized 

antioxidants possessing phenolic hydroxyl groups have 

improved antioxidant activities by virtue of their abilities 

to react with free radicals [12], and studies carried out on 

flavones have shown that there is a relationship between 

antioxidant and anticancer activity [13].

Michael addition of an aromatic aldehyde 2 with an 

arylpyrazolone, obtained by the Knoevenagel reac-

tion, allows an easy synthesis of 4,4ʹ-(arylmethylene) 

bis (1H-pyrazol-5-ols) 3. �ese reactions can be done 

separately [14, 15] or in one step, either by a reaction of 

pseudo-five [16–18] or pseudo-three-components [19]. 

In practice, most of the reported synthetic routes con-

sist of a one-step condensation of 3-methyl-1-phenyl-

2-pyrazolin-5-one (1) with different aromatic aldehydes 

2, and most of the reactions used different types of cata-

lyst. �ese edaravone derivatives incorporating hydroxyl 

groups in their structures, represent attractive targets for 

further study, however, only a few reports of biological 

activity were found in the literature, and the evaluation of 

compounds with hydroxyl groups is limited to only a few 

Fig. 1 Approved anti-cancer pyrazole drugs
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examples [20–23], and there is no report of cytotoxicity 

studies against cancer cells.

Results and discussion
Chemistry

�e 4,4’-(arylmethylene)bis(1H-pyrazol-5-ols) 3 were 

synthesized using NaOAc as catalyst following the 

scheme depicted in Scheme 1, using 70% EtOH as solvent 

at room temperature. To find the optimal conditions, the 

reaction between 2b and 2 equivalents of 1 was chosen 

as a model, showing 10% acetate gave the best catalytic 

effect.

With the optimized conditions, the scope of the reac-

tion was studied using various substituted benzalde-

hydes 2a–q bearing either electron-withdrawing or 

electron-donating groups to give the corresponding 

4,4ʹ-bis-(arilmetilen)bis(1-fenil-3-metil-1H-pirazol-

5-ol) derivatives 3a–q in good to excellent yield as pure 

products by simple filtration. �e spectroscopic data 

and melting points of compounds previously reported 

were in agreement with literature values (see Table 1 and 

“Experimental” section).

As expected, the time of the reaction with aldehydes 

bearing electron-withdrawing groups, independent of 

their location on the ring, were shorter than those with 

electron-donating groups, except with 2a, which is six 

times shorter than benzaldehyde (entry 1). �is could be 

due to the intramolecular hydrogen bonding in 2a which 

enhances the reactivity of the aldehyde. When this hydro-

gen bond is lost, by protecting or changing the position of 

the hydroxyl group, the reaction time is higher. However, 

it is not clear the reason of the reduction of the activity 

observed in 3f.

Biological activity

All synthesized compounds were evaluated for anti-

oxidant activity by the N,N-diphenyl-Nʹ-picrylhydrazyl 

(DPPH) assay as shown in Table  1. All compounds 

have good radical scavenging activity and half of them 

are more active than ascorbic acid used as standard. 

Compound 3c has the lowest activity (20.9  µM) while 

Scheme 1 Synthesis of 4,4ʹ-(arylmethylene)bis(1H-pyrazol-5-ols) 3a–q 
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compound 3i proved to be a very potent scavenger with 

an  IC50 of 6.2 µM. In fact, most bispyrazoles had better 

radical scavenging activity than 1, and only 3c, 3f, 3k, 

and 3l are less potent scavengers.

�eoretical calculation of 1 shows that an H-atom 

abstraction rather than electron-transfer reaction is 

involved in the radical-scavenging process [24, 25]. 

Because in structure 3 the enol tautomer is more stable 

than the keto form, it would be expected that this hydro-

gen abstraction occurs on the hydroxyl group. �eoreti-

cal calculations of the enol tautomer of 1 show lower 

dissociation energy of this bond, so the abstraction of this 

hydrogen would be the most important for the scavenger 

properties of the edaravone [26].

�e higher antioxidant activity of 3i could suggest that 

the abstraction of the phenolic hydrogens instead of the 

enolic hydrogens would be more important for the sta-

bilization of radicals, since the presence of the ortho-

dihydroxy system is known to increase the stabilization 

of radicals [27]. �is stabilization, provided by intra-

molecular hydrogen bonding in the radical formed has 

been confirmed by theoretical calculation in catechol 

derivatives [28]. Due to steric factors, the structure of 3 

is not coplanar. Nonetheless, the results suggest that the 

conjugation of the radical is not restricted only to the 

pyrazol rings, since a contribution in the stabilization of 

the radical due to the aryl moiety is observed. Further-

more, both electron-donating and electron-withdrawing 

groups stabilize the radical, however, it is not clear how 

this stabilization occurs.

All derivatives were tested in vitro on colorectal RKO 

carcinoma cells in order to determine their cytotoxic 

properties (Table  1). Cells were exposed to each com-

pound at five increasing concentrations for 48 h and their 

viability was monitored through MTS assay; as expected, 

dose-dependent effects were observed. For compounds 

3a and 3b the observed  IC50 was greater than 100  µM, 

however, the vast majority are below 50 µM, (3c, 3d, 3e, 

3g, 3i, 3l–3q), the compound with the highest cytotoxic 

activity was 3i with an  IC50 of 9.9 µM.

