Synthesis of 6-Aryloxy- and 6-Arylalkoxy-2-chloropurines and Their Interactions with Purine Nucleoside Phosphorylase from *Escherichia coli*

Agnieszka Bzowska^{a,*}, Lucyna Magnowska^a and Zygmunt Kazimierczuk^b

 ^a Department of Biophysics, Institute of Experimental Physics, University of Warsaw, Żwirki i Wigury 93, 02 089 Warsaw, Poland.
Fax: +(48 22) 822 02 48. E-mail: abzowska@asp.biogeo.uw.edu.pl

^b Institute of Chemistry, Agricultural University, Rakowiecka 26/30, 02 528 Warsaw, Poland

Dedicated to Professor Frank Seela on the occasion of his 60th birthday

* Author for correspondence and reprint requests

Z. Naturforsch. 54c, 1055-1067 (1999); received May 31/August 2, 1999

2-Chloropurines, Purine Nucleoside Phosphorylase, Inhibition, *Escherichia coli*, Phase Transfer Reactions

The phase transfer method was applied to perform the nucleophilic substitution of 2,6dichloropurines by modified arylalkyl alcohol or phenols. Since under these conditions only the 6-halogen is exchanged, this method gives 2-chloro-6-aryloxy- and 2-chloro-6-arylalkoxypurines. 2-Chloro-6-benzylthiopurine was synthesized by alkylation of 2-chloro-6-thiopurine with benzyl bromide. The stereoisomers of 2-chloro-6-(1-phenyl-1-ethoxy)purine were obtained from *R*- and *S*-enantiomers of *sec.*-phenylethylalcohol and 2,6-dichloropurine.

All derivatives were tested for inhibition with purified hexameric *E. coli* purine nucleoside phosphorylase (PNP). For analogues showing $IC_{50} < 10 \,\mu$ M, the type of inhibition and inhibition constants were determined. In all cases the experimental data were best described by the mixed-type inhibition model and the uncompetitive inhibition constant, K_{iu} , was found to be several-fold lower than the competitive inhibition constant, K_{ic} . This effect seems to be due to the 6-aryloxy- or 6-arylakoxy substituent, because a natural PNP substrate adenine, as well as 2-chloroadenine, show mixed type inhibition with almost the same inhibition constants K_{iu} and K_{ic} .

The most potent inhibition was observed for 6-benzylthio-2-chloro-, 6-benzyloxy-2-chloro-, 2-chloro-6-(2-phenyl-1-ethoxy), 2-chloro-6-(3-phenyl-1-propoxy)- and 2-chloro-6-ethoxypurines ($K_{iu} = 0.4$, 0.6, 1.4, 1.4 and 2.2 μ M, respectively). The *R*-stereoisomer of 2-chloro-6-(1-pheny-1-ethoxy)purine has $K_{iu} = 2.0 \,\mu$ M, whereas inhibition of its *S* counterpart is rather weak (IC₅₀ > 12 μ M). More rigid (e.g. phenoxy-), non-planar (cyclohexyloxy-), or more bulky (2,4,6-trimethylphenoxy-) substituents at position 6 of the purine base gave less potent inhibitors (IC₅₀ = 26, 56 and >100 μ M, respectively). The derivatives are selective inhibitors of hexameric "high-molecular mass" PNPs because no inhibitory activity *vs.* trimeric *Cellulomonas sp.* PNP was detected.

By establishing the ligand-dependent stabilization pattern of the *E. coli* PNP it was shown that the new derivatives, similarly as the natural purine bases, are able to form a dead-end ternary complex with the enzyme and orthophosphate. It was also shown that the derivatives are substrates in the reverse synthetic direction catalyzed by *E. coli* PNP.