Synthesis of 5-Fluoro- and 5-Hydroxymethanoprolines Via Lithiation of N -BOC-Methanopyrrolidines. Constrained Cr -Exo and C^{r}-Endo Flp and Hyp Conformer Mimics

Grant R. Krow ${ }^{*}, \dagger$, Matthew D. Shoulders ${ }^{\ddagger}$, Ramakrishna Edupuganti ${ }^{\dagger}$, Deepa Gandla ${ }^{\dagger}$, Fang Yu †, Philip E. Sonnet ${ }^{\dagger}$, Matthew Sender ${ }^{\dagger}$, Amit Choudhary ${ }^{\S}$, Charles DeBrosse ${ }^{\dagger}$, Charles W. Ross III ${ }^{\mathrm{d}}$, Patrick Carroll ${ }^{\perp}$, and Ronald T. Raines ${ }^{\ddagger}, \$$
Department of Chemistry, Temple University, Philadelphia, Pennsylvania 19122, Department of Medicinal Chemistry, Merck Research Laboratories, Merck \& Co., Inc., West Point, Pennsylvania 19486-004, Department of Chemistry, and the Graduate Program in Biophysics and Departments of Chemistry and Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706
†Department of Chemistry, Temple University
\ddagger Department of Chemistry, University of Wisconsin-Madison
§Graduate Program in Biophysics, University of Wisconsin-Madison
${ }^{\text {d}}$ Department of Medicinal Chemistry, Merck Research Laboratories
${ }^{\perp}$ Department of Chemistry, University of Pennsylvania
\$Department of Biochemistry, University of Wisconsin-Madison

Abstract

Proline derivatives with a C^{γ}-exo pucker typically display a high amide bond trans:cis ($K_{\mathrm{T} / \mathrm{C}}$) ratio. This pucker enhances $n \rightarrow \pi^{*}$ overlap of the amide oxygen and ester carbonyl carbon, which favors a trans amide bond. If there were no difference in $n \rightarrow \pi^{*}$ interaction between the ring puckers, then the correlation between ring pucker and $K_{\mathrm{T} / \mathrm{C}}$ might be broken. To explore this possibility, proline conformations were constrained using a methylene bridge. We synthesized discrete gauche and anti 5-fluoro and 5-hydroxy N -acetyl-methanoproline methyl esters from 3syn and 3-anti fluoro and hydroxyl methanopyrrolidines, using directed a-metallation to introduce the a-ester group. NBO calculations reveal minimal $n \rightarrow \pi^{*}$ orbital interactions, so contributions from other forces might be of greater importance in determining $K_{\mathrm{T} / \mathrm{C}}$ for the methanoprolines. Consistent with this hypothesis, greater trans amide preferences were found in CDCl_{3} for anti isomers en-MetFlp and en-MetHyp (72-78\% trans) than for the syn stereoisomers ex-MetFlp and ex-MetHyp ($54-67 \%$ trans). These, and other, $K_{\mathrm{T} / \mathrm{C}}$ results that we report here indicate how substituents on proline analogues can affect amide preferences by pathways other than ring puckering and $n \rightarrow \pi^{*}$ overlap and suggest that caution should be exercised in assigning enhanced pyrrolidine C^{γ}-exo ring puckering based solely on enhanced trans amide preference.

[^0]
Introduction

Proline (Pro) is distinct among the twenty common amino acids because the C^{a}-alkyl side chain is covalently linked to the nitrogen atom in the amino acid backbone. In a peptide context, the cyclic nature of Pro results in formation of tertiary amide bonds rather than the secondary amide bonds observed for the other nineteen amino acids. The presence of tertiary amide bonds to Pro residues has important effects on protein structure and folding. ${ }^{1}$ Specifically, Pro amides have a high population of the cis peptide bond, whereas amino acids that form secondary amides exist nearly exclusively in the trans peptide bond conformation. ${ }^{2}$

The five-membered pyrrolidine ring in Pro exists primarily in two favored ring puckers. C^{γ} experiences a large out-of-plane displacement in these puckers, ${ }^{3}$ and thus we refer to the two major conformations as C^{γ}-endo and C^{γ}-exo (see Table 1). The predominant ring pucker for a particular Pro derivative can be controlled by hydrogen bonding, ${ }^{4}$ or by functionalization of C^{γ} with either spatially demanding functional groups or electronegative substituents that result in a conformation-controlling gauche effect. ${ }^{5}$ In addition to ring puckering, there is a concurrent trans/cis equilibrium of amide conformations. Previous work suggests that Pro ring pucker and amide trans/cis ratios ($K_{\mathrm{T} / \mathrm{C}}$) for Pro derivatives are strongly correlated (Table 1). ${ }^{5,6}$

Pro derivatives whose C^{γ}-exo ring puckers are highly populated (Flp 1) have a higher $K_{\mathrm{T} / \mathrm{C}}$, whereas Pro derivatives whose C^{γ}-endo ring puckers are highly populated (Pro $\mathbf{3}$ and flp 4) have a lower K (Table 1). ${ }^{5,6} \mathrm{~T} / \mathrm{C}$ A rationalization of this observation is that the higher $K_{\mathrm{T} / \mathrm{C}}$ of C^{γ}-exo puckered Pro derivatives is due to a greater stabilizing $\mathrm{n} \rightarrow \pi^{*}$ orbital interaction between O_{0} of a trans prolyl peptide bond with $\mathrm{C}_{1}=\mathrm{O}_{1}$. This interaction is favored by the ϕ and ψ angles enforced by a C^{γ}-exo ring pucker for Flp 1, rather than those enforced by a C^{γ}-endo ring pucker in flp $4 .{ }^{5 \mathrm{~b}, 7,8 \mathrm{~b}}$ These relationships are shown in Figure 1A. An exception to the relationship between favored C^{γ}-exo ring pucker and higher $K_{\mathrm{T} / \mathrm{C}}$ preferences has been noted for hyp $5\left(K_{\mathrm{T} / \mathrm{C}}=4.7-5.0\right)$ in CDCl_{3} solvent. ${ }^{4}$ A transannular hydrogen bond between the 4-hydroxyl group and the ester carbonyl oxygen distorts the main chain ϕ and ψ torsion angles of the C^{γ}-endo ring pucker toward those typical of C^{γ} exo ring puckers. The same hydrogen bond also enhances an $n \rightarrow \pi^{*}$ orbital interaction that stabilizes the trans amide conformation.

Of course, trans amide preferences can be influenced as well by other often interrelated forces, such as steric, dipolar, and solvent effects. ${ }^{4,5 \mathrm{~g}, 5 \mathrm{i}}$ These features of γ-substituted Pro derivatives, as depicted in Figure 1A, are useful for many protein engineering applications, including modulation of the structure and stability of collagen, elastin, and many other peptides and proteins. ${ }^{5,8}$

An alternative scenario depicted in Figure 1B is a conformationally constrained system in which the gauche and anti conformations are not in equilibrium, but are isomeric structures. In such a system, the contribution of $n \rightarrow \pi^{*}$ orbital interactions to amide preferences $K_{\mathrm{T} / \mathrm{C}}$ may be equal for the two isomers or perhaps be of an unimportant magnitude. Such structures would provide experimental insight into other substituent-related forces that influence amide trans preferences.

The 2-azabicyclo[2.1.1]hexane ring system, a methanoproline (MetPro), was previously selected as a constrained proline model that fulfills the requirements of Figure 1B. ${ }^{10}$ Because of the methylene bridge, the syn(gauche) or anti orientations of substituents in methanoprolines are fixed and can not interconvert. As depicted in Figure 2, substituted
methanoproline derivatives can be created that display either the idealized C^{γ}-exo or the C^{γ} endo ring pucker of a 4 -substituted proline derivative. For example, replacement of a hydrogen atom by a fluorine at the appropriate $\mathrm{C}^{\gamma \operatorname{syn}}$ or $\mathrm{C}^{\boldsymbol{\gamma} \text { anti }}$ position of MetPro generates the constrained mimics ex-MetFlp 6 and en-MetFlp 7 that correspond to idealized embedded conformations for ex-Flp 1 (exo pucker) and en-Flp 1 (endo pucker), shown by the bold outlines. Similarly, ex-MetHyp 8 and en-MetHyp 9 are constrained versions of ex-Hyp 2 (exo pucker) and en-Hyp 2 (endo pucker), respectively. Previously, we used this Pro model system to demonstrate that by constraining the pucker of the pyrrolidine ring in MetPro $\mathbf{1 0}$ and the γ-substituted derivatives, ex-Metflp 11 and ex-Methyp 12, the substituent effect on $K_{\mathrm{T} / \mathrm{C}}$ was essentially abolished. ${ }^{10}$

To assess the $\mathrm{n} \rightarrow \pi^{*}$ orbital contribution to $K_{\mathrm{T} / \mathrm{C}}$ for the methanoprolines, we performed geometry optimizations and frequency calculations on the favored trans distal (td) and trans proximal (tp) conformations for each of the MetPro derivatives 6-12, and the optimized geometries were subjected to NBO analysis. ${ }^{11}$ Our calculations revealed no significant $\mathrm{n} \rightarrow \pi^{*}$ stabilization for any of the isomers studied (shown in Table 2). Moreover, the differences in $n \rightarrow \pi^{*}$ stabilization within pairs of MetFlp isomers $\mathbf{6} / 7$ and MetHyp isomers $8 / 9$ is minimal ($50.3 \mathrm{kcal} / \mathrm{mol}$). The impact of these calculations is that the trans amide preferences for structures 6-12 should be mainly a function of the "other forces;" e.g., dipolar, steric, and solvent effects (as depicted in Figure 1B).

The scope of our original study with methanoprolines was limited to MetPro $\mathbf{1 0}$ and the anti stereoisomers of ex-Metflp 11 and ex-Methyp $\mathbf{1 2}$ by synthetic considerations at that time, and we were unable to explore the generality of the finding that $K_{\mathrm{T} / \mathrm{C}}$ values of other methanoprolines are independent of substituent and position. ${ }^{10} \mathrm{We}$ now report a different synthetic approach to methanoprolines using directed lithiations of isomeric N-Boc-5-fluoro and 5-hydroxymethanopyrrolidines to introduce the 3 -ester substituent. ${ }^{12,13}$ By this method, we have synthesized and characterized in detail ex-MetFlp 6 and en-MetFlp 7 that contain embedded exo and endo conformations of Flp 1. We have also prepared ex-MetHyp $\mathbf{8}$ and en-MetHyp 9 that contain exo and endo conformations of Hyp 2 (see Figure 1). The trans amide preferences of these methanoprolines have been determined in CDCl_{3} and $\mathrm{D}_{2} \mathrm{O}$. The results provide fresh insights on an issue of importance to peptide and protein chemists.

Results and Discussion

Synthesis of Fluoromethanoprolines

The ex-MetFlp derivative $\mathbf{6}$ was prepared from the fluorinated methanopyrrolidine $\mathbf{1 3}$ using directed a-metallation (Scheme 1). ${ }^{13}$ Treating compound $\mathbf{1 3}$ with s-BuLi at $-78{ }^{\circ} \mathrm{C}$ yielded a mixture of C_{1} and C_{3} anions. ${ }^{12}$ These carbanions were transformed to the desired C_{3} methyl esters by one of two methods: treatment with CO_{2}, acidification, and then esterification with TMS-diazomethane (Method A); or treatment with methyl chloroformate (Method B). Method A afforded a desired 3-ester 14 (27\%) and the 1-ester 15 (17\%), whereas method B gave the same esters 14 (24\%) and $\mathbf{1 5}(26 \%)$. We were unable to separate the esters, but isomer ratios could be determined by integration of non-overlapping H_{4} resonances for the two esters and the unique resonances for the methylene protons $\mathrm{H}_{3 \mathrm{~s}}$ and $\mathrm{H}_{3 \mathrm{a}}$ of the 1-ester $\mathbf{1 5}$. Of the two possible 3-esters only $\mathbf{1 4}$, the ester farther from the 5-syn-F substituent, was observed. The stereochemistry for the 3 -exo ester $\mathbf{1 4}$ was assigned based upon the proton $\mathrm{H}_{3 n}(\delta 4.32$ and 4.22, conformations) showing an NOE enhancement with $\mathrm{H}_{4}(\delta 3.05)$, but not with the $\mathrm{H}_{6 \mathrm{~s}}$ proton. For 1-ester $\mathbf{1 5}, \mathrm{H}_{3 \mathrm{x}}$ at $\delta 3.41$ has an NOE enhancement with $\mathrm{H}_{4}(\delta 2.82)$ and $\mathrm{H}_{6 \mathrm{~s}}(\delta 1.76)$. Deprotection and subsequent acetylation of a 1:1 mixture of esters afforded a 1.1:1 mixture of the desired ex-MetFlp 6 along with the 1ester 16. Isomer and conformer ratios again were determined by integration of non-
overlapping H_{4} resonances for the two esters $\mathbf{6}$ and 16 and the unique resonances for H_{3} and $\mathrm{H}_{3 \mathrm{a}}$ of the 1-ester 16. The isomer ratios were confirmed by ${ }^{19} \mathrm{~F}$ NMR integrations (See Table 3).

The en-MetFlp derivative 7 was prepared as shown in Scheme 2 by directed metallation of the fluorinated methanopyrrolidine $17^{13,14}$ followed by either a CO_{2} quench and esterification (Method A) or by reaction with DMF followed by oxidation of the resultant aldehyde to the acid and esterification with TMS-diazomethane (Method C). Method A gave a poorly separated 5:5:3 mixture of 3-esters $\mathbf{1 8}$ and $\mathbf{1 9}$, and 1-ester $\mathbf{2 0}(31 \%)$; there was an additional amount of $\mathbf{2 0}(17 \%)$ at a slightly lower R_{f} value. Method C gave a $1: 1$ mixture of 3-alcohols 21 and 22 (34\%) that was separable from the 1-alcohol 23 (22%). Oxidation of the 3-alcohols to the acids and esterification with TMS-diazomethane gave a mixture of 3esters 18 and 19. The ester mixture (from Method A or C) was treated with TFA to remove the BOC protecting group and then acetylated to afford a mixture of the desired en-MetFlp 7, its stereoisomer ex-Metflp 11, and the 1-ester 24. NMR analysis of the 3-ester mixture was enabled by a clear separation of the $\mathrm{H}_{5 \text { syn }}$ protons next to fluorine in the two isomers and the previous preparation of ex-Metflp 11. ${ }^{10}$ The en-MetFlp 7 was also prepared independently from alcohol 9 (see below).

The method B procedure with fluoride 17 was designed to trap the s - BuLi generated 3anions with methyl chloroformate, but it did not provide the 3-esters (eq 1). Instead, we isolated only the 1-ester 20 (10%) and the ketone 25 (41%), whose crystalline sample used for X-ray analysis was found to have C_{2} symmetry. Thus, in forming ketone $\mathbf{2 5}$ the 1-anion of $\mathbf{1 7}$ and its reactive partner ester $\mathbf{2 0}$ must be derived from the same enantiomer of $\mathbf{1 7}$.

Synthesis of Hydroxymethanoprolines

The ex-MetHyp structure $\mathbf{8}$ was prepared from the protected 5-synhydroxymethanopyrrolidine 26 (Scheme 3). ${ }^{13}$ Method A gave a separable mixture of 3-ester $27(30 \%)$ and 1-ester $28(40 \%)$, identified by the absence of an H_{1} proton and the pair of H_{3} protons ($\delta 3.60-3.38$ and 3.30). The ester 27 was reduced to give alcohol 29; confirming 3-exo-hydroxymethyl stereochemistry, the proton $\mathrm{H}_{6 \mathrm{~S}}(\delta 1.34)$ showed an NOE enhancement with the hydroxymethylene protons $(\delta 3.76)$ and the proton $\mathrm{H}_{6 \mathrm{a}}(\delta 1.16)$ gave a positive NOE enhancement with proton $\mathrm{H}_{5 \mathrm{a}}(\delta 3.72)$. The usual N-deprotection and N-acetylation of ester 27 gave amide 30 that was desilylated using tetrabutylammonium fluoride trihydrate in THF (89\%) to give ex-MetHyp 8. Benzoylation of alcohol $\mathbf{8}$ afforded benzoate ester $\mathbf{3 1}$.

The en-MetHyp structure 9 was prepared from the unprotected 5-anti-hydroxymethanopyrrolidine 32 (Scheme 4). ${ }^{13}$ Following the Method A procedure, alcohol 32 gave a mixture of alcohol esters that was immediately esterified with benzoyl chloride to give a $1: 1$ mixture of benzoates $\mathbf{3 3}$ and $\mathbf{3 4}(28 \%, 50 \%$ BORSM), which differed only in the stereochemistry at C_{3}. The substitution was regioselective and introduction of an ester group at C_{1} was not observed. ${ }^{15}$ The N-BOC protections of the benzoates were removed and
subsequent acetylation afforded a separable mixture of 3-endo ester $\mathbf{3 5}$ (47\%) and 3-exo ester 36 (34\%). Selective removal of the benzoate esters was effected using methanol/ triethylamine to give the new en-MetHyp $9(87 \%)$ along with its previously described stereoisomer ex-Methyp $\mathbf{1 2}$ (85\%). ${ }^{10}$ Alcohol 9 was converted to the fluoride 7 by reaction with BAST. ${ }^{10}$

NMR Analysis of $K_{\mathrm{T} / \mathrm{C}}$ Values for Substituted for Methanoprolines. Embedded Flp and Hyp Conformers

With the requisite methanoprolines 6-9 in hand, the integrated intensities of nonoverlapping ${ }^{1} \mathrm{H}$ peaks were compared to find amide trans/cis ratios in both CDCl_{3} and $\mathrm{D}_{2} \mathrm{O}$. The results are shown by entries 1-4 in Table 3^{13}. The percentages of trans isomers obtained from averaged separate ${ }^{1} \mathrm{H}$ NMR integrations are reliable to $\pm 1.2 \%$ or better. However, isomer ratios did depend slightly on the atom chosen to be integrated and compared; the percentage of trans isomers determined by ${ }^{19} \mathrm{~F}$ NMR ratios were within 2% of values determined using ${ }^{1} \mathrm{H}$ NMR ratios.

In aprotic CDCl_{3}, the C^{γ}-exo mimetics ex-MetFlp 6 (entry 1) and ex-MetHyp 8 (entry 3), have clearly lower trans amide preferences than the C^{γ}-endo mimetics en-MetFlp 7 (entry 2) and en-MetHyp 9 (entry 4). In polar $\mathrm{D}_{2} \mathrm{O}$ there is a leveling effect upon amide preferences, but lower trans amide preferences, slightly outside or close to the range of experimental error, are again seen for ex-MetFlp 6 (entry 1) and ex-MetHyp 8 (entry 3) compared to their stereoisomers en-MetFlp 7 (entry 2) and en-MetHyp 9 (entry 4).

The $K_{\mathrm{T} / \mathrm{C}}$ values for 6-9 also can be compared with those of MetPro $\mathbf{1 0}$ (entry 5). In $\mathrm{D}_{2} \mathrm{O}$, introduction of a heteroatom at any position results in a slight enhancement ($81-84 \%$ trans) of the trans amide preference relative to the parent $\mathbf{1 0}$ (79% trans). In CDCl_{3}, however, one of the gauche isomers, ex-MetFlp 6 (67% trans, entry 1), has a similar trans amide preference and the other, ex-MetHyp 8 (54% trans, entry 3), has a lower trans amide preference than shown by MetPro $\mathbf{1 0}$ (71% trans, entry 5). On the other hand, the anti heteroatom isomers en-MetFlp 7 (78% trans, entry 2) and en-MetHyp 9 (72% trans, entry 4) have slightly higher trans amide preferences than MetPro 10. Surprisingly, individual comparisons of $K_{\mathrm{T} / \mathrm{C}}$ values in both CDCl_{3} and $\mathrm{D}_{2} \mathrm{O}$ show that the C^{γ}-exo conformer mimics ex-Metflp 11 and ex-Methyp $\mathbf{1 2}$ have slightly lower (3-5\%) trans amide preferences than the C^{γ}-endo conformer mimics en-MetFlp 7 and en-MetHyp 9. ${ }^{10}$ Both sets of exo conformer proline mimics have anti orientations for their substituents.

