Synthesis of (\pm)-7,8-Epoxy-4-basmen-6-one by a Transannular Cyclization Strategy

Thesis by
Kevin R. Condroski

In Partial Fulfillment of the Requirements
for the Degree of
Doctor of Philosophy

California Institute of Technology
Pasadena, California

1994
(Submitted December 6, 1993)

To Mom-for everything.

Acknowledgments

I would like to thank my advisor Andy Myers for his advice and support throughout my graduate career, especially through my first year during which we worked together in the same laboratory, sharing both our frustrations and our successes. He provided me with the opportunity to work independently on a challenging synthetic project that allowed me to pursue interests in a variety of areas in organic chemistry. I also acknowledge Dr. Marc Labgold for his contributions to the synthesis of a macrocyclic precursor compound.

I would like to thank my family for all of their support in my endeavors throughout the years. They were always there with encouragement when I needed it most, and the last few years were certainly no exception.

The members of the Myers group and the Dougherty group have always been there to help out with scientific discussions, as well as many enjoyable non-scientific discussions. In particular, I would like to thank Susan Kephart for all of her help and support, and for her friendship which is second to none. I also thank Dr. Peter Dragovich for his friendship and for always finding the time (whether he had it or not) to help out.

I thank my undergraduate research advisor E. Alexander Hill for all of the time and effort that he gave to me and to all of his students at the University of Wisconsin, Milwaukee. His guidance and teaching in my undergraduate years were greatly appreciated.

Finally, I must thank my friends from AACIT for showing me that a lot of things in life are seen far more clearly from ten thousand feet up. Thanks to Garrett, Dave, Thomas, Sheri, Jim, Eric, Mike, Deanna, and all the other friends who have helped make my time here at Caltech even more enjoyable and rewarding.

Abstract

The first synthesis of the cembranoid natural product (\pm)-7,8-epoxy-4-basmen-6one (1) is described. Key steps of the synthetic route include the cationic cyclization of the acid chloride from 15 to provide the macrocycle 16, and the photochemical transannular radical cyclization of the ester 41 to form the tricyclic product 50. Product 50 was transformed into 1 in ten steps. Transition-state molecular modeling studies were found to provide accurate predictions of the structural and stereochemical outcomes of cyclization reactions explored experimentally in the development of the synthetic route to 1 . These investigations should prove valuable in the development of transannular cyclization as a strategy for synthetic simplification.

1

Table of Contents

Introduction \& Retrosynthetic Analysis 1
Construction of a Macrocyclic Free Radical Precursor 8
Transannular Cyclizations: Allylic Radicals 11
Transannular Cyclizations: Secondary Radicals 15
Transition-State Molecular Modeling Studies 28
Modification of Macrocyclic Free-Radical Precursors.
Attempts to Direct the Cyclization Outcome 43
Completion of the Synthesis of (\pm)-7,8-Epoxy-4-basmen-6-one 50
Conclusion 56
Experimental Section 57
References and Notes 178
Appendix I: Catalog of Spectra 186
Appendix II: Transition Structure Geometry for Methyl Radical Addition to Allene 248
Appendix III: X-ray Crystallographic Data 251

Index of Figures and Schemes

Figure 1 3
Figure 2 5
Figure 3 7
Figure 4 17
Figure 5 26
Figure 6 29
Figure 7 32
Figure 8 33
Figure 9 34
Figure 10 36
Figure 11 37
Figure 12 39
Figure 13 40
Figure 14 42
Figure 15 46
Figure 16 47
Figure 17 48
Figure 18 55
Scheme I 4
Scheme II 6
Scheme III 9
Scheme IV 12
Scheme V 14
Scheme VI 16
Scheme VII 19
Scheme VIII 20
Scheme IX 22
Scheme X 23
Scheme XI 25
Scheme XII 41
Scheme XIII 44
Scheme XIV 51
Scheme XV 53

List of Abbreviations

Å	angstrom
Ac	acetyl
AIBN	2,2'-azobis-(2-methylpropionitrile)
Ar	aryl
Bu	butyl
${ }^{\circ} \mathrm{C}$	degrees Celsius
$\mathrm{C}_{6} \mathrm{D}_{6}$	benzene- d_{6}
1,4-CHD	1,4-cyclohexadiene
CI	chemical ionization
cm	centimeters
CSA	camphorsulfonic acid
δ	chemical shift in parts per million
DBU	1,8-diazabicyclo[5.4.0]undec-7-ene
DIBAL	diisobutylaluminum hydride
DMAP	4-dimethylamino pyridine
DME	1,2-dimethoxyethane
DMPU	1,3-dimethyl-3,4,5,6-tetrahydro-2(1H)-
	pyrimidinone
DMS	dimethyl sulfide
DMSO	dimethyl sulfoxide
E	entgegen
EI	electron impact
Et	ethyl
equiv	equivalent

FAB	fast atom bombardment
FT	Fourier transform
g	gram
HMDS	hexamethyldisilazide
HMPA	hexamethylphosphoramide
HRMS	high resolution mass spectrometry
Hz	hertz
i	iso
IR	infrared
J	coupling constant
kcal	kilocalories
L	liter
LAH	lithium aluminum hydride
LDA	lithium diisopropylamide
m	meta
mmol	meressure in millimeters of mercury
M	melar
MCPBA	mesylate

mp	melting point
MS	mass spectrometry
Ms	methane sulfonate
n	normal
N	normal (concentration)
nm	nanometers
NOE	nuclear Overhauser effect
NMR	nuclear magnetic resonance
o	ortho
Ph	phenyl
ppm	parts per million
Pr	propyl
p	para
pH	hydrogen ion concentration
R	rectus
R_{f}	retention factor
S	sinister
S	seconds, secondary
t	tertiary
TBAF	tetrabutylammonium fluoride
TBS	tert-butyldimethylsilyl
Tf	trifluoromethane sulfonyl
THF	tetrahydrofuran
TLC	thin layer chromatography
TMS	trimethylsilyl
UV	ultraviolet

v/v	volume-to-volume ratio
W	watt
Z	zusammen

Introduction \& Retrosynthetic Analysis

The use of transannular bond-forming reactions in synthesis, proceeding via cationic, free-radical, carbenoid, or other intermediates, has been limited. ${ }^{1}$ This is likely due to the perceived difficulty of constructing the macrocyclic precursors necessary to execute such a strategy, and due to the problem of predicting the regiochemical and stereochemical outcomes of such reactions. Because many methods are now available for the efficient synthesis of medium and large rings, in many cases the problem of precursor synthesis no longer presents a serious concern. ${ }^{2}$ Furthermore, as computational methods and transition-state molecular modeling progress, it is anticipated that predictive power will emerge, allowing these reactions to be incorporated with confidence in synthetic planning.

In this work we explore the use of a transannular free-radical cyclization reaction as the key step in a synthesis of the complex cembranoid natural product 7,8-epoxy-4-basmen-6-one (1). ${ }^{3,4}$ While free-radical cyclization reactions have been studied in depth

1
in acyclic systems, ${ }^{5}$ little is known of the factors that govern the outcome of transannular free-radical cyclization reactions. In this regard, it is instructive to consider the cyclization reaction of equation 1 . It is now a paradigm of organic chemistry that 5-exotrig cyclization of 5-hexenyl radicals is a facile process whereas 5-endo-trig closure of 4pentenyl radicals is so slow as to be considered "forbidden." 6,7 Thus, the feasibility of
the cyclization reaction of equation 1 , which is at once a 5 -exo-trig and a 5-endo-trig closure, cannot be predicted on the basis of acyclic precedent. It is, in fact, observed that 1,5-cyclooctadiene reacts with molecules such as carbon tetrachloride to form substituted [3.3.0]-bicyclooctanes (equation 2) stereoselectively in a free-radical chain process. ${ }^{8}$ The related transformations of equations 3 and 4 illustrate the potential of transannular free-

radical cyclization reactions to form cis- and trans-decalin systems as well. ${ }^{9}$ These reactions follow a 6-endo-trig/6-exo-trig closure pathway, rather than the 5-exo-trig/7-

endo-trig pathway which might have been predicted on the basis of acyclic precedent.
In the course of retrosynthetic analysis of 1 , we were drawn to consider the use of a transannular free-radical cyclization strategy. This arose, in part, from biogenetic considerations, where it has been postulated that $\mathbf{1}$ may be derived from a (macrocyclic) cembranoid precursor by sequential transannular cyclizations. ${ }^{3}$ Although it is likely that cationic intermediates would be involved in this hypothetical transformation in nature, ${ }^{10}$ the bicyclopentyl substructure within 1 leads naturally to consideration of the use of freeradical intermediates in the construction of the basmene skeleton. It is a useful exercise to consider how such a transannular cyclization might occur within cembrene (2) itself. Addition of a radical to the C 5 terminus of the diene produces an allylic radical that

2

Figure 1
might undergo transannular addition to C 12 in a 5 -exo-trig/11-endo-trig cyclization reaction. To complete the tricyclic skeleton, the resultant $\mathbf{C} 11$-centered radical must undergo transannular 5-endo-trig/8-exo-trig closure onto C 7 . The latter addition appears tenuous on the basis of stereoelectronic considerations (5-endo-trig component of the closure) and due to the strain of the developing trans-cyclooctene ring in the transition state. Implicit in this analysis is the assumption that the conjugated diene group of 2
adopts an s-trans orientation in the initial addition reaction. Examination of the crystal conformation of cembrene ${ }^{11}$ (Figure 1) suggests that if the transition state for the first proposed closure reaction were to resemble the solid-state structure, then the required 5-exo-trig/11-endo-trig cyclization mode would prevail, given that the $\mathrm{C} 2-\mathrm{C} 12-\mathrm{C} 11$ angle of 90.9° is nearer the optimum attack trajectory of $107^{\circ 5}$ than are any of the alternative cyclization modes.

It was possible to explore this conjecture experimentally and thus gain valuable information for the implementation of a transannular free-radical cyclization strategy in the synthesis of 1 . Stirring a solution of commercial cembrene and 2,2'-azobis-(2methylpropionitrile) (AIBN) in carbon tetrachloride at reflux for 56 h afforded a mixture of the bicyclic products $\mathbf{3}, \mathbf{4}$, and 5 in 70% combined yield (Scheme I). These products

Scheme I

Figure 2
presumably arise by the addition of trichloromethyl radical to the C5 terminus of the diene, and cyclization of the resultant allylic radical onto C12, as proposed, followed by chlorine atom abstraction from the solvent to terminate the addition reaction. The stereochemistry of $\mathbf{3}$ and $\mathbf{4}$ was determined tentatively on the basis of difference nuclear Overhauser effect (NOE) and ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ COSY NMR experiments, while that of 5 was determined by single crystal X-ray analysis (Figure 2). ${ }^{12}$

These results were encouraging for the synthetic planning of $\mathbf{1}$, for they demonstrated that the model allylic radical is completely selective for the 5 -exo-trig/11-endo-trig ring closure. The stereochemical outcome of this cyclization was less of a concern, for it was anticipated that the actual macrocyclic precursor constructed for the synthesis of 1 would exhibit different stereoselectivity, as discussed below. For the reasons outlined above, it was not surprising that intermolecular capture of the transient C 11 radical with chlorine from the solvent was faster than a second 5-endo-trig/8-exo-trig closure.

In designing a macrocyclic precursor appropriate for a synthesis of $\mathbf{1}$, several
problems identified in the cembrene model cyclization were addressed. An allene was incorporated into the macrocycle in order to make favorable a second (serial) transannular cyclization (Scheme II). The trajectory (kinetics) and thermodynamics for radical addition are greatly improved by this modification in comparison to the disfavorable second closure reaction of the cembrene model system. ${ }^{13}$ The latter cyclization also likely suffers from the development of strain due to the formation of a trans-cyclooctene ring; therefore, the four diastereomeric macrocyclic radicals $\mathbf{7 - 1 0}$, each of which lacks the C3 olefin, were proposed for study in addition to the radical 6 (Figure 3). The diastereomers 7-10 were chosen in order to investigate the influence of the stereochemistry of the macrocycle upon the stereochemical outcome of the cyclization reaction. These macrocyclic precursors (6-10) each contain a C11 cis-olefin (in contrast

\qquad

\downarrow

1

Scheme II
to the C11 trans-olefin found in the cembrene model system) which allows them to adopt a favorable chair-like local conformation in the transition structure for the initial radical cyclization that leads to an A ring with appropriate stereochemistry for a synthesis of $\mathbf{1}$ (vide infra). Subsequent to these experimental studies, transition-state molecular modeling was pursued in order to assess its value as a tool for future synthetic planning using a transannular radical cyclization strategy.

6

7

9

8

10

Figure 3

Construction of a Macrocyclic Free-Radical Precursor

The following sequence has provided a concise synthetic route to the proposed macrocyclic precursors for free-radical cyclization studies (Scheme III). Addition of a freshly prepared solution of lithium acetylide (1.5 equiv) in tetrahydrofuran (THF) to commercially available neryl acetone 11 in THF at $-78^{\circ} \mathrm{C}$ afforded the acetylenic alcohol 12 in 99% yield. The use of freshly prepared lithium acetylide (from purified acetylene gas and n-butyllithium in THF at $-78^{\circ} \mathrm{C}$) was essential in order to obtain reproducibly high yields of 12; commercially available lithium acetylide-ethylene diamine complex proved inferior. ${ }^{14}$ The transformation of 12 to the corresponding mesylate was accomplished using triethylamine (2.0 equiv) and methanesulfonyl chloride (1.5 equiv) in dichloromethane at $0^{\circ} \mathrm{C}$ for $0.5 \mathrm{~h} .{ }^{15}$ This thermally sensitive mesylate was stored briefly at $0^{\circ} \mathrm{C}$ as a solution in THF (1 M); warming the neat mesylate above $0^{\circ} \mathrm{C}$ resulted in its rapid and sometimes violent decomposition. A deep red-brown organocopper reagent was prepared from the dianion of methyl acetoacetate (1 equiv, formed by sequential deprotonations of methyl acetoacetate with sodium hydride and n-butyllithium in THF at $0^{\circ} \mathrm{C}^{16}$) and high-purity cuprous iodide ${ }^{17}$ (0.5 equiv) in THF at $0{ }^{\circ} \mathrm{C}$ for 1 h . After cooling the organocopper reagent to $-78^{\circ} \mathrm{C}$, the cold mesylate solution was added, resulting in the stereocontrolled formation of an allenyl β-keto ester enolate. This enolate was trapped in situ by the addition of diethylchlorophosphate $\left(-78 \rightarrow 0^{\circ} \mathrm{C}\right)$ to produce the (Z)-enol phosphate 13 in 85% yield from 12 . Treatment of 13 with lithium dimethylcuprate (2.3 equiv) in diethyl ether $\left(-78 \rightarrow 0^{\circ} \mathrm{C}\right)^{18}$ led to its clean conversion to the ester 14 in 96% yield.