�e MTS test is a proliferation test, but it does not 

distinguish between cytostatic and cytotoxic effect. To 

understand how the most powerful compound of the 

derivatives is acting, in this case 3i, the trypan blue dye 

Table 1 Preparation of 4,4ʹ-(arylmethylene)bis(3-methyl-1-phenyl-1H-pyrazol-5-ols) derivatives 3a-q catalyzed by 10% NaOAc at room 

temperature, DPPH scavenging activity and cytotoxic activity against RKO cell line

a The tests for signi�cance were limited to ANOVA-Dunnett post-test, *p < 0.01, **p < 0.001, ***p < 0.0001 vs. 1

b Using 100% EtOH

c Using 60% EtOH

d Using 50% EtOH

Compounds Time (min) Yield (%) Mp (°C) DPPH scavenging 
activity
IC50 (µM)a

Cytotoxic activity
IC50 (µM)

3a 10 98 219.5–220.6 17.1 ± 2.5 143.0 ± 4.9

3b 60 97 159.5–161.1 14.0 ± 2.3 105.9 ± 1.5

3c 10 95 210.0–211.0 20.9 ± 5.9 34.1 ± 4.4

3d 10 95b 150.7–152.0 16.6 ± 1.1 46.7 ± 3.3

3e 10 Quant 178.0–179.0 13.8 ± 0.7 36.3 ± 1.0

3f 480 98c 165.0–167.0 19.2 ± 1.5 84.3 ± 1.0

3g 40 99 202.0–204.0 18.7 ± 1.6 23.5 ± 5.9

3h 180 91c 200.0–202.0 13.7 ± 4.0 97.5 ± 3.0

3i 180 93d 182.7–184.0 6.2 ± 0.6*** 9.9 ± 1.1

3j 180 97c 217.2–218.9 17.8 ± 3.7 77.8 ± 1.1

3k 120 92 176.0–177.0 19.7 ± 3.2 89.9 ± 3.0

3l 20 97 218.0–219.0 18.8 ± 3.8 27.3 ± 1.1

3m 60 87 183.8–185.8 10.2 ± 0.3 46.4 ± 1.0

3n 10 Quant 217.2–218.7 10.8 ± 0.3 36.0 ± 1.0

3o 15 96 203.0–205.0 9.8 ± 1.0* 23.6 ± 1.0

3p 60 Quant 174.5–176.0 12.3 ± 0.9 14.8 ± 1.0

3q 15 60 209.1–211.3 13.0 ± 1.0 40.9 ± 1.0

Doxorubicin – – – – 2.23 ± 0.02

1 – – – 18.1 ± 0.5 –

Ascorbic acid – – – 14.0 ± 2.3 –
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exclusion test was performed at 24 and 48  h. As indi-

cated in Fig. 2, both cell numbers are seen to decrease in 

a dose-dependent manner (Fig. 2A); observing a decrease 

in the number of cells that could be related to a cyto-

static effect. �us, a decrease in cell viability related to 

the cytotoxic effect is also observed (Fig.  2B), the same 

as they agree with the morphological changes observed 

in Fig. 2C.

Studied with the proteins involved in both apoptosis 

and autophagia, and p53 and p21 proteins controlling cell 

proliferation and death response were carried out [29]. 

Since cell death pathways must be examined prior to the 

morphological changes, a shorter time (24 h) and higher 

doses were chosen (30, 40 and 50 µM). Figure 3A shows 

that p53 increases significatively in a dose-dependent 

manner, indicating that this protein could be involved 

in the induced cell death process [30] by compound 3i. 

A similar effect was observed in A2780 (ovarian adeno-

carcinoma), P388 (leukemia), and A549 (lung carcinoma) 

human cell lines [31, 32] after treatment with pyrazole 

derivatives. One of the major targets for p53 is p21, a pro-

tein related to cell cycle arrest; according to our results, 

Fig. 2 Cytotoxic effect of compound 3i. RKO cell line were exposed to 10–70 µM of 3i for 24 and 48 h and evaluated through Trypan Blue dye 

exclusion assay. A cell population, and B percentages of cell viability. The tests for significance were limited to ANOVA-Dunnett post-test, *p < 0.01, 

**p < 0.001, ***p < 0.0001 vs. control. C Cell morphology after exposure at 30, 40, and 50 µM; Horizontal bar in bottom figure = 50 µm
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Fig. 3 RKO cell line was exposed to different doses of compound 3i for 24 h. Expression of protein: A p53 and p21 protein. B Pro-autophagic LC3 

II and p62. C Pro-apoptotic proteins: Bax, Bcl-2, cleaved caspase-3, and PARP-1. Actin was used as control. D Quantification expression protein. The 

tests for significance were limited to ANOVA-Dunnet post-test: ∗ p < 0.01, ∗  ∗ p < 0.001, ∗  ∗  ∗ p < 0.0001 vs. control. Full-length gels are presented in 

Additional file 1: Fig. S1
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p21 increases significantly in all doses tested (Fig. 3A, D); 

explaining therefore the inhibition of cell grow (cytostatic 

effect).