Effect of the hydroxyl moiety on $K_{\mathrm{T} / \mathrm{C}}$ values

The hydroxyl proton is not wholly responsible for the low $K_{\mathrm{T} / \mathrm{C}}=1.2$ (54% trans) in aprotic CDCl_{3} for the gauche alcohol ex-MetHyp 8 (entry 3). Its O-silyl ether ex-Hyp-X $\mathbf{3 0}$ (entry 8) showed a somewhat higher $K_{\mathrm{T} / \mathrm{C}}=1.4(58 \%$ trans $)$, but this value was still below $K_{\mathrm{T} / \mathrm{C}}=$ 2.4 (71% trans) for MetPro 10 (entry 5). As with ex-MetHyp $\mathbf{8}$ in the protic and more polar solvent $\mathrm{D}_{2} \mathrm{O}$, the $K_{\mathrm{T} / \mathrm{C}}=4.1$ (80% trans) for the silyl ether MetHyp-X 30 (entry 8) was substantially increased relative to $K_{\mathrm{T} / \mathrm{C}}=1.4(58 \%$ trans $)$ in CDCl_{3}.

In apolar CDCl_{3}, benzoylation resulted in higher trans amide preferences in comparison to the parent alcohols. O-Benzoylation of ex-MetHyp $\mathbf{8}\left(\mathrm{X}=\mathrm{OH}, K_{\mathrm{T} / \mathrm{C}}=1.2,54 \%\right.$ trans $)$ formed the syn-benzoate ex-MetHyp-X $\mathbf{3 1}(\mathrm{X}=\mathrm{OBz})$ that showed a large increase in trans preference ($K_{\mathrm{T} / \mathrm{C}}=4.1,80 \%$ trans, entry 9). Similarly, the anti esters en-MetHyp-Y $35(\mathrm{Y}=$ $\mathrm{OBz}, K_{\mathrm{T} / \mathrm{C}}=3.2,76 \%$ trans, entry 10), and ex-MetHyp-Z $36\left(\mathrm{Z}=\mathrm{OBz}, K_{\mathrm{T} / \mathrm{C}}=3.2,76 \%\right.$ trans, entry 11), both showed higher trans preferences than their related free alcohols, enMetHyp 9, $\left(K_{\mathrm{T} / \mathrm{C}}=2.7,72 \%\right.$ trans, entry 4$)$, and ex-Methyp 12, $\left(K_{\mathrm{T} / \mathrm{C}}=2.2,68 \%\right.$ trans, entry 7), respectively. ${ }^{16}$ These results with hydroxymethanoprolines are cautionary in
showing that an increased $K_{\mathrm{T} / \mathrm{C}}$ value upon O-acylation does not need to be related to the presence or absence of a particular favored ring pucker. ${ }^{17}$

The higher trans amide preferences noted in CDCl_{3} for the benzoates relative to the free alcohols were not observed in a polar protic solvent. In $\mathrm{D}_{2} \mathrm{O}$ the $80-83 \%$ observed trans preferences for ex-MetHyp-X $\mathbf{3 1}(X=O B z$, entry 9$)$, en-MetHyp-Y 35 ($\mathrm{Y}=\mathrm{OBz}$, entry 10), and ex-Methyp-Z $\mathbf{3 6}(\mathrm{Z}=\mathrm{OBz}$, entry 11) were similar to those of their parent alcohols exMetHyp $8(\mathrm{X}=\mathrm{OH}, 81 \%$ trans, entry 3$)$, en-MetHyp $9(\mathrm{Y}=\mathrm{OH}, 83 \%$ trans, entry 4$)$, and ex-Methyp $12(\mathrm{Z}=\mathrm{OH}, 80 \%$ trans, entry 7$)$, respectively.

Comparison of $K_{\mathrm{T} / \mathrm{C}}$ between N -acetyl-methanoprolines and N -acetyl-methanopyrrolidines

Previously, we observed for the N-acetyl-methanopyrrolidines 37-41 that neither the methylene bridge nor the 5-fluoro- or 5-hydroxy substituent (or stereochemistry) had much of an effect upon trans amide preferences $\left[\mathrm{CDCl}_{3}(43-54 \%\right.$ trans $)$ and $\mathrm{D}_{2} \mathrm{O}(53-58 \%$ trans)]. ${ }^{13}$ Comparisons of trans preferences for methanoproline esters and their corresponding C_{3}-unsubstituted methanopyrrolidines generated the trans isomer enhancements ($\Delta \%$ trans) listed in Table 4. These enhancements are a measure of what we term the " a-ester effect".

$37 X=F, Y=Z=H \quad 40 X=Y=H, Z=O H^{*}$
$38 \mathrm{X}=\mathrm{Y}=\mathrm{H}, \mathrm{Z}=\mathrm{F}^{*} \quad 41 \mathrm{X}=\mathrm{Y}=\mathrm{Z}=\mathrm{H}$
$39 \mathrm{X}=\mathrm{OH}, \mathrm{Y}=\mathrm{Z}=\mathrm{H} \quad{ }^{*} \mathrm{Y}$ and Z are interchangeable
The α-ester effects for entries 1-7 in Table 4 are always positive. In $\mathrm{D}_{2} \mathrm{O}$ there is a $23-28 \%$ increase (entries 1-7) in the amount of trans isomer upon the introduction of the a-ester. Notably, there is little variance in $\Delta \%$ trans values between fluoro and hydroxyl substituents despite a range of three separate stereochemistries.

The α-ester effect is smaller in CDCl_{3} solvent than in $\mathrm{D}_{2} \mathrm{O}$. The trans enhancement ($\Delta \%$ trans) is on average 9% lower in CDCl_{3} for combined entries $\mathbf{1 - 7}$ (18% increased trans amide) compared to that in $\mathrm{D}_{2} \mathrm{O}$ (27% increased trans amide). The lowest trans amide enhancement (11% in CDCl_{3}) was with ex-MetHyp 8 (entry 3). This case is somewhat unique, since the parent N-acetyl-5-syn-hydroxymethanopyrrolidine 39 showed a cis amide preference prior to introduction of the a-ester to give alcohol 8 .

Calculations of methanoproline geometries

Why is the $n \rightarrow \pi^{*}$ interaction weak for methanoprolines (see Table 2 for NBO energies)? One way to crudely evaluate the potential for $n \rightarrow \pi^{*}$ stabilization is to determine the angle between the amide oxygen and the ester carbonyl, and also the distance between the amide oxygen and the ester carbon. ${ }^{18}$ The best stabilization should involve angles similar to tetrahedral and distances $\leq 300 \mathrm{pm},{ }^{10}$ although stabilizations have been validated for protein structures at angles of $109.5^{\circ} \pm 15^{\circ}$ and distances of $320 \mathrm{pm} .{ }^{18}$ To assess potential $\mathrm{n} \rightarrow \pi^{*}$ interactions within our compounds, we performed geometry optimizations and frequency calculations on four conformational energy minima for each of the MetPro derivatives 6-12. In the four conformations modeled, the ester alkoxy group is either distal ($\psi \sim 155^{\circ}$) or proximal $\left(\psi \sim 15^{\circ}\right)$, and the amide bond is either trans or cis. Results for the most populated trans conformers for each MetPro derivative are summarized in Table 5.

The bond angle and distance parameters for the favored trans distal conformations of exMetFlp 6 (entry 1) and en-MetFlp 7 (entry 2) indicate that although the two structures have similar angle parameters, $\theta=97.2^{\circ}$ and 96.4°, respectively, the syn (gauche) fluoride exMetFlp 6 has a longer distance (322 pm) for the $\mathrm{n} \rightarrow \boldsymbol{\pi}^{*}$ interaction than en-MetFlp 7, (309 pm). By comparison, the calculated parameters for exo puckered Flp 1 (trans distal) that accompany favorable $n \rightarrow \pi^{*}$ interactions are $\theta=100.6^{\circ}$ and distance $=287 \mathrm{pm}$; these values can be compared to the measured values $\theta=99.08^{\circ}$ and 97.39° and distances $=275.2 \mathrm{pm}$ and 277.8 pm , determined by x-ray structure analysis (two different trans distal geometries in the crystal). ${ }^{19}$ Clearly, the distance relationships in methanoprolines are distorted from those that allow for more favorable $n \rightarrow \pi^{*}$ overlap in C^{γ}-exo ring puckers of Flp $\mathbf{1}$ (Figure 3). One source of this difference is revealed by the sum of the calculated angles around nitrogen for the trans conformers of ex-MetFlp 6: $\mathrm{td}=353.5^{\circ}$ and $\mathrm{tp}=352.5^{\circ}$ (see Supporting Information). ${ }^{20}$ The syn fluorine on ex-MetFlp 6 repels the nitrogen- π electrons so that the acyl substituents on nitrogen are then bent toward the fluorine substituent and away from the adjacent ester; this lengthens the $\mathrm{O} \cdots \mathrm{CO}$ distance. ${ }^{9 b}$

The syn-alcohol ex-MetHyp 8, whose calculated angles at nitrogen deviate little from planarity $\left(\mathrm{td}=\mathrm{tp}=359.7^{\circ}\right)$, has a favorable distance $(296 \mathrm{pm})$, but a poor vector angle $\left(90.7^{\circ}\right)$ for $n \rightarrow \pi^{*}$ stabilization. ${ }^{18}$ The NBO analysis in Table 2 identified a weak $n \rightarrow \pi^{*}$ stabilization of $0.68 \mathrm{kcal} / \mathrm{mol}$ for this alcohol that is the highest calculated value for the methanoprolines 6-12 in Table 2; yet $\mathbf{8}$ has the lowest experimentally observed $K_{\mathrm{T} / \mathrm{C}}$ value (Table 3). This decoupling of $K_{\mathrm{T} / \mathrm{C}}$ from the $\mathrm{n} \rightarrow \pi^{*}$ orbital interaction is consistent with "other forces" (Figure 1B) as being dominant in determining conformational preferences of these methanoprolines in nonpolar solvents. ${ }^{21}$

The calculated gas phase trans mole fractions ($\mathrm{td}+\mathrm{tp}$) in Table 5 qualitatively mirror the experimental $K_{\mathrm{T} / \mathrm{C}}$ values for some of the methanoprolines in Table $3\left(\mathrm{CDCl}_{3}\right)$, i.e., enMetFlp 7 (entry 2, 85\% trans) > ex-MetFlp 6 (entry 1, 75% trans) and en-MetHyp 9 (entry 4, 91% trans) > ex-MetHyp 8 (entry 3, 66% trans). However, the calculated trans mole fractions for ex-Metflp 11 (entry 6, 87\% trans) and ex-Methyp 12 (entry 7, 42% trans) do not mirror the relative observed trans values in solution. The calculated trans mole fraction for ex-Metflp 11 is slightly higher than that of en-MetFlp 7, but 6% less trans isomer was observed in solution (Table 3, entries 6 and 2). Also, the cis distal conformer of ex-Methyp 12 was calculated to be the major conformer, but 68% trans isomer was found experimentally (Table 3, entry 7).

Intermolecular influences on conformational preferences

One force that might influence amide preferences in solution is the drive to minimize unfavorable intramolecular dipole-dipole interactions. This might be accomplished by optimizing conformations with favorable intramolecular interactions (dipole-dipole orientations and orbital overlaps). ${ }^{21,22}$ The lowest energy trans-distal (td) conformations in the calculations (Table 5) usually also have the lowest calculated molecular dipoles (μ). Exceptions are the minor cis proximal (cp) conformations of the 5-syn isomers, ex-MetFlp 6 ($6 \% \mathrm{cp}$, entry 1) and ex-MetHyp 8 ($8 \% \mathrm{cp}$, entry 3), and MetPro 10 ($9 \% \mathrm{cp}$, entry 5) that have slightly lower calculated dipole moments than their trans distal (td) conformers. Thus, for ex-MetFlp 6, $\Delta \mu=\left(\mu_{\mathrm{cp}}-\mu_{\mathrm{td}}\right)=-1.2 \mathrm{D}$, for ex-MetHyp 8, $\Delta \mu=\left(\mu_{\mathrm{cp}}-\mu_{\mathrm{td}}\right)=-1.0 \mathrm{D}$, and for MetPro 10, $\Delta \mu=\left(\mu_{\mathrm{cp}}-\mu_{\mathrm{td}}\right)=-1.8 \mathrm{D}$. These dipole moment considerations support higher amounts of cis conformations in non-polar solvents and, although energy considerations indicate these conformations are of minor importance in the gas phase, might be a factor in the smaller trans preferences in CDCl_{3} for syn (gauche) ex-MetFlp 6, exMetHyp 8, and MetPro 10.

It has been suggested for Flp 1 that a perpendicular arrangement of the C-F and amide dipoles favors a C^{γ}-exo ring pucker, while a C^{γ}-endo ring pucker has an unfavorable antiparallel orientation of these dipoles. ${ }^{5 \mathrm{i}}$ The C^{γ}-exo ring pucker is associated with higher $K_{\mathrm{T} / \mathrm{C}}$. For ex-MetFlp 6 and ex-MetHyp 8, where ring puckers are constrained and amide preferences are not a function of substituent effect on ring pucker, lower $K_{\mathrm{T} / \mathrm{C}}$ values are associated with the perpendicular orientation of dipoles.

Trans amide preferences for methanoprolines are generally enhanced in polar protic $\mathrm{D}_{2} \mathrm{O}$ where hydration competes with other forces. ${ }^{8 p}$ A hydrogen bonding interaction with solvent is one way to augment the π-acceptor ability or dipolar character of the a-ester carbonyl carbon. Enhancement of the ester carbonyl dipole by electrophilic complexation with $\mathrm{D}_{2} \mathrm{O}$ would facilitate interaction between a trans amide carbonyl oxygen and the ester carbonyl carbon. This factor could underlie the globally observed leveling effect in $\mathrm{D}_{2} \mathrm{O}$ upon $K_{\mathrm{T} / \mathrm{C}}$ values of methanoprolines. The C^{γ}-endo mimetics with anti substituents, en-MetFlp 7 and en-MetHyp 9, reveal only slightly higher $K_{\mathrm{T} / \mathrm{C}}$ values (2% and 2% more trans isomer, respectively) than their C^{γ}-exo mimetic counterparts ex-MetFlp 6 and ex-MetHyp 8, whose substituents are gauche.

Conclusion

Constrained MetFlp and MetHyp mimics do not permit significant $n \rightarrow \pi^{*}$ interactions. The conformational distortions needed to attain favored angle and distance parameters for amide/ ester orbital overlap interactions are too difficult. Thus, knowledge of the trans amide preferences for substituted methanoprolines enables an evaluation of substituent effects on $K_{\mathrm{T} / \mathrm{C}}$ that are largely exclusive of $\mathrm{n} \rightarrow \pi^{*}$ interactions.

Comparison of $K_{\mathrm{T} / \mathrm{C}}$ values between N-acetyl-methanoproline methyl esters and N-acetylmethanopyrrolidines revealed a solvent dependent a-ester effect with greater enhanced trans amide preferences in $\mathrm{D}_{2} \mathrm{O}+(24-29 \%$ trans $)$ compared to those in $\mathrm{CDCl}_{3}+(11-24 \%$ trans $)$. The trans enhancement effect is similar for both syn and anti isomers in $\mathrm{D}_{2} \mathrm{O}$, but is larger for the anti isomers in CDCl_{3}.

In summary, our results indicate that other trans amide stabilizing interactions are important in the absence of dominant $\mathrm{n} \rightarrow \pi^{*}$ stabilization of the trans conformation in N-acyl proline derivatives. However, our results should not be interpreted to imply that such stabilization is not dominant when allowed by geometric considerations. The relationships we describe between proline substitution, ring pucker, and $K_{\mathrm{T} / \mathrm{C}}$ are an important consideration when designing Pro derivatives for protein engineering. Our findings here inform the continued development of novel Pro derivatives with well-defined conformational preferences. ${ }^{5,7 \mathrm{~b}, 8,17}$

Experimental

General Methods

Thin-layer chromatography was performed on precoated plates of silica gel GF $250 \mu \mathrm{~m}$. Column chromatography was performed on silica gel, Merck grade 60 (230-400 mesh). Reagent chemicals were obtained from commercial suppliers, and reagent grade solvents were used without further purification. The standards for ${ }^{1} \mathrm{H}$ NMR were $\mathrm{CHCl}_{3} \delta 7.26$ and DHO $\delta 4.80$, for ${ }^{13} \mathrm{C}$ NMR $\mathrm{CDCl}_{3} \delta 77.0$, and for ${ }^{19} \mathrm{~F}$ NMR $\mathrm{CFCl}_{3} \delta 0.00$; undecoupled ${ }^{19} \mathrm{~F}$ spectra were referenced indirectly against a D -lock and required minor shift correction. Some NMR resonances appear as pairs because of carbamate conformations and italics denote minor rotamer peaks. Assignments of NMR resonances, where necessary, were facilitated by NOE, ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$-COSY, and HETCOR experiments. The trans/cis amide assignments were based upon observations of an NOE effect on either the characteristic
bridgehead H_{1} hydrogen or alternatively at the H_{3} methylene hydrogen signals upon irradiation of the major or minor acetyl methyl singlets. Amide trans/cis ratios were obtained by integration of non-overlapping ${ }^{1} \mathrm{H}$ peaks, acetyl peaks if possible. Spectra were obtained using delay times of $5 \times \mathrm{T}_{1}$ to ensure adequate relaxation of nuclei. Experiments with amides $\mathbf{7}$ and $\mathbf{1 1}\left(\mathrm{D}_{2} \mathrm{O}\right)$ and $\mathbf{8}, \mathbf{9}$, and $\mathbf{1 2}\left(\mathrm{CDCl}_{3}\right)$ yielded T_{1} of 1.1-2.3 sec; thus 15-20 second delay times were used for other spectra; ${ }^{19} \mathrm{~F}$ NMR spectra were measured using default 5 sec delay times. The amide ratios obtained with these relaxation times were the same as those obtained using 1 sec default delay times. Integrated intensities were obtained following line fitting of appropriate acetyl methyl peaks using NUTS software ${ }^{23}$ where possible. The reported error range for $K_{\mathrm{T} / \mathrm{C}}$ is one standard deviation of the average amide ratio; the trans amide percentage and its error limits were calculated from the average of the amide ratio and the average \pm one standard deviation. Throughout this paper we have chosen to use syn/anti nomenclature to identify the stereochemistry of substituents on the nonnitrogen containing bridges. This choice avoids the use of exo/endo nomenclature, confusing to those accustomed to naming related all carbon bridged bicyclic structures. The bridge with the nitrogen heteroatom is always the main bridge of highest priority. Thus, all substituents anti to nitrogen are endo.