Attempted saponification of $\mathbf{1 4}$ under a variety of conditions formed, in addition to the desired carboxylic acid 15 , a product arising from the isomerization of the allene to form a conjugated triene, presumably arising from deprotonation at the doubly

11

14
$\downarrow{ }^{f}$

15

13

16

Scheme III. Reagents and conditions: (a) 1.5 equiv $\mathrm{LiC} \equiv \mathrm{CH}, \mathrm{THF},-78^{\circ} \mathrm{C}, 30 \mathrm{~min}$, 99%; (b) 2.0 equiv $\mathrm{Et}_{3} \mathrm{~N}, 1.5$ equiv $\mathrm{CH}_{3} \mathrm{SO}_{2} \mathrm{Cl}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, 0^{\circ} \mathrm{C}, 30 \mathrm{~min}$; (c) 1.5 equiv $\mathrm{CH}_{3} \mathrm{COCH}_{2} \mathrm{CO}_{2} \mathrm{CH}_{3}$, 1.5 equiv $\mathrm{NaH}, 1.5$ equiv n-BuLi, 0.75 equiv CuI, THF, $0^{\circ} \mathrm{C}, 30$ $\mathrm{min} ; \rightarrow-78^{\circ} \mathrm{C}$, then 1.0 equiv of mesylate from $\mathbf{1 2}, 45 \mathrm{~min}$; (d) 2.0 equiv $(\mathrm{EtO}){ }_{2} \mathrm{POCl}$, $-78 \rightarrow 0^{\circ} \mathrm{C}, 2 \mathrm{~h}, 85 \%$ from 12; (e) 3.5 equiv $\mathrm{CH}_{3} \mathrm{Li}, 2.3$ equiv $\mathrm{CuI}, \mathrm{Et}_{2} \mathrm{O},-78 \rightarrow 0^{\circ} \mathrm{C}, 10$ h, 96%; (f) $\mathrm{NaOH}, \mathrm{H}_{2} \mathrm{O}, t$-BuOH, 70%; (g) 7.4 equiv $(\mathrm{COCl})_{2}$, benzene, $23^{\circ} \mathrm{C}$; 1.2 equiv $\mathrm{SnCl}_{4}, \mathrm{CH}_{2} \mathrm{Cl}_{2},-78^{\circ} \mathrm{C}, 60 \%$.
allylic (C5) position. Acidic hydrolysis conditions also resulted in destruction of the allene functional group. After extensive experimentation, a heterogeneous hydrolysis method was found to give superior yields with minimal amounts of rearrangement. Thus, vigorous stirring of 14 in a biphasic mixture of aqueous sodium hydroxide (1 N) and tertbutyl alcohol at $75^{\circ} \mathrm{C}$ for 24 h afforded, after acidic work-up, the acid 15 in 70% yield.

Treatment of the acid 15 with oxalyl chloride (7.4 equiv) in benzene at $23^{\circ} \mathrm{C}$ for 30 min and concentration of the reaction mixture in vacuo afforded the corresponding acid chloride. Macrocyclization of this acid chloride was accomplished using a modification of methodology developed by Kato et al. This methodology, which has been used in the synthesis of various cembranoids, leads stereoselectively to the formation of 14 -membered rings in a variety of terpenoid systems. 19,20 Addition of stannic chloride (1.2 equiv) to a solution of the crude acid chloride from 15 in dichloromethane $(0.005 \mathrm{M})$ at $-78^{\circ} \mathrm{C}$ produced the chloroketone 16 in 60% yield as a 10:1 ratio of diastereomers. ${ }^{21}$ The macrocycle 16 has proven to be a versatile synthetic intermediate, providing access to all of the free-radical substrates examined in this study. Stereochemical assignments for 16 and for the free-radical precursors 6-10 were determined rigorously by X-ray crystallographic analysis of a subsequent intermediate (vide infra).

Transannular Cyclizations: Allylic Radicals

The first series of transannular free-radical cyclization reactions that was investigated centered on attempts to generate the allylic radical 6 or a closely related species as an intermediate (Scheme IV). Treatment of the macrocyclic ketone 16 with the $1: 1$ complex of diisobutylaluminum hydride and n-butyllithium (5.0 equiv) in toluene at $-78^{\circ} \mathrm{C}^{22}$ formed the allylic alcohol 17 as a single diastereomer (stereochemistry not determined) in modest yield (43\%). Initial attempts to generate an allylic radical from the alcohol 17 focused on Barton deoxygenation methodology ${ }^{23}$ but were precluded by our inability to generate the requisite allylic thionocarbonate derivatives. Thus, the treatment of 17 with p-tolyl-chlorothionoformate and pyridine in dichloromethane afforded the transposed thioester, presumably via a [3,3] sigmatropic rearrangement. As an alternative means of generating the desired allylic radical intermediate, the trialkyltin hydridemediated reduction of the corresponding allylic chlorides (18) was investigated. The tertiary allylic chlorides 18 were formed in high yield upon addition of oxalyl chloride to a solution of 17 in acetonitrile at $-10^{\circ} \mathrm{C} .{ }^{24}$ Treatment of 18 with excess triphenyltin hydride and AIBN in toluene at reflux afforded a product formulated as $\mathbf{1 9}$ on the basis of spectroscopic data. In this product, triphenyltin hydride has added to the allene group, and both chlorides have been reduced. This result demonstrated that the cyclization of the allylic radical in this system was slow relative to intermolecular trapping by trialkyltin hydride and, at the same time, revealed the potential incompatibility of the allene functional group with reactions involving trialkyltin radicals as intermediates. ${ }^{25}$

Efforts to bring about the desired allylic radical cyclization then turned toward methods that do not involve trialkyltin radicals as intermediates. A further problem, the facility of chloride elimination within the intermediates containing the 2-chloro-2-propyl appendage, was also addressed at this point, by the use of substrates containing the

Scheme IV. Reagents and conditions ($\mathrm{Ph}=$ phenyl): (a) 5.0 equiv DIBAL, 5.0 equiv n BuLi , toluene, $-78 \rightarrow 0^{\circ} \mathrm{C}$, 43%; (b) $p-\mathrm{CH}_{3} \mathrm{PhOC}(=\mathrm{S}) \mathrm{Cl}$, pyridine, $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 0^{\circ} \mathrm{C}$; (c) $(\mathrm{COCl})_{2}, \mathrm{CH}_{3} \mathrm{CN},-10^{\circ} \mathrm{C}$; (d) $\mathrm{Ph}_{3} \mathrm{SnH}$, AIBN, toluene, reflux.

2-prop-2-enyl appendage from the outset. Treatment of the ketone 16 with a suspension of silver (I) carbonate in 2,2,4-trimethylpentane at $95^{\circ} \mathrm{C}$ smoothly produced the olefin 20 in 97% yield (Scheme V). It was essential that 2,2,4-trimethylpentane be used as solvent in the latter procedure; no reaction was observed when toluene or THF were used as the solvent. The use of silver (I) tetrafluoroborate in place of silver (I) carbonate was found to form the corresponding tertiary fluoride, while neither silver (I) trifluoromethanesulfonate nor silver (I) hexafluoroantimonate (in the presence of 2,6lutidine) produced an observable reaction. The reduction of the ketone 20 with diisobutylaluminum hydride in toluene at $-78^{\circ} \mathrm{C}$ proceeded cleanly, affording the alcohols 21 (4:1 ratio of diastereomers, stereochemistry not determined) in 86% yield. Treatment of alcohols 21 with thionyl chloride in dichloromethane at $0^{\circ} \mathrm{C}$ produced the allylic chlorides $\mathbf{2 2}$ in good yield. Addition of freshly prepared samarium (II) iodide ${ }^{26}$ to a solution of chloride $\mathbf{2 2}$ in THF at $23^{\circ} \mathrm{C}$ afforded a mixture of the four diastereomeric dimerization products $\mathbf{2 3}$, in approximately equal amounts, with no detectable cyclization products. ${ }^{27}$ Similarly, the slow addition of chloride $\mathbf{2 2}$ to a solution of samarium (II) iodide at $23^{\circ} \mathrm{C}$ led to dimerization. A mechanistically distinct protocol for the generation of radicals that does not involve trialkyltin radical intermediates, the photochemical reduction of m-(trifluoromethyl)benzoate esters, developed by Saito and coworkers, was investigated. ${ }^{28}$ Acylation of alcohols 21 with m-(trifluoromethyl)benzoyl chloride and pyridine in dichloromethane at $23^{\circ} \mathrm{C}$ afforded the corresponding esters $\mathbf{2 4}$ in 75% yield. Irradiation of a solution of esters $24(0.002 \mathrm{M})$ in THF-water ($10: 1 \mathrm{v} / \mathrm{v}$) containing N -methyl-carbazole (MCZ, 1.1 equiv) and 1,4-cyclohexadiene (0.2 M , this modification of the Saito deoxygenation protocol is discussed below) as a hydrogen atom source with a medium-pressure mercury vapor lamp (Pyrex-filtered) for 1 h at $55^{\circ} \mathrm{C}$ afforded a complex mixture of nonpolar products which proved to be quite sensitive to autoxidation. The crude mixture of products showed none of the spectroscopic features characteristic of
the desired tricyclic cyclization products, as later determined. Although the latter method failed to produce the desired tricyclic products in the present case, this chemistry was to prove critical for later successful cyclization reactions.

20

23

$21 \mathrm{R}=\mathrm{H}$
$24 \mathrm{R}=\mathrm{COPhCF}_{3}-\mathrm{m}$
$\downarrow d$

22

Scheme V. Reagents and conditions (a) 3.0 equiv $\mathrm{Ag}_{2} \mathrm{CO}_{3}, 2,2,4$-trimethylpentane, $95^{\circ} \mathrm{C}, 97 \%$; (b) 5.0 equiv DIBAL, toluene, $-78 \rightarrow 0^{\circ} \mathrm{C}, 86 \%$; (c) 5.0 equiv m $\mathrm{CF}_{3} \mathrm{PhCOCl}, 10$ equiv pyridine, $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 23^{\circ} \mathrm{C}, 75 \%$; (d) $\mathrm{SOCl}_{2}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, 0^{\circ} \mathrm{C}$; (e) 5.0 equiv SmI_{2}, THF, $23^{\circ} \mathrm{C}$.

Transannular Cyclizations: Secondary Radicals

The allylic radical cyclizations attempted above were each thought to suffer from developing strain in the transition state for cyclization due to the C3-C4 trans-olefin. The corresponding C3-C4 saturated intermediates, radicals 7-10, were therefore considered for study (Figure 3). In addition to alleviating a potential source of strain in the transition state for cyclization, saturation of the C3-C4 olefin trans-olefin should promote the cyclization reaction by increasing the reactivity of the secondary radical. Intermediates 7-10 introduce a further complication in the analysis of the cyclization reaction, however, in that the configuration of the methyl-bearing and the isopropyl-bearing stereogenic centers (C 4 and C 1 , respectively), was predicted to play a critical role in the outcome of the cyclization reaction. For this reason, each of the four possible diastereomers (7-10) was studied. These diastereomers were prepared from the common intermediate 16. With the appropriate choice of reducing agent, it was possible to set the C 4 -stereogenic center with either configuration. Thus, treatment of 16 with lithium tri-(secbutyl)borohydride in THF at $-78^{\circ} \mathrm{C}^{29}$ afforded the ketone $25\left(\mathrm{mp} 53-55^{\circ} \mathrm{C}\right)$ in 91% yield, while the reaction of 16 and diisobutylaluminum hydride in THF at $0^{\circ} \mathrm{C}$ afforded predominantly the diastereomer 26 (stereoselectivity $2: 1, \mathbf{2 6}: 25,50 \%$ isolated yield of $\mathbf{2 6}$, $\mathrm{mp} 69^{\circ} \mathrm{C}$, Scheme VI). Stereochemical assignments were secured by X-ray crystallographic analysis of the diastereomer 26 (Figure 4).

Reductive removal of the tertiary chlorides within ketones 25 and 26 was accomplished, in each case, by a two-step procedure involving initial treatment with hot DBU in THF to induce elimination of the chloride. Chloroketone 26 afforded the α, β unsaturated ketone 27 in 82% yield, whereas chloroketone 25 afforded a separable mixture of the α, β-unsaturated ketone $28\left(\mathrm{mp} 44^{\circ} \mathrm{C}\right.$) and the 2-propenyl (β, γ unsaturated) ketone 29 (see experimental section) in a $4: 1$ ratio (80% combined yield).

16

25

28

27

Scheme VI. Reagents and conditions: (a) 2.0 equiv $\operatorname{Li}(\sec -\mathrm{Bu})_{3} \mathrm{BH}, \mathrm{THF},-78^{\circ} \mathrm{C}, 2 \mathrm{~h}$, 91%; (b) 2.0 equiv DIBAL, THF, $0^{\circ} \mathrm{C}, 30 \mathrm{~min}$, 26:25 (2:1) 75%; (c) DBU, THF, reflux, $24 \mathrm{~h}, \mathbf{2 8 : 2 9}$ (4:1) 80\% (see experimental section); (d) DBU-THF (1:10, v/v), reflux, 23 h , 82%.

The latter mixture was shown to represent the thermodynamic product distribution; thus, it was possible to convert the minor product 29 into the major, conjugated product $\mathbf{2 8}$ by its resubjection to the reaction conditions.

Initial attempts to induce conjugate reduction of the enone $\mathbf{2 8}$ proved problematic. Lithium or potassium tri-(sec-butyl)borohydride afforded only 1,2-reduction products, and lithium in liquid ammonia led to reduction of the allene functional group. Sodium borohydride in pyridine, and zinc in acetic acid also failed to reduce the conjugated carbon-carbon double bond. The reduction of enones with samarium (II) iodide in THF is reported to produce mixtures of $1,2-$ and 1,4 - reduction products; in the present case, however, the treatment of $\mathbf{2 8}$ with samarium (II) iodide (2.5 equiv) in THF containing methanol at $23^{\circ} \mathrm{C}$ for 1 h afforded only the 1,4 -reduction product $30\left(\mathrm{mp} 36^{\circ} \mathrm{C}\right)$ as a single diastereomer in 99% yield (Scheme VII). The analogous reduction conducted with the epimeric enone 27 produced a separable mixture of the diastereomeric 1,4-reduction products $31\left(\mathrm{mp} 62^{\circ} \mathrm{C}\right)$ and $32\left(\mathrm{mp} 31-33^{\circ} \mathrm{C}\right.$) in a ratio of $1.6: 1$, respectively $(99 \%$ combined yield). For clarity in presentation, these racemic products are each depicted by the enantiomer with the $1 S$ configuration. The fourth and final diastereomer, ketone 33, was produced by treating a solution of the ketone 30 in toluene with DBU at reflux for 48 h ; a thermodynamic distribution of the epimeric ketones $\mathbf{3 3}$ and $\mathbf{3 0}$ was formed in a 2:1 ratio (mp 49 and $36^{\circ} \mathrm{C}$, respectively, separable by flash column chromatography) in 81% combined yield.