Autophagy pathway activation has been found to be 

induced by pyrazol derivatives in A549 lung cancer cell 

[33]. �erefore, pro-autophagic proteins were also stud-

ied (Fig.  3B, D). LC3 I is converted into its active form 

LC3 II at the beginning of the autophagy, while p62 is 

degraded in the last phase of this cell death pathway [34]. 

Our results showed a significant increase in LC3 II in the 

highest concentration, whereas no changes in p62 were 

detected. Accordingly, in our study, compound 3i is able 

to induce autophagy as a protective mechanism [35]

It is well-known that p53 upregulates Bax to promote 

the intrinsic apoptosis pathway, which ends in the acti-

vation of caspase-3 [30]. Consequently, a significant 

increase in Bax upregulation was detected, together with 

the caspase-3 activation mostly in the highest concentra-

tion; whereas no changes were observed in the regulation 

of the anti-apoptotic protein Bcl-2 (Fig. 3C, D). �is later 

protein has been found to interact with Beclin-1 to form 

the Bcl-2-Beclin-1 complex, which inhibits autophagy 

and allows the activation of apoptosis [36], thus explain-

ing the observation that there is no variation in Bcl-2 

expression and the lack of activation of autophagy. 

Moreover, a significant increase in Bax/Bcl-2 ratio was 

observed; indicating therefore that the RKO cell line is 

susceptible to apoptosis after treatment [37]. One of the 

multiple substrates of caspase-3 is PARP-1, a well-known 

apoptotic biomarker, which was also found significantly 

cleaved in the highest concentration (Fig.  3C, D). All 

these findings therefore show that compound 3i is able to 

induce apoptosis on RKO cell line, mediated by p53.

Finally, the analysis of the substituents shows that com-

pounds bearing electron-withdrawing groups, independ-

ent of their location on the ring, are more active than 

compounds with electron-donating substituents, except 

for 3i  (IC50 = 9.9 ± 1.1 μM) which is the most active com-

pound despite having two hydroxyl groups. �e ortho 

position of these hydroxyls would be responsible for the 

high activity observed since it has been reported that cat-

echol compounds with hydroxyl residues ortho to each 

other are susceptible to oxidation leading to cell apopto-

sis, mainly due to generation of quinone through autoxi-

dation and subsequent induction of p53 and caspase-3 

activation [38].

Conclusion
In this work, 4,4ʹ-(arylmethylene)bis(3-methyl-1-phe-

nyl-1H-pyrazol-5-ols) 3a–q were synthesized at room 

temperature using NaOAc as a catalyst in high to excel-

lent yields and pure products were isolated by simple 

filtration. Most compounds show better DPPH radical 

scavenging activities than edaravone 1, and some com-

pounds show moderate cytotoxicity against RKO cell. In 

both activities the most potent compound was 3i, with 

cytotoxic activity to the RKO cell line present in a dose 

and time-depended manner. Indeed, this compound was 

able to induce the apoptotic cell death pathway.

Experimental
Chemistry

All solvents and reagents were from Sigma Aldrich and 

used without further purification. All melting points 

are uncorrected and were determined on a Büchi Melt-

ing Point M-560 apparatus. FTIR spectra were recorded 

by a Perkin Elmer FTIR Spectrum One by using ATR 

system (4000–650   cm−1). �e 1H and 13C NMR spec-

tra were recorded at 298  K on a JEOL ECA 400  MHz 

or Bruker Advance 500  MHz spectrometer equipped 

with a z-gradient, triple-resonance (1H, 13C, 15N) cry-

oprobe, using DMSO-d6 as solvent. �e 19F-NMR 

spectra were acquired on an  Oxford  Instruments  Pul-

sar  benchtop NMR 60  MHz Spectrometer. Chemi-

cal shifts are expressed in ppm with tetramethylsilane 

(TMS, δ = 0  ppm) as an internal reference for protons 

and trifluoroacetic acid (TFA, δ = − 75.39 ppm) for fluo-

rine. Accurate mass data were obtained using a Waters 

(Waltham, MA) model LCT Premiere time-of-flight 

(TOF) mass spectrometer. Reactions were monitored by 

TLC on silica gel using ethyl acetate/hexane mixtures as 

a solvent and compounds visualized by UV lamp. �e 

reported yields are for the purified material and are not 

optimized.

General procedure for the synthesis of 4,4′-(arylmethylene)

bis(3-methyl-1-phenyl-1H-pyrazol-5-ols) 3a–q

To a solution of 0.4 mmol aldehyde 2a–q and 0.8 mmol 

pyrazole 1 in 4  mL of 70% EtOH at room temperature, 

40.2 μL of 1 M NaOAc were added and the mixture was 

stirred until the reaction was complete (see Table  1). 

Water was added to obtain 50% EtOH and the mixture 

was filtered, washed with 50% EtOH and dried to obtain 

pure product.