N-Acetyl-3-carboxymethyl-2-azabicyclo[2.1.1]hexane $10 .{ }^{10}$

${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 4.80\left(\mathrm{dt}, J=7.5,1.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{1}\right), 4.33\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}_{3}\right), 4.28(\mathrm{dt}, J$ $\left.=7.2,1.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{1}\right), 4.26\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}_{3}\right), 3.76\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.72\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.05(\mathrm{dtd}$, $\left.J=7.5,2.9,1.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{4}\right), 2.98\left(\mathrm{dtd}, J=7.2,3.0,1.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{4}\right), 2.09$ (ddd, $J=7.6,3.0$, $1.6 \mathrm{~Hz}, 1 \mathrm{H}$, H6anti), 2.07 (s, 3H, Ac), 2.03 (ddd, $J=7.6,2.9,1.7 \mathrm{~Hz}, 1 \mathrm{H}$, H6anti), 1.96 (dd, $J=10.3,7.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{5 \text { syn }}$), $1.94(\mathrm{~s}, 3 \mathrm{H}, \mathrm{Ac}), 1.91(\mathrm{dm}, 1 \mathrm{H}, J=7.8 \mathrm{~Hz}, \mathrm{H} 5 \mathrm{anti}), 1.85(\mathrm{dm}$, $1 \mathrm{H}, J=8.0 \mathrm{~Hz}, \mathrm{H} 5 \mathrm{anti}$), 1.67 (dd, $J=10.6,8.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{5 \mathrm{syn}}$), 1.47 (ddd, $J=10.3,7.6,0.9$ $\left.\mathrm{Hz}, 1 \mathrm{H}, \mathrm{H}_{6 \mathrm{syn}}\right), 1.40(\mathrm{dd}, J=10.6,7.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H} 16 \mathrm{syn})$. H NMR ($400 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}$) $\delta 4.69$ $(d t, J=7.1,1.7,1 H), 4.68(s, 1 H), 4.51(\mathrm{dt}, J=7.1,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.42(\mathrm{~s}, 1 \mathrm{H}), 3.82(\mathrm{~s}, 3 H)$, $3.78(\mathrm{~s}, 3 \mathrm{H}), 3.15(\mathrm{~m}, 1 \mathrm{H}), 3.07(\mathrm{~m}, 1 \mathrm{H}), 2.21(\mathrm{~m}, 1 \mathrm{H}), 2.15(\mathrm{~m}, 1 \mathrm{H}), 2.14(\mathrm{~s}, 3 \mathrm{H}), 2.09-$ $2.02(\mathrm{~m}, 1 \mathrm{H}), 2.00(\mathrm{~s}, 3 H), 1.77(\mathrm{dd}, J=10.6,8.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.71(\mathrm{~m}, 1 \mathrm{H}), 1.55(\mathrm{dd}, J=10.7$, $7.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.47(d d, J=10.7,7.6 \mathrm{~Hz}, 1 \mathrm{H}) . K_{\mathrm{T} / \mathrm{C}}=2.4 \pm 0.03(70.6 \pm 0.2 \%$ trans $)$ in CDCl_{3} and $K_{\mathrm{T} / \mathrm{C}}=3.7 \pm 0.1(78.8 \pm 0.5 \%$ trans $)$ in $\mathrm{D}_{2} \mathrm{O}$ were determined from relative H_{4} integrations.

N-(tert-Butoxycarbonyl)-3-exo-carboxymethyl-5-syn-fluoro-2-azabicyclo[2.1.1]hexane (14) and N-(t-Butoxycarbonyl)-1-carboxymethyl-5-syn-fluoro-2-azabicyclo[2.1.1]hexane (15). General Procedure for Electrophilic Substitution Next to Nitrogen. Method A. ${ }^{12}$

Carbamate $13(160 \mathrm{mg}, 0.80 \mathrm{mmol})$, TMEDA $(144 \mu \mathrm{~L}, 1.11 \mathrm{mmol})$ in ether $(10 \mathrm{~mL})$ was cooled to $-78^{\circ} \mathrm{C}$ and $s-\mathrm{BuLi}(680 \mu \mathrm{~L}, 0.96 \mathrm{mmol})$ was added dropwise. The solution was stirred 2 h and quenched with $\mathrm{CO}_{2}(\mathrm{~g})$ bubbled for 20 min . The ether layer was extracted with water (3 H 10 mL). The aqueous layers were combined and acidified with aqueous HCl (pH 3). The aqueous layer was extracted with ethyl acetate (3 H 10 mL), and the organic layer was concentrated to give $120 \mathrm{mg}(62 \%)$ of the mixture of acids. The crude mixture of acids was dissolved in hexane (5 mL) and $i-\operatorname{PrOH}(5 \mathrm{~mL})$ and to this solution was added $\mathrm{TMSCHN}_{2}(245 \mathrm{~mL}, 0.49 \mathrm{mmol})$. The solution was stirred at rt for 12 h . Removal of the solvent in vacuo gave as a light colored oil $90 \mathrm{mg}(71 \%)$ of an inseparable $3: 2$ mixture of esters 14 and 15 at $R_{f}=0.39$ (3:1 hexane/ethyl acetate). For the 3-ester 14, ${ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 4.52\left(\mathrm{ddd}, J=55.5,1.8,1.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{5}\right), 4.47$ and $4.35\left(\mathrm{brd}, \mathrm{H}_{1}\right), 4.32$ and 4.22 (two s, $1 \mathrm{H}, \mathrm{H}_{3}$), 3.77 (multiple s, 3 H), $3.05\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}_{4}\right), 1.73\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}_{6 \text { syn }}\right), 1.32$ (multiple s, 9H), $1.20\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}_{6}\right)$. For 1-ester $15,{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 4.63(\mathrm{dd}, J$ $\left.=57.6,3.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{5}\right), 3.77$ (multiple s, 3 H), $3.58\left(\mathrm{brd}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{3 \mathrm{n}}\right), 3.41(\mathrm{~d}, J=$ $\left.8.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{3 \mathrm{x}}\right), 2.82\left(\mathrm{br}, 1 \mathrm{H}, \mathrm{H}_{4}\right), 1.76\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}_{6 \text { syn }}\right), 1.48(\mathrm{~m}, 1 \mathrm{H}$, H6anti), 1.32 (multiple s, 9 H). For the mixture of $\mathbf{1 4 / 1 5},{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 171.3,167.1$,
157.7, 156.8, 155.3, 28.2, and 28.1; for 3-isomer 14, $\delta 85.2$ and 84.9 (two d, $J=244 \mathrm{~Hz}$), 80.5 and $80.3,62.7$ and 61.3 (two d, $J=18 \mathrm{~Hz}$), $56.5(\mathrm{~d}, J=4 \mathrm{~Hz}$), $52.3(\mathrm{~d}, J=16 \mathrm{~Hz}), 46.5$ and $46.2(\mathrm{~d}, J=18 \mathrm{~Hz}), 23.6$ and 22.9 (two d, $J=16 \mathrm{~Hz}$), and for 1 -isomer 15, $\delta 84.2(\mathrm{~d}, J=$ 243 Hz), 81.0, 71.8 (br), $52.1,48.3$ (d, $J=3.9 \mathrm{~Hz}$), 38.8 (d, $J=19 \mathrm{~Hz}$), 31.0. For 1-ester 15, $\mathrm{H}_{3 \mathrm{x}}$ at $\delta 3.41$ has an NOE enhancement with $\mathrm{H}_{4}(\delta 2.82)$ and $\mathrm{H}_{6 \text { syn }}$ ($\delta 1.76$). For 3-exo-ester 14, $\mathrm{H}_{3 \mathrm{n}}$ ($\delta 4.32$ and 4.22) has an NOE enhancement with $\mathrm{H}_{4}(\delta 3.05)$, but not with an H_{6} (δ 1.76-1.20). For the $\mathbf{1 4 / 1 5}$ mixture, HRMS $m / z 282.1108$, calcd for $\mathrm{C}_{12} \mathrm{H}_{18} \mathrm{FNO}_{4} \mathrm{Na}(\mathrm{M}+$ $\mathrm{Na})$ 282.1118. Method B. Carbamate $13(140 \mathrm{mg}, 0.7 \mathrm{mmol})$ and TMEDA ($97 \mathrm{mg}, 125 \mu \mathrm{~L}$, $3.5 \mathrm{mmol})$ in ether $(10 \mathrm{~mL})$ in a lithiation vial were cooled to $-78^{\circ} \mathrm{C}$ and $s-\mathrm{BuLi}(600 \mu \mathrm{~L}$, $0.84 \mathrm{mmol}, 1.4 \mathrm{M}$ solution in cyclohexane) to prepare the anion as described in Method A. The solution was stirred 2 h at $-78^{\circ} \mathrm{C}$ and methyl chloroformate ($331 \mathrm{mg}, 3.5 \mathrm{mmol}$) was injected quickly into the reaction vial. After 30 min the solution was allowed to warm to rt . The solution was washed with saturated ammonium chloride (3 H 5 mL), brine (5 mL) and then dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Filtration and removal of solvent in vacuo afforded as a light yellow oil 90 mg (50%) of a 1.1:1 mixture of $\mathbf{1 4}$ and $\mathbf{1 5}$.

N -Acetyl-3-exo-carboxymethyl-5-syn-fluoro-2-azabicyclo[2.1.1]hexane (6) and N -Acetyl-1-carboxymethyl-5-syn-fluoro-2-azabicyclo[2.1.1]hexane (16)

To a 1.1:1 mixture of esters $\mathbf{1 4}$ and $\mathbf{1 5}$ ($90 \mathrm{mg}, 0.35 \mathrm{mmol}$) (Method B) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(6 \mathrm{~mL})$ was added TFA ($270 \mathrm{~L}, 3.5 \mathrm{mmol}$), and the resulting solution was stirred at rt for 4 h . Workup gave 40 mg (73%) of an amine that without further purification was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$. To this solution was added DMAP ($92 \mathrm{mg}, 1.1 \mathrm{mmol}$) followed by acetyl chloride ($54 \mathrm{~L}, 1.1 \mathrm{mmol}$) dropwise. The resulting solution stirred at $0^{\circ} \mathrm{C}$ for 30 min and was slowly brought to room temperature and stirred for 12 h . The reaction mixture was washed with water $(3 \times 5 \mathrm{~mL})$ and dried with $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The solvent was removed in vacuo to give a residue that upon silica gel flash chromatography gave $40 \mathrm{mg}(50 \%)$ of a $1.2: 1$ mixture of amides $\mathbf{6}$ and $\mathbf{1 6}$ as a light yellow oil at $R_{f}=0.17$ (2:1 ethyl acetate/hexane). For 3-isomer 6, ${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 4.86$ and $4.30\left(\mathrm{dq}, J=7.2,1.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{1}\right), 4.51$ and 4.48 (minor) (dt, $J=58,2.8,2.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{5}$), 4.39 and 4.27 (two s, $1 \mathrm{H}, \mathrm{H}_{3}$), 3.82 and $3.77(\mathrm{~s}, 3 \mathrm{H}), 3.00$ and $2.93\left(\mathrm{br}, 1 \mathrm{H}, \mathrm{H}_{4}\right), 2.03$ (multiple singlets, 3 H), 1.76 and $1.52(\mathrm{dd}, J=$ $30.0,9.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{6 \text { syn }}$), 1.24 (brm, $1 \mathrm{H}, \mathrm{H} 6$ anti); NOE: Irradiation in CDCl_{3} of the major acetyl peak at $\delta 2.03$ enhances the H_{1} signal at $\delta 4.30$ indicating the trans conformer of $\mathbf{6}$ to be major. For 1-isomer 16, ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 4.57\left(\mathrm{dd}, J=58,3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{5}\right)$, $3.75(\mathrm{~s}, 3 \mathrm{H}), 3.53\left(\mathrm{br} \mathrm{d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}_{3}\right), 3.45\left(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}_{3}\right), 2.87\left(\mathrm{br}, 1 \mathrm{H}, \mathrm{H}_{4}\right), 2.03$ (multiple singlets, 3 H), 1.67 (dd, $\left.J=27.5,9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{6 \mathrm{syn}}\right), 1.48(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}$, H6anti). From the mixture of $\mathbf{6}$ and 16, ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 171.8,170.5,169.9$, $166.8,84.5,84.1$, and 83.7 (three d, $J=241 \mathrm{~Hz}$), $52.7,52.4$, and $52.3,21.6,21.4$, and 21.3; for 3-isomer 6, $\delta 63.5$ and 60.8 (two d, $J=17 \mathrm{~Hz}$), 57.2 and 55.4 (two d, $J=4 \mathrm{~Hz}$), 47.5 and 47.2 (two d, $J=18 \mathrm{~Hz}$), 24.0 and 22.6 (two d, $J=16 \mathrm{~Hz}$); for the 1 -isomer 16, $\delta 71.1$ (br), $53.2,47.5,38.8(\mathrm{~d}, J=16 \mathrm{~Hz}), 29.8(J=16 \mathrm{~Hz})$. The ${ }^{19} \mathrm{~F}$ NMR for $6\left(282 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $-177.1(\mathrm{dd} \mathrm{J}=59$ and 30 Hz) and $-177.7(\mathrm{dd}, \mathrm{J}=58$, 28 Hz); for $16 \delta-178.7(\mathrm{dd}, \mathrm{J}=56,29$ Hz); HRMS $m / z 202.0865$, calcd for $\mathrm{C}_{9} \mathrm{H}_{13} \mathrm{FNO}_{3}(\mathrm{M}+\mathrm{H})$ 202.0874. A trans/cis isomer ratio in CDCl_{3} of 2.1 (68% trans) was determined for $\mathbf{6}$ from fluorine spectra following line shape fitting; a trans/cis isomer ratio of $2.02 \pm 0.05(66.9 \pm 0.5 \%$ trans) was determined from comparisons using H_{4}. Also, ${ }^{1} \mathrm{H}$ NMR of the mixture of $\mathbf{6 / 1 6}\left(400 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}\right) \delta 4.89-$ $4.63(\mathrm{~m}, 3 \mathrm{H}), 4.44\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}_{3}\right.$ for $\mathbf{6}$), 3.84 and 3.79 (two s, 6 H , two OMe), 3.68 (two d, $J=$ $9.1 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}_{3}$ of $\mathbf{1 6}$), 3.32 minor and 3.26 major (two m, $1 \mathrm{H}, \mathrm{H}_{4}$ for $\mathbf{6}$), $3.03\left(\mathrm{br}, 1 \mathrm{H}, \mathrm{H}_{4}\right.$ of 16), $2.14,2.10,2.07$ (three $\left.\mathrm{s}, 2 \mathrm{CH}_{3}\right), 1.84-1.40(\mathrm{~m}, 4 \mathrm{H})$. For the mixture of $\mathbf{6}$ and $\mathbf{1 6}^{13},{ }^{13} \mathrm{C}$ NMR ($\left.100 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}\right) \delta 175.4,175.1,173.7,172.6,169.7$; for 3-ester $\mathbf{6}, \delta 85.2$ and 84.7 (two d, $J=239 \mathrm{~Hz}$), 65.0 and 61.2 (two d, $J=17 \mathrm{~Hz}$), 58.3 and 56.4 (two d, $J=4 \mathrm{~Hz}$), 53.9 and 53.6, 47.3 and 46.4 (two d, $J=18 \mathrm{~Hz}$), 23.6 and 22.4 (two d, $J=17 \mathrm{~Hz}$), 21.3 and 21.1; also for 1 -ester 16, $\delta 84.6(\mathrm{~d}, J=239 \mathrm{~Hz}), 71.6,53.4,48.2(\mathrm{~d}, J=4 \mathrm{~Hz}), 39.1(\mathrm{~d}, J=18.4$
$\mathrm{Hz}), 29.7(\mathrm{~d}, J=14.8 \mathrm{~Hz}), 20.9$, ${ }^{19}$ F NMR for 3-ester $6\left(282 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}\right) \delta-179.1(\mathrm{dd}, J=$ $58,32 \mathrm{~Hz}$) and $-179.4(\mathrm{dd}, J=58,32 \mathrm{~Hz})$ and for 1-ester $\mathbf{1 6}, \delta-180.5(\mathrm{dd}, J=58,32 \mathrm{~Hz})$. A trans/cis isomer ratio for 6 in $\mathrm{D}_{2} \mathrm{O}$ of $4.0(80 \pm 1 \%$ trans) was determined from the fluorine spectrum. The NUTS ${ }^{23}$ package was used to obtain the Gaussian resolution enhanced proton spectrum. This permitted iterative line fitting of partially overlapped H_{4} multiplets; a trans/cis ratio for 6 of $4.61 \pm 0.34(82.1 \pm 1.0 \%$ trans $)\left(\mathrm{D}_{2} \mathrm{O}\right)$ was obtained after adding the fitted intensities.

Abstract

N-(tert-Butoxycarbonyl)-5-anti-fluoro-3-endo-carbomethoxy-2-azabicyclo[2.1.1]hexane (18), N -(tert-Butoxycarbonyl)-5-anti-fluoro-3-exo- carbomethoxy-2-azabicyclo[2.1.1]hexane (19), and \boldsymbol{N}-(tert-Butoxycarbonyl)-1-carbomethoxy-5-anti-fluoro-2-azabicyclo[2.1.1]hexane (20)

According to General Procedure Method A, to a solution of fluoride 17 ($365 \mathrm{mg}, 1.8 \mathrm{mmol}$) in ether (25 mL) at $-78^{\circ} \mathrm{C}$ was added TMEDA ($300 \mathrm{~L}, 2.0 \mathrm{mmol}$) dropwise. The resulting solution was stirred for 15 min followed by the addition of $s-\mathrm{BuLi}(1.8 \mathrm{~mL}, 2.5 \mathrm{mmol})$. The mixture was then allowed to stir for 2 h at the same temperature, and the anion was quenched by bubbling CO_{2} for 20 min . Workup afforded 412 mg (93%) of a light yellow oily mixture of acids. To this mixture in $i-\operatorname{PrOH}(7 \mathrm{~mL})$ and hexane $(7 \mathrm{~mL}), \mathrm{TMSCHN}_{2}(1$ $\mathrm{mL}, 2 \mathrm{mmol}$) was added at rt . After stirring for 1 h , removal of solvent, then silica gel flash chromatography gave $137 \mathrm{mg}(31 \%)$ of a 5:5:3 mixture of $\mathbf{1 8}, \mathbf{1 9}$ and $\mathbf{2 0}$ as a light yellow oil at $R_{f}=0.53$ (1:1 hexanes/ether) and $73 \mathrm{mg}(17 \%)$ of 20 at $R_{f}=0.56$. For the mixture of esters 18/19, ${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 5.18\left(\mathrm{br} \mathrm{d}, J=61.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{5}\right)$ and $4.75(\mathrm{dd}, J$ $\left.=61.8,7.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{5}\right), 4.36\left(\mathrm{br}, 2 \mathrm{H}, 2 \mathrm{H}_{1}\right), 4.24\left(\mathrm{brm}, 2 \mathrm{H}, 2 \mathrm{H}_{3}\right), 3.75$ and 3.76 (two s, 6 H), $2.98(\mathrm{~m}, 3 \mathrm{H}), 2.78(\mathrm{~m}, 1 \mathrm{H}), 2.13\left(\mathrm{ddd}, J=8.0,8.0,2.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{6 \mathrm{syn}}\right), 1.75\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}_{6}\right)$, 1.43 (s, 18H); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 170.6,169.9,153.9$ (2C), 98.2 (d, $J=218$ $\mathrm{Hz}), 95.8(\mathrm{~d}, J=210 \mathrm{~Hz}), 80.5(2 \mathrm{C}), 62.1,60.8,59.7,57.3,52.1(2 \mathrm{C}), 47.4(\mathrm{~d}, J=16.6 \mathrm{~Hz})$, $47.2(\mathrm{~d}, J=16.6 \mathrm{~Hz}), 38.8,33.4,28.1$ (2C); HRMS m / z found 224.0330, calcd for $\mathrm{C}_{8} \mathrm{H}_{8} \mathrm{FNO}_{4} \mathrm{Na}\left(\mathrm{M}+\mathrm{Na}-\right.$ tert-Bu-H) 224.0335. For 20, ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 4.97 (dd, $J=60.8,6.8 \mathrm{~Hz}, \mathrm{H}_{5}$), $3.80(\mathrm{~s}, 3 \mathrm{H}), 3.49\left(\mathrm{dd}, J=8.8,4.4 \mathrm{~Hz}, \mathrm{H}_{3}\right), 3.43(\mathrm{~d}, J=8.8$ $\mathrm{Hz}, \mathrm{H}_{3}$), 2.97 (ddd, $\left.J=8.4,4.5,4.0,1 \mathrm{H}, \mathrm{H}_{6}\right), 2.81\left(\mathrm{t}, J=3.6 \mathrm{~Hz}, \mathrm{H}_{4}\right), 1.92$ (ddd, $J=8.0,7.6$, $\left.2.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{6}\right), 1.43(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 166.3,156.1,99.4(\mathrm{~d}, \mathrm{JCF}=$ $217 \mathrm{~Hz}, \mathrm{C}_{5}$), 81.3, C_{1} (not visible, see 24 below), $52.1,48.9$ and $48.8\left(\mathrm{C}_{3}\right), 39.7$ (d, $J=17.5$ $\left.\mathrm{Hz}, \mathrm{C}_{4}\right), 37.7\left(\mathrm{C}_{6}\right), 28.2$; HRMS m / z found 282.1112, calcd for $\mathrm{C}_{12} \mathrm{H}_{18} \mathrm{NO}_{4} \mathrm{FNa}(\mathrm{M}+\mathrm{Na})$ 282.1112.