Generation of stable radical precursors from the four diastereomeric ketones was accomplished by reduction of the ketones to their corresponding alcohols 34-37 (lithium aluminum hydride (LAH) in THF at $-78^{\circ} \mathrm{C}$), and acylation of the resulting alcohols with m-(trifluoromethyl)benzoyl chloride and pyridine in dichloromethane at $0^{\circ} \mathrm{C}$ (Scheme VIII). In each case, epimeric mixtures at C2 were produced; however, this was found, not surprisingly, to be of no consequence in the subsequent generation of C2-centered
radicals. The radicals were generated in each case by photolysis of the epimeric mixture of m-(trifluoromethyl)benzoate esters 38-41, using conditions outlined above for substrate 24.

28

30

33
27

31
$+$

Scheme VII. Reagents and conditions: (a) 2.5 equiv $\mathrm{SmI}_{2}, \mathrm{Sm}$ metal, THF, 5.0 equiv $\mathrm{CH}_{3} \mathrm{OH}, 23^{\circ} \mathrm{C}, 1 \mathrm{~h}, 99 \%$ (racemic product 30 is now depicted as the $1 S$ enantiomer); (b) DBU-toluene ($1: 3, \mathrm{v} / \mathrm{v}$), reflux, $48 \mathrm{~h}, \mathbf{3 3 : 3 0}(2: 1)$, 81%; (c) 4.2 equiv SmI_{2}, Sm metal, 10 equiv $\mathrm{CH}_{3} \mathrm{OH}$, THF, $23^{\circ} \mathrm{C}, 1 \mathrm{~h}$, mixture of epimers, $1.6: 1$ ratio, 99%.

$b \square 34 R=H$ $38 \mathrm{R}=\mathrm{COPhCF}_{3}-\mathrm{m}$

b
$35 \mathrm{R}=\mathrm{H}$
$39 \mathrm{R}=\mathrm{COPhCF}_{3}-m$

b
$\square 37 R=H$
$41 \mathrm{R}=\mathrm{COPhCF}_{3}-\mathrm{m}$

Scheme VIII. Reagents and conditions ($\mathrm{Ph}=$ phenyl): (a) $1-5$ equiv $\mathrm{LiAlH}_{4}, \mathrm{THF}$, $-78^{\circ} \mathrm{C}, 2-5 \mathrm{~h}, 90-99 \%$; (b) 5 equiv $m-\mathrm{CF}_{3} \mathrm{PhCOCl}$, excess pyridine, $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 0^{\circ} \mathrm{C}, 7-$ $24 \mathrm{~h}, 65-99 \%$.

Thus, the irradiation of a solution of diastereomer 38 (0.002 M) in THF-water (10:1) and 1,4-cyclohexadiene (0.2 M) with a Pyrex-filtered medium pressure mercury vapor lamp at $40^{\circ} \mathrm{C}$ for 7 h gave a mixture of nonpolar tricyclic products. The incorporation of 1,4-cyclohexadiene, which represents a modification of the method of Saito et al., ${ }^{28}$ led to an improved yield of tricyclic products, with optimal results achieved at a concentration of 0.2 M . To facilitate the separation and characterization of the
nonpolar product mixture, and to provide a means for further synthetic transformations, the crude reaction mixture was epoxidized with m-chloroperoxybenzoic acid (MCPBA) in dichloromethane at $0^{\circ} \mathrm{C}$ for 2.3 h . The major products of this cyclization-epoxidation sequence could be separated by chromatography on silica gel and were identified as the cyclopentyl epoxide 42 (8%) and the cyclooctenyl epoxide 43 (6%) (Scheme IX). Because an extensive series of ${ }^{1} \mathrm{H}$ NMR experiments failed to establish conclusively the stereochemistry of these products, the decision was made to attempt to complete the synthesis of 1 from 43 in order to compare synthetic and authentic materials.

Exposure of the epoxide 43 to excess lithium diethylamide in ether at $23^{\circ} \mathrm{C}$ for 15 h afforded the allylic alcohol 44 in 58% yield (Scheme X). ${ }^{30}$ Epoxidation of 44 with MCPBA in dichloromethane buffered with solid sodium bicarbonate ${ }^{31}$ produced the epoxy alcohol 45 (mp $88^{\circ} \mathrm{C}, 41 \%$), which was oxidized to the epoxy ketone 46 (mp $69^{\circ} \mathrm{C}$) in 86% yield under Swern conditions. ${ }^{32}$ Metalation of 46 with lithium diisopropylamide (LDA) in THF at $-78^{\circ} \mathrm{C}$ followed by the addition of trimethylsilyl chloride formed the corresponding trimethylsilyl enol ether which, upon treatment with phenylselenenyl chloride, produced a single α-phenylselenenyl ketone diastereomer. Oxidation of this phenylselenide with MCPBA at $-78^{\circ} \mathrm{C}$ and warming of the resultant selenoxide to $23^{\circ} \mathrm{C}$ afforded the enone 47. Comparison of ${ }^{1} \mathrm{H}$ NMR spectroscopic data from synthetic 47 with data from the natural 1 showed clearly that 47 was different from 1. Extensive NOE and COSY ${ }^{1} \mathrm{H}$ NMR measurements strongly support the stereochemical assignments shown within the structure 47 for the synthetic substance.

From this assignment, and given the requirement for syn elimination in the transformation of $\mathbf{4 3}$ to 44 , the stereochemistry of the radical cyclization products from the substrate 38 may be assigned tentatively as shown within structures 48 and 49 (Scheme IX). Thus, the cyclization of radical diastereomer 7 had proceeded with improper stereochemistry at both C2 and C12. This outcome was encouraging,
nonetheless, as it had demonstrated that the tandem radical cyclization in a macrocyclic precursor was an effective and powerful tool for the construction of 5-8-5 tricyclic ring systems like that found in the target molecule 1.

\downarrow

49

43

Scheme IX. Reagents and conditions: (a) 1.1 equiv N-methylcarbazole, 1,4 -cyclohexadiene (0.2 M), THF- $\mathrm{H}_{2} \mathrm{O}\left(10: 1 \mathrm{v} / \mathrm{v}\right.$), $\mathrm{hv}, 40^{\circ} \mathrm{C}, 7 \mathrm{~h}$; (b) 3.0 equiv MCPBA, $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 0^{\circ} \mathrm{C}$, $2.3 \mathrm{~h} ; \mathbf{4 2}$ and $\mathbf{4 3}, 8 \%$ and 6%, respectively, from 38.

It was anticipated that altering the stereocenters in the macrocyclic precursor
would have a profound effect on the cyclization outcome; this proposal was verified experimentally. Irradiation of the epimeric esters 41 (under conditions described above for the cyclization of 38) at $55^{\circ} \mathrm{C}$ for 4 h produced a mixture of three tricyclic products in near equal proportions (cyclopentene 50 and epimeric cyclooctenes $51,51 \%$ combined yield, Scheme XI) which differed in stereochemistry with those products from substrate 38. Epoxidation of the product mixture with MCPBA as before gave several viscous liquid products along with one crystalline product $52\left(\mathrm{mp} 69^{\circ} \mathrm{C}\right)$ which was analyzed by

Scheme X. Reagents and conditions ($\mathrm{Ph}=$ phenyl): (a) excess $\mathrm{LiNEt}_{2}, \mathrm{Et}_{2} \mathrm{O}, 23^{\circ} \mathrm{C}, 15$ h, 58%; (b) 3.0 equiv MCPBA, 5.0 equiv $\mathrm{NaHCO}_{3}, \mathrm{CH}_{2} \mathrm{Cl}_{2},-14 \rightarrow-5^{\circ} \mathrm{C}, 3.5 \mathrm{~h}, 41 \%$; (c) $(\mathrm{COCl})_{2}, \mathrm{DMSO}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{Et}_{3} \mathrm{~N},-78 \rightarrow-14^{\circ} \mathrm{C}, 86 \%$; (d) excess $\mathrm{Et}_{3} \mathrm{~N},\left(\mathrm{CH}_{3}\right)_{3} \mathrm{SiCl}$, excess LDA, THF, $-78^{\circ} \mathrm{C}, 30 \mathrm{~min}$; (e) excess PhSeCl , pyridine, $\mathrm{CH}_{2} \mathrm{Cl}_{2},-78^{\circ} \mathrm{C}, 10 \mathrm{~min}$; (f) MCPBA, $\mathrm{CH}_{2} \mathrm{Cl}_{2},-78^{\circ} \mathrm{C}, 40 \mathrm{~min}$; excess $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{~S},-78 \rightarrow 23^{\circ} \mathrm{C}, 2.5 \mathrm{~h}$.

X-ray crystallography to determine its stereochemistry (Figure 5). Notice that the tricyclic epoxide 52 possesses the stereochemical configuration found within the A ring of the natural product $\mathbf{1}$; the stereochemistry at C 11 , however, is epimeric with that found within 1. The product distribution from the cyclization of 41 suggests that the tandem radical cyclization of 41 proceeded by one mode exclusively to produce intermediate radical 53. The three observed tricyclic products then arose from hydrogen atom trapping of 53 at either allylic terminus; the two cyclooctenyl products result from trapping of the intermediate allylic radical at both the $r e$ and si faces of the C 8 allylic terminus.

Further information regarding the effect of the radical precursor stereochemistry on the cyclization outcome was gleaned from cyclization studies of precursors to radical macrocycles 9 and 8. Investigations of these remaining two diastereomers were done by first cyclizing esters 39 (precursor to 9) under the same cyclization conditions as before, producing a 58% yield of an inseparable mixture of nonpolar products. ${ }^{1} \mathrm{H}$ NMR analysis of the crude product mixture showed that the cyclization of 39 had produced tricyclic products identical to those observed in the cyclization of esters 41 as major products. Cyclization of $\mathbf{4 0}$ (precursor to 8) under the same conditions proceeded smoothly to give a similar yield of inseparable tricyclic products different from those seen in the other cyclizations. Epoxidation of this reaction mixture with MCPBA as before produced a mixture of tricyclic epoxide products; however, ${ }^{1} \mathrm{H}$ NMR analysis of the isolated individual epoxides (including difference NOE experiments) provided strong evidence that only unnatural stereochemical configurations were present in these tricyclic products.

63
52

Scheme XI. Reagents and conditions ($\mathrm{Ph}=$ phenyl): (a) 1.1 equiv N-methylcarbazole, 1,4-cyclohexadiene (0.2 M), THF- $\mathrm{H}_{2} \mathrm{O}(10: 1 \mathrm{v} / \mathrm{v})$, hv, $55^{\circ} \mathrm{C}, 4 \mathrm{~h}, 51 \%$; (b) PhSH-heptane (1:3, v/v), AIBN, $23 \rightarrow 62^{\circ} \mathrm{C}, 2 \mathrm{~h}, 50$:other cyclopentenyl isomers (4:1), 93\%; (c) 3.0 equiv MCPBA, 5.0 equiv $\mathrm{NaHCO}_{3}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, 0^{\circ} \mathrm{C}$ (products other than 52 resulting from the epoxidation of the cyclooctenes 51 are not shown).

Hydrogen Atom Donor Effects in the Photochemical Deoxygenation

The photochemical radical deoxygenation procedure employed in these transannular radical cyclizations represents a modification of the original procedure described by Saito and coworkers. ${ }^{28}$ 1,4-Cyclohexadiene was added to the cyclization reactions to serve as a suitable hydrogen atom donor (the original procedure relies upon the reaction solvents THF and isopropyl alcohol to serve as hydrogen atom sources). Yields of cyclized products in the photochemical cyclization reactions of esters 38-41 were found to vary with the concentration of 1,4-cyclohexadiene present (all other reaction conditions remained unchanged); without 1,4 -cyclohexadiene present, lesser amounts of desired tricyclic products were observed along with a complex mixture of side-products. Results using isopropyl alcohol-water ($10: 1 \mathrm{v} / \mathrm{v}$) as solvent were similar. Note that both THF and isopropyl alcohol have relatively weak C-H bonds α - to oxygen and can therefore serve as hydrogen atom sources. However, when the reaction solvent could not function as a hydrogen atom donor itself, the presence of 1,4-cyclohexadiene was absolutely essential for the cyclization reaction. Interestingly, when tert-butyl alcohol-water ($10: 1, \mathrm{v} / \mathrm{v}$) was employed as the reaction solvent with 1,4 -cyclohexadiene (0.2 M) present, the cyclization of 41 proceeded identically to those run in THF-water. However, when no 1,4-cyclohexadiene was present, it initially appeared that no reaction had occurred. Characterization of the reaction products showed that indeed no fragmentation of the trifluoromethylbenzoate ester in 41 had occurred, but that the C7 allene stereogenic center had undergone partial epimerization ($\sim 70 \%$) to give ester 39. It is therefore proposed that without a suitable hydrogen atom donor, the intermediate ketyl radical of ester $\mathbf{4 1}$ does not fragment, but instead adds to the central carbon (C7) of the allene. The resulting allylic radical can then fragment, generating the C 7 -epimerized ester 39. This process provides a mechanism for thermodynamic equilibration of epimers
at the allene stereocenter and a rationale for the formation of the observed products. These results clearly show that a hydrogen atom donor must be present for fragmentation to take place in the case of ester 41. These observations strongly suggest that revisions will need to be made to the mechanism proposed by Saito for this photochemical deoxygenation methodology.