4,4ʹ-[(2-Hydroxyphenyl)methylene]bis(3-methyl-1-phe-

nyl-1H-pyrazol-5-ol) 3a Yield 98% as a white solid; mp 

219.5–220.6 °C [Lit. 218–220 [39]]; 1H-NMR (400 MHz, 

DMSO-d6) δ: 14.30 (br. s., 1 H, OH), 12.38 (br. s., 1 

H, OH), 9.51 (br. s., 1 H, OH), 7.70 (d, J = 8.0  Hz, 4 H, 

Ar–H), 7.56 (d, J = 7.6 Hz, 1 H, Ar–H), 7.43 (t, J = 7.6 Hz, 

4 H, Ar–H), 7.24 (t, J = 6.7  Hz, 2 H, Ar–H), 6.97 (t, 

J = 7.6  Hz, 1 H, Ar–H), 6.75 (d, J = 7.9  Hz, 1 H, Ar–H), 
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6.71 (t, J = 7.6 Hz, 1 H, Ar–H), 5.18 (s, 1 H, CH), 2.29 (s, 

6 H,  CH3).

4,4ʹ-(Phenylmethylene)bis(3-methyl-1-phenyl-1H-pyra-

zol-5-ol) 3b Yield 97% as a white solid; mp 159.5–

161.1 °C [Lit. 161–163 [40]]; 1H-NMR (400 MHz, DMSO-

d6) δ: 13.94 (br. s., 1 H, OH), 12.44 (br. s., 1 H, OH), 7.71 

(d, J = 7.9 Hz, 4 H, Ar–H), 7.44 (t, J = 7.9 Hz, 4 H, Ar–H), 

7.31–7.21 (m, 6 H, Ar–H), 7.20–7.14 (m, 1 H, Ar–H), 

4.96 (s, 1 H, CH), 2.32 (br. s., 6 H,  CH3).

4,4’-[(2-Nitrophenyl)methylene]bis(3-methyl-1-phe-

nyl-1H-pyrazol-5-ol) 3c Yield 95% as a yellow solid; mp 

210.0–211.0 °C [Lit. 218–220 [41]]; 1H-NMR (400 MHz, 

DMSO-d6) δ: 13.35 (br. s., 1 H, OH), 12.60 (br. s., 1 H, 

OH), 7.72 (d, J = 7.9 Hz, 1 H, Ar–H), 7.66 (d, J = 7.9 Hz, 4 

H, Ar–H), 7.62 (m, 2 H, Ar–H), 7.48 (m, 1 H, Ar–H), 7.43 

(t, J = 7.9 Hz, 4 H, Ar–H), 7.25 (t, J = 7.3 Hz, 2 H, Ar–H), 

5.43 (s, 1 H, CH), 2.24 (br. s., 6 H,  CH3).

4,4’-[(3-Nitrophenyl)methylene]bis(3-methyl-1-phe-

nyl-1H-pyrazol-5-ol) 3d Yield 95% as a white solid; mp 

150.7–152.0 °C [Lit. 150–152 [42]]; 1H-NMR (400 MHz, 

DMSO-d6) δ: 13.87 (br. s., 1 H, OH), 12.64 (br. s., 1 H, 

OH), 8.09 (s, 1 H, Ar–H), 8.08 (d, J = 8.6 Hz, 1 H, Ar–H), 

7.74 (d, J = 7.9  Hz, 1 H, Ar–H), 7.70 (d, J = 8.5  Hz, 4 

H, Ar–H), 7.61 (t, J = 8.6, 7.9  Hz, 1 H, Ar–H), 7.45 (t, 

J = 7.9 Hz, 4 H, Ar–H), 7.26 (d, J = 7.4 Hz,, 2 H, Ar–H), 

5.15 (s, 1 H, CH), 2.35 (br. s., 6 H,  CH3).

4,4’-[(3-Fluorophenyl)methylene]bis(3-methyl-1-phe-

nyl-1H-pyrazol-5-ol) 3e Yield quantitative as a white 

solid; mp 178.0–179.0  °C [Lit. 183–184 [40]]; 1H-NMR 

(500 MHz, DMSO-d6) δ: 7.70 (d, J = 8.0 Hz, 4H, Ar–H), 

7.44 (t, J = 7.8 Hz, 4H, Ar–H), 7.29–7.36 (m, 1H, Ar–H), 

7.21—7.28 (m, 2H, Ar–H), 7.10 (d, J = 8.2 Hz, 1H, Ar–H), 

6.98–7.04 (m, 2H, Ar–H), 4.97 (s, 1H, CH), 2.31 (br. s., 

6H,  CH3).

4,4’-[(3-Hydroxyphenyl)methylene]bis(3-methyl-1-phe-

nyl-1H-pyrazol-5-ol) 3f Yield 98% as a white solid; mp 

165.0–167.0 °C [Lit. 164–166 [43]]; 1H-NMR (400 MHz, 

DMSO-d6) δ: 13.95 (br. s., 1H, OH), 9.21 (s, 1H, Ar–H), 

7.71 (d, J = 7.9  Hz, 4H, Ar–H), 7.44 (t, J = 7.8  Hz, 4H, 

Ar–H), 7.24 (t, J = 7.3 Hz, 2H, Ar–H), 7.04 (t, J = 7.8 Hz, 

1H, Ar–H), 6.68 (br. s, 1H, OH), 6.65 (d, J = 7.7 Hz, 1H, 

Ar–H), 6.55 (dd, J = 7.9, 1.5 Hz, 1H, Ar–H), 4.86 (s, 1H), 

2.30 (br. s., 6H).