N-(tert-Butoxycarbonyl)-3-endo- and 3-exo-hydroxymethyl-5-anti-fluoro-2azabicyclo[2.1.1]hexanes (21) and (22) and N -(tert-Butoxycarbonyl)-1-hydroxymethyl-5-anti-fluoro-2-azabicyclo[2.1.1]hexane (23). Method C

According to the general procedure, to the carbamate 17 ($174 \mathrm{mg}, 0.87 \mathrm{mmol}$) and TMEDA $(156 \mathrm{~L}, 1.2 \mathrm{mmol})$ in ether $(25 \mathrm{~mL})$ at $-78^{\circ} \mathrm{C}$ was added $s-\mathrm{BuLi}(867 \mathrm{~L}, 1.2 \mathrm{mmol})$. The solution was stirred for 2 h and to this mixture was added DMF ($341 \mathrm{~L}, 4.33 \mathrm{mmol}$). The solution was warmed slowly to rt and washed with $\mathrm{NH}_{4} \mathrm{Cl}(2 \mathrm{H} 10 \mathrm{~mL})$. The ether layer was diluted, washed with water (5 mL) and brine (5 mL). After drying over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, the solution was filtered and concentrated to give $176 \mathrm{mg}(92 \%)$ of a mixture of aldehydes. Without further purification the mixture was taken up in $\mathrm{MeOH}(10 \mathrm{~mL})$ and cooled to $0^{\circ} \mathrm{C} . \mathrm{NaBH}_{4}$ ($147 \mathrm{mg}, 3.9 \mathrm{mmol}$) was added slowly; the reaction was stirred for 15 min then warmed to rt and satd. $\mathrm{NH}_{4} \mathrm{Cl}(5 \mathrm{~mL})$ was added slowly, followed by $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \mathrm{~mL})$. The aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \mathrm{H} 5 \mathrm{~mL})$. The combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated to furnish 163 mg of a light yellow oily mixture of alcohols which on silica gel flash chromatography gave $45 \mathrm{mg}(22 \%)$ of $1-\mathrm{CH}_{2} \mathrm{OH} 23$ and $69 \mathrm{mg}(34 \%)$ of a $1: 1$ mixture of 3-endo- $\mathrm{CH}_{2} \mathrm{OH} 21$ and 3 -exo- $-\mathrm{CH}_{2} \mathrm{OH} 22$ as clear oils. For 23: $\mathrm{R}_{\mathrm{f}}=0.57$ (2:1 hexane/ethyl acetate); ${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 4.77$ (dd, $\mathrm{J}=62.7$, $6.9 \mathrm{~Hz}, \mathrm{H}_{5}$), $4.59(\mathrm{br}, 1 \mathrm{H}, \mathrm{OH}), 3.93(\mathrm{~m}, 2 \mathrm{H}), 3.42\left(\mathrm{dd}, \mathrm{J}=9.6,3.0 \mathrm{~Hz}, \mathrm{H}_{3}\right), 3.36(\mathrm{~d}, \mathrm{~J}=9.0$
$\mathrm{Hz}, \mathrm{H}_{3}$), 2.80 (brt, $\mathrm{J}=3.6,3.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{4}$), 2.59 (ddd, $\mathrm{J}=8.4,4.5,4.0 \mathrm{~Hz}, 1 \mathrm{H}$, H6anti), 1.78 (ddd, $\mathrm{J}=7.8,7.2,2.4 \mathrm{~Hz}, \mathrm{H}_{6 \text { syn }}$), $1.48(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 155.5,96.8$ $\left(\mathrm{d}, J_{\mathrm{CF}}=213 \mathrm{~Hz}, \mathrm{C}_{5}\right), 81.1,74.6$ and $74.4,57.7\left(\mathrm{C}_{1}\right), 49.4\left(\mathrm{C}_{3}\right), 39.6$ and $39.5\left(\mathrm{C}_{4}\right), 37.7$ $\left(\mathrm{C}_{6}\right), 28.8$; HRMS m/z found 230.1187, calcd for $\mathrm{C}_{11} \mathrm{H}_{17} \mathrm{~N}_{1} \mathrm{O}_{3} \mathrm{~F}[\mathrm{M}-\mathrm{H}] 230.1192$ and m / z 232.1338, calcd for $\mathrm{C}_{11} \mathrm{H}_{19} \mathrm{~N}_{1} \mathrm{O}_{3} \mathrm{~F}[\mathrm{M}+\mathrm{H}]$ 232.1349. For the mixture of alcohols 21/22: R $=f 0.36$ ($2: 1$ hexane/ethyl acetate); ${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 4.95(\mathrm{br} \mathrm{dd}, J=62.4,7.6$ $\left.\mathrm{Hz}, 1 \mathrm{H}, \mathrm{H}_{5 \text { syn }}\right), 4.76\left(\mathrm{dd}, J=62.4,7.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{5 \mathrm{syn}}\right), 4.45$ (br, integrates for only $\left.1 \mathrm{H}, \mathrm{OH}\right)$, 4.29 (brd, $\left.J=7.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{1}\right), 4.25\left(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{1}\right), 3.89-3.74(\mathrm{~m}, 6 \mathrm{H}), 2.86$ and 2.75 (two m, 4H), $1.89\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}_{6}\right), 1.71$ (ddd, $\left.J=8.0,7.6,3.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{6}\right), 1.46$ (s, $18 \mathrm{H})$; ${ }^{13} \mathrm{CNMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 157.3,156.9,98.9\left(\mathrm{~d}, J=215 \mathrm{~Hz}, 1 \mathrm{C}, \mathrm{C}_{5}\right), 96.3(\mathrm{~d}, J=$ $209 \mathrm{~Hz}, 1 \mathrm{C}, \mathrm{C}_{5}$), 81.1 (2C), 64.6 (br, C $1,2 \mathrm{C}$), 62.6 (2C, C 3), 60.1 (2C), 46.1 (d, $J=17.4 \mathrm{~Hz}$, $\left.1 \mathrm{C}, \mathrm{C}_{4}\right), 45.7\left(\mathrm{~d}, J=18.1 \mathrm{~Hz}, 1 \mathrm{C}, \mathrm{C}_{4}\right), 38.7$ and $37.3\left(2 \mathrm{C}, \mathrm{C}_{6}\right), 28.4$; HRMS m / z found 232.1348, calcd for $\mathrm{C}_{11} \mathrm{H}_{19} \mathrm{~N}_{1} \mathrm{O}_{3} \mathrm{~F}[\mathrm{M}+\mathrm{H}] 232.1344, \mathrm{~m} / \mathrm{z}$ found 170.0724, calcd. for ($\mathrm{M}+$ H - tert-butyl) 170.0729, m/z found 200.1087, calcd. for ($\mathrm{M}+\mathrm{H}-\mathrm{MeOH}$) 200.1087.

N -(tert-Butoxycarbonyl)-3-endo- and 3-exo-methoxycarbonyl-5-anti-fluoro-2azabicyclo[2.1.1]hexanes (18) and (19) from alcohols 21 and 22

To a solution of the alcohols $\mathbf{2 1} / \mathbf{2 2}(69 \mathrm{mg}, 0.3 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \mathrm{~mL})$ containing TEMPO (3 mg) was added a solution of saturated $\mathrm{NaHCO}_{3}(6 \mathrm{~mL})$ containing $\mathrm{KBr}(2 \mathrm{mg})$ and tetrabutylammonium iodide (4 mg). The mixture was cooled to $0^{\circ} \mathrm{C}$ and a solution of $\mathrm{NaOCl}(0.67 \mathrm{~mL})$, saturated $\mathrm{NaHCO}_{3}(\mathrm{aq})(0.3 \mathrm{~mL})$, and saturated $\mathrm{NaCl}(\mathrm{aq})(0.7 \mathrm{~mL})$ was added dropwise over 45 min . The two layers were separated, and the organic layer was extracted with water (3 H 5 mL). The aqueous extracts were combined and acidified with aqueous $\mathrm{HCl}(10 \% \mathrm{w} / \mathrm{v})$, and the resulting solution was extracted with EtOAc. The combined organic extracts were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The solvent was removed to give 56 mg (77%) of the desired carboxylic acids as a light yellow oil. To a solution of these acids in hexane (6 mL) and isopropanol (6 mL) was added a 2 M solution of TMSCHN_{2} in hexane $(115 \mu \mathrm{~L}, 2.3 \mathrm{mmol})$. The resulting mixture was stirred under argon for 0.5 h . The solvent was removed in vacuo to give $56 \mathrm{mg}(95 \%)$ of a $1: 1$ mixture of esters $\mathbf{1 8}$ and $\mathbf{1 9}$ as a light yellow oil at $R_{f}=0.51$ (1:1 hexane/ether).

N-Acetyl-3-endo-carbomethoxy-5-anti-fluoro-2-azabicyclo[2.1.1]hexane (7), N -Acetyl-3-exo-carbomethoxy-5-anti-fluoro-2-azabicyclo[2.1.1]hexane (11) and \mathbf{N}-Acetyl-1-carbomethoxy-5-anti-fluoro-2-azabicyclo[2.1.1]hexane (24)

According to the general procedure, to the mixture of 18, $\mathbf{1 9}$ and $\mathbf{2 0}(59 \mathrm{mg}, 0.25 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(8 \mathrm{~mL})$ prepared by Method A there was added TFA (3 mL), and the resulting solution was stirred at rt for 1 h . Workup afforded $32 \mathrm{mg}(54 \%)$ of an oily mixture of amines that without further purification was dissolved in methylene chloride $(8 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$. To this solution was added DMAP ($122 \mathrm{mg}, 1.0 \mathrm{mmol}$), followed by dropwise addition of acetyl chloride ($43 \mathrm{~L}, 0.6 \mathrm{mmol}$). The resulting solution was stirred at $0^{\circ} \mathrm{C}$ for 30 min and then was slowly brought to rt and stirred for 3 h . Workup by the general procedure gave a crude amide which upon silica gel flash chromatography gave $19 \mathrm{mg}(48 \%)$ of an inseparable 1:1 mixture of 3-isomers $\mathbf{7 / 1 1}$ as a light yellow oil at $R_{f}=0.32$ ($2: 1$ ethyl acetate/hexane), and 8 $\mathrm{mg}(15 \%)$ of 1 -isomer 24 as a light yellow oil at $R_{f}=0.26$ (1:3 ethyl acetate/hexane). For 3-endo-ester 7, ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 5.32$ and 5.12 (two dd, $J=62.1,7.2 \mathrm{~Hz}, 1 \mathrm{H}$, $\left.\mathrm{H}_{5}\right), 4.85$ and $4.34\left(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{1}\right), 4.43\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}_{3}\right), 3.83$ and 3.78 (two s, $3 \mathrm{H}, \mathrm{CH}_{3}$), $3.05\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}_{4}\right.$ and H6anti), 2.11 and 1.96 (two s, $\left.3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.82\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}_{6 \text { syn }}\right) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 170.0,168.4,95.5\left(\mathrm{~d}, J_{\mathrm{CF}}=212.6 \mathrm{~Hz}, \mathrm{C}_{5}\right), 95.4\left(\mathrm{~d}, J_{\mathrm{CF}}=211.7\right.$ $\left.\mathrm{Hz}, \mathrm{C}_{5}\right), 63.5\left(\mathrm{~d}, J_{\mathrm{CF}}=21.8 \mathrm{~Hz}, \mathrm{C}_{1}\right), 60.7\left(\mathrm{~d}, J_{\mathrm{CF}}=3.4 \mathrm{~Hz}, \mathrm{C}_{3}\right), 60.6\left(\mathrm{~d}, J_{\mathrm{CF}}=21.8 \mathrm{~Hz}, \mathrm{C}_{1}\right)$, $58.7\left(\mathrm{~d}, J_{\mathrm{CF}}=3.4 \mathrm{~Hz}, \mathrm{C}_{3}\right), 52.9,52.6,48.0\left(\mathrm{~d}, J_{\mathrm{CF}}=19.0 \mathrm{~Hz}, \mathrm{C}_{4}\right), 46.9\left(\mathrm{~d}, J_{\mathrm{CF}}=18.5 \mathrm{~Hz}\right.$, C_{4}), $39.2\left(\mathrm{C}_{6}\right), 38.5\left(\mathrm{C}_{6}\right), 21.4,20.9$. For $7,{ }^{19} \mathrm{~F}$ NMR $\left(282 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta-219.0(\mathrm{~d}, J=62$ $\mathrm{Hz}),-221.9(\mathrm{~d}, J=61 \mathrm{~Hz})$; also for $7,{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}\right) \delta{ }^{1} \mathrm{H}$ NMR $5.24(\mathrm{dd}, J=$
$\left.61.5,7.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{5}\right), 5.09\left(\mathrm{dd}, J=61.2,7.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{5}\right), 4.83\left(\mathrm{t}, J=1.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{3}\right), 4.75$ (dt, $J=7.8,1.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{1}$), 4.62 (ddd, $J=7.4,1.7,1.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{1}$), $4.53\left(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{H}_{3}\right)$, $3.86(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OMe}), 3.81(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OMe}), 3.27\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}_{4}\right), 3.19\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}_{4}\right), 3.06(\mathrm{~m}, 1 \mathrm{H}$, H6anti), 3.01 (m, 1H, H6anti), 2.16 ($\mathrm{s}, 3 \mathrm{H}$), $2.00(\mathrm{~s}, 3 \mathrm{H}), 1.93$ (ddd, J = 10.9, 7.4, 3.4 Hz, $\left.1 \mathrm{H}, \mathrm{H}_{6 \mathrm{syn}}\right), 1.87\left(\mathrm{ddd}, J=10.9,7.4,3.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{6 \mathrm{syn}}\right) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}\right) \delta 172.1$, $172.0,96.0\left(\mathrm{~d}, J_{\mathrm{CF}}=210.8 \mathrm{~Hz}, \mathrm{C}_{5}\right), 64.5\left(\mathrm{~d}, J_{\mathrm{CF}}=22.3 \mathrm{~Hz}, \mathrm{C}_{1}\right), 59.5\left(\mathrm{~d}, J_{\mathrm{CF}}=4.3 \mathrm{~Hz}, \mathrm{C}_{3}\right)$, $53.5,47.0\left(\mathrm{~d}, J_{\mathrm{CF}}=19.3 \mathrm{~Hz}, \mathrm{C}_{4}\right), 38.8\left(\mathrm{C}_{6}\right), 20.8 ;{ }^{19} \mathrm{~F}$ NMR $\left(282 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}\right) \delta-211.5(\mathrm{~d}, J$ $=62 \mathrm{~Hz}),-213.7(\mathrm{~d}, J=62 \mathrm{~Hz})$. For 3-exo-ester 11, ${ }^{10}{ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 4.78$ (major) and 4.75 (minor) (two dd, $\left.J=61.8,7.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{5}\right), 4.39\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}_{3}\right), 4.31$ (dd, $J=$ $\left.7.2,1.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{1}\right), 3.81$ and 3.76 (two s, 3 H), $3.01\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}_{4}\right), 2.79\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}_{6}\right), 2.30$ (ddd, $J=7.8,7.5,3.0,1 \mathrm{H}, \mathrm{H}_{6}$), 2.11 and 1.99 (two s, $3 \mathrm{H}, \mathrm{CH}_{3}$); ${ }^{13} \mathrm{C}$ NMR (100 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 169.2$ and $168.1,170.0,95.5\left(\mathrm{~d}, J_{\mathrm{CF}}=210 \mathrm{~Hz}, \mathrm{C}_{5}\right)$ and $95.4\left(\mathrm{~d}, J_{\mathrm{CF}}=211 \mathrm{~Hz}, \mathrm{C}_{5}\right)$, $63.6\left(\mathrm{~d}, J_{\mathrm{CF}}=20.5 \mathrm{~Hz}, \mathrm{C}_{1}\right)$ and $60.7\left(\mathrm{~d}, J_{\mathrm{CF}}=20.8 \mathrm{~Hz}, \mathrm{C}_{1}\right), 58.6$ and $56.6\left(\mathrm{C}_{3}\right), 52.8$ and $52.5,48.0\left(\mathrm{~d}, J_{\mathrm{CF}}=19.2 \mathrm{~Hz}\right)$ and $47.0\left(\mathrm{~d}, J_{\mathrm{CF}}=18.7 \mathrm{~Hz}, \mathrm{C}_{4}\right), 38.5$ and $34.2\left(\mathrm{C}_{6}\right), 21.6$ and 21.6. Also for 3-exo-ester 11, ${ }^{10}{ }^{19} \mathrm{~F}$ NMR ($282 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-212.9(\mathrm{~d}, J=62 \mathrm{~Hz})$ and $214.2(\mathrm{~d}, J=62 \mathrm{~Hz})$; shifts corrected to CFCl_{3}. Also for $\mathbf{1 1},{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}\right) \delta$ $4.94\left(\mathrm{dd}, J=61.4,7.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{5}\right), 4.90\left(\mathrm{dd}, J=61.4,7.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{5}\right), 4.78\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}_{3}\right)$, $4.74\left(\mathrm{dd}, J=7.4,1.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{1}\right), 4.59\left(\mathrm{dd}, J=7.4,1.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{1}\right), 4.50\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}_{3}\right), 3.85$ (s, $3 \mathrm{H}, \mathrm{OMe}$), $3.80(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OMe}), 3.26\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}_{4}\right), 3.20\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}_{4}\right), 2.90(\mathrm{~m}, 1 \mathrm{H}$, H6anti), 2.81 (m, 1H, H6anti), $2.16\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{COCH}_{3}\right), 2.12$ (ddd, $\left.J=9.8,7.5,2.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{6 \text { syn }}\right), 2.03$ $\left(\mathrm{s}, 3 \mathrm{H}, \mathrm{COCH}_{3}\right), 1.90\left(\mathrm{ddd}, J=9.8,7.5,2.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{6 \mathrm{syn}}\right) ;{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}\right) \delta$ $172.1,171.5,98.3\left(\mathrm{~d}, J_{\mathrm{CF}}=216.7 \mathrm{~Hz}, \mathrm{C}_{5}\right), 97.8\left(\mathrm{~d}, J_{\mathrm{CF}}=216.7 \mathrm{~Hz}, \mathrm{C}_{5}\right), 64.6\left(\mathrm{~d}, J_{\mathrm{C}} \mathrm{F}=22.1\right.$ $\left.\mathrm{Hz}, \mathrm{C}_{1}\right), 61.5\left(\mathrm{~d}, J_{\mathrm{CF}}=22.1 \mathrm{~Hz}, \mathrm{C}_{1}\right), 59.5\left(\mathrm{~d}, J_{\mathrm{CF}}=4.6 \mathrm{~Hz}, \mathrm{C}_{3}\right), 57.4\left(\mathrm{~d}, J_{\mathrm{CF}}=4.6 \mathrm{~Hz}, \mathrm{C}_{3}\right)$, $53.8,53.5,47.7\left(\mathrm{~d}, J_{\mathrm{CF}}=19.0 \mathrm{~Hz}, \mathrm{C}_{4}\right), 46.9\left(\mathrm{~d}, J_{\mathrm{CF}}=19.0 \mathrm{~Hz}, \mathrm{C}_{4}\right), 33.8\left(\mathrm{C}_{6}\right), 32.8\left(\mathrm{C}_{6}\right)$, 21.1, 20.8; ${ }^{19} \mathrm{~F}$ NMR ($282 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}$) $\delta-205.8(\mathrm{~d}, J=62 \mathrm{~Hz})$ and $-206.7(\mathrm{~d}, J=62 \mathrm{~Hz})$; NOEs in $\mathrm{D}_{2} \mathrm{O}$: irradiation of the major acetyl signal for 7 at $\delta 2.16$ enhances the major H_{1} signal at $\delta 4.62$, and irradiation of the minor acetyl signal at $\delta 2.00$ enhances the minor H_{3} signal at $\delta 4.83$. Irradiation of the acetyl signal for $\mathbf{1 1}$ at $\delta 2.16$ enhances the major H_{1} signal at $\delta 4.59$. HRMS of the $\mathbf{7 / 1 1}$ mixture $\mathrm{m} / \mathrm{z} 202.0875$, calcd for $\mathrm{C}_{9} \mathrm{H}_{13} \mathrm{FNO}_{3}(\mathrm{M}+\mathrm{H})$ 202.0874. For spectral and analytical data for 1 -ester 24, see below. The reported trans/cis ratios in Table 3 were those obtained by proton integration of fluorides $\mathbf{7}$ and $\mathbf{1 1}$ prepared independently from alcohols 9 and 12, respectively (See below).