Transition-State Molecular Modeling Studies

In an effort to better understand the results of the cyclization experiments summarized above, transition-state molecular modeling was conducted. Such modeling of free-radical cyclizations has been investigated extensively for hydrocarbon substrates. ${ }^{5,33}$ Spellmeyer and Houk have developed a force-field model for radical additions to alkenes ${ }^{34}$ that is now incorporated in version 3.5 X of the program MACROMODEL. ${ }^{35}$ Each of the radical diastereomers 7-10 is capable of forming four diastereomeric products within the 5-exo-trig/11-endo-trig cyclization manifold (Figure 6). Each of the sixteen transition structures leading to these products was subjected to an internal-coordinate Monte Carlo conformational search employing the MACROMODEL program with the MM2* force field. ${ }^{36}$ This search was used to generate various starting
,
(20)
\cdots

xise
2.
Figure 6. Values shown are relative energies ($\mathrm{kcal} / \mathrm{mol}$, as compared to structure a in each series)
for the transition structures leading to the indicated products for each of the diastereomers.
conformations of a given transition structure for subsequent energy minimization and the location of a global minimum. ${ }^{37}$ Steric energies ($\mathrm{kcal} / \mathrm{mol}$) calculated for the sixteen transition structures (Figure 6) are presented as values relative to the steric energy calculated for structure a in each series. For each macrocyclic radical diastereomer, the four transition structures a-d are rank-ordered energetically, from most to least favored (left to right, respectively, Figure 6). This analysis predicts that both diastereomers 9 and 10 will undergo cyclization to products (9 a and 10a, respectively) with an A ring with the same configuration found within epoxybasmenone (1). The steric energy differences among the four possible transition structures for cyclization of $\mathbf{1 0}$ show the transition structure leading to $\mathbf{1 0 a}$ to be favored by more than $3.8 \mathrm{kcal} / \mathrm{mol}$ over the three alternative pathways leading to 10b, 10c, and 10d. Similarly, the cyclization of 9 to 9 a is favored by more than $2.6 \mathrm{kcal} / \mathrm{mol}$. Relative energy differences of this magnitude strongly suggest that the cyclizations of 9 and 10 will proceed stereoselectively to form the intermediates 9 a and 10 a respectively. ${ }^{38}$ Calculations were also done for all of the possible alternative 5-exo-trig and 6-endo-trig cyclization modes of the macrocyclic radicals onto olefins at the $\mathrm{C} 6, \mathrm{C} 7$, and C 11 positions. These alternative cyclizations were calculated to be significantly higher in energy (more than $6.0 \mathrm{kcal} / \mathrm{mol}$ in each case, due to highly strained geometries and transannular interactions) than the favored 5-exotrig cyclizations onto the C12 position described above; thus, these cyclization modes were not expected to be experimentally observed for these systems.

The calculations for the cyclization of macrocyclic radicals 9 and 10 were in excellent agreement with experimental results. In the photochemical cyclizations of esters 39 and $\mathbf{4 1}$ (precursors to radical 9 and 10, respectively), all of the observed tricyclic products possessed the A-ring configuration found within the natural product 1 . While both esters 39 and 41 provided products containing the desired A-ring configuration, esters 41 were more attractive from a synthetic standpoint given their relative ease of
preparation and higher preparative yields when compared with those for esters 39.
The calculations also predict that the preferred 5-exo-trig/11-endo-trig cyclization mode within radical diastereomers 7 and 8 leads to the formation of an A ring with unnatural stereochemistry relative to 1 . The cyclizations of $\mathbf{7}$ and 8 are predicted to lead predominantly to the intermediates $7 \mathbf{a}$ and $8 \mathbf{a}$, respectively. Formation of these intermediates is calculated to be favored over formation of $\mathbf{7 b}$ and $\mathbf{8 b}$ (each possessing the natural A-ring stereochemistry observed in 1) by 1.45 and $2.28 \mathrm{kcal} / \mathrm{mol}$, respectively.

Experimental results showed that the predominant products from the photochemical cyclization of esters 38 (precursors to radical 7) contained the A-ring configuration found within $\mathbf{7 a}$, as was calculated. Cyclization of esters $\mathbf{4 0}$ (precursors to radical 8) gave a mixture of products, none of which were found to contain the desired Aring configuration within 1, again in agreement with the calculations.

It is interesting to note that the diastereomer pair 7 and 8 and the pair 9 and 10 are both predicted to transform identically in the cyclization to form the A ring, suggesting that the allene functional group is not a dominant stereochemical controlling element in this system. The configuration of C 4 would appear to be critical; inversion of this center alters the cyclization outcome (cf. 8 and 10, 7 and 9).

The following analysis provides a rationale for the calculated and observed results in relation to the configuration of the C 4 stereocenter. In the case of the 5-exo-trig cyclization of the model 5-hexenyl radical to give the cyclopentyl carbinyl radical, a chair-like transition structure has been calculated to be favored over an alternative boatlike transition structure; ${ }^{33,34}$ three-dimensional representations of these transition structures are shown in Figure 7. The calculated transition structure favored for the cyclization of $\mathbf{1 0}$ to give 10 a (Figure 8) and that for the cyclization of 9 to give 9a (Figure 9) both exhibit such chair geometries (similar to that shown in Figure 7) in their respective 5-exo-trig cyclizations. In each case, the isopropyl group occupies a preferred

Figure 8. Calculated transition structure for the cyclization of 10 to give 10a.

Figure 9. Calculated transition structure for the cyclization of 9 to give 9 a.
pseudo-equatorial position in the chair transition structure; the C 4 methyl group also occupies an equatorial-type position in these structures where it experiences little steric interaction with other regions of the molecule. The net inversion of the allene stereocenter $(9 \rightarrow \mathbf{1 0})$ results in a conformational change in the transition structure, but the preferred chair conformation for the 5-exo-trig cyclization is maintained in the favored structure in both cases (Figures 8 and 9).

Epimerization of the C 4 stereocenter in Figures 8 and 9, however, places the C4 methyl group in an axial-like position where it would experience strong transannular steric interactions with the C11 hydrogen atom in order to maintain a chair transition structure. In the 5-exo-trig cyclizations of $\mathbf{7}$ to give $7 \mathbf{a}$ and $\mathbf{8}$ to give $\mathbf{8 a}$, the favored transition structures in each case are calculated to be boat conformations in which the isopropyl group and the C 4 methyl group occupy pseudo-equatorial positions (Figures 10 and 11 , respectively). These boat transition structures leading to $7 \mathbf{a}$ and $8 \mathbf{a}$ benefit energetically from the relief of unfavorable steric interactions involving the C 4 methyl group which are unavoidable in chair transition structures. While the favored transition structures leading to $7 \mathbf{7 a}$ and $\mathbf{8 a}$ both lie in boat conformations (energetically preferred by 1.45 and $2.28 \mathrm{kcal} / \mathrm{mol}$, respectively), the structures for $\mathbf{7 b}, \mathbf{7 c}$, and $\mathbf{7 d}$, and for $\mathbf{8 b}, \mathbf{8 c}$, and 8d lie in distorted chair-like conformations, each being disrupted from regular chair geometries by unfavorable steric interactions.

Additional transition-structure modeling was done for the second transannular radical cyclizations for both of the favored intermediates 9a and 10a. ${ }^{39}$ In this cyclization there are only two feasible diastereomeric possibilities, both of which result from centralcarbon attack on the same face of the C7-C6 double bond of the allene (attack on the opposite face of the double bond would result in an unreasonable transition structure containing a trans-cyclopentene ring). Both 9a and 10a are calculated to produce the

Figure 10. Calculated transition structure for the cyclization of 7 to give $\mathbf{7 a}$.

Figure 11. Calculated transition structure for the cyclization of $\mathbf{8}$ to give $\mathbf{8 a}$.
same undesired stereochemical arrangement in the C ring of the tricyclic intermediate, with a relative energies of 1.64 and $3.29 \mathrm{kcal} / \mathrm{mol}$, respectively, favoring the transition structures leading to intermediate $\mathbf{5 3}$ over 54 (Figure 12). This is in agreement with the observed cyclization-epoxidation product $\mathbf{5 2}$, whose structure is epimeric with the natural configuration at C11. A three-dimensional representation of the favored calculated transition structure for the cyclization of 10a to give $\mathbf{5 3}$ is shown in Figure 13.

The formation of tricyclic products from $\mathbf{1 0}$ is believed to occur as depicted in Scheme XII, where 10 undergoes 5-exo-trig cyclization via transition structure \mathbf{A}^{\ddagger} to form 10a. Before proceeding through the sterically congested, bowl-shaped transition structure \mathbf{B}^{\ddagger} (which would lead to the natural configuration at the C11 stereocenter as shown in intermediate 54), 10a instead undergoes conformational isomerization to 10a' prior to cyclization and proceeds via the favored transition structure \mathbf{C}^{\ddagger} to form intermediate 53. The three products observed experimentally in the cyclization of $\mathbf{4 1}$ had arisen from the trapping of allylic radical 53 at either allylic terminus with a hydrogen atom from 1,4cyclohexadiene, thus producing a single cyclopentene product 50 and two C 8 -epimeric cyclooctene products $\mathbf{5 1}$, as confirmed by ${ }^{13} \mathrm{C}$ NMR analysis. It is interesting to note that the observed cyclopentenyl cyclization product $\mathbf{5 0}$ was calculated to be $3.39 \mathrm{kca} / \mathrm{mol}$ lower in steric energy than the desired (unobserved) C11 epimer 55 (Figure 14).

In summary, the mixture of alkene products (50 and 51) isolated from the cyclization of 41 (the precursor to radical 10) were also observed to be the major components in the crude product mixture from the cyclization of $\mathbf{3 9}$ (the precursor to radical 9), again showing agreement between theory and experiment (both 9 and 10 were calculated to cyclize to give the same intermediate 53). Synthetic elaboration of the major product from the cyclization of $\mathbf{3 8}$ (the precursor to radical 7) to the final product demonstrated clearly that it was not stereochemically identical to the natural product, as suggested by molecular modeling. While the stereochemical configurations of the

Figure 12. Values shown are relative energies ($\mathrm{kcal} / \mathrm{mol}$) for the transition structures leading from 9a and from 10a to the indicated products.

Figure 13. Calculated transition structure for the second (serial) cyclization of 10a to give 53.

Scheme XII

54

53
*

products from the cyclization of 40 (the precursor to radical 8) were not rigorously determined, ${ }^{1} \mathrm{H}$ NMR data strongly suggested that unnatural stereochemical configurations were present; transition state molecular modeling had predicted the cyclization of $\mathbf{8}$ to favor an undesired stereochemical outcome as well.

The cyclization of $\mathbf{1 0}$ was preferred over that of 9 in the synthesis of $\mathbf{1}$ because of synthetic concerns in producing precursors to 9 , in particular the low selectivity observed in the conjugate reduction of 16 with DIBAL, as compared to the highly selective conjugate reduction of 16 with lithium tri-(sec-butyl)borohydride leading to precursors to 10. Molecular modeling calculations also indicated that the first cyclization of $\mathbf{1 0}$ should be more selective than that of 9 based upon a greater margin of steric energy favoring the desired transition structure $10 \mathbf{a}(\geq 3.82 \mathrm{kcal} / \mathrm{mol})$ than the margin favoring $9 \mathrm{a}(\geq 2.68$ $\mathrm{kcal} / \mathrm{mol}$) over their respective alternative transition structures (Figure 6).

55
$E_{\text {rel }}=0.00$

$$
E_{\text {rel }}=+3.39
$$

Figure 14. Comparison of calculated relative steric energies ($\mathrm{kcal} / \mathrm{mol}$) for observed alkene 50 and desired alkene 55 .

Modification of Macrocyclic Free-Radical Precursors. Directing the Cyclization

Outcome

In an effort to reverse the energetic ordering between the transition structures \mathbf{B}^{\ddagger} and \mathbf{C}^{\ddagger}, molecular modeling was again done to study the effects of incorporating sterically demanding moieties into the radical precursors. Our goal was to rationally design a modification capable of selectively disrupting the observed transition structure \mathbf{C}^{\ddagger} in the second cyclization, while not affecting \mathbf{A}^{\ddagger} in the first cyclization. In order for this approach to be effective, several requirements must be satisfied. First and foremost, the initial 5-exo-trig cyclization which forms the A ring must not be affected; it is only the stereochemical outcome of the second cyclization that needs to be altered. Also, structural additions to the precursor would need to be removable in subsequent steps. Given that the transannular radical cyclization takes place at an advanced stage of the synthesis, modifications that are implemented just before the cyclization are clearly more desirable than ones requiring changes in earlier phases of the synthesis.

Initial molecular modeling studies indicated that substitution at the C3 position with a bulky alkyl group would indeed reverse the energetic ordering of transition structures for the second cyclization, thus favoring the desired stereochemical outcome. The first cyclization would also remain unaffected by the modification (vide infra).

Aldol condensation of ketone $\mathbf{3 3}$ with aldehydes offered a convenient means of modifying the macrocycle by adding a bulky moiety at C3 only two steps prior to the radical cyclization. Experimentally, the aldol condensation was complicated by side reactions of the lithium enolates generated for subsequent use in the condensation. Quenching of the enolates prepared from LDA with water indicated that the allene functional group was no longer present. Apparently, the enolate had attacked the central allene carbon in an anionic cyclization. Other lithium, sodium, and potassium enolates
underwent similar side reactions as well. Successful aldol condensation of 33 with trimethylacetaldehyde was accomplished using methodology from Evans et al. ${ }^{40}$ Freshly prepared trichlorotitanium isopropoxide was added to a solution of the ketone and triethylamine in dichloromethane at $0^{\circ} \mathrm{C}$ and stirred for 1.5 h . Following enolization, the aldehyde was added and allowed to stir for an additional 5 h , affording the aldol product 56 (single diastereomer) in 87% isolated yield (Scheme XIII). Spontaneous retro-aldol reaction was a problem encountered during silica gel chromatography that prevented quantitative isolation of the product. Subsequent reduction with DIBAL in toluene at

33

56

62

57

$$
\downarrow c, d
$$

$58 \mathrm{R}=\mathrm{COPhCF}_{3}-m$

Scheme XIII. Reagents and conditions ($\mathrm{Ph}=$ phenyl, $\left.\mathrm{TBS}=t-\mathrm{Bu}\left(\mathrm{CH}_{3}\right)_{2} \mathrm{Si}\right)$: (a) excess $\mathrm{TiCl}_{3} \mathrm{Oi}$-Pr, excess $\mathrm{Et}_{3} \mathrm{~N}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, 0^{\circ} \mathrm{C}, 1.5 \mathrm{~h}$; $\left(\mathrm{CH}_{3}\right)_{3} \mathrm{CCHO}, 0 \rightarrow 23^{\circ} \mathrm{C}, 5.5 \mathrm{~h}, 87 \%$; (b) excess DIBAL, toluene, $-78 \rightarrow 0^{\circ} \mathrm{C}, 6.5 \mathrm{~h}, 80 \%$; (c) excess TBSOTf, $\mathrm{Et}_{3} \mathrm{~N}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$, $-78^{\circ} \mathrm{C}, 97 \%$; (d) 5.0 equiv LiHMDS, THF, $-78^{\circ} \mathrm{C}, 15 \mathrm{~min} ; 10$ equiv $m-\mathrm{CF}_{3} \mathrm{PhCOCl}$, $-78^{\circ} \mathrm{C}, 30 \mathrm{~min}, 84 \%$; (e) 1.0 equiv N-methylcarbazole, 1,4 -cyclohexadiene (0.2 M), THF- $\mathrm{H}_{2} \mathrm{O}(10: 1 \mathrm{v} / \mathrm{v}), \mathrm{hv}, 55^{\circ} \mathrm{C}, 6 \mathrm{~h}, 28 \%$, with 50% recovered 58.
$0^{\circ} \mathrm{C}$ for 0.5 h gave an 80% yield of a single diastereomer of crystalline diol 57 , whose relative stereochemistry was determined by X-ray crystallographic analysis (Figure 15). Again, even after optimizing reaction conditions to avoid losses, the isolated yield in this reaction was lowered significantly due to retro-aldol reaction in the presence of DIBAL.