4 , 4 ’ - [ ( 3 - H y d r o x y - 4 - n i t r o p h e n y l ) m e t h y l e n e ]

bis(3-methyl-1-phenyl-1H-pyrazol-5-ol) 3g Yield 99% 

as a yellow solid; mp 202.0–204.0  °C (d); FTIR  (cm−1): 

3616 (OH), 1604 (C=C), 1600 (C=N), 1577  (NO2), 

1499 (C=C), 1353 (OH), 1331  (NO2), 1233 (OH), 1120 

(C–OH); 1H-NMR (500  MHz, DMSO-d6) δ: 13.84 (br. 

s., 1 H, OH), 10.84 (s, 1 H, OH), 7.83 (d, J = 8.2 Hz, 1 H, 

Ar–H), 7.71 (d, J = 8.2 Hz, 4 H, Ar–H), 7.45 (t, J = 8.0 Hz, 

4 H, Ar–H), 7.26 (t, J = 7.4 Hz, 2 H, Ar–H), 7.04 (s, 1 H, 

Ar–H), 6.81 (dd, J = 1.9, 8.5 Hz, 1 H, Ar–H), 5.00 (s, 1 H, 

CH), 2.33 (br. s., 6 H,  CH3); 13C-NMR (126 MHz, DMSO-

d6) δ: 152.1, 150.5, 146.3, 134.7, 129.0, 125.7, 125.2, 120.6, 

118.7, 118.4, 117.5, 33.0; ESI–MS m/z 497.8  [M]+.

4 ,4 ’ - [ (3-Hy dro x y -4-metho x y phenyl)methylene]

bis(3-methyl-1-phenyl-1H-pyrazol-5-ol) 3h Yield 91% 

as a white solid; mp 200.0–202.0  °C [Lit. 201–203 [44]]; 
1H-NMR (500 MHz, DMSO-d6) δ: 13.90 (br. s., 1 H, OH), 

12.38 (br. s., 1 H, OH), 8.82 (br. s., 1 H, OH), 7.71 (d, 

J = 8.23 Hz, 4 H, Ar–H), 7.44 (t, J = 7.68 Hz, 4 H, Ar–H), 

7.24 (t, J = 6.86 Hz, 2 H, Ar–H), 6.79 (d, J = 8.78 Hz, 1 H, 

Ar–H), 6.69 (d, J = 1.65 Hz, 1 H, Ar–H), 6.59 (dd, J = 8.23, 

1.65  Hz, 1 H, Ar–H), 4.83 (s, 1 H, CH), 3.70 (s, 3 H, 

 OCH3), 2.30 (br. s., 6 H,  CH3).

4 , 4 ’ - [ ( 3 , 4 - D i h y d r o x y p h e n y l ) m e t h y l e n e ]

bis(3-methyl-1-phenyl-1H-pyrazol-5-ol) 3i Yield 93% 

as a cream solid; mp 182.7–184.0 °C; FTIR  (cm−1): 3206 

(OH), 1598(C=N), 1568 (C=C), 1501 (C=C), 1368 (OH), 

1291 (OH), 1191 (C-O); 1H-NMR (500 MHz, DMSO-d6) 

δ: 13.90 (br. s., 1 H, OH), 12.34 (br. s., 1 H, OH), 8.74 (s, 

1 H, OH), 8.60 (br. s., 1 H, OH), 7.72 (d, J = 7.7 Hz, 4 H, 

Ar–H), 7.44 (t, J = 7.7 Hz, 4 H, Ar–H), 7.24 (t, J = 7.1 Hz, 

2 H, Ar–H), 6.66 (d, J = 1.6  Hz, 1 H, Ar–H), 6.61 (d, 

J = 8.2  Hz, 1 H, Ar–H), 6.47 (dd, J = 1.6, 8.2  Hz, 1 H, 

Ar–H), 4.80 (s, 1 H, CH), 2.29 (br. s., 6 H,  CH3); 13C-NMR 

(126 MHz, DMSO-d6) δ: 146.2, 144.8, 143.4, 132.9, 128.9, 

125.5, 120.5, 117.8, 115.2, 114.8, 32.4, 11.6; HRMS (TOF 

ES +) m/z calcd for  C27H25N4O4 (M+H)+: 469.1870; 

found: 469.1876.

4,4’-[(4-Hydroxyphenyl)methylene]bis(3-methyl-1-phe-

nyl-1H-pyrazol-5-ol) 3j Yield 97% as a white solid; mp 

217.2–218.9 °C [Lit. 214–216 [45]]; 1H-NMR (400 MHz, 

DMSO-d6) δ: 13.93 (br. s., 1H, OH), 9.17 (s, 1H, OH), 7.70 

(d, J = 7.7 Hz, 4H, Ar–H), 7.43 (t, J = 7.8 Hz, 4H, Ar–H), 

7.24 (t, J = 7.3  Hz, 2H, Ar–H), 7.04 (d, J = 8.4  Hz, 2H, 

Ar–H), 6.65 (d, J = 8.6 Hz, 2H, Ar–H), 4.84 (s, 1H, CH), 

2.29 (br. s., 6H,  CH3).