N-Acetyl-1-carbomethoxy-2-azabicyclo-5-anti-fluoro-2-azabicyclo[2.1.1]hexane (24) from 20
According to the general procedure, to a solution of 1-ester $20(73 \mathrm{mg}, 0.31 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$ there was added TFA (4 mL), and the resulting solution was stirred at rt for 1 h . Workup afforded $18 \mathrm{mg}(40 \%)$ of the amine as light yellow oil. Without further purification the amine was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL})$ and was cooled to $0^{\circ} \mathrm{C}$. To this solution was added DMAP ($67 \mathrm{mg}, 0.55 \mathrm{mmol}$) followed by slow addition of acetyl chloride ($24 \mathrm{~L}, 0.34 \mathrm{mmol}$). The resulting solution was stirred at $0{ }^{\circ} \mathrm{C}$ for 0.5 h and then was slowly brought to rt and stirred for 2 h . The reaction mixture after workup and flash chromatography gave $12 \mathrm{mg}(52 \%)$ of 1-ester 24 as a light yellow oil at $R_{f}=0.26$ (1:3 ethyl acetate/hexane); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 4.99$ (dd, $J=61.6,7.2 \mathrm{~Hz}, \mathrm{H}_{5}$), $3.81(\mathrm{~s}, 3 \mathrm{H})$, $3.55\left(\mathrm{~m}, 2 \mathrm{H}, 2 \mathrm{H}_{3}\right), 3.01$ (ddd, $\left.J=8.4,4.7,3.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H} 6 \mathrm{anti}\right), 2.89$ (dd, $J=3.2,3.6 \mathrm{~Hz}, 1 \mathrm{H}$, H_{4}), 2.02 (s and $\mathrm{m}, 4 \mathrm{H}, \mathrm{CH}_{3}$ and $\mathrm{H}_{6 \mathrm{syn}}$); ${ }^{13} \mathrm{C}$ NMR $\delta\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 170.0,166.2,98.3$ $(J=216 \mathrm{~Hz}), 70.0\left(\mathrm{~d}, J=23.1 \mathrm{~Hz}, \mathrm{C}_{1}\right), 52.4$ and $52.1,49.9\left(\mathrm{C}_{3}\right), 39.5\left(\mathrm{~d}, J=17.5 \mathrm{~Hz}, \mathrm{C}_{4}\right)$, $38.0\left(\mathrm{C}_{6}\right)$, 21.0; HRMS m/z found 202.0879, calcd for $\mathrm{C}_{9} \mathrm{H}_{13} \mathrm{FNO}_{3}(\mathrm{M}+\mathrm{H}) 202.0874, \mathrm{~m} / \mathrm{z}$ found 425.1517, calcd for $\mathrm{C}_{18} \mathrm{H}_{26} \mathrm{~F}_{2} \mathrm{~N}_{2} \mathrm{O}_{6} \mathrm{Na}(2 \mathrm{M}+\mathrm{Na}) 425.1494$.

N-(tert-Butoxycarbonyl)-1-carbomethoxy-5-anti-fluoro-2-azabicyclo[2.1.1]hexane (20) and non-symmetrical Di-tert-butyl-1,1'-dicarbonyl-bis-(5-anti-fluoro-2-azabicyclo[2.1.1]hexane-2-carboxylate) (25) from 17. General Procedure Method B

According to the general procedure, to a solution of $\mathbf{1 7}(140 \mathrm{mg}, 0.70 \mathrm{mmol})$ and TMEDA $(115 \mathrm{~L}, 76 \mathrm{mmol})$ in ether $(10 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$ was added s-BuLi ($600 \mathrm{~L}, 0.84 \mathrm{mmol}$) dropwise. The mixture was stirred for 2 h followed by the addition of methyl chloroformate (270 L , $3.5 \mathrm{mmol})$. The reaction mixture was diluted with ether (10 mL) and workup upon silica gel flash chromatography gave as a light yellow oil $14 \mathrm{mg}(10 \%)$ of 1-ester 20, as a white solid $79 \mathrm{mg}(41 \%)$ of ketone 25 and as a light yellow oil $13 \mathrm{mg}(9 \%)$ of unreacted starting material 17. For 20: $R_{f}=0.35$ (6:4 hexane/ether); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 4.97$ (dd, J $\left.=60.8,6.8 \mathrm{~Hz}, \mathrm{H}_{5}\right), 3.80\left(\mathrm{~s}, 3 \mathrm{H}, 3.49\left(\mathrm{dd}, J=8.8,4.4 \mathrm{~Hz}, \mathrm{H}_{3}\right), 3.43\left(\mathrm{~d}, J=8.8 \mathrm{~Hz}, \mathrm{H}_{3}\right), 2.97\right.$ (ddd, $J=8.4,4.5,4.0,1 \mathrm{H}, \mathrm{H} 6 \mathrm{anti}), 2.81\left(\mathrm{t}, J=3.6 \mathrm{~Hz}, \mathrm{H}_{4}\right), 1.92$ (ddd, $J=8.0,7.6,2.4 \mathrm{~Hz}$, $1 \mathrm{H}, \mathrm{H}_{6 \mathrm{syn}}$), $1.43(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 166.3,156.1,99.4\left(\mathrm{~d}, J_{\mathrm{CF}}=217\right.$ $\left.\mathrm{Hz}, \mathrm{C}_{5}\right), 81.3,52.1,48.9$ and $48.8\left(\mathrm{C}_{1}\right), 39.8\left(\mathrm{C}_{3}\right), 39.6\left(\mathrm{C}_{4}\right), 37.7\left(\mathrm{C}_{6}\right), 28.2$; HRMS m/z found 282.1112, calcd for $\mathrm{C}_{12} \mathrm{H}_{18} \mathrm{NO}_{4} \mathrm{FNa}(\mathrm{M}+\mathrm{Na})$ 282.1112. For ketone 25, mp 185-186 ${ }^{\circ} \mathrm{C}: R_{f}=0.29$ (3:2 hexane/ether); ${ }^{1} \mathrm{H}$ NMR $\delta 4.90$ (dd, $J=61.2,7.2 \mathrm{~Hz}, 2 \mathrm{H}, 2 \mathrm{H}_{5}$), 3.46 (dd, J $=8.8 \mathrm{~Hz}, \mathrm{H}_{3}$), 3.39 (dd, $J=9.6,2.8 \mathrm{~Hz}, \mathrm{H}_{3}$), 3.19 and 3.16 (two m, 2H, 2H6anti), 2.67 (brm, $\left.2 \mathrm{H}, 2 \mathrm{H}_{4}\right), 2.10\left(\mathrm{~m}, 2 \mathrm{H}, 2 \mathrm{H}_{6 \mathrm{syn}}\right), 1.38\left(\mathrm{~s}, 18 \mathrm{H}\right.$, two BOC); ${ }^{13} \mathrm{C}$ NMR $\delta 194.0,154.0,95.8(\mathrm{~d}$, $\left.J_{\mathrm{CF}}=300 \mathrm{~Hz}, \mathrm{C}_{5}\right), 83.5,71.3$ and $71.0\left(\mathrm{C}_{1}\right), 47.3\left(\mathrm{C}_{3}\right), 38.1\left(\mathrm{C}_{4}\right), 37.4$ and $37.2\left(\mathrm{C}_{6}\right), 25.6$; HRMS m / z found 451.2020, calcd for $\mathrm{C}_{21} \mathrm{H}_{30} \mathrm{~N}_{2} \mathrm{O}_{5} \mathrm{~F}_{2} \mathrm{Na}(\mathrm{M}+\mathrm{Na})$ 451.2037.

N-(tert-Butoxycarbonyl)-3-exo-carboxymethyl-5-syn-(tert-butyldimethylsilyloxy)-2azabicyclo[2.1.1]hexane (27) and N-(tert-Butoxycarbonyl)-1-carboxymethyl-5-syn-(tert-butyldimethylsilyloxy)-2-azabicyclo[2.1.1]hexane (28)

According to Method A, carbamate $26(150 \mathrm{mg}, 0.479 \mathrm{mmol})$ was dissolved in dry diethyl ether (4 mL). TMEDA ($90 \mathrm{~L}, 0.574 \mathrm{mmol}, 1.2 \mathrm{eq}$.) was added to the resulting solution, which was cooled to $-78{ }^{\circ} \mathrm{C}$; s-BuLi in cyclohexane ($415 \mathrm{~L}, 0.574 \mathrm{mmol}, 1.4 \mathrm{M}$) was added dropwise, and the solution was stirred 2 h at $-78^{\circ} \mathrm{C}$. Excess CO_{2} gas was blown through the flask for approximately 10 min . The solution was stirred at $-78^{\circ} \mathrm{C}$ for 30 min . and warmed to rt . The ether was extracted with distilled water (3 H 2.5 mL), and the combined aqueous layers were then acidified with dilute HCl to $\mathrm{pH}=3$. The aqueous layer was extracted with ethyl acetate (5 H 4 mL), which was then concentrated. The crude yellow oil was then taken up in hexanes (7.5 mL) and isopropyl alcohol (7.5 mL). Trimethylsilyldiazomethane (66 mg , 0.574 mmol , 1.2 eq. 2.0 M solution in hexanes) was added, and the reaction was stirred 12 h at room temperature. Workup and chromatography using a pencil column on silica gel (gradient up to 8:1 hexanes/ethyl acetate) furnished $71 \mathrm{mg}(40 \%)$ of 1-ester $\mathbf{2 8}$ as a colorless oil at $R_{f}=0.37$ (7:1 hexanes/ethyl acetate), $53 \mathrm{mg}(30 \%)$ of 3-ester 27 as a colorless oil at R_{f} $=0.31$ ($7: 1$ hexanes/ethyl acetate), and small amounts of trimethylsilylmethyl esters at higher R_{f} values. For 27, ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 4.26\left(\mathrm{dt}, \mathrm{J}=7.1,1.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{1}\right)$, $4.25\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}_{5}\right), 4.19\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}_{5}\right), 4.17\left(\mathrm{dt}, J=7.1,1.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{1}\right), 3.80\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}_{3}\right), 3.74$ (s, $3 \mathrm{H}, \mathrm{OMe}$, both conformers), $2.80\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}_{4}\right), 1.58(\mathrm{~d}, \mathrm{~J}=8.8 \mathrm{H}, 1 \mathrm{H}, \mathrm{H} 6$ anti), $1.56(\mathrm{~d}, J$ $\left.=8.8 \mathrm{H}, 1 \mathrm{H}, \mathrm{H}_{6 \mathrm{anti}}\right), 1.44(\mathrm{~s}, 9 \mathrm{H}), 1.42(\mathrm{~s}, 9 \mathrm{H}) 1.20\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}_{6 \mathrm{syn}}\right), 1.18\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}_{6 \mathrm{syn}}\right)$, $0.87(\mathrm{~s}, 9 \mathrm{H}), 0.86(\mathrm{~s}, 9 \mathrm{H}), 0.06(\mathrm{~m}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 172.5$ and 172.4, 156.6 and $155.5,79.7$ and $79.5,71.7$ and $71.5,64.3,63.0,57.1$ and $56.8,52.1$ and 51.9, 47.9 and 47.8, 28.4 and 28.3, 25.7 and 25.6, 18.0 and 17.9, -5.0 and -5.2 ; HRMS $m / z 372.2196$, calcd for $\mathrm{C}_{18} \mathrm{H}_{34} \mathrm{NO}_{5} \mathrm{Si}(\mathrm{M}+\mathrm{H}) 372.2201$. For 28, ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 3.89(\mathrm{~d}, J$ $\left.=3.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{5}\right), 3.74(\mathrm{~s}, 3 \mathrm{H}), 3.60-3.38\left(\mathrm{br}, 1 \mathrm{H}, \mathrm{H}_{3}\right), 3.30\left(\mathrm{br}, 1 \mathrm{H}, \mathrm{H}_{3}{ }^{\prime}\right), 2.51\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}_{4}\right)$, $1.59\left(\mathrm{br}, 1 \mathrm{H}, \mathrm{H}_{6}\right), 1.39\left(\mathrm{br}, 10 \mathrm{H}, \mathrm{Boc}\right.$ and $\left.\mathrm{H}_{6}\right), 0.87(\mathrm{~s}, 9 \mathrm{H}), 0.08(\mathrm{~s}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 168.3,157.7,80.2$ (br), 72.8 (br), 70.4, 51.6, 48.3, >39.8, 33.9 (br), 28.3, 25.7, 18.1, -4.9 and -5.2; HRMS $m / z 372.2203$, calcd for $\mathrm{C}_{18} \mathrm{H}_{34} \mathrm{NO}_{5} \mathrm{Si}(\mathrm{M}+\mathrm{H}) 372.2201$.

N-(tert-Butoxycarbonyl)-3-exo-hydroxymethyl-5-syn-(tert-butyldimethylsilyloxy)-2azabicyclo[2.1.1]hexane (29)

LAH ($9 \mathrm{~L}, 0.018 \mathrm{mmol}, 2.0 \mathrm{M}$ solution in THF) was added dropwise to a solution of carbamate $27(11 \mathrm{mg}, 0.030 \mathrm{mmol})$ in dry THF $(600 \mathrm{~L})$ at $-78^{\circ} \mathrm{C}$. The reaction mixture was maintained at $-78^{\circ} \mathrm{C}$ for 1 h and then brought to room temperature. After stirring for 2 h , the reaction mixture was quenched with a $1: 1$ mixture of water and THF (10 L). The resulting solution was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and washed with THF (600 L). Solvent was removed in vacuo to afford $9 \mathrm{mg}(89 \%)$ of pure alcohol 29 as a colorless oil at $R_{f}=0.42$ ($1: 4$ ethyl acetate/hexanes); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 4.13\left(\mathrm{br}, 1 \mathrm{H}, \mathrm{H}_{1}\right), 3.87$ (br, 1 H , H_{3}), 3.78 (br, $1 \mathrm{H}, \mathrm{H}_{5}$), 3.76 and 3.72 (two m, $2 \mathrm{H}, \mathrm{CH}_{2}$), 3.72 (brs, $1 \mathrm{H}, \mathrm{H}_{5}$), 2.69 (br, 1 H , $\mathrm{OH}), 2.51\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}_{4}\right), 1.46(\mathrm{~s}, 9 \mathrm{H}), 1.34\left(\mathrm{~d}, \mathrm{~J}=8.9,1 \mathrm{H}, \mathrm{H}_{6 \mathrm{syn}}\right), 1.16(\mathrm{dbr}, J=9.0,2.4,1 \mathrm{H}$, H6anti), $0.87(\mathrm{~s}, 9 \mathrm{H}), 0.06(\mathrm{~s}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 159.1,80.3$, $71.1\left(\mathrm{C}_{5}\right)$, 65.5, $64.3\left(\mathrm{C}_{1}\right), 58.2\left(\mathrm{C}_{3}\right), 45.6\left(\mathrm{C}_{4}\right), 28.4$, $26.4\left(\mathrm{C}_{6}\right), 25.7,17.9,-5.06$; HRMS m/z 366.2092, calcd for $\mathrm{C}_{17} \mathrm{H}_{33} \mathrm{NO}_{4} \mathrm{SiNa}(\mathrm{M}+\mathrm{Na}) 366.2071$. The hydroxymethyl stereochemistry was confirmed by NOE and HSQC experiments. The $\mathrm{H}_{6 \text { syn }}$ signal at $\delta 1.34$ on irradiation enhances the CH_{2} signals at $\delta 3.76$ and 3.72. The H6anti signal at $\delta 1.16$ on irradiation enhances the H_{5} signal at $\delta 3.72$.