Treatment of the diol 57 with m-(trifluoromethyl)benzoyl chloride and DMAP in dichloromethane resulted in unexpected preferential acylation of the C21 hydroxyl group. Protection of the C21 hydroxyl as a tert-butyldimethylsilyl (TBS) ether was effected with the TBS triflate and triethylamine in dichloromethane at $-78^{\circ} \mathrm{C}$ for 30 min . Acylation of the remaining sterically hindered hydroxyl was done by first deprotonating the hydroxyl group with lithium hexamethyldisilazide at $-78^{\circ} \mathrm{C}$, followed by addition of m (trifluoromethyl)benzoyl chloride to give the ester 58 in 84% yield from the diol 57.

Modeling was done on the transition states for the first cyclization of the radical resulting from photolysis of the ester 58. The transition-structure conformation for the cyclization of macrocycle 59 shows only insignificant changes from the first cyclization of unsubstituted 10 ; the desired cyclization transition structure (similar to \mathbf{A}^{\ddagger}) leading to 59a is still energetically favored by $4.97 \mathrm{kcal} / \mathrm{mol}$ over any of the alternative 5-exo-trig cyclizations 59b-59d (Figure 16). However, the second cyclization of 59a now favored the desired stereochemical outcome 60 (via a transition structure similar to \mathbf{B}^{\ddagger}) by 5.18 $\mathrm{kcal} / \mathrm{mol}$ over 61 (Figure 17). Note that although the energetic ordering has been reversed, this does not imply that the energy of the desired second cyclization has been lowered; on the contrary, the energy of the undesired second cyclization has likely been raised as a result of sterically demanding tert-butyl groups added to the substrate. ${ }^{41}$

Ester 58 was subjected to standard cyclization conditions at $57^{\circ} \mathrm{C}$ for 3 h , affording a mixture of more than 6 fractions by preparative TLC in hexanes. Most of the minor fractions were mixtures containing two or more components each. One major fraction was isolated whose ${ }^{1} \mathrm{H}$ NMR spectrum suggested that it was a new type of

59

59a
$\mathrm{E}_{\text {rel }}=0.00$

59c
$\mathrm{E}_{\text {rel }}=+11.84$

59b
$\mathrm{E}_{\text {rel }}=+4.97$

Figure 16. Values are calculated relative steric energies ($\mathrm{kcal} / \mathrm{mol}$) for the transition structures leading to the indicated products.
cyclization product. With pyridine present as an acid scavenger, the reaction proceeded to give a single product corresponding to the major product seen in the previous reaction. ${ }^{1} \mathrm{H}$ NMR, ${ }^{13} \mathrm{C}$ NMR, COSY, and difference NOE spectroscopic analysis demonstrated that an unexpected radical cyclization had taken place. It is believed that the TBS group migrated onto the intermediate radical anion of the benzoate ester prior to cyclization; ${ }^{28}$ the resulting oxygen-centered radical then attacked the central carbon of the allene. The resulting intermediate allylic radical then cyclized onto the olefin at the C 12 position and was terminated by back-transfer of the TBS group to the C11 position to give product 62 (Scheme XIII). This is in contrast to the demonstrated compatibility of the TBS protecting group with this deoxygenation methodology by Suzuki et al. in the synthesis of isocarbacyclin. ${ }^{42}$

59a

60
$E_{\text {rel }}=0.00$

$E_{\text {rel }}=+5.18$

Figure 17. Values shown are calculated relative steric energies ($\mathrm{kcal} / \mathrm{mol}$) for the transition structures leading to the indicated products.

Further synthetic efforts implementing alternative protecting groups in $\mathbf{5 8}$ led to numerous complications and consistently unacceptable yields. Concerns also remained regarding removal of the bulky appendage by a retro-aldol reaction which would be required in the very last step of the synthesis. Considering these and other related difficulties in pursuing such a route to $\mathbf{1}$, the decision was made to proceed in the more direct fashion by converting 50 to the natural product.

Completion of the Synthesis of (\pm)-7,8-Epoxy-4-basmen-6-one

It was found that the mixture of the alkenes 50 and 51 (Scheme XI) could be equilibrated upon heating in thiophenol:heptane ($1: 3 \mathrm{v} / \mathrm{v}$, AIBN catalysis, $23 \rightarrow 62^{\circ} \mathrm{C}$) for 2 h to converge on the single cyclopentene isomer 50 along with minor amounts of isomeric cyclopentenes in 93% total yield (isomeric olefins could be separated by careful silica gel chromatography and recycled). To complete the synthesis of 1 it was necessary to invert the configuration of C 11 within intermediate 50 and to introduce the requisite functionality in the B and C rings. Toward this end, 50 was epoxidized with MCPBA to give epoxide 63 (Scheme XI). Elimination of 63 to the corresponding allylic alcohol by deprotonating at C11 with lithium diethylamide was then foreseen as an opportunity to invert the C11 stereocenter. However, epoxide 63 proved inert to treatment with strong base, and acidic treatment gave only undesired rearrangement products. Attempts at allylic oxidations of $\mathbf{5 0}$ at the C 11 position using singlet oxygen and pyridinium dichlorochromate were also unsuccessful. Attempts at allylic halogenations produced only complex mixtures of unstable products.

A solution to the problem of inversion of the C11 stereocenter began with the oxidative cleavage of $\mathbf{5 0}$. This was accomplished by stirring the alkene $\mathbf{5 0}$ and ruthenium tetroxide (formed in situ from ruthenium dioxide and sodium periodate) ${ }^{43}$ in a biphasic mixture of carbon tetrachloride and aqueous acetonitrile at $23^{\circ} \mathrm{C}$ for 1 h to produce the diketone 64, which underwent selective thioketalization of the acyclic carbonyl group using 1,3-propanedithiol in dichloromethane with boron trifluoride etherate catalysis at $23^{\circ} \mathrm{C}$ for 5 min to give the dithiane 65 in 67% yield for the two steps (Scheme XIV). Epimerization of 65 at C11 was envisioned to be achieved by deprotonation of the ketone at the C11 position followed by reprotonation under kinetic conditions. Initial experiments revealed that, as expected, removal of the proton at C6 was more facile than

C11 deprotonation. The C6 position was effectively blocked and consequently functionalized by condensation of the free ketone in 65 with benzaldehyde employing sodium hydroxide as catalyst in ethanol at $23^{\circ} \mathrm{C}$ for 24 h , providing the enone 66 in 96% yield. 44 Deprotonation of 66 proved to be complicated by steric and other factors. Lithium diethylamide, lithium diisopropylamide, and lithium tetramethylpiperidide in THF were all ineffective, resulting in no deprotonation (verified by $\mathrm{D}_{2} \mathrm{O}$ quench). Deprotonation attempts with titanium tetrachloride-triethylamine in dichloromethane, potassium tert-butoxide in tert-butyl alcohol, and numerous other basic reagents resulted in decomposition of starting ketone to an unidentifiable mixture of products.

Scheme XIV. Reagents and conditions $\left(\mathrm{Ph}=\right.$ phenyl, $\left.\mathrm{TMS}=\left(\mathrm{CH}_{3}\right)_{3} \mathrm{Si}\right)$: (a) 5.0 equiv $\mathrm{NaIO}_{4}, 0.050$ equiv $\mathrm{RuO}_{2}, \mathrm{CCl}_{4}: \mathrm{CH}_{3} \mathrm{CN}: \mathrm{H}_{2} \mathrm{O}(1: 1: 1.5), 23^{\circ} \mathrm{C}, 1 \mathrm{~h}, 68 \%$; (b) 10 equiv $\mathrm{HS}\left(\mathrm{CH}_{2}\right)_{3} \mathrm{SH}, 0.74$ equiv $\mathrm{BF}_{3} \cdot \mathrm{EtO}_{2}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, 23^{\circ} \mathrm{C}, 98 \%$; (c) excess PhCHO , catalytic $\mathrm{NaOH}, \mathrm{EtOH}, 23^{\circ} \mathrm{C}, 96 \%$; (d) excess TMS-I, excess $\mathrm{Et}_{3} \mathrm{~N}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, 50^{\circ} \mathrm{C}, 96 \%$.

Removal of the C11 proton was accomplished without the use of strong base by the initial conversion of 66 to the corresponding trimethylsilyl enol ether 67 with excess trimethylsilyl iodide and triethylamine in dichloromethane at $50^{\circ} \mathrm{C}$ in a sealed tube. Less reactive silylating reagents (i.e., trimethylsilyl trifluoromethanesulfonate [TMS triflate]) proved completely unreactive toward 66.

Hydrolysis of trimethylsilyl enol ether 67 with tetrabutylammonium fluoride in THF ($-78 \rightarrow 0^{\circ} \mathrm{C}$) gave a complex mixture of products that were not identified. Treatment with milder fluoride sources such as potassium fluoride in methyl alcohol at $0^{\circ} \mathrm{C}$ and triethylamine hydrofluoride in THF at $0^{\circ} \mathrm{C}$ produced the same results. Camphorsulfonic acid in THF-water ($10: 1 \mathrm{v} / \mathrm{v}$) also gave similar complex mixtures. Treatment with methyllithium in diethyl ether and in DME failed to produce the lithium enolate (no reaction was observed). Reaction of a solution of the enol ether 67 in diethyl ether with an ethereal solution of anhydrous HCl at $0^{\circ} \mathrm{C}$, however, gave clean conversion to the ketone 66 as the major product, along with lesser amounts of $\mathbf{6 8}$, the desired C11 epimer of $\mathbf{6 6}$ (Scheme XV). Lower reaction temperatures and the use of different organic solvents (hexanes, formamide, 1,3-dioxane, 1,1,1-trifluoroethanol) had little effect on the selectivity of the hydrolysis; at $-78^{\circ} \mathrm{C}$, the hydrolysis proceeded very slowly in methyl alcohol to give a $1: 1$ ratio of epimers. Basic hydrolysis with hydroxide and alkoxide sources produced 66 as the major product under a variety of conditions. Optimization of the yield of 68 from the hydrolysis was realized by adding a small amount of water to the reaction. Thus, treatment of trimethylsilyl enol ether 67 with 37% aqueous hydrochloric acid $(0.40 \mathrm{ml})$ in methyl alcohol $(6.0 \mathrm{ml})$ at $23^{\circ} \mathrm{C}$ for 10 min afforded 68 (now the major product) as a crystalline solid ($\mathrm{mp} 162^{\circ} \mathrm{C}, 95 \%$ for the two steps, $2: 168: 66$). The minor epimer 66 was easily removed by trituration with hexanes and was routinely recycled (Scheme XV).

Removal of the dithiane protecting group within 68 was readily accomplished

$\downarrow c$

72

Scheme XV. Reagents and conditions (a) $\mathrm{HCl}(37 \% \mathrm{aq}), \mathrm{CH}_{3} \mathrm{OH}, 23^{\circ} \mathrm{C}, 10 \mathrm{~min}$, 68:66 (2:1), 99%; (b) $\mathrm{CH}_{3} \mathrm{CN}: \mathrm{CH}_{3} \mathrm{I}: \mathrm{H}_{2} \mathrm{O}(4: 2: 1), 23^{\circ} \mathrm{C}, 17 \mathrm{~h}, 96 \%$; (c) $\mathrm{TiCl}_{3}{ }^{\circ}$ (DME) ${ }_{1.5}$, DME, reflux, $3.5 \mathrm{~h}, 73 \%$; (d) 4.3 equiv $\mathrm{MCPBA}, 20$ equiv $\mathrm{NaHCO}_{3}, \mathrm{CH}_{2} \mathrm{Cl}_{2},-14{ }^{\circ} \mathrm{C}, 1 \mathrm{~h}, 96 \%$; (e) 10 equiv $\mathrm{NaIO}_{4}, 0.16$ equiv $\mathrm{RuO}_{2}, \mathrm{CCl}_{4}: \mathrm{CH}_{3} \mathrm{CN}: \mathrm{H}_{2} \mathrm{O}(1: 1: 1.5), 23^{\circ} \mathrm{C}, 15 \mathrm{~min}, 93 \%$; (f) 6.5 equiv LDA, THF, $0^{\circ} \mathrm{C}, 8 \mathrm{~min}$; 14 equiv $\mathrm{PhSeCl}, 0^{\circ} \mathrm{C}, 10 \mathrm{~min} ; \mathrm{H}_{2} \mathrm{O}_{2}(30 \% \mathrm{aq})$, pyridine, $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 23^{\circ} \mathrm{C}, 20 \mathrm{~min}, 75 \%$.
with methyl iodide (4 M) in 25% aqueous acetonitrile at $23^{\circ} \mathrm{C}$ for 17 h , providing the crystalline diketone $69\left(\mathrm{mp} 99^{\circ} \mathrm{C}\right)$ in 96% yield. $\mathbf{4}^{5}$ Subjection of 69 to freshly prepared titanium trichloride-DME complex and zinc-copper couple in refluxing DME for 3.5 h led to smooth carbonyl coupling to furnish the sensitive diene product 70 in 73% yield. ${ }^{46}$ Use of other than freshly prepared reagents in the reaction resulted in longer reaction times (in excess of 24 h) and inferior yields of carbonyl coupling products, probably due to the sensitive nature of $\mathbf{7 0}$. Epoxidation of $\mathbf{7 0}$ with MCPBA afforded acid-labile allylic epoxide 71, which quickly decomposed upon exposure to untreated CDCl_{3} during NMR analysis, presumably due to trace amounts of hydrochloric acid present. The neat epoxide also decomposed upon storage for short periods at $-20^{\circ} \mathrm{C}$. Epoxide 71 was treated directly with ruthenium tetroxide, forming the epoxy ketone 72 in 89% yield for the two steps.

Conversion of the ketone 72 to the natural product was accomplished by deprotonation of 72 with LDA in THF at $0^{\circ} \mathrm{C}$ and quenching of the resultant enolate with phenylselenenyl chloride, forming a single α-phenylselenoketone diastereomer. Direct treatment of this product with 30% aqueous hydrogen peroxide in dichloromethane buffered with pyridine ${ }^{47,48}$ at $23^{\circ} \mathrm{C}$ for 20 min provided racemic 1 as a crystalline solid (mp $122{ }^{\circ} \mathrm{C}$, lit. mp for (+)-1: $109-110{ }^{\circ} \mathrm{C}$) in 75% yield from 72. Synthetic (\pm)- $\mathbf{1}$ provided spectral data indistinguishable from that obtained from the natural substance (${ }^{1} \mathrm{H}$ NMR, ${ }^{13} \mathrm{C}$ NMR, FTIR, and HRMS), and the structure was established unequivocally by X-ray crystallographic analysis (Figure 18).