4,4’-[(4-Methoxyphenyl)methylene]bis(3-methyl-1-phe-

nyl-1H-pyrazol-5-ol) 3k Yield 92% as a white solid; mp 

176.0–177.0 °C [Lit. 176–177 [46]]; 1H-NMR (400 MHz, 

DMSO-d6) δ: 13.92 (br. s., 1 H, OH), 12.39 (br. s., 1 H, 

OH), 7.70 (d, J = 7.9  Hz, 4 H, Ar–H), 7.44 (t, J = 7.3, 

7.9 Hz, 4 H, Ar–H), 7.24 (d, J = 7.3 Hz, 2 H, Ar–H), 7.16 

(d, J = 8.5 Hz, 2 H, Ar–H), 6.83 (d, J = 8.5 Hz, 2 H, Ar–H), 
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4.89 (s, 1 H, CH), 3.70 (s, 3 H,  OCH3), 2.30 (br. s., 6 H, 

 CH3).

4,4’-[(4-Nitrophenyl)methylene]bis(3-methyl-1-phe-

nyl-1H-pyrazol-5-ol) 3l Yield 97% as a yellow solid; mp 

218.0–219.0 °C [Lit. 219–220 [47]]; 1H-NMR (500 MHz, 

DMSO-d6) δ: 8.17 (d, J = 8.9  Hz, 2 H, Ar–H), 7.69 (dd, 

J = 1.0, 8.6  Hz, 4 H, Ar–H), 7.51 (d, J = 8.9  Hz, 2 H, 

Ar–H), 7.45 (t, J = 8.0 Hz, 4 H, Ar–H), 7.26 (t, J = 7.4 Hz, 

2 H, Ar–H), 5.13 (s, 1 H, CH), 2.34 (s, 6 H,  CH3).

4,4’-[(4-Fluorophenyl)methylene]bis(3-methyl-1-phe-

nyl-1H-pyrazol-5-ol) 3m Yield 87% as a white solid; mp 

183.8–185.8 °C [Lit. 181–183 [48]]; 1H-NMR (500 MHz, 

DMSO-d6) δ: 7.59—7.65 (m, 4H, Ar–H), 7.42 (dd, J = 8.3, 

7.4 Hz, 4H, Ar–H), 7.24 (t, J = 7.2 Hz, 4H, Ar–H), 7.06 (t, 

J = 8.9 Hz, 2H, Ar–H), 4.91 (s, 1H, CH), 2.27 (s, 6H,  CH3).

Methyl 4-[bis(5-hydroxy-3-methyl-1-phenyl-1H-pyra-

zol-4-yl)methyl]benzoate 3n Yield quantitative as a 

white solid; mp 217.2–218.7  °C¸ FTIR  (cm−1): 1720 

(C=O), 1595 (C=N), 1569 (C=C), 1499 (C=C), 1286 

(C-O), 1118 (C-O); 1H-NMR (400 MHz,  CDCl3) δ: 7.89 

(d, J = 8.2 Hz, 2H, Ar–H), 7.60 (d, J = 7.9 Hz, 4H, Ar–H), 

7.29 (t, J = 7.7  Hz, 4H, Ar–H), 7.26 (d, J = 7.6  Hz, 2H, 

Ar–H), 7.12 (t, J = 7.4 Hz, 2H, Ar–H), 4.80 (s, 1H, CH), 

3.86 (s, 3H,  COOCH3), 2.12 (s, 6H,  CH3); 13C-NMR 

(101  MHz,  CDCl3) δ: 167.2, 146.8, 146.1, 129.9, 129.1, 

128.5, 128.2, 128.1, 127.5, 126.4, 121.4, 52.2, 34.1, 12.0; 

ESI–MS m/z 494.8  [M]+.

4 , 4 ’ - [ ( 4 -Tr i f l u o r o m e t h y l p h e n y l ) m e t h y l e n e ]

bis(3-methyl-1-phenyl-1H-pyrazol-5-ol) 3o Yield 96% 

as a white solid; mp 203.0–205.0  °C; FTIR  (cm−1): 1600 

(C=N), 1583 (C=C), 1500 (C=C), 1320  (CF3), 1115 

 (CF3); 1H-NMR (400  MHz, DMSO-d6) δ: 13.88 (s, 1H, 

OH), 7.70 (d, J = 7.7  Hz, 4H, Ar–H), 7.65 (d, J = 8.3  Hz, 

2H, Ar–H), 7.46 (d, J = 8.4  Hz, 2H, Ar–H), 7.44 (t, 

J = 8.1  Hz, 4H, Ar–H), 7.25 (t, J = 7.3  Hz, 2H, Ar–H), 

5.06 (d, J = 8.4 Hz, 1H, CH), 2.33 (s, 6H,  CH3); 13C-NMR 

(101 MHz, DMSO-d6) δ: 147.1, 146.3, 128.9, 128.1, 126.7 

(q, J = 31.5 Hz), 125.7 (m), 125.1 (q, J = 4.0 Hz), 124.5 (q, 

J = 271.9  Hz), 120.6, 33.0, 11.6; 19F-NMR (56.17  MHz, 

DMSO-d6) δ: − 60.12 (s,  CF3); ESI–MS m/z 504.8  [M]+.