N-Acetyl-3-exo-carboxymethyl-5-syn-(tert-butyldimethylsilyloxy)-2-azabicyclo[2.1.1]hexane (30)

According to the general procedure, to a solution of carbamate $27(35 \mathrm{mg}, 0.094 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \mathrm{~mL})$ there was added TFA $(110 \mathrm{~L}, 1.413 \mathrm{mmol})$ at rt . The solution was stirred for 7 h and then solvent was removed in vacuo to afford 55 mg of crude amine as an orange oil. To the crude amine in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(4 \mathrm{~mL})$ there was added DMAP ($35 \mathrm{mg}, 0.283 \mathrm{mmol}$), and the solution was cooled to $0^{\circ} \mathrm{C}$. Acetyl chloride ($20 \mathrm{~L}, 0.283 \mathrm{mmol}$) was added to the reaction mixture, which was maintained for 30 min at $0^{\circ} \mathrm{C}$ and then brought to rt . After stirring overnight, the reaction mixture was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(4 \mathrm{~mL})$ and workup afforded after chromatography (prep TLC, 1:2 hexanes/ethyl acetate) 22 mg (75%) of $\mathbf{3 0}$ as a colorless oil at $R_{f}=0.41$ ($1: 2$ hexanes/ethyl acetate); ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 4.69$ (dt, $\left.J=7.2,1.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{1}\right), 4.38\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}_{3}\right), 4.12\left(\mathrm{dt}, J=7.0,1.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{1}\right), 4.26(\mathrm{~s}, 1 \mathrm{H}$, H_{3}), $3.87\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}_{5}\right), 3.82\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}_{5}\right), 3.79(\mathrm{~s}, 3 \mathrm{H}), 3.75(\mathrm{~s}, 3 \mathrm{H}), 2.93\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}_{4}\right), 2.87$ $\left(\mathrm{m}, 1 \mathrm{H}, \mathrm{H}_{4}\right), 2.05(\mathrm{~s}, 3 \mathrm{H}), 2.00(\mathrm{~s}, 3 \mathrm{H}), 1.73\left(\mathrm{~d}, J=9.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{6}\right), 1.46(\mathrm{~d}, J=9.1 \mathrm{~Hz}, 1 \mathrm{H}$, $\left.\mathrm{H}_{6}\right), 1.28\left(\mathrm{br}, 2 \mathrm{H}, \mathrm{H}_{6}\right), 0.85(\mathrm{~s}, 9 \mathrm{H}), 0.07(\mathrm{~m}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 171.7$ and $171.7,171.1$ and $170.7,71.5$ and $70.8,65.4$ and $62.8,58.0$ and $56.2,52.4$ and $52.2,48.4$ and $47.4,29.7,25.6$ and $25.5,21.9$ and $21.7,17.8$ and $17.8,-5.0$ and $-5.0,-5.2$ and -5.2 (one carbon TBS); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}$) $\delta 4.60\left(\mathrm{br} \mathrm{d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{1}\right), 4.55\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}_{3}\right)$, 4.43 (br d, $\left.J=7.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{1}\right), 4.34\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}_{3}\right), 4.16\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}_{5}\right), 4.11\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}_{5}\right), 3.82(\mathrm{~s}$, $3 \mathrm{H}), 3.78(\mathrm{~s}, 3 \mathrm{H}), 3.09\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}_{4}\right), 3.04\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}_{4}\right), 2.12(\mathrm{~s}, 3 \mathrm{H}), 2.05(\mathrm{~s}, 3 \mathrm{H}), 1.57(\mathrm{~d}, \mathrm{~J}=$ $\left.9.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{6}\right), 1.48\left(\mathrm{~d}, J=9.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{6}\right), 1.44\left(\mathrm{~d}, J=9.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{6}\right), 1.36(\mathrm{~d}, J=9.8$ $\mathrm{Hz}, 1 \mathrm{H}, \mathrm{H}_{6}$), 0.85 (s, 9H, both rotamers), 0.12 (s, 6H), 0.11 (s, 6H); HRMS m/z 314.1795, calcd for $\mathrm{C}_{15} \mathrm{H}_{28} \mathrm{NO}_{4} \mathrm{Si}(\mathrm{M}+\mathrm{H}) 314.1782$. The major H_{1} signal at $\delta 4.43$ shows an NOE enhancement with the major acetyl at $\delta 2.12$. The minor acetyl signal at $\delta 2.05$ on irradiation does not show an NOE enhancement. Amide isomer ratios for $\mathbf{3 0}$ were determined by comparison of Ac and H_{1} major/ Ac and H_{1} minor in $\mathrm{CDCl}_{3}\left(K_{\mathrm{T} / \mathrm{C}}=1.36 \pm 0.04,57.7 \pm\right.$ 0.7% trans) and comparison of Ac peaks in $\mathrm{D}_{2} \mathrm{O}$ ($K_{\mathrm{T} / \mathrm{C}}=4.05 \pm 0.08,80.2 \pm 0.3 \%$ trans $)$.

N-Acetyl-3-exo-carboxymethyl-5-syn-hydroxy-2-azabicyclo[2.1.1]hexane (8)

To a solution of silyl ether $\mathbf{3 0}(16 \mathrm{mg}, 0.051 \mathrm{mmol})$ in THF $(250 \mathrm{~L})$ at $0^{\circ} \mathrm{C}$ there was added a solution of tetrabutylammonium fluoride trihydrate (TBAF-3H2O) $(48 \mathrm{mg}, 0.153 \mathrm{mmol})$ in THF (250 L). The reaction mixture was stirred at $0^{\circ} \mathrm{C}$ for 30 min , warmed slowly to rt , and then stirred an additional 30 min . The solvent was removed in vacuo and chromatographed
(prep TLC, 1:9 MeOH/ethyl acetate) to afford $9 \mathrm{mg}(89 \%)$ of alcohol $\mathbf{8}$ as a colorless oil at $R_{f}=0.41\left(1: 9 \mathrm{MeOH} /\right.$ ethyl acetate) ${ }^{1}{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 4.63(\mathrm{dt}, J=6.8,1.7 \mathrm{~Hz}$, $\left.1 \mathrm{H}, \mathrm{H}_{1}\right), 4.41\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}_{3}\right), 4.37\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}_{3}\right), 4.20\left(\mathrm{dt}, J=6.8,1.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{1}\right), 3.99(\mathrm{~m}, 1 \mathrm{H}$, $\left.\mathrm{H}_{5}\right), 3.95\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}_{5}\right), 3.78(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OMe}), 3.74(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OMe}), 2.98\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}_{4}\right), 2.92(\mathrm{~m}$, $\left.1 \mathrm{H}, \mathrm{H}_{4}\right), 2.07(\mathrm{~s}, 3 \mathrm{H}), 2.02(\mathrm{~s}, 3 \mathrm{H}), 1.73\left(\mathrm{~d}, J=9.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{6 \mathrm{syn}}\right), 1.46(\mathrm{~d}, J=9.1 \mathrm{~Hz}, 1 \mathrm{H}$, $\left.\mathrm{H}_{6 \mathrm{syn}}\right), 1.33(\mathrm{dt}, J=9.1,2.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H} 6 \mathrm{anti}), 1.29(\mathrm{dt}, J=9.1,2.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H} 6 \mathrm{anti}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 172.6,171.4,171.3,171.0,71.4$ and $70.4,65.3$ and $62.8,58.1$ and 55.9, 52.6 and 52.3, 47.3 and 46.8, 26.4 and 25.2, 21.8 and $21.7 ;{ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz}$, $\left.\mathrm{D}_{2} \mathrm{O}\right) \delta 4.62\left(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{1}\right), 4.53\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}_{3}\right), 4.34\left(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{1}\right), 4.35(\mathrm{~s}$, $\left.1 \mathrm{H}, \mathrm{H}_{3}\right), 4.10\left(\mathrm{br}, 1 \mathrm{H}, \mathrm{H}_{5}\right), 4.06\left(\mathrm{br}, 1 \mathrm{H}, \mathrm{H}_{5}\right), 3.83(\mathrm{~s}, 3 \mathrm{H}), 3.78(\mathrm{~s}, 3 \mathrm{H}), 3.09\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}_{4}\right)$, $3.03\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}_{4}\right), 2.12(\mathrm{~s}, 3 \mathrm{H}), 2.05(\mathrm{~s}, 3 \mathrm{H}), 1.61\left(\mathrm{~d}, J=9.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{6 \mathrm{syn}}\right), 1.49(\mathrm{br} \mathrm{d}, \mathrm{J}=$ $9.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H} 6$ anti), 1.45 (br d, $J=9.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H} 6 \mathrm{anti}), 1.40$ (d, $J=9.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{6 \mathrm{syn}}$); HRMS m/z 200.0923, calcd for $\mathrm{C}_{9} \mathrm{H}_{14} \mathrm{NO}_{4}(\mathrm{M}+\mathrm{H})$ 200.0917. The major acetyl signal $\left(\mathrm{D}_{2} \mathrm{O}\right)$ at $\delta 2.12$ on irradiation shows an NOE enhancement with the major H_{1} at $\delta 4.34$ and vice-versa. The trans/cis isomer ratio was determined to be $K_{\mathrm{T} / \mathrm{C}}=1.20 \pm 0.06(54.4 \pm 1.2 \%$ trans by acetyl, $\mathrm{H}_{3}, \mathrm{H}_{6}$ and OMe peaks) in CDCl_{3} and $K_{\mathrm{T} / \mathrm{C}}=4.29 \pm 0.23(81.1 \pm 0.9 \%$ trans) in $\mathrm{D}_{2} \mathrm{O}$.

N-Acetyl-3-exo-carboxymethyl-5-syn-benzoyloxy-2-azabicyclo[2.1.1]hexane (31)

According to the general procedure, the syn-alcohol $8(5 \mathrm{mg}, 0.025 \mathrm{mmol})$ was dissolved in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(250 \mathrm{~L})$, cooled to $0^{\circ} \mathrm{C}$ and treated sequentially with dry triethylamine (15 L , $0.100 \mathrm{mmol})$, DMAP ($4 \mathrm{mg}, 0.028 \mathrm{mmol}$) and benzoyl chloride ($6 \mathrm{~L}, 0.050 \mathrm{mmol}$). The reaction mixture was stirred for 30 min at $0^{\circ} \mathrm{C}$, allowed to come to rt , and then stirred for 3 h. Workup and chromatography (prep tlc: $4: 1$ ethyl acetate/hexanes) afforded $7 \mathrm{mg}(92 \%)$ of syn-benzoate 31 as a colorless oil at $R_{f}=0.49$ (4:1 ethyl acetate/hexanes); ${ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.10-7.37(\mathrm{~m}, 5 \mathrm{H}), 5.04\left(\mathrm{dt}, J=7.1,1.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{1}\right), 4.88\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}_{3}\right.$ or $\left.\mathrm{H}_{5}\right), 4.55\left(\mathrm{dt}, J=7.1,1.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{1}\right), 4.54(\mathrm{~s}, 1 \mathrm{H}), 4.27(\mathrm{~s}, 1 \mathrm{H}), 3.81(\mathrm{~s}, 3 \mathrm{H}), 3.78(\mathrm{~s}, 3 \mathrm{H})$, $3.35\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}_{4}\right), 3.27\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}_{4}\right), 2.07-2.01\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{COCH}_{3}\right.$ and $\left.\mathrm{H}_{6 \mathrm{syn}}\right), 1.76(\mathrm{~d}, J=9.3$ $\mathrm{Hz}, 1 \mathrm{H}, \mathrm{H}_{6 \mathrm{syn}}$), 1.66 (dt, $\left.J=9.3,2.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H} 6 \mathrm{anti}\right), 1.60(\mathrm{dt}, J=9.3,2.2 \mathrm{~Hz}, 1 \mathrm{H}$, H6anti); ${ }^{13} \mathrm{C}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 171.3$ and $170.6,170.3,165.5$ and $165.1,133.7$ and 133.6, 129.7 and 129.6, 128.7 and 128.6 (C on Ph , one carbon buried), 71.2 and $70.6,64.2$ and $61.0,57.9$ and 56.3, 52.7 and 52.5, 47.2 and $45.7,27.9$ and $26.4,21.6,{ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}\right) \delta 7.98-7.89(\mathrm{~m}, 2 \mathrm{H}), 7.73-7.66(\mathrm{~m}, 1 \mathrm{H}), 7.57-7.46(\mathrm{~m}, 2 \mathrm{H}), 4.99\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}_{5}\right)$, 4.96-4.92 (m, 2H, H_{1} and H_{5}), 4.86-4.73 (under $\mathrm{D}_{2} \mathrm{O}$ peak, $\mathrm{m}, 2 \mathrm{H}, \mathrm{H}_{1}$ and H_{3} conformer), $4.54\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}_{3}\right), 3.85(\mathrm{~s}, 3 \mathrm{H}), 3.81(\mathrm{~s}, 3 \mathrm{H}), 3.46\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}_{4}\right), 3.40\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}_{4}\right), 2.09(\mathrm{~s}, 3 \mathrm{H})$, $2.03(\mathrm{~s}, 3 \mathrm{H}), 1.89-1.75\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H} 6\right.$ anti and its conformer and $\left.\mathrm{H}_{6 \mathrm{syn}}\right), 1.65(\mathrm{brd}, J=9.8 \mathrm{~Hz}$, $1 \mathrm{H}, \mathrm{H}_{6 \text { syn }}$); HRMS m / z found 326.0990 , calcd for $\mathrm{C}_{16} \mathrm{H}_{17} \mathrm{NO}_{5} \mathrm{Na}(\mathrm{M}+\mathrm{Na}) 326.0999$. NOE $\left(\mathrm{C}_{6} \mathrm{D}_{6}: \mathrm{CDCl}_{3} 1: 1\right)$: the major H_{1} signal at $\delta 4.12$ on irradiation enhances the major H_{5} signal at $\delta 4.50$ and the major COCH_{3} signal at $\delta 1.81$. The major COCH_{3} signal at $\delta 1.81$ on irradiation enhances the major H_{1} signal at $\delta 4.12$; the minor H_{1} signal at $\delta 4.92$ on irradiation sees no methyl signal. Noe $\left(\mathrm{D}_{2} \mathrm{O}\right)$: the major acetyl signal at $\delta 2.09$ on irradiation enhances the major H_{1} signal at $\delta 4.78$; the minor acetyl signal at $\delta 2.03$ on irradiation enhances the minor H_{3} signal at $\delta 4.71$. $K_{\mathrm{T} / \mathrm{C}}=4.08 \pm 0.04$ ($80.3 \pm 0.2 \%$ trans) was determined from relative integration of Ac peaks in CDCl_{3} and $K_{\mathrm{T} / \mathrm{C}}=3.92 \pm 0.18$ (79.7 \pm 0.7% trans) in $\mathrm{D}_{2} \mathrm{O}$ was determined from relative Ac/COOMe integrations. HRMS m/z found 326.0990, calcd. for $\mathrm{C}_{16} \mathrm{H}_{17} \mathrm{NO}_{5} \mathrm{Na}(\mathrm{M}+\mathrm{Na}) 326.0999$.

N-(tert-Butoxycarbonyl)-3-endo- and 3-exo-carboxymethyl-5-anti-benzoyloxy-2azabicyclo[2.1.1]hexane mixture (33 and 34)

Following the general procedure for lithiation, to carbamate $32(1.0 \mathrm{~g}, 5.03 \mathrm{mmol})$ in dry diethyl ether (25 mL) with a positive pressure of argon at $-78^{\circ} \mathrm{C}$ there was added TMEDA $(1.7 \mathrm{~mL}, 11.06 \mathrm{mmol})$ followed by s-BuLi in cyclohexane $(7.9 \mathrm{~mL}, 11.06 \mathrm{mmol})$ dropwise
via syringe at $-78^{\circ} \mathrm{C}$. After 4 h at -45 to $-50^{\circ} \mathrm{C}$ the reaction mixture was then recooled to $-78^{\circ} \mathrm{C}$. Excess CO_{2} gas was blown through the flask for approximately 5 min , stirred at $-78^{\circ} \mathrm{C}$ for 30 min and then allowed to come to rt . Extraction with water (2 H 20 mL) followed by back-extraction of the combined water layers with ether (2 H 20 mL) afforded, after drying and removal of solvent, $440 \mathrm{mg}(44 \%)$ of starting material 32. The aqueous layer was acidified with dilute HCl until approximately $\mathrm{pH}=3$ and then was extracted with ethyl acetate (5 H 40 mL). The combined extracts were washed with brine $(40 \mathrm{~mL})$, dried over sodium sulfate, filtered and concentrated in vacuo to yield a light orange oil. The crude oil was then taken up in 1:1 mixture of hexanes and isopropanol (80 mL), trimethylsilyldiazomethane ($1.7 \mathrm{~mL}, 3.38 \mathrm{mmol}, 2.0 \mathrm{M}$ solution in hexanes) was added under argon, and the reaction was stirred 12 h at rt . The solvent was removed in vacuo to afford 748 mg of crude ester as light orange oil. Since the mixture of hydroxyester components could not easily be separated, the crude alcohol was dissolved in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (35 mL), cooled to $0^{\circ} \mathrm{C}$ and treated sequentially with triethylamine ($1.9 \mathrm{~mL}, 14.06 \mathrm{mmol}$), DMAP ($380 \mathrm{mg}, 3.09 \mathrm{mmol}$) and benzoyl chloride ($820 \mathrm{~L}, 7.03 \mathrm{mmol}$). The reaction mixture was stirred 30 min at $0^{\circ} \mathrm{C}$, allowed to come to room temperature, and then stirred for 3 h . Workup and chromatography on silica gel (gradient, $10-20 \%$ ethyl acetate in hexanes) afforded $508 \mathrm{mg}(28 \%)\left(50 \%\right.$ BORSM) of a mixture of 3- and 3^{\prime}-methyl ester benzoates $\mathbf{3 3} / \mathbf{3 4}$ as a light orange oil at $R_{f}=0.43$ (4:1 hexanes/ethyl acetate). Based on proton integration $\left(\mathrm{H}_{5}\right)$, the ratio of the mixture is $49 / 51$; ${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $8.07-8.01(\mathrm{~m}, 4 \mathrm{H}), 7.62-7.54(\mathrm{~m}, 2 \mathrm{H}), 7.50-7.41(\mathrm{~m}, 4 \mathrm{H}), 5.22\left(\mathrm{br}, 1 \mathrm{H}, \mathrm{H}_{5}\right), 4.78(\mathrm{br} \mathrm{d}, J=$ $\left.7.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{5}\right), 4.52\left(\mathrm{br}, 2 \mathrm{H}, 2 \mathrm{H}_{1}\right), 4.41\left(\mathrm{br}, 1 \mathrm{H}, \mathrm{H}_{3}\right), 4.35\left(\mathrm{br}, 1 \mathrm{H}, \mathrm{H}_{3}\right), 3.80(\mathrm{~s}, 3 \mathrm{H}), 3.77$ (s, 3H), 3.15 (br, 2H, 2H4), 2.92 (br d, $J=7.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{6 a n t i}$), 2.75 (br d, $J=8.4 \mathrm{~Hz}, 1 \mathrm{H}$, $\mathrm{H}_{6 \text { anti) }}$, 2.12 (t, $J=8.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{6 \text { syn }}$), $1.72\left(\mathrm{br}, 1 \mathrm{H}, \mathrm{H}_{6 \text { syn }}\right), 1.46$ (br s, 18H); ${ }^{13} \mathrm{C}$ NMR (100 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 170.7$ and 170.3, 166.0 and 166.0, 155.1 (br) and 153.9 (br), 133.4 and 133.3, 129.6 and 129.6 (2C), 128.5 and $128.5,82.9,80.6,79.8,62.6$ (br), 61.1 (br), 60.2 (br), 58.4, 52.4, 52.3, 47.0 (br), 39.3, 33.9 (br), 28.3; HRMS $m / z 384.1419$, calcd for $\mathrm{C}_{19} \mathrm{H}_{23} \mathrm{NO}_{6} \mathrm{Na}(\mathrm{M}+\mathrm{Na}) 384.1418$.