Figure 18

Conclusion

In summary, an efficient strategy for the formation of the basmene ring system from a macrocyclic precursor has been illustrated in the synthesis of $\mathbf{1}$. The conversion of propargyl alcohol 12 to enol phosphate 13 employing an organocopper reagent derived from methyl acetoacetate introduced the allene functional group stereoselectively and in high yield. Cationic cyclization of 15 demonstrated the ability of functional groups such as the allene to provide stereocontrol in the synthesis of large rings, and the serial transannular radical cyclization reaction of 41 by a photochemical method provided the tricyclic product 50 stereoselectively. Furthermore, transition-state molecular modeling was used as an objective tool to study the relative energies of many potential radical cyclization transition structures. Examination of calculated transition structures helped rationalize experimental observations and led to informative conclusions regarding the observed stereoselectivities in tandem transannular radical cyclizations. The agreement between theory and experiment in this work is encouraging for future applications of transition-state molecular modeling in the design of synthetic schemes employing transannular radical cyclization strategies.

Experimental Section

General Procedures. All reactions were performed in round-bottom flasks that were flame-dried under vacuum of 1 torr or less. Flasks were fitted with rubber septa and teflon-coated magnetic stirring bars, and all reactions were run under a positive pressure of argon which was dried by passage through a tower containing dry potassium hydroxide pellets. All non-aqueous liquids and solutions were transferred via stainless steel cannula or glass syringe fitted with a stainless steel needle, except where otherwise noted. Flash column chromatography was performed using 230-400 mesh silica gel as described by Still et al. ${ }^{49}$ Thin-layer chromatography was done using commercially available glass plates coated with a 0.25 mm layer of 230-400 mesh silica gel containing 254 nm fluorescent indicator. Organic solutions were concentrated by rotary evaporator at ~ 25 torr (water aspirator). Photolyses of trifluoromethylbenzoate esters to generate free radicals were performed in pyrex vessels irradiated with a 400 W medium-pressure mercury vapor lamp. Photochemical equilibrations of alkene mixtures were performed in pyrex vessels irradiated with a 250 W sunlamp. In both cases, the reaction temperatures were maintained by placing the reaction vessel in a temperature-controlled water bath. The lamps and reaction vessels were surrounded with aluminum foil to improve the efficiency of the photochemical reactions.

Materials. Commercial reagents were used as received, with the following exceptions. Tetrahydrofuran (THF), 1,2-dimethoxyethane (DME), and diethyl ether were distilled from sodium benzophenone ketyl immediately prior to use. Dichloromethane, diisopropylamine, diisopropylethylamine, triethylamine, diethylamine, acetonitrile, tertbutyl alcohol, benzene, toluene, and 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU) and 1,3-dimethyl-3,4,5,6-tetrahydro-2($1 H$)-pyrimidinone (DMPU) were distilled from calcium hydride. Trimethylacetaldehyde was distilled at 760 torr. Methanesulfonyl chloride was
distilled from phosphorus pentoxide at 760 torr. High-purity cuprous iodide (99.999%) was purchased from Aldrich Chemical Company. Titanium trichloride-DME complex and zinc-copper couple were made immediately prior to use as described in the literature. ${ }^{46}$ Samarium diiodide was prepared as described in the literature from samarium metal (40 mesh) and 1,2-diodoethane (purified by recrystallization after aqueous sodium thiosulfate washes were done to remove excess iodine). ${ }^{26}$ Acetylene gas was purified as described in the synthesis of propargyl alcohol 12. Stannic chloride was used as a solution in dichloromethane $(1.00 \mathrm{M})$. The molarity of methyllithium (solution in diethyl ether) and n-butyllithium (solution in hexanes) were accurately determined by titrations using diphenylacetic acid indicator (average of five trials). ${ }^{50}$

Instrumentation. Infrared (IR) spectra were obtained with a Perkin-Elmer 1600 FT-IR spectrophotometer referenced to a polystyrene standard. Data are presented as follows: frequency of absorption (cm^{-1}), intensity of absorption ($\mathrm{s}=$ strong, $\mathrm{m}=$ medium, $\mathrm{w}=$ weak, $\mathrm{br}=$ broad), and assignment (when appropriate). Proton and carbon nuclear magnetic resonance (${ }^{1} \mathrm{H} \mathrm{NMR}$ and ${ }^{13} \mathrm{C} \mathrm{NMR}$) spectra were recorded with a Bruker AM-500 ($\left.{ }^{1} \mathrm{H}, 500 \mathrm{MHz} ;{ }^{13} \mathrm{C}, 125 \mathrm{MHz}\right)$, JEOL JX-400 $\left({ }^{1} \mathrm{H}, 400 \mathrm{MHz} ;{ }^{13} \mathrm{C}, 100\right.$ $\mathrm{MHz})$, General Electric QE-300 $\left({ }^{1} \mathrm{H}, 300 \mathrm{MHz} ;{ }^{13} \mathrm{C}, 75 \mathrm{MHz}\right)$, or JEOL FX-90Q $\left({ }^{1} \mathrm{H}, 90\right.$ $\left.\mathrm{MHz},{ }^{13} \mathrm{C}, 22.5 \mathrm{MHz}\right) \mathrm{NMR}$ spectrometer. Chemical shifts are expressed in parts per million (δ scale) downfield from tetramethylsilane and are referenced to residual protium in the NMR solvent $\left(\mathrm{CHCl}_{3}, \delta 7.26 ; \mathrm{C}_{6} \mathrm{D}_{5} \mathrm{H}, \delta 7.20\right)$. Data are presented as follows: chemical shift, multiplicity ($\mathrm{s}=$ singlet, $\mathrm{d}=$ doublet, $\mathrm{t}=$ triplet, $\mathrm{q}=$ quartet, $\mathrm{m}=$ multiplet), integration, coupling constant (Hz), and assignment (H\#). Assignments of epimeric mixtures are indicated by $\mathrm{H} \#$ designation for the major epimer and by $\mathrm{H} \#$ ' for the minor epimer. High resolution mass spectra were obtained from the University of California, Riverside Mass Spectrometry Facility and from the Midwest Center for Mass Spectrometry at the University of Nebraska, Lincoln. X-ray crystallographic analyses
were obtained from the Arthur Amos Noyes Laboratory of Chemical Physics X-ray Facilities, Division of Chemistry and Chemical Engineering, California Institute of Technology, and from the University of California, Irvine Department of Chemistry Xray Laboratory.

Experimental Procedures

11

12

Propargyl Alcohol 12

Acetylene gas ($6.00 \mathrm{~g}, 231 \mathrm{mmol}, 1.50$ equiv) was purified by first passing a stream of the gas through a condenser at $-78^{\circ} \mathrm{C}$ to remove residual acetone. The stream of gas from the condenser was bubbled directly through sulfuric acid (98\%) and then passed through a dry potassium hydroxide tower. The resulting acetylene was dissolved in THF $(500 \mathrm{~mL})$ at $-78^{\circ} \mathrm{C}$. Following an argon purge of the atmosphere above the reaction, a solution of n-butyllithium ($2.50 \mathrm{M}, 92.4 \mathrm{~mL}, 231 \mathrm{mmol}, 1.50$ equiv) in THF (25 mL , precooled to $-78^{\circ} \mathrm{C}$) was added to the vigorously stirred acetylene solution slowly via cannula, keeping the dispensing tip of the cannula below the surface of the acetylene solution at all times in order to prevent acetylene dianion formation. After stirring 20 min at $-78^{\circ} \mathrm{C}$, neryl acetone 11 ($30.0 \mathrm{~g}, 0.154 \mathrm{mmol}, 1.00$ equiv) was added dropwise over 20 min , and the resulting solution was stirred for an additional 30 min at $-78^{\circ} \mathrm{C}$. The reaction was quenched slowly at $-78^{\circ} \mathrm{C}$ with saturated aqueous ammonium chloride (10 mL). Excess acetylene gas evolved as the reaction was allowed to warm slowly to $23^{\circ} \mathrm{C}$. The reaction was then diluted with hexanes $(100 \mathrm{~mL})$, and the layers were separated. The aqueous layer was extracted with hexanes ($3 \times 100 \mathrm{~mL}$), and the combined organic layers were dried over sodium sulfate and concentrated. Purification of the residue by flash column chromatography (100% dichloromethane) provided the propargyl alcohol 12 (33.7 g, 99%) as a viscous colorless oil.
${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right), \delta:$ 5.15 (m, 2H, H-6, 10), 2.44 ($\mathrm{s}, 1 \mathrm{H}, \mathrm{H}-1$), 2.19($\mathrm{s}, 1 \mathrm{H},-\mathrm{OH}$), 2.12-2.30 (m, 2H, $-\mathrm{CH}_{2-}$), 2.06(m, 4H, - $\mathrm{CH}_{2}-$), 1.69 (m, 8H, H-12, 13, $-\mathrm{CH}_{2}-$),1.60 (s, 3H, H-14), 1.49 (s, 3H, H-15).
${ }^{13} \mathrm{C}$ NMR $\left(22.5 \mathrm{MHz}, \mathrm{CDCl}_{3}\right), \delta:$ $135.8,131.4,124.4,124.3,87.6,71.3,68.0$, $43.4,31.8,29.6,26.4,25.6,23.3,23.2,17.5$.
FTIR (neat), cm^{-1} :
MS (EI):
HRMS (EI):
Elemental Analysis:
Calcd. \%: \quad C (81.75), H (10.97)
Found \%: \quad C (81.69), H (10.84)
TLC $\left(100 \% \mathrm{CH}_{2} \mathrm{Cl}_{2}\right), R_{f}$:
Calcd. for $\mathrm{C}_{15} \mathrm{H}_{24} \mathrm{O}: 220.18272$
Found: 220.18236

Found: 220.18236

3430 (m), 3309 (m), 2966 (s), 2929 (s), 2857 (m), 2099 (w), 1450 (s), 1376 (s), 1113 (m), 909 (m), 835 (m).
$220\left(\mathrm{M}^{+}\right), 205\left(\mathrm{M}^{+}-\mathrm{CH}_{3}\right), 187\left(\mathrm{M}^{+}-\mathrm{H}_{2} \mathrm{O}\right)$

Neryl Acetone 11: 0.45
Propargyl Alcohol 12: 0.32

1. $\mathrm{CH}_{3} \mathrm{SO}_{2} \mathrm{Cl}, \mathrm{Et}_{3} \mathrm{~N}$ $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 0^{\circ} \mathrm{C}$

13

Enol Phosphate 13

Methanesulfonyl chloride ($0.530 \mathrm{~mL}, 6.81 \mathrm{mmol}, 1.5$ equiv) was added dropwise to a solution of alcohol $12(1.00 \mathrm{~g}, 4.54 \mathrm{mmol}, 1.00$ equiv) and triethylamine (1.27 mL , $9.11 \mathrm{mmol}, 2.00$ equiv) in dichloromethane (12 mL) at $0^{\circ} \mathrm{C}$. The resulting white suspension was stirred for 30 min at $0^{\circ} \mathrm{C}$ and quenched with ice. The reaction was washed sequentially at $0^{\circ} \mathrm{C}$ with aqueous hydrochloric acid ($1.0 \mathrm{~N}, 25 \mathrm{~mL}$), water (25 mL), and saturated aqueous sodium bicarbonate (25 mL). The organic layer was dried over sodium sulfate and concentrated at $0^{\circ} \mathrm{C}$ to afford the thermally sensitive propargyl mesylate, which was stored as a solution in THF $(10 \mathrm{~mL})$ at $-78^{\circ} \mathrm{C}$.

Methyl acetoacetate ($0.730 \mathrm{~mL}, 6.81 \mathrm{mmol}, 1.50$ equiv) was added slowly to a suspension of sodium hydride ($163 \mathrm{mg}, 6.81 \mathrm{mmol}, 1.50$ equiv) in THF (25 mL) at $0^{\circ} \mathrm{C}$. Hydrogen gas evolution was observed as the reaction was stirred for 15 min at $0^{\circ} \mathrm{C}$, after which n-butyllithium ($2.50 \mathrm{M}, 2.72 \mathrm{~mL}, 6.81 \mathrm{mmol}, 1.50$ equiv) was added dropwise at $0^{\circ} \mathrm{C}$. After 15 min additional stirring at $0^{\circ} \mathrm{C}$, cuprous iodide $(1.30 \mathrm{~g}, 6.81 \mathrm{mmol}, 1.50$ equiv) was added, resulting in a homogeneous, deep reddish-brown solution after stirring for 40 min at $0^{\circ} \mathrm{C}$. The mesylate in THF (10 mL) was added via cannula dropwise to
the organocopper reagent (precooled to $-78^{\circ} \mathrm{C}$) and stirred for 2.3 h at $-78^{\circ} \mathrm{C}$. The reaction was then warmed to $-35^{\circ} \mathrm{C}$, diethylchlorophosphate ($1.31 \mathrm{~mL}, 9.08 \mathrm{mmol}, 2.00$ equiv) was added, and the reaction was stirred for 8 h at $-35^{\circ} \mathrm{C}$. The reaction was then poured into a mixture of saturated aqueous ammonium chloride (200 mL) and saturated aqueous potassium carbonate (50 mL) and stirred open to ambient air at $23^{\circ} \mathrm{C}$ for 2 h . The deep blue aqueous phase was discarded, and the organic layer was washed twice with a mixture of saturated aqueous ammonium chloride (40 mL) and saturated aqueous potassium carbonate (10 mL). The organic layer was dried over sodium sulfate and concentrated. Purification of the residue by flash column chromatography (30% ethyl acetate in hexanes) gave the enol phosphate $13(1.74 \mathrm{~g}, 85 \%)$ as a viscous oil.
${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right), \delta:$
$5.66(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}-3), 5.27(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-1,11), 5.14$ (m, 1H, H-6), 4.19 (m, 4H, H-22), 3.43 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{H}-18$), 3.30 (m, 2H, H-5), 2.24 (dd, 2H, $J=14.6,7.3$ $\mathrm{Hz}), 2.17$ (m, 4H), 1.97 (td, 2H, $J=8.3,2.8 \mathrm{~Hz}$), 1.78 (d, 3H, $J=1.3 \mathrm{~Hz}, \mathrm{H}-19$), 1.73 (br s, 3H, H20), 1.63 (s, 3H, H-16), 1.62 (s, 3H, H-17), 1.10 (m, 6H, H-21).
$\begin{aligned} &{ }^{13} \mathrm{C} \text { NMR }\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right), \delta: \quad 202.9,163.8,160.6\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{O}-\mathrm{P}}=7.3 \mathrm{~Hz}\right), 135.1, \\ & 131.0,124.3,123.9,104.7\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{C}-\mathrm{O}-\mathrm{P}}=7.3 \mathrm{~Hz}\right), \\ & 100.4,83.9,64.5\left(\mathrm{~d}, 2 \mathrm{C}, J_{\mathrm{C}-\mathrm{O}-\mathrm{P}}=6.2 \mathrm{~Hz}\right), 50.7, \\ & 35.3,33.8,31.6,26.2,25.4\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{C}-\mathrm{O}-\mathrm{P}}=15.9\right. \\ &\mathrm{Hz}), 25.3,23.0,18.6,17.2,15.7\left(\mathrm{~d}, 2 \mathrm{C}, J_{\mathrm{C}-\mathrm{C}-\mathrm{O}-\mathrm{P}}\right. \\ &=7.1 \mathrm{~Hz}) .\end{aligned}$