4 , 4 ’ - [ ( 4 -Tr i f l u o r o m e t h o x y p h e n y l ) m e t h y l e n e ]

bis(3-methyl-1-phenyl-1H-pyrazol-5-ol) 3p Yield quan-

titative as a white solid; mp 174.5–176.0 °C; FTIR  (cm−1): 

1596 (C=N), 1579 (C=C), 1501 (C=C), 1253 (C–OCF3), 

1226  (CF3), 1167  (CF3); 1H-NMR (500 MHz, DMSO-d6) 

δ: 7.70 (d, J = 7.8 Hz, 4H, Ar–H), 7.44 (t, J = 7.8 Hz, 4H, 

Ar–H), 7.35 (d, J = 8.6 Hz, 2H, Ar–H), 7.27 (d, J = 8.5 Hz, 

2H, Ar–H), 7.25 (t, J = 7.3  Hz, 2H, Ar–H), 5.00 (s, 1H, 

CH), 2.32 (br. s., 6H,  CH3); 13C NMR (126 MHz, DMSO-

d6) δ: 147.1, 146.8, 141.9, 137.4, 137.2, 129.5, 129.4, 126.4, 

121.2, 33.0, 11.8; 19F-NMR (56.17  MHz, DMSO-d6) δ: 

− 56.02 (s,  OCF3); ESI–MS m/z 520.8  [M]+.

4,4’-[(4-�iomethylphenyl)methylene]bis(3-methyl-1-phe-

nyl-1H-pyrazol-5-ol) 3q Yield 60% as a white solid; mp 

209.1–211.3 °C [Lit. 205–207 [49]]; 1H-NMR (400 MHz, 

DMSO-d6) δ: 13.91 (br. s., 1H, OH), 7.70 (d, J = 7.9  Hz, 

4H, Ar–H), 7.44 (t, J = 7.8  Hz, 4H, Ar–H), 7.24 (t, 

J = 7.3  Hz, 2H, Ar–H), 7.18 (s, 4H, Ar–H), 4.91 (s, 1H, 

CH), 2.42 (s, 3H,  SCH3), 2.31 (br. s., 6H,  CH3).

Biological evaluation
DPPH radical scavenging assay

�e stock solutions of the compounds was prepared 

by dissolving 3a–q in dimethylsulfoxide (DMSO) to a 

concentration of 4  mg/mL. �e solution was, diluted 

with methanol until a concentration of 400  µg/mL was 

obtained and then used immediately.

�e experimental procedure was adapted from the lit-

erature [50]. Briefly, 100 µL of a 0.2 mM methanol solu-

tion of DPPH (2, 2-diphenyl-1-picrylhydrazyl) radical 

were added to 100 µL of methanolic solutions of 3a–q 

prepared as serial two-fold dilutions from the stock solu-

tion in 96-well microfilter plates. Standards and edara-

vone were also prepared in the same concentrations. 

�e mixture was incubated in dark at room temperature 

for 30 min and the absorbance was read at 515 nm on a 

Cytattion 5 (BioTek) spectrophotometer.

�e % DPPH scavenging activity was then calculated by 

using the following formula:

�e antioxidant activity of the compound was 

expressed as  IC50, which is defined as the concentra-

tion that could scavenge 50% of the DPPH free radical. 

�e  IC50 values were calculated in GraphPad Prism 8.1.1 

(GraphPad Software, Corp.) �e results are given as a 

mean ± standard deviation (SD) of experiments done in 

triplicate.

Cell culture

For biological studies, a human colorectal carcinoma 

RKO cell line (donated by Dra. Patricia Ostrosky, Insti-

tuto de Investigaciones Biomédicas, Departamento de 

Genética y Toxicología Ambiental, UNAM), with wild 

type p53 was used. Cells were cultured in RPMI-1640 

medium supplemented with FBS 10% (Sigma Aldrich, 

%DPPH scavenging

= 100 ∗

[

(

Asample+DPPH − Asample blank

)

(ADPPH − Asolvent)

]
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USA), glutamine 2  mM (GIBCO-�ermo Fisher Scien-

tific, USA), streptomycin 0.1  mg/mL, penicillin 100 U/

mL, and amphotericin B 0.25 µg/mL; and maintained at 

37  °C in a humidified atmosphere containing 5%  CO2. 

Derivatives were dissolved in DMSO at a stock con-

centration of 20 mM. �e final concentration of DMSO 

(< 1%, v/v) did not affect the cell growth in the different 

experiments performed.

Cytotoxic assay

�e effect of each compound on cell proliferation was 

evaluated by the MTS metabolic viability assay, measur-

ing mitochondrial activity of live cells. For this purpose, 

2 ×  103 cells in 100 µL per well were seeded in triplicate 

in 96-well plates. Twenty-four hours after seeding, cells 

were exposed to each one of the derivatives at increasing 

concentrations (5–250 µM) and incubated for 48 h. Later, 

20 µL of Cell Titer 96 Aqueous One Solution cell prolif-

eration reagent (Promega, USA) was added to each well 

containing the cells 4  h before finishing the treatment. 

�en, the absorbance was measured with a microplate 

spectrophotometer (Epoch 2—BioTek, USA) at 492  nm. 

Data obtained from untreated cells (control) were consid-

ered as 100% of the viability to normalize the absorbance 

of treated samples.

Trypan Blue dye exclusion assay was also performed to 

determine the cell number and viability after exposure to 

compound 3i. Briefly: 3 ×  104 cells in 2 mL per well were 

seeded in a 6-well plate; after 24 h, cells were exposed to 

compound 3i at 10–70 µM and incubated for additional 

24 and 48 h. Supernatant from wells was recovered inde-

pendently, cells were then trypsinized, collected, and 

mixed with the previously recovered medium. After cen-

trifugation, pellets were re-suspended in 1  mL of fresh 

medium. Cell suspension was mixed with Trypan Blue 

0.4% (GIBCO-�ermo Fisher Scientific, USA) in a 1:1 

proportion and then counted applying a hemocytometer. 