N -Acetyl-3-endo-carboxymethyl-5-anti-benzoyloxy-2-azabicyclo[2.1.1]hexane (35) and N -Acetyl-3-exo-carboxymethyl-5-anti-benzoyloxy-2-azabicyclo[2.1.1]hexane (36)

According to the general procedure, to a solution of a mixture of carbamates $\mathbf{3 3} / \mathbf{3 4}$ (455 mg , $1.26 \mathrm{mmol})$ in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(45 \mathrm{~mL})$ was added TFA ($970 \mathrm{~L}, 12.60 \mathrm{mmol}$) at rt. The solution was stirred for 6 h at rt under an argon balloon and then solvent was removed in vacuo to afford 785 mg of crude amine as an orange oil. To the crude amine in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(60 \mathrm{~mL})$ there was added DMAP ($462 \mathrm{mg}, 3.78 \mathrm{mmol}$), and the solution was cooled to $0^{\circ} \mathrm{C}$. Acetyl chloride ($270 \mathrm{~L}, 3.78 \mathrm{mmol}$) was added to the reaction mixture that was maintained for 30 \min at $0^{\circ} \mathrm{C}$ and then brought to rt . After 3 h under an argon-filled balloon, workup and chromatography (1:4 hexanes/ethyl acetate) gave $179 \mathrm{mg}(47 \%)$ of $\mathbf{3 5}$ as an orange oil at R_{f} $=0.38$ (1:4 hexanes/ethyl acetate) and $130 \mathrm{mg}(34 \%)$ of $\mathbf{3 6}$ as an orange oil at $R_{f}=0.28$ (1:4 hexanes/ethyl acetate). For 3-endo-ester 35, ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.07-8.01$ (m, $2 \mathrm{H}), 7.63-7.57(\mathrm{~m}, 1 \mathrm{H}), 7.51-7.43(\mathrm{~m}, 2 \mathrm{H}), 5.28\left(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{5}\right), 5.01(\mathrm{~d}, J=7.3$ $\left.\mathrm{Hz}, 1 \mathrm{H}, \mathrm{H}_{5}\right), 5.00\left(\mathrm{dd}, J=7.5,1.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{1}\right), 4.52\left(\mathrm{dd}, J=7.5,1.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{1}\right), 4.51(\mathrm{~s}$, $\left.1 \mathrm{H}, \mathrm{H}_{3}\right), 4.45\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}_{3}\right), 3.87(\mathrm{~s}, 3 \mathrm{H}), 3.81(\mathrm{~s}, 3 \mathrm{H}), 3.28\left(\mathrm{ddd}, J=7.4,3.3,0.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{4}\right)$, 3.21 (ddd, $J=7.4,3.3,0.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{4}$), 3.02-2.93 (br, $1 \mathrm{H}, \mathrm{H} 6$ anti both conformers), 2.15 (s, $3 \mathrm{H}), 2.01(\mathrm{~s}, 3 \mathrm{H}), 1.77\left(\mathrm{dd}, J=7.8,7.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{6 \mathrm{syn}}\right), 1.72(\mathrm{dd}, J=7.8,7.8 \mathrm{~Hz}, 1 \mathrm{H}$, $\left.\mathrm{H}_{6 \text { syn }}\right) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 169.9$ and 169.7, 168.4, 166.0 and 165.9, 133.5 and 133.4, $129.6(2 \mathrm{C}), 128.5$ and 128.1, 79.7 and $79.2\left(\mathrm{C}_{5}\right), 63.6$ and $61.1\left(\mathrm{C}_{1}\right), 60.7$ and 58.9 $\left(\mathrm{C}_{3}\right), 52.8$ and 52.5, 47.6 and $46.3,39.5$ and $38.8,21.4$ and $21.1 ;{ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}\right)$ $\delta 8.11-8.06(\mathrm{~m}, 2 \mathrm{H}), 7.76-7.570(\mathrm{~m}, 1 \mathrm{H}), 7.60-7.53(\mathrm{~m}, 2 \mathrm{H}), 5.16\left(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{5}\right)$, $4.95\left(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{5}\right), 4.90\left(\mathrm{dd}, J=7.5,1.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{1}\right), 4.75(\mathrm{dd}, J=7.5,1.7 \mathrm{~Hz}, 1 \mathrm{H}$, $\left.\mathrm{H}_{1}\right), 4.75\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}_{3}\right), 4.62\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}_{3}\right), 3.91(\mathrm{~s}, 3 \mathrm{H}), 3.86(\mathrm{~s}, 3 \mathrm{H}), 3.39(\mathrm{ddd}, \mathrm{J}=7.3,3.3,1.2$
$\mathrm{Hz}, 1 \mathrm{H}, \mathrm{H}_{4}$), 3.33 (ddd, $J=7.3,3.3,1.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{4}$), 3.14-3.09 (m, 1H, H6anti), 3.07-3.03 (m, 1H, H6anti), $2.21(\mathrm{~s}, 3 \mathrm{H}), 2.06(\mathrm{~s}, 3 \mathrm{H}), 1.90\left(\mathrm{dd}, J=7.9,7.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{6 \mathrm{syn}}\right), 1.83$ (dd, J $\left.=7.9,7.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{6 \text { syn }}\right)$; HRMS m/z 304.1182, calcd for $\mathrm{C}_{16} \mathrm{H}_{18} \mathrm{NO}_{5}(\mathrm{M}+\mathrm{H}) 304.1179$. For exo-ester 36, ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.06-8.02(\mathrm{~m}, 2 \mathrm{H}), 7.64-7.57(\mathrm{~m}, 1 \mathrm{H})$, $7.50-7.44(\mathrm{~m}, 2 \mathrm{H}), 4.96\left(\mathrm{dd}, J=7.7,1.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{1}\right), 4.76\left(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{5}\right), 4.73(\mathrm{~d}$, $\left.J=7.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{5}\right), 4.55\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}_{3}\right), 4.50\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}_{3}\right), 4.46\left(\mathrm{dd}, J=7.3,1.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{1}\right)$, $3.81(\mathrm{~s}, 3 \mathrm{H}), 3.77(\mathrm{~s}, 3 \mathrm{H}), 3.27$ (ddd, $J=7.3,3.3,1.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{4}$), 3.20 (ddd, $J=7.3,3.3$, $1.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{4}$), 2.81 (dt, $\left.J=8.5,2.3,2.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H} 6 \mathrm{anti}\right), 2.78(\mathrm{dt}, J=8.5,2.3,2.3 \mathrm{~Hz}, 1 \mathrm{H}$, H6anti), 2.25 (dd, $J=8.5,7.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{6 \mathrm{syn}}$), $2.16(\mathrm{~s}, 3 \mathrm{H}), 2.02(\mathrm{~s}, 3 \mathrm{H}), 2.00(\mathrm{dd}, J=8.5$, $\left.7.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{6 \mathrm{syn}}\right) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 169.7$ and 169.6, 168.6, 166.1 and 166.0, 133.6 and $133.5,129.7(2 \mathrm{C}), 128.6,82.7$ and $82.3\left(\mathrm{C}_{5}\right), 63.8$ and $60.7\left(\mathrm{C}_{1}\right), 59.6$ and $57.5\left(\mathrm{C}_{3}\right), 52.7$ and 52.4, 47.6 and $46.2,34.5$ and $33.2,21.7$ and $21.5 ;{ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz}$, $\left.\mathrm{D}_{2} \mathrm{O}\right) \delta 8.12-8.07(\mathrm{~m}, 2 \mathrm{H}), 7.75-7.70(\mathrm{~m}, 1 \mathrm{H}), 7.60-7.54(\mathrm{~m}, 2 \mathrm{H}), 4.92\left(\mathrm{br}, 1 \mathrm{H}, \mathrm{H}_{3}\right), 4.89$ (dd, $J=7.6,1.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{1}$), $4.85\left(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{5}\right), 4.73(\mathrm{dd}, J=7.4,1.8 \mathrm{~Hz}, 1 \mathrm{H}$, $\left.\mathrm{H}_{1}\right), 4.65\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}_{3}\right), 3.82(\mathrm{~s}, 3 \mathrm{H}), 3.77(\mathrm{~s}, 3 \mathrm{H}), 3.39\left(\mathrm{ddd}, J=7.3,3.4,1.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{4}\right)$, 3.33 (ddd, $\left.J=7.3,3.4,1.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{4}\right), 2.94$ (dt, $\left.J=9.2,2.4,2.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H} 6 \mathrm{anti}\right), 2.92$ (dt, J $=9.2,2.4,2.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H} 6 \mathrm{anti}), 2.21(\mathrm{~s}, 3 \mathrm{H}), 2.08(\mathrm{~s}, 3 \mathrm{H}), 2.08(\mathrm{dd}, J=9.1,7.8 \mathrm{~Hz}, 1 \mathrm{H}$, $\left.\mathrm{H}_{6 \mathrm{syn}}\right), 1.86\left(\mathrm{dd}, J=9.3,7.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{6 \text { syn }}\right) ;$ HRMS m$/ \mathrm{z} 304.1181$, calcd for $\mathrm{C}_{16} \mathrm{H}_{18} \mathrm{NO}_{5}$ $(\mathrm{M}+\mathrm{H}) 304.1179$. Amide isomer ratios for 35 were determined by comparison of Ac major/ Ac minor in both solvents; the ratio in CDCl_{3} is $K_{\mathrm{T} / \mathrm{C}}=3.21 \pm 0.03(76.2 \pm 0.1 \%$ trans isomer) and in $\mathrm{D}_{2} \mathrm{O} K_{\mathrm{T} / \mathrm{C}}=4.98 \pm 0.15$ ($83.3 \pm 0.4 \%$ trans isomer). The amide isomer ratios for $\mathbf{3 6}$ were determined by comparison of acetyl peaks in CDCl_{3} and COOMe peaks in $\mathrm{D}_{2} \mathrm{O}$. The amide ratio $K_{\mathrm{T} / \mathrm{C}}=3.22 \pm 0.09(76.3 \pm 0.5 \%$ trans isomer $)$ in CDCl_{3} and $K_{\mathrm{T} / \mathrm{C}}=3.99 \pm$ 0.04 ($80.0 \pm 0.2 \%$ trans isomer) in $\mathrm{D}_{2} \mathrm{O}$.

N -Acetyl-3-endo-carboxymethyl-5-anti-hydroxy-2-azabicyclo[2.1.1]hexane (9)

According to the general procedure, $\mathrm{Et}_{3} \mathrm{~N}(660 \mathrm{~L}, 4.70 \mathrm{mmol})$ was added to the benzoate 35 ($95 \mathrm{mg}, 0.31 \mathrm{mmol}$) in methanol (9 mL), and the solution was stirred at rt for 17 h under argon. Workup and chromatography (gradient, 0 to $6 \% \mathrm{MeOH}$ in ethyl acetate) gave 54 mg (87%) of alcohol 9 as a colorless oil at $R_{f}=0.58$ (5:1 ethyl acetate/MeOH); ${ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 4.60\left(\mathrm{dd}, \mathrm{J}=7.3,1.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{1}\right), 4.58\left(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{5}\right), 4.38(\mathrm{~s}, 1 \mathrm{H}$, $\left.\mathrm{H}_{3}\right), 4.35\left(\mathrm{~d}, \mathrm{~J}=7.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{5}\right), 4.34\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}_{3}\right), 4.14\left(\mathrm{dd}, J=7.3,1.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{1}\right), 3.79$ $(\mathrm{s}, 3 \mathrm{H}), 3.75(\mathrm{~s}, 3 \mathrm{H}), 3.13$ and $3.09\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}_{4}\right), 2.94$ (ddd, $\mathrm{J}=7.3,3.3,0.9 \mathrm{~Hz}, 1 \mathrm{H}$, H6anti), 2.87 (ddd, $\left.J=7.3,3.3,0.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{6 \text { anti }}\right) 2.09\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{COCH}_{3}\right), 1.95\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{COCH}_{3}\right), 1.69$ (dd, $\left.J=7.7,7.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{6 s y n}\right), 1.64\left(\mathrm{dd}, \mathrm{J}=7.7,7.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{6 \text { syn }}\right) ;{ }^{13} \mathrm{C}$ NMR (100 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 170.0,168.6,77.2$ and $76.6,65.2$ and $62.2\left(\mathrm{C}_{1}\right), 61.1$ and $59.1\left(\mathrm{C}_{3}\right), 52.4$ and 52.0, 48.3 and $47.3,39.1$ and $38.3,21.0$ and $20.8 ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}\right) \delta 4.78\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}_{3}\right)$, $4.54\left(\mathrm{dd}, J=7.6,1.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{1}\right), 4.39\left(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{5}\right), 4.50\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}_{3}\right), 4.38$ (dd, J $\left.=7.4,1.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{1}\right), 4.22\left(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{5}\right), 3.84(\mathrm{~s}, 3 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H}), 3.05(\mathrm{brm}$, two conformers, $1 \mathrm{H}, \mathrm{H}_{4}$), 2.96 (ddd, $J=7.3,3.3,1.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H} 6$ anti), $2.14(\mathrm{~s}, 3 \mathrm{H}), 2.00(\mathrm{~s}$, 3 H), 1.82 (two d, $J=7.3,7.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{6 \text { syn }}$), 1.76 (two d, $J=7.3,7.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{6 \text { syn }}$); NOE: The major acetyl signal at $\delta 2.14$ on irradiation enhances the major H_{1} at $\delta 4.38$ and viceversa. $K_{\mathrm{T} / \mathrm{C}}=2.59 \pm 0.07\left(72.1 \pm 0.6\right.$ trans, $\left.\mathrm{CDCl}_{3}\right)$ by relative Ac and COOMe integrations and $K_{\mathrm{T} / \mathrm{C}}=4.72 \pm 0.11\left(82.5 \pm 0.4 \%\right.$ trans, $\left.\mathrm{D}_{2} \mathrm{O}\right)$ by relative line fit acetyl integrations. HRMS m / z 222.0740, calcd for $\mathrm{C}_{9} \mathrm{H}_{13} \mathrm{NO}_{4} \mathrm{Na}(\mathrm{M}+\mathrm{Na})$ 222.0737.

N-Acetyl-3-exo-carboxymethyl-5-anti-hydroxy-2-azabicyclo[2.1.1]hexane (12). ${ }^{10}$

Following the general procedure, $\mathrm{Et}_{3} \mathrm{~N}(1.0 \mathrm{~mL}, 7.43 \mathrm{mmol})$ was added to the benzoate 36 $(150 \mathrm{mg}, 0.50 \mathrm{mmol})$ in methanol (15 mL), and the mixture was stirred at rt for 17 h under argon. Workup and chromatography afforded $84 \mathrm{mg}(85 \%)$ of alcohol 12 as an off-white solid at $R_{f}=0.59(5: 1$ ethyl acetate $/ \mathrm{MeOH})$. $\mathrm{NOE}\left(\mathrm{D}_{2} \mathrm{O}\right)$: the major acetyl signal at $\delta 2.14$ on irradiation enhances the major H_{1} at $\delta 4.38$ and vice-versa; the minor acetyl signal at δ
2.00 on irradiation enhances no proton. The major H_{3} at $\delta 4.50$ on irradiation enhances no proton. $K_{\mathrm{T} / \mathrm{C}}=2.15 \pm 0.02\left(68.2 \pm 0.2\right.$ from the acetyl methyls, H_{3}, and COOMe peaks, $\left.\mathrm{CDCl}_{3}\right)$ and $K_{\mathrm{T} / \mathrm{C}}=4.04 \pm 0.10\left(80.2 \pm 0.4\right.$ from $\mathrm{H}_{1}, \mathrm{H}_{5}, \mathrm{Ac}$, and OMe peaks, $\left.\mathrm{D}_{2} \mathrm{O}\right)$.

Alternative synthesis of N -Acetyl-3-endo-carboxymethyl-5-anti-fluoro-2azabicyclo[2.1.1]hexane (7) from alcohol 9. ${ }^{10}$

Bis(2-methoxyethyl)aminosulfur trifluoride ($39 \mathrm{mg}, 0.176 \mathrm{mmol}$) was added dropwise via syringe to a solution of alcohol $9(14 \mathrm{mg}, 0.070 \mathrm{mmol})$ in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \mathrm{~mL})$ under argon at $-78{ }^{\circ} \mathrm{C}$. The mixture was stirred for 2 h at rt and then heated at reflux for 8 h . The reaction mixture was quenched with water (2 mL), and the aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $(2 \mathrm{H} 2 \mathrm{~mL})$. The organic extracts were combined and washed with brine (2 mL), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and filtered. Removal of the solvent in vacuo and chromatography (prep tlc, 3\% MeOH in EtOAc) afforded $8 \mathrm{mg}(57 \%)$ of fluoride 7 as a light yellow oil at $R_{f}=0.44$ (3\% MeOH in EtOAc); ${ }^{19} \mathrm{~F}$ NMR $\left(282 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta-219.0(\mathrm{~d}, J=62 \mathrm{~Hz}),-221.9(\mathrm{~d}, J=61$ $\mathrm{Hz}) ;{ }^{19} \mathrm{~F}$ NMR ($376 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}$) $\delta-211.5$ and -213.7 (5.2:1 ratio). Noe ($\mathrm{D}_{2} \mathrm{O}$): The major acetyl signal at $\delta 2.16$ on irradiation enhances the major H_{1} at $\delta 4.62$, and the minor acetyl signal at $\delta 2.00$ on irradiation enhances the minor H_{3} at $\delta 4.83$. $K_{\mathrm{T} / \mathrm{C}}=3.52 \pm 0.08(77.9 \pm$ 0.4% trans by integration of major/minor $\mathrm{H}_{5}, \mathrm{OMe}$, or acetyl methyls, CDCl_{3}) and $5.11 \pm$ 0.13 ($83.6 \pm 0.3 \%$ trans by integration of major/minor Ac and COOMe protons, $\mathrm{D}_{2} \mathrm{O}$). In CDCl_{3}, the characteristic downfield acetyl peak at $\delta 2.11$ for the trans isomer (major) and the upfield peak at $\delta 1.96$ for the cis isomer were used to assign the trans amide isomer as major. Slightly higher trans/cis isomer ratios for 7 of 3.7 (79% trans) in CDCl_{3} and 5.6 (85% trans) in $\mathrm{D}_{2} \mathrm{O}$ were determined by fluorine NMR.

Alternate Synthesis of N -Acetyl-3-exo-carboxymethyl-5-anti-fluoro-2azabicyclo[2.1.1]hexane (11) from Alcohol $12 .{ }^{10}$

Fluoride 11 was prepared according to the published procedure; ${ }^{19} \mathrm{~F}$ NMR $(282 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta-212.7(\mathrm{~d}, J=62 \mathrm{~Hz})$ and $-214.1(\mathrm{~d}, J=62 \mathrm{~Hz}) ;{ }^{19} \mathrm{~F}$ NMR $\left(376 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}\right) \delta$ -205.8 and -206.7. Noe $\left(\mathrm{D}_{2} \mathrm{O}\right)$: The major acetyl signal at $\delta 2.16$ on irradiation enhances the major H_{1} at $\delta 4.59 . K_{\mathrm{T} / \mathrm{C}}=2.56 \pm 0.02\left(71.9 \pm 0.1 \%\right.$ trans calculated from H_{5} major at δ 4.72 vs minor at $\left.\delta 4.68, \mathrm{CDCl}_{3}\right)$ or $2.9\left(74 \%\right.$ trans by F integration, $\left.\mathrm{CDCl}_{3}\right)$ and 3.69 ± 0.11 $\left(78.7 \pm 0.5 \%\right.$ trans by integration of major/minor H_{5} peaks, $\left.\mathrm{D}_{2} \mathrm{O}\right)$ or $4.2(81 \%$ trans by F integrations, $\mathrm{D}_{2} \mathrm{O}$).

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.

Acknowledgments

We thank Frank Weinhold and Hans Reich for helpful discussions and Vineeta Bhojani, Payal Patel, Kevin Cannon, and Andrew Modo for technical assistance. This work was supported by NSF grants (CHE 0111208 and CHE 0515635) to GRK and an NIH grant (R01 AR044276) to RTR. MDS was supported by USA Department of Homeland Security and ACS Division of Medicinal Chemistry graduate fellowships, MS was partially supported by NSF (DGE-0841377) and partially by a Der Min Fan Fellowship.

References

1 (a). MacArthur MW, Thornton JM. J. Mol. Biol. 1991; 218:397-412. [PubMed: 2010917] (b)
Reiersen H, Rees AR. Trends Biochem. Sci. 2001; 26:679-684. [PubMed: 11701327]
2. Weiss MS, Jabs A, Hilgenfeld R. Nat. Struct. Biol. 1998; 5:676. [PubMed: 9699627]
3. Giacovazzo, C.; Monaco, HL.; Artioli, G.; Viterbo, D.; Ferraris, G.; Gilli, G.; Zanotti, G.; Catti, M. Fundamentals of Crystallography. 2nd Ed. Oxford University Press; Oxford, UK: 2002. p. 492-499.

4 (a). Shoulders MD, Kotch FW, Choudhary A, Guzei IA, Raines RT. J. Am. Chem. Soc. 2010; 132:10857-10865. [PubMed: 20681719] (b) Kuemin M, Nagel YA, Schweizer S, Monnard FW, Ochsenfeld C, Wennemers H. Angew. Chem. Int. Ed. 2010; 49:6324-6327.
5 (a). Eberhardt ES, Panasik N Jr. Raines RT. J. Am. Chem. Soc. 1996; 118:12261-12266. [PubMed: 21451735] (b) DeRider ML, Wilkens SJ, Waddell MJ, Bretscher LE, Weinhold F, Raines RT, Markley JL. J. Am. Chem. Soc. 2002; 124:2497-2505. [PubMed: 11890798] (c) Jenkins CL, McCloskey AI, Guzei IA, Eberhardt ES, Raines RT. Biopolymers: Pept. Sci. 2005; 80:1-8.(d) Shoulders MD, Hodges JA, Raines RT. J. Am. Chem. Soc. 2006; 128:8112-8113. [PubMed: 16787056] (e) Sonntag L-S, Schweizer S, Ochsenfeld C, Wennemers HJ. Am. Chem. Soc. 2006; 128:14697-14703.(f) Shoulders MD, Guzei IA, Raines RT. Biopolymers. 2008; 89:443-454. [PubMed: 17937398] (g) Shoulders MD, Raines RT. Annu. Rev. Biochem. 2009; 78:929-958. [PubMed: 19344236] (h) Shoulders MD, Kamer KJ, Raines RT. Bioorg. Med. Chem. Lett. 2009; 19:3859-3862. [PubMed: 19423349] (i) Cadamuro SA, Reichold R, Kusebauch U, Musiol H-J, Renner C, Tavan P, Moroder L. Angew. Chem. Int. Ed. 2008; 47:2143-2146.
6. Taylor CM, Hardre R, Edwards PJ. B. J. Org. Chem. 2005; 70:1306-1315.

7 (a). Hinderaker MP, Raines RT. Protein Sci. 2003; 12:1188-1194. [PubMed: 12761389] (b) Raines RT. Protein Sci. 2006; 15:1219-1225. [PubMed: 16641494] (c) Hodges JA, Raines RT. Org. Lett. 2006; 8:4695-4697. [PubMed: 17020280] (d) Gorske BC, Bastian BL, Geske GD, Blackwell HE. J. Am. Chem. Soc. 2007; 129:8928-8929. [PubMed: 17608423]
8 (a). Holmgren SK, Taylor KM, Bretscher LE, Raines RT. Nature. 1998; 392:666-667. [PubMed: 9565027] (b) Bretscher LE, Jenkins CL, Taylor KM, DeRider ML, Raines RT. J. Am. Chem. Soc. 2001; 123:777-778. [PubMed: 11456609] (c) Renner C, Alefelder S, Bae JH, Budisa N, Huber R, Moroder L. Angew. Chem. Int. Ed. 2001; 40:923-925.(d) Hodges JA, Raines RT. J. Am. Chem. Soc. 2003; 125:9262-9263. [PubMed: 12889933] (e) Doi M, Nishi Y, Uchiyama S, Nishiuchi Y, Nakazawa T, Ohkubo T, Kobayashi Y. J. Am. Chem. Soc. 2003; 125:9922-9923. [PubMed: 12914445] (f) Hodges JA, Raines RT. J. Am. Chem. Soc. 2005; 127:15923-15932. [PubMed: 16277536] (g) Kim W, McMillan RA, Snyder JP, Conticello VP. J. Am. Chem. Soc. 2005; 127:18121-18132. [PubMed: 16366565] (h) Doi M, Nishi Y, Uchiyama S, Nishiuchi Y, Nishio H, Nakazawa T, Ohkubo T, Kobayashi YJ. Pept. Sci. 2005; 11:609-616.(i) Horng J-C, Raines RT. Protein Sci. 2006; 15:74-83. [PubMed: 16373476] (j) Kim W, Hardcastle KI, Conticello VP. Angew. Chem. Int. Ed. 2006; 45:8141-8145.(k) Naduthambi D, Zondlo NJ. J. Am. Chem. Soc. 2006; 128:12430-12431. [PubMed: 16984189] (1) Kümin M, Sonntag L-S, Wennemers H. J. Am. Chem. Soc. 2007; 129:466-467. [PubMed: 17226990] (m) Erdmann RS, Wennemers H. J. Am. Chem. Soc. 2010; 132:13957-13959. [PubMed: 20849115] (n) Shoulders MD, Raines RT. Adv. Exp. Med. Biol. 2009; 611:251-252. [PubMed: 19400182] (o) Shoulders MD, Satyshur KA, Forest KT, Raines RT. Proc. Natl. Acad. Sci. USA. 2010; 107:559-564. [PubMed: 20080719] (p) Kuemin M, Nagel YA, Schweizer S, Monnard FW, Ochsenfeld C, Wennemers H. Angew. Chem. Int. Ed. 2010; 49:6324-6327.(q) Erdmann RS, Wennemers H. Angew. Chem. Int. Ed. 2011; 50:6835-6838.(r) Fields GB. Org. Biomol. Chem. 2010; 8:12371258. [PubMed: 20204190] (s) Kusebauch U, Cadamuro SA, Musiol H-J, Lenz MO, Wachtveitl J, Moroder L, Renner C. Angew. Chem. Int. Ed. 2006; 45:7015-7018.(t) Fallas JA, Gauba V, Hartgerink JD. J. Biol. Chem. 2009; 284:26851-26859. [PubMed: 19625247]
9 (a). Liang GB, Rito CJ, Gellman SH. Biopolymers. 1992; 32:293-301. [PubMed: 1581548] For calculations with N-methylproline amides in aqueous solution, see: Improta R, Benzi C, Barone V. J. Am. Chem. Soc. 2001; 123:12568-12577. [PubMed: 11741421]
10. Jenkins CL, Lin G, Duo J, Rapolu D, Guzei IA, Raines RT, Krow GR. J. Org. Chem. 2004; 69:8565-8573. [PubMed: 15575731]
11 (a). Glendening, ED.; Badenhoop, JK.; Reed, AE.; Carpenter, JE.; Bohmann, JA.; Morales, CM.; Weinhold, F. NBO 5.0. Theoretical Chemistry Institute, University of Wisconsin-Madison; Madison, WI: 2001. http://www.chem.wisc.edu/~nbo5(b) Frisch, MJ.; Trucks, GW.; Schlegel, HB.; Scuseria, GE.; Robb, MA.; Cheeseman, JR.; Montgomery; Vreven, T.; Kudin, KN.; Burant, JC.; Millam, JM.; Iyengar, SS.; Tomasi, J.; Barone, V.; Mennucci, B.; Cossi, M.; Scalmani, G.; Rega, N.; Petersson, GA.; Nakatsuji, H.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Klene, M.; Li, X.; Knox, JE.; Hratchian, HP.; Cross, JB.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, RE.; Yazyev, O.; Austin, AJ.; Cammi, R.; Pomelli, C.; Ochterski, JW.; Ayala, PY.;

Morokuma, K.; Voth, GA.; Salvador, P.; Dannenberg, JJ.; Zakrzewski, VG.; Dapprich, S.; Daniels, AD.; Strain, MC.; Farkas, O.; Malick, DK.; Rabuck, AD.; Raghavachari, K.; Foresman, JB.; Ortiz, JV.; Cui, Q.; Baboul, AG.; Clifford, S.; Cioslowski, J.; Stefanov, BB.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.; Martin, RL.; Fox, DJ.; Keith, T.; Al-Laham, MA.; Peng, CY.; Nanayakkara, A.; Challacombe, M.; Gill, PMW.; Johnson, B.; Chen, W.; Wong, MW.; Gonzalez, C.; Pople, JA. Geometries and energies were calculated with B3LYP/ $6-311+\mathrm{G}(2 \mathrm{~d}, \mathrm{p}) / / \mathrm{HF} / 6-31 \mathrm{G}(\mathrm{d})$ using Gaussian 03 . Revision E.01. Gaussian, Inc.; Wallingford CT: 2004.
12. Krow GR, Herzon SB, Lin F, Qiu G, Sonnet PE. Org. Lett. 2002; 4:3151-3154. [PubMed: 12201739]
13. Krow GR, Shoulders MD, Edupuganti R, Gandla D, Yu F, Sender M, Sonnet PE, Zdilla MJ, DeBrosse C, Cannon KC, Ross CW III, Choudhary A, Raines RT. J. Org. Chem. 2011; 76:36263634. [PubMed: 21500838]
14. Krow GR, Huang Q, Lin G, Centafont RR, Thomas AM, Gandla D, DeBrosse C, Carroll PJ. J. Org. Chem. 2006; 71:2090-2098. [PubMed: 16496997]
15 (a). Sunose M, Peakman TM, Charmant JPH, Gallagher T, Macdonald SJF. J. Chem. Soc., Chem. Commun. 1998:1723-1724.(b) Pandey G, Chakrabarti D. Tetrahedron Lett. 1996; 37:2285-2288.
16. These results can be contrasted with a finding of no effect upon $K_{\mathrm{T} / \mathrm{C}}$ values in dioxane at $37^{\circ} \mathrm{C}$ upon O-acylation or O-trifluoroacylation of Hyp 2 or hyp 5 . (ref. 5c).
17 (a). Thomas KM, Naduthambi D, Tririya G, Zondlo N. J. Org. Lett. 2005; 7:2397-2400.(b) Owens NW, Braun C, O’Neil JD, Marat K, Schweizer F. J. Am. Chem. Soc. 2007; 129:11670-11671. [PubMed: 17764180]
18. Bartlett GJ, Choudhary A, Raines RT, Woolfson DN. Nat. Chem. Biol. 2010; 6:615-620. [PubMed: 20622857]
19. Panasik N Jr. Eberhardt ES, Addison AS, Powell DR, Raines RT. Int. J. Pept. Protein Res. 1994; 44:262-269. [PubMed: 7822103] The crystal structure of Flp 1 has two distinct molecules. For one, $\delta=-6.26^{\circ}$, not $\delta=-16.31^{\circ}$ as was mistakenly reported in ref. 5a, where δ refers to the angle that the amide $\mathrm{C}-\mathrm{N}$ bond makes with the plane defined by $\mathrm{N}, \mathrm{C}^{\mathrm{a}}$, and C^{δ} of the pyrrolidine ring.
20. For ex-MetFlp $6(\mathrm{td}) \delta=-22.18^{\circ}$ (See ref. 19). In ex-Flp 1 the innate flexibility of the pyrrolidine ring prevents observation of the $\mathrm{F}-\mathrm{N}$ lone-pair interaction seen in $6 .{ }^{5 \mathrm{a}}$ Idealized C^{γ}-exo puckers are therefore not readily accessible for the more flexible Flp $\mathbf{1}$ because the molecule can distort to avoid the fluorine)(nitrogen lone pair repulsive interaction..
21 (a). Choudhary A, Gandla D, Krow GR, Raines RT. J. Am. Chem. Soc. 2009; 131:7244-7246. [PubMed: 19469574] (b) Fischer FR, Wood PA, Allen FH, Diederich F. Proc. Natl. Acad. Sci. USA. 2008; 105:17290-17294. [PubMed: 18981424]
22 (a). Marsden RJB, Sutton LE. J. Chem. Soc. 1936:1383-1390.(b) Corey EJ. J. Am. Chem. Soc. 1953; 75:2301-2304.(c) Brant DA, Flory PJ. J. Am. Chem. Soc. 1965; 87:2791-2800.(d) Wennerström H, Forsén S, Roos BJ. Phys. Chem. 1972; 76:2430-2436.(e) Jones GIL, Owen NL. J. Mol. Struct. 1973; 18:1-32.
23. NUTS—NMR Utility Transform Software. Acorn NMR Inc., 7670 Las Positas Road; Livermore, CA: p. 94551

Figure 1.
(A) The relationship between ring conformations and $K_{\text {trans/cis }}$ in proline derivatives. (B) The relationship between substituent orientation (gauche or anti) and $K_{\text {trans } / \text { cis }}$ in conformationally constrained proline derivatives.

Figure 2.
Structures of methanoproline mimics 6-12 showing embedded prolines $\mathbf{1 - 5}$.

Figure 3.
Calculated structures of ex-Flp 1 (A), ex-MetFlp 6 (B) and overlapped ex-Flp 1 and exMetFlp 6 (C) in their trans distal conformations.

Scheme 1.
Synthetic Route to ex-MetFlp 6.

Scheme 2.
Synthetic Routes to en-MetFlp 7 and ex-Metflp 11.

Scheme 3.
Synthetic Route to ex-MetHyp 8.

Scheme 4.
Synthetic Route to en-MetHyp 9 and ex-Methyp 12.

Table 1
Amide Conformational Preferences for N -Acetyl Substituted-Proline Methyl Esters in Dioxane $\left(25{ }^{\circ} \mathrm{C}\right) .{ }^{8 \mathrm{~b}}$

$$
\mathrm{C}^{\curlyvee} \text {-endo trans } \quad \mathrm{C}^{\curlyvee} \text {-exo trans }
$$

$$
C^{\curlyvee} \text {-endo cis } \quad C^{\curlyvee} \text {-exo cis }
$$

compound	\mathbf{X}	\mathbf{Y}^{\prime}	$\boldsymbol{K}_{\text {T/C }}{ }^{\boldsymbol{a}}$	ring pucker $^{\boldsymbol{b}}$
$\mathrm{Flp}^{\boldsymbol{c}} \mathbf{1}$	F	H	6.7	86% exo
$\mathrm{Hyp}^{d} \mathbf{2}$	OH	H	6.1	
$\operatorname{Pro}_{\mathbf{3}}$	H	H	4.6	66% endo
$\mathrm{flp}^{\boldsymbol{e}} \mathbf{4}$	H	F	2.5	95% endo
$\operatorname{hyp}^{f} \mathbf{5}$	H	OH	2.4	

${ }^{a}$ Data collected in $\mathrm{D}_{2} \mathrm{O}$ (see ref. 8b). Methyl ester derivatives of prolines were employed for these analyses to avoid γ-turn formation, as described previously by Gellman and co-workers (see ref. 9a). The esters are arbitrarily drawn in the distal conformation with the OMe of the ester directed away from the amide nitrogen; proximal has the OMe directed toward the nitrogen.
${ }^{b}$ Data collected in dioxane (see ref. 5 b).
${ }^{c}$ Flp $=\mathrm{N}$-acetyl-(2S,4R)-4-fluoroproline.
$d_{\text {Hyp }}=\mathrm{N}$-acetyl-(2S,4R)-4-hydroxyproline.
$e_{\mathrm{flp}}=\mathrm{N}$-acetyl-(2S,4S)-4-fluoroproline.
$f_{\text {hyp }}=\mathrm{N}$-acetyl-(2S,4S)-4-hydroxyproline.

${ }^{a}$ Calculated using geometry calculation $\mathrm{HF} / 6-31 \mathrm{G}(\mathrm{d})$ and single point energy calculation at B3LYP/6-311+G(2d,p).

$$
b_{\mathrm{By}}{ }^{19} \mathrm{~F} \text { NMR integrations } K_{\mathrm{T} / \mathrm{C}}=2.1(68 \% \text { trans })
$$

$c^{\text {The value obtained from }}{ }^{19} \mathrm{~F}$ NMR integrations 4.0 (80% trans)
$d_{\text {By }}{ }^{19} \mathrm{~F}$ NMR integrations $K \mathrm{~T} / \mathrm{C}=3.7$ (79\% trans)
$e_{\text {By }}{ }^{19} \mathrm{~F}$ NMR integrations $K \mathrm{~T} / \mathrm{C}=5.6$ (85% trans).

$g_{\text {This work; ref }} 10$ value by ${ }^{13} \mathrm{C}$ NMR $K_{\mathrm{T} / \mathrm{C}}=3.5$ (78% trans).

Table 4
Methanoproline-Methanopyrrolidine Relative Trans Amide Preferences. ${ }^{a}$

entry	MetPro Metpyr	X	Y	Z	$\underset{\mathbf{D}_{2} \mathbf{O}}{\Delta \operatorname{trans}^{a}}$	change $(\%)^{b}$	$\begin{gathered} \Delta \text { trans }^{a} \\ \mathrm{CDCl}_{3} \end{gathered}$	change $(\%)^{b}$
1	6 and 37	F	H	H	29	55	19	40
2	7 and 38	H	F	H	29	53	24	44
3	8 and 39	OH	H	H	27	50	11	26
4	9 and 40	H	OH	H	29	54	21	41
5	10 and 41	H	H	H	25	46	19	37
6	11 and 38	H	H	F	24	44	18	33
7	12 and 40	H	H	OH	26	48	17	33

${ }^{a} \Delta$ trans $=\%$ trans MetPro $-\%$ trans Metpyr. Trans isomer ratios for methanopyrrolidines are from reference 13. Methanoproline trans isomer ratios are from Table 3. See Supporting information.
${ }^{b}(\%)=$ the percentage increase in trans isomer ratio when Δ trans is compared to $\%$ trans for Metpyr.

Table 5

Selected Calculated Structural Parameters for the Major Contributing Conformers of Methanoproline Derivatives. ${ }^{a}$

 trans distal (td)			\rightleftharpoons \rightleftharpoons	 trans proximal (tp) cis proximal (cp)					
entry	compound	X	Y	Z	isomer	$\underset{\substack{\text { mole }^{b} \\ \text { fraction }}}{\text { and }}$	$\begin{gathered} \mu^{c} \\ (\mathbf{D}) \end{gathered}$	$\mathrm{O} . . . \mathrm{C}=\mathrm{O}^{d}$ angle (θ)	$\begin{gathered} \mathrm{O} . . . \mathrm{C}=\mathrm{O}^{e} \\ \text { distance (pm) } \end{gathered}$
1	ex-MetFlp 6	F	H	H	td	0.52	4.6	97.2°	322
					tp	0.23	5.8	130.3°	327
					cp	0.06	3.4		
2	en-MetFlp 7	H	F	H	td	0.70	2.5	$96.4{ }^{\circ}$	309
					tp	0.15	3.6	123.9°	312
3	ex-MetHyp 8	OH	H	H	td	0.57	2.8	90.7°	296
					tp	0.09	5.2	123.1°	300
					cp	0.08	1.8		
4	en-MetHyp 9	H	OH	H	td	0.74	3.6	$96.5{ }^{\circ}$	310
					tp	0.17	4.0	128.8°	318
5	MetPro 10	H	H	H	td	0.56	4.3	$94.6{ }^{\circ}$	313
					tp	0.17	4.9	127.4°	317

[^0]: *To whom correspondence should be addressed. Grkrow @temple.edu.
 Supporting Information Available. Gaussian-03 energies for structures in Tables 2, 3, and 5. Data base for Table 4, calculated $K_{\mathrm{T} / \mathrm{C}}$ of methanoprolines, X-ray parameters for $\mathbf{2 5}$ and ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$, and ${ }^{19} \mathrm{~F}$ NMR spectra for new compounds. This material is available free of charge via the Internet at http://pubs.acs.org.