FTIR (neat), cm^{-1} :

MS (EI):

HRMS (EI):

2966 (s), 2915 (s), 2856 (s), 1967.2 (w), 1733 (s), 1666 (s), 1436 (m), 1371 (m), 1356 (m), 1284 (s), 1199 (s), 1146 (m), 1035 (s), 986 (s), 821 (m).
$454\left(\mathrm{M}^{+}\right), 422\left(\mathrm{M}^{+}-\mathrm{CH}_{3} \mathrm{OH}\right)$

Calcd. for $\mathrm{C}_{24} \mathrm{H}_{39} \mathrm{O}_{6} \mathrm{P}: 454.2484$
Found: 454.2482

TLC ($40 \% \mathrm{EtOAc}$ in hexanes), $R_{f}: \quad$ Enol phosphate 13: 0.31

Combustion Analysis:
Calcd. \%: $\quad \mathrm{C}(63.42), \mathrm{H}(8.65)$
Found \%: \quad (63.41), H (8.65)

13

14

Methyl Ester 14

Methyllithium ($52.7 \mathrm{~mL}, 74.9 \mathrm{mmol}, 3.45$ equiv) was added to a suspension of cuprous iodide ($9.51 \mathrm{~g}, 49.9 \mathrm{mmol}, 2.30$ equiv) in diethyl ether (300 mL) at $0^{\circ} \mathrm{C}$, initially producing a bright yellow suspension, which became a colorless solution with a yellow precipitate upon completion of the addition. After stirring 45 min at $0^{\circ} \mathrm{C}$, all precipitate had dissolved, and the colorless solution was cooled to $-78^{\circ} \mathrm{C}$. A solution of the enol phosphate 13 in diethyl ether (40 mL) was added to the cuprate solution at $-78^{\circ} \mathrm{C}$, and the resulting mixture was allowed to warm to $0^{\circ} \mathrm{C}$ over a period of 4 h . The reaction was poured into a $1: 1$ mixture of saturated aqueous ammonium chloride and saturated aqueous potassium carbonate (500 mL) and allowed to stir for 1 h at $23^{\circ} \mathrm{C}$ while exposed to ambient air. The deep blue aqueous phase was separated and discarded, and the organic phase was washed twice with a 1:1 mixture of saturated aqueous ammonium chloride and saturated aqueous potassium carbonate (250 mL). The organic layer was washed with saturated aqueous sodium thiosulfate (125 mL), filtered through a medium porosity glass frit to remove fine solid precipitate, and concentrated. Purification of the residue by flash column chromatography (20% ethyl acetate in hexanes) gave the methyl ester 14 (6.63 g , 96%) as a viscous oil.

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$), $\delta: \quad 5.75(\mathrm{~d}, 1 \mathrm{H}, J=1.2 \mathrm{~Hz}, \mathrm{H}-3), 5.13(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-1$, 11), 4.97 (m, 1H, H-6), 3.69 (s, 3H, H-21), 2.77 (d, 2H, J = $7.1 \mathrm{~Hz}, \mathrm{H}-5$), 2.18 (d, $3 \mathrm{H}, J=1.2 \mathrm{~Hz}$, $\mathrm{H}-18$), 1.90-2.12 (m, 8H, H-9, 10, 13, 14), 1.68 (br s, 9H, H-16, 17, 20), 1.60 (br s, 3H, H-19).

${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$), $\delta: \quad 202.7,167.1,158.7,135.4,131.4,124.7,124.3$, $115.6,99.9,86.6,50.6,41.2,34.3,32.0,26.6$, $26.0,25.6,23.3,19.0,18.7,17.5$.

FTIR (neat), cm^{-1} :
2965 (s), 2916 (s), 2855 (s), 1965 (w), 1723 (s), 1652 (s), 1435 (s), 1377 (m), 1356 (m), 1284 (m), 1220 (s), 1148 (s), 1042 (m), 838 (m).

MS (EI):
316(M^{+}), $301\left(\mathrm{M}^{+}-\mathrm{CH}_{3}\right)$.

HRMS (EI):
Calcd. for $\mathrm{C}_{21} \mathrm{H}_{32} \mathrm{O}_{2}$: 316.2402
Found: 316.2403

TLC (20\% EtOAc in hexanes), R_{f} : Enol phosphate 13: 0.07
Methyl ester 14: 0.55

14

Acid 15

Freshly prepared aqueous sodium hydroxide ($1.0 \mathrm{~N}, 200 \mathrm{~mL}$, excess) was added to a solution of the ester $14(8.35 \mathrm{~g}, 27.5 \mathrm{mmol}, 1.00$ equiv) in tert-butyl alcohol (250 mL), and the biphasic reaction was heated to $75^{\circ} \mathrm{C}$ with vigorous stirring. After 7 h , the reaction was cooled to $0^{\circ} \mathrm{C}$ and acidified to $\mathrm{pH}=2$ with aqueous hydrochloric acid (1.0 N). Hexane (200 mL) was added to the reaction mixture, and the organic phase was separated. The aqueous phase was saturated with sodium chloride and extracted with 50% ethyl acetate in hexanes ($2 \times 200 \mathrm{~mL}$). The combined organic layers were dried over sodium sulfate and concentrated. Purification by flash chromatography (20% ethyl acetate in hexanes) gave the acid 15 ($5.59 \mathrm{~g}, 70 \%$) as a viscous oil.

[^0]${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$), δ :FTIR (neat), cm^{-1} :2965 (s), 2925 (s), 2855 (s), 2575 (m), 1965 (w),1691 (s), 1642 (s), 1439 (s), 1376 (m),1292 (m), 1252 (s), 1167 (m), 932 (m), 873 (m),839 (m), 710 (m).
MS (EI): 302 (${ }^{+}$+
HRMS (EI): Calcd. for $\mathrm{C}_{20} \mathrm{H}_{30} \mathrm{O}_{2}: 302.2246$
Found: 302.2247
Combustion Analysis:
Calcd. \%: \quad C (79.42), H (10.00)Found \%: C (79.39), H (9.91)
TLC (40\% EtOAc in hexanes), R_{f} : Methyl ester 14: 0.62Acid 15: 0.49

15

1. $(\mathrm{COCl})_{2}$ Benzene, $23^{\circ} \mathrm{C}$
 $-78^{\circ} \mathrm{C}$ 60\%

Enone Chloride 16

Oxalyl chloride ($8.81 \mathrm{~g}, 69.4 \mathrm{mmol}, 7.37$ equiv) was added to a solution of the acid $15(2.85 \mathrm{~g}, 9.42 \mathrm{mmol}, 1.00$ equiv) in benzene (50.0 mL), and the reaction was stirred at $23^{\circ} \mathrm{C}$ for 20 min (bubbling was observed for the first 2 min), after which the volatile components were removed in vacuo (~ 0.1 torr). Stannic chloride (1.00 M, 10.9 $\mathrm{mL}, 10.9 \mathrm{mmol}, 1.16$ equiv) was added to the crude acid chloride residue in dichloromethane ($1.0 \mathrm{~L}, 0.0094 \mathrm{M}$) at $-78^{\circ} \mathrm{C}$. The resulting deep red solution was stirred for 30 min at $-78^{\circ} \mathrm{C}$ and was transferred directly into saturated aqueous sodium bicarbonate (750 mL at $23^{\circ} \mathrm{C}$) and stirred for 30 min . The organic phase was washed with saturated aqueous sodium bicarbonate ($3 \times 500 \mathrm{~mL}$) and saturated aqueous sodium chloride ($2 \times 500 \mathrm{~mL}$). The organic layer was filtered through a short column of celite to remove traces of insoluble material. The filtrate was then dried over sodium sulfate and concentrated. Purification by flash chromatography (50% toluene in hexanes) gave a mixture of four products ($1.78 \mathrm{~g}, 60 \%$, typically not separated) including 16 (84% of crude by ${ }^{1} \mathrm{H}$ NMR), in combination with minor amounts of its C1-epimer (8% of crude), plus lesser amounts of the corresponding chloride elimination products (8% of crude).

Enone Chloride 16

${ }^{1} \mathrm{H}$ NMR (400 MHz, $\left.\mathrm{C}_{6} \mathrm{D}_{6}\right), \delta:$	$6.50(\mathrm{~d}, 1 \mathrm{H}, J=1.2 \mathrm{~Hz}, \mathrm{H}-3), 5.24(\mathrm{dd}, 1 \mathrm{H}, J=$
	$6.7 \mathrm{~Hz}, 6.7 \mathrm{~Hz}, \mathrm{H}-11), 5.06(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-6), 2.96(\mathrm{~d}$,
	$1 \mathrm{H}, J=10.7 \mathrm{~Hz}, \mathrm{H}-1), 2.58(\mathrm{dd}, 1 \mathrm{H}, J=7.5,16.5$
	$\mathrm{Hz}, \mathrm{H}-5), 2.38(\mathrm{dd}, 1 \mathrm{H}, J=16.5,6.1 \mathrm{~Hz}, \mathrm{H}-5)$,
	$2.19(\mathrm{~d}, 3 \mathrm{H}, J=1.0 \mathrm{~Hz}, \mathrm{H}-18), 1.80-2.15(\mathrm{~m}, 8 \mathrm{H}$,
	$\mathrm{H}-8,9,12,13), 1.71\left(\mathrm{~d}, 3 \mathrm{H}, J=1.2 \mathrm{~Hz},-\mathrm{CH}_{3}\right)$,
	$1.65\left(\mathrm{~s}, 3 \mathrm{H},-\mathrm{CH}_{3}\right), 1.61\left(\mathrm{~m}, 6 \mathrm{H}, \mathrm{H}-19,-\mathrm{CH}_{3}\right)$.

${ }^{13} \mathrm{C}$ NMR (22.5 MHz, $\mathrm{C}_{6} \mathrm{D}_{6}$), $\delta: \quad 203.6,158.4,134.9,128.3,126.3,126.1,101.3$, $87.5,72.1,63.8,40.3,34.6,31.6,30.3,29.9$, 28.3, 27.5, 22.9, 20.4, 18.6.

FTIR (neat), cm^{-1} :
2971 (s), 2937 (s), 2852 (s), 1964 (w), 1683 (s), 1616 (s), 1456 (s), 1387 (s), 1372 (s), 1213 (s), 1178 (s), 1119 (s), 1087 (s), 873 (m), 831 (m), 763 (m).

MS (EI):

HRMS (EI):
$320\left(\mathrm{M}^{+}\right), 305\left(\mathrm{M}^{+}-\mathrm{CH}_{3}\right)$,

TLC (100% toluene), R_{f} :
Acid 15: 0.02
Enone Chloride 16: 0.53

16

17

Allylic Alcohol 17

Diisobutylaluminum hydride (1.00 M in hexanes, $2.18 \mathrm{~mL}, 2.18 \mathrm{mmol}, 10.0$ equiv) was added to toluene (4.0 mL) and cooled to $0^{\circ} \mathrm{C} . n$-Butyllithium (2.50 M in hexanes, $0.872 \mathrm{~mL}, 2.18 \mathrm{mmol}, 10.0$ equiv) was added to the diisobutylaluminum hydride solution, and the mixture was allowed to stir for 50 min at $0^{\circ} \mathrm{C}$. The mixture was then cooled to $-78^{\circ} \mathrm{C}$, and a solution of the enone $16(68.4 \mathrm{mg}, 0.218 \mathrm{mmol}, 1.00$ equiv) in toluene (2.0 mL) was added to the mixture dropwise over a period of 5 min . After 45 min at $-78^{\circ} \mathrm{C}$, the excess reducing reagent was quenched slowly with methyl alcohol $(1.0 \mathrm{~mL}$, excess). The reaction was warmed to $0^{\circ} \mathrm{C}$, and aqueous hydrochloric acid $(0.50 \mathrm{~N}, 30$ mL) was added until both the aqueous and organic phases became homogeneous. The layers were separated, and the aqueous layer was washed with diethyl ether ($2 \times 25 \mathrm{~mL}$). The organic layer from the reaction was washed with a $1: 1$ mixture of aqueous hydrochloric acid $(0.50 \mathrm{~N})$ and sodium chloride (50 mL). The combined organic layers were dried over sodium sulfate and concentrated. Purification by flash chromatography (5\% ethyl acetate in hexanes, graded up to 10% ethyl acetate in hexanes) gave the allylic alcohol 17 ($29.4 \mathrm{mg}, 43 \%$) as a single epimer (viscous oil, stereochemistry undetermined at the hydroxyl carbon), along with lesser amounts of recovered starting material 16 (17.0 $\mathrm{mg}, 25 \%)$.
${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right), \delta:$

FTIR (neat), cm^{-1} :

TLC (100% toluene), R_{f} :
5.51 (dd, 1H, $J=7.4,1.0 \mathrm{~Hz}, \mathrm{H}-3$), 5.35 (t, 1H, J $=7.1 \mathrm{~Hz}, \mathrm{H}-11), 5.25(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-6), 4.99(\mathrm{dd}, 1 \mathrm{H}$, $7.4,2.9 \mathrm{~Hz}, \mathrm{H}-2$), 2.72 (dd, $1 \mathrm{H}, J=13.7,10.5$ $\mathrm{Hz}, \mathrm{H}-5), 2.52$ (dd, $1 \mathrm{H}, J=13.7,5.1 \mathrm{~Hz}, \mathrm{H}-5$), 1.80-. 195 (m, $3 \mathrm{H},-\mathrm{CH}_{2}-$), 1.95-2.40 (m, 6 H , $-\mathrm{CH}_{2}$) , 1.76 (d, 3H, J = $1.2 \mathrm{~Hz}, \mathrm{H}-18$), 1.71 (d, $3 \mathrm{H}, J=2.9 \mathrm{~Hz}, \mathrm{H}-19), 1.66\left(\mathrm{~s}, 3 \mathrm{H},-\mathrm{CH}_{3}\right), 1.63$ (s, 3H, $-\mathrm{CH}_{3}$), $1.59\left(\mathrm{~s}, 3 \mathrm{H},-\mathrm{CH}_{3}\right), 1.27(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}$ $=2.0 \mathrm{~Hz},-\mathrm{OH})$.

3458 (br), 2973 (s), 2933 (s), 1962 (w), 1714 (s), 1674 (s), 1451 (s), 1372 (s), 1115 (br).

Enone 16: 0.63
Allylic Alcohol 17: 0.08

17

18

Dichloride 18

The allylic alcohol 17 ($10.0 \mathrm{mg}, 0.0310 \mathrm{mmol}, 1.00$ equiv) was dissolved in acetonitrile (2.0 mL) and cooled to $-10^{\circ} \mathrm{C}$. Oxalyl chloride ($13.1 \mu \mathrm{~L}, 0.150 \mathrm{mmol}, 5.00$ equiv) was added to the alcohol 17, and the mixture was stirred for 1 h . The reaction was quenched with $\mathrm{pH}=7$ phosphate buffer ($0.10 \mathrm{~N}, 5 \mathrm{~mL}$) and was extracted once with ethyl acetate (10 mL). The organic layer was dried over sodium sulfate and concentrated to give the crude dichloride $\mathbf{1 8}(11.8 \mathrm{mg}, 97 \%)$ as a viscous oil. Attempts at purification of $\mathbf{1 8}$ by flash chromatography gave clean 18 as a mixture of C4-epimers $(4.4 \mathrm{mg}, 36 \%$, stereochemistry not determined), with the remainder of the chloride undergoing hydrolysis on silica to give the corresponding allylic alcohol.

Dichloride 18 (major epimer)

$$
\begin{aligned}
\left.{ }^{1} \mathrm{H} \text { NMR (500 MHz, } \mathrm{C}_{6} \mathrm{D}_{6}\right), \delta: & 6.25(\mathrm{~d}, 1 \mathrm{H}, J=15.9 \mathrm{~Hz}, \mathrm{H}-3), 5.66(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-6), \\
& 5.37(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-11), 5.30(\mathrm{dd}, 1 \mathrm{H}, J=15.9,9.5 \\
& \mathrm{Hz}, \mathrm{H}-2), 2.77(\mathrm{dd}, 1 \mathrm{H}, J=14.2,3.7 \mathrm{~Hz}, \mathrm{H}-5), \\
& 2.15(\mathrm{dd}, J=14.2,11.0 \mathrm{~Hz}, \mathrm{H}-5), 2.07(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}- \\
& 1), 1.85-2.45\left(\mathrm{~m}, 8 \mathrm{H},-\mathrm{CH}_{2}-\right), 1.75(\mathrm{~s}, 3 \mathrm{H}, \mathrm{H}-20),
\end{aligned}
$$

1.63 (d, 3H, J = $2.9 \mathrm{~Hz}, \mathrm{H}-19$), 1.58 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{H}-$ 18), 1.49 (s, 3H, H-16), 1.39 (s, 3H, H-17).

Dichloride 18 (minor epimer)

${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right), \delta:$	$5.90(\mathrm{dd}, 1 \mathrm{H}, J=15.1,8.3 \mathrm{~Hz}, \mathrm{H}-2), 5.84(\mathrm{~d}, 1 \mathrm{H}$,
	$J=15.1 \mathrm{~Hz}, \mathrm{H}-3), 5.37(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-11), 4.91(\mathrm{~m}$,
	$1 \mathrm{H}, \mathrm{H}-6), 2.79(\mathrm{dd}, 1 \mathrm{H}, J=12.2,3.7 \mathrm{~Hz}, \mathrm{H}-5)$,
	$2.15(\mathrm{dd}, 1 \mathrm{H}, J=12.2,10.7 \mathrm{~Hz}, \mathrm{H}-5), 1.85-2.45$
	$\left(\mathrm{~m}, 9 \mathrm{H},-\mathrm{CH}_{2}-1.77(\mathrm{~s}, 3 \mathrm{H}, \mathrm{H}-20), 1.61(\mathrm{~d}, 3 \mathrm{H}, \mathrm{J}\right.$
	$=2.7 \mathrm{~Hz}, \mathrm{H}-19), 1.58(\mathrm{~s}, 3 \mathrm{H}, \mathrm{H}-18), 1.50(\mathrm{~s}, 3 \mathrm{H}$,
	$\mathrm{H}-16), 1.39(\mathrm{~s}, 3 \mathrm{H}, \mathrm{H}-17)$.

Dichloride 18 (mixture of epimers)

FTIR (neat), cm^{-1} :
3000 (s), 2960 (s), 1970 (w), 1460 (s), 1385 (s),
1225 (m), 1120 (s), 985 (s), 805 (m).

MS (EI):
$340\left(\mathrm{M}^{+}\right), 304\left(\mathrm{M}^{+}-\mathrm{HCl}\right), 268\left(\mathrm{M}^{+}-2 \mathrm{HCl}\right)$.

TLC (20\% EtOAc in hexanes), R_{f} : Alcohol 17: 0.33
Dichloride 18: 0.78

Vinyl Stannane 19

Triphenyltin hydride ($27.8 \mathrm{mg}, 0.079 \mathrm{mmol}, 3.00$ equiv) and AIBN (1.0 mg , catalytic) were added to a solution of the dichloride 18 in toluene $(0.60 \mathrm{~mL})$, and the resulting mixture was heated to reflux for 4 h . The volatile components were then removed in vacuo (~ 1 torr) to give a viscous yellow residue. Purification by preparative thin-layer chromatography (TLC) on silica (20% toluene in hexanes) gave the vinyl stannane 19 (5.3 $\mathrm{mg}, 75 \%$) as the predominant component in a mixture of overlapping fractions. Further purification by preparative TLC (20% carbon tetrachloride in hexanes) gave $19(1.2 \mathrm{mg})$, along with decomposition products forming during elution on silica, as a viscous oil.

$$
\begin{aligned}
{ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right), \delta: & 7.57(\mathrm{~m}, 6 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 7.36(\mathrm{~m}, 9 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 5.22(\mathrm{~m}, \\
& 2 \mathrm{H}, \mathrm{H}-3,11), 5.11(\mathrm{t}, 1 \mathrm{H}, J=8.3 \mathrm{~Hz}, \mathrm{H}-6), 2.51 \\
& (\mathrm{~m}, 1 \mathrm{H}), 1.92-2.40(\mathrm{~m}, 8 \mathrm{H}), 1.78(\mathrm{~s}, 3 \mathrm{H},-\mathrm{CH}), \\
& 1.70(\mathrm{~m}, 2 \mathrm{H}), 1.68\left(\mathrm{~s}, 3 \mathrm{H},-\mathrm{CH}_{3}\right), 1.54(\mathrm{~s}, \text { residual } \\
& \left.\mathrm{H}_{2} \mathrm{O}\right), 1.25-1.40(\mathrm{~m}, 4 \mathrm{H}), 0.85(\mathrm{~d}, 3 \mathrm{H}, J=6.6 \mathrm{~Hz}, \\
& \left.-\mathrm{CH}_{3}\right), 0.81\left(\mathrm{~d}, 3 \mathrm{H}, J=6.6 \mathrm{~Hz},-\mathrm{CH}_{3}\right), 0.63(\mathrm{~d}, \\
& \left.3 \mathrm{H}, J=6.6 \mathrm{~Hz},-\mathrm{CH}_{3}\right) .
\end{aligned}
$$

MS (EI):624(M^{+})
HRMS (EI): Calcd. for $\mathrm{C}_{38} \mathrm{H}_{48}{ }^{120} \mathrm{Sn}: ~ 624.2778$
Found: 624.2793
TLC (20\% toluene in hexanes), R_{f} : Vinyl Stannane 19: 0.53

16

20

Enone 20

The enone chloride 16 ($347 \mathrm{mg}, 1.08 \mathrm{mmol}, 1.00$ equiv) was dissolved in 2,2,4trimethylpentane (45 mL), and the solution was degassed by purging with argon for 10 min. Silver (I) carbonate ($893 \mathrm{mg}, 3.24 \mathrm{mmol}, 3.00$ equiv) was added in one portion, and the suspension was heated to $75^{\circ} \mathrm{C}$ for 8.5 h with vigorous stirring. The reaction was cooled to $23^{\circ} \mathrm{C}$ and washed with a $1: 1$ mixture of saturated aqueous sodium bicarbonate and saturated aqueous ammonium chloride ($3 \times 100 \mathrm{~mL}$). The organic layer was dried over sodium sulfate and concentrated. Purification of the residue by flash column chromatography (10% ethyl acetate in hexanes) gave the enone 20 ($297 \mathrm{mg}, 97 \%$) as a viscous oil.

$$
\begin{aligned}
\left.{ }^{1} \mathrm{H} \text { NMR (400 MHz, } \mathrm{C}_{6} \mathrm{D}_{6}\right), \delta: & 6.30(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}-3), 5.18(\mathrm{t}, 1 \mathrm{H}, J=5.5 \mathrm{~Hz}, \mathrm{H}-11), \\
& 5.12(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-6), 4.92(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}-16), 4.86(\mathrm{~d}, \\
& 1 \mathrm{H}, J=1.2 \mathrm{~Hz}, \mathrm{H}-16), 3.09(\mathrm{dd}, 1 \mathrm{H}, J=12.0,2.4 \\
& \mathrm{Hz}, \mathrm{H}-1), 2.52(\mathrm{dd}, 1 \mathrm{H}, J=14.2,6.6 \mathrm{~Hz}, \mathrm{H}-5), \\
& 2.41(\mathrm{dd}, 1 \mathrm{H}, J=14.2,5.9 \mathrm{~Hz}, \mathrm{H}-5), 2.22(\mathrm{~d}, 3 \mathrm{H}, \\
& J=1.0 \mathrm{~Hz}, \mathrm{H}-18), 1.79-2.18\left(\mathrm{~m}, 8 \mathrm{H},-\mathrm{CH}_{2}-\right), 1.72
\end{aligned}
$$

$$
\begin{aligned}
& \left(\mathrm{s}, 3 \mathrm{H},-\mathrm{CH}_{3}\right), 1.65\left(\mathrm{~s}, 3 \mathrm{H},-\mathrm{CH}_{3}\right), 1.59(\mathrm{~d}, 3 \mathrm{H}, J \\
& =2.7 \mathrm{~Hz}, \mathrm{H}-19)
\end{aligned}
$$

FTIR (neat), cm^{-1} :

MS (EI):

HRMS (EI):

3083 (w), 2965 (s), 2939 (s), 2815 (s), 1964 (w), 1684 (s), 1641 (s), 1617 (s), 1441 (s), 1377 (s), 1359 (m), 1224 (m), 1200 (m), 1114 (m), 1063 (m), 894 (s).
$284\left(\mathrm{M}^{+}\right), 269\left(\mathrm{M}^{+}-\mathrm{CH}_{3}\right), 241\left(\mathrm{M}^{+}-\mathrm{C}_{3} \mathrm{H}_{7}\right)$.

Calcd. for $\mathrm{C}_{20} \mathrm{H}_{28} \mathrm{O}: 284.2140$
Found: 284.2130

TLC (100% toluene),
$R_{f}: \quad$ Enone 20: 0.38

20

21

Allylic Alcohols 21

The enone 20 ($60.0 \mathrm{mg}, 0.211 \mathrm{mmol}, 1.00$ equiv) was dissolved in toluene (15 mL) and cooled to $-78^{\circ} \mathrm{C}$. Diisobutylaluminum hydride (1.0 M in hexanes, 1.06 mL , $1.06 \mathrm{mmol}, 5.00$ equiv) was added dropwise at $-78^{\circ} \mathrm{C}$, and the reaction was slowly warmed to $0^{\circ} \mathrm{C}$ over a period of 2.5 h . The reaction was poured into a $1: 1$ mixture of saturated aqueous sodium potassium tartrate and potassium carbonate $(600 \mathrm{~mL})$ and stirred vigorously until the two layers were homogeneous. The organic layer was dried over sodium sulfate and concentrated. Purification and separation by flash chromatography gave the allylic alcohols 21 as a lower R_{f} major epimer $(41.8 \mathrm{mg})$ and a higher R_{f} minor epimer (10.4 mg), both as slurries of solids in viscous oils (86% overall yield).

Allylic Alcohol 21 (minor epimer)

$\begin{aligned}\left.{ }^{1} \mathrm{H} \text { NMR (400 MHz, C6 } \mathrm{D}_{6}\right), \delta: & 5.59(\mathrm{dd}, 1 \mathrm{H}, J=7.8,0.7 \mathrm{~Hz}, \mathrm{H}-3), 5.31(\mathrm{~m}, 1 \mathrm{H}, \\ & \mathrm{H}-6), 5.25(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-11), 4.96(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-16), \\ & 4.91(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-16), 4.53(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-2), 2.78(\mathrm{dd}, \\ & 1 \mathrm{H}, J=13.2,9.0 \mathrm{~Hz}, \mathrm{H}-5), 2.49(\mathrm{dd}, 1 \mathrm{H}, J= \\ & 13.2,5.9 \mathrm{~Hz}, \mathrm{H}-5), 1.90-2.40(\mathrm{~m}, 7 \mathrm{H}), 1.85(\mathrm{~m},\end{aligned}$
$\left.3 \mathrm{H},-\mathrm{CH}_{3}\right), 1.74\left(\mathrm{~s}, 3 \mathrm{H},-\mathrm{CH}_{3}\right), 1.73(\mathrm{~m}, 2 \mathrm{H})$, $1.71(\mathrm{~d}, 3 \mathrm{H}, J=2.7 \mathrm{~Hz}, \mathrm{H}-19), 1.61(\mathrm{~s}, 3 \mathrm{H}$, $\left.-\mathrm{CH}_{3}\right), 1.24(\mathrm{~d}, 1 \mathrm{H}, J=3.0 \mathrm{~Hz},-\mathrm{OH})$.

FTIR (neat), cm^{-1} :
3404 (br), 2965 (s), 2909 (s), 1962 (w), 1662 (w), 1640 (m), 1441 (s), 1376 (s), 1255 (m) 1227 (m), 1011 (s), 890 (s).

Allylic Alcohol 21 (major epimer)

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$) , $\delta: \quad 5.36(\mathrm{~d}, 1 \mathrm{H}, J=8.8 \mathrm{~Hz}, \mathrm{H}-3), 5.18(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-6$, 10), 4.93 (m, 1H, H-16), 4.90 (m, 1H, H-16), 4.26 (m, 1H, H-2), 2.77 (dd, $1 \mathrm{H}, J=16.3,3.4 \mathrm{~Hz}, \mathrm{H}-$ 5), $2.51(\mathrm{dd}, 1 \mathrm{H}, J=16.3,7.0 \mathrm{~Hz}, \mathrm{H}-5), 2.00-2.30$ $(\mathrm{m}, 7 \mathrm{H}), 1.70-1.78(\mathrm{~m}, 2 \mathrm{H}), 1.68-1.70(\mathrm{~m}, 12 \mathrm{H}$, $\left.-\mathrm{CH}_{3}\right), 1.47(\mathrm{~d}, 1 \mathrm{H}, J=3.0 \mathrm{~Hz},-\mathrm{OH})$.

FTIR (neat), cm^{-1} :
3430 (br), 2965 (s), 2920 (s), 1964 (w), 1650 (m), 1444 (s), 1375 (s), 1030 (m), 990 (m), 890 (m).

Allylic Alcohol 21 (mixture of epimers