Viable and non-viable (stained) cells were counted in a 

light microscopy (Nikon, USA).

For morphological analysis, 5 ×  104 cells/mL were 

seeded in 3.5-cm diameter Petri dishes. After 24  h of 

incubation, cells were exposed to compound 3i at three 

representative doses: 30, 40 and 50 µM, for 24 and 48 h. 

Subsequently, cell morphology was observed using a light 

microscope (Axioskop 2 plus—Zeiss, Germany) equipped 

with a 40× objective. Images were then acquired with a 

SCA1300-32FM digital camera (Basler Inc., Germany).

Western blot analysis

Western blot analyses were performed in order to deter-

mine the induced cell death pathway by derivatives. 

According to cytotoxic effect, three concentrations (30, 

40 and 50  µM) were administrated to RKO cell line for 

24  h. As positive controls, cells were simultaneously 

exposed for 10  min to UV irradiation (Osram, G30T8, 

30  W Germicidal UV-C Lamp, 254  nm) for apopto-

sis induction or for 1  h to PBS for starvation-induced 

autophagy [51]. As follows, proteins were separated by 

SDS-PAGE (7–15%) and transferred to a PVDF mem-

brane (IPVH00010, Immobilon-P, 0.45  µm, EMD/Mil-

lipore, Billerica, USA), and then incubated with primary 

antibodies: p53 (sc-81168), p21 (sc-817), SQSTM1/

p62 (sc-48402), β-actin (sc-58673) (Santa Cruz Biotech-

nology, USA), PARP (#9542), caspase-3 (#6962), Bax 

(#2774), Bcl-2 (#15071) LC3A/B (#12741) (Cell Signal-

ing Technology, USA), followed by secondary antibodies: 

anti-mouse IgG, HRP-linked (#7076) and anti-rabbit IgG, 

HRP-linked (#7074) (Cell Signaling Technology, USA). 

Immunoreactive bands were monitored using Immobilon 

Crescendo, or Forte, Western HRP Substrate (Millipore-

Merck, KGaA, Germany).

Statistical analysis

Each experiment was performed independently at least 

three times and data were reported as the means ± SEM, 

as evidenced in each figure. Significant data were 

obtained with one-way analysis of variance (ANOVA) 

followed by the Dunnett post-test. Samples exposed to 

derivatives, Doxorrubicin or UV or starvation condition 

were compared to the control considering a p < 0.05 to be 

statistically significant. Statistical analyses were realized 

in GraphPad Prism 8 (GraphPad Software, USA).
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p62; E) BAX; F) Bcl-2; G) Cleaved caspase-3; H) Active and cleaved PARP-1; 

I) Actin. Notice, for autophagy detection starvation control was first, in 

contrast to apoptosis control, which UV control was first. Fig. S2. 1H NMR 

spectrum of compound 3a. Fig. S3. 1H NMR spectrum of compound 3b. 

Fig. S4. 1H NMR spectrum of compound 3c. Fig. S5. 1H NMR spectrum of 

compound 3d. Fig. S6. 1H NMR spectrum of compound 3e. Fig. S7. 19F 

NMR spectrum of compound 2e. Fig. S8. 1H NMR spectrum of compound 

3f. Fig. S9. 1H NMR spectrum of compound 3 g. Fig. S10. 13C NMR spec-

trum of compound 3 g. Fig. S11. FTIR spectrum of compound 3 g. Fig. 

S12. ESI–MS spectrum of compound 3 g. Fig. S13. 1H NMR spectrum of 

compound 3 h. Fig. S14. 1H NMR spectrum of compound 3i. Fig. S15. 13C 

NMR spectrum of compound 3i. Fig. S16. FTIR spectrum of compound 

3i. Fig. S17. HRMS spectrum of compound 3i. Fig. S18. 1H NMR spectrum 

of compound 3j. Fig. S19. 1H NMR spectrum of compound 3 k. Fig. 

S20. 1H NMR spectrum of compound 3 l. Fig. S21. 1H NMR spectrum 

of compound 3 m. Fig. S22. 19F NMR spectrum of compound 3 m. Fig. 

S23. 1H NMR spectrum of compound 3n. Fig. S24. 13C NMR spectrum of 

compound 3n. Fig. S25. FTIR spectrum of compound 3n. Fig. S26. ESI–

MS spectrum of compound 3n. Fig. S27. 1H NMR spectrum of compound 

3o. Fig. S28. 13C NMR spectrum of compound 3o. Fig. S29. 19F NMR 

spectrum of compound 3o. Fig. S30. FTIR spectrum of compound 3o. 

Fig. S31. ESI–MS spectrum of compound 3o. Fig. S32. 1H NMR spectrum 

of compound 3p. Fig. S33. 13C NMR spectrum of compound 3p. Fig. 

S34. 19F NMR spectrum of compound 3p. Fig. S35. FTIR spectrum of 

compound 3p. Fig. S36. ESI–MS spectrum of compound 3p. Fig. S37. 1H 

NMR spectrum of compound 3q.
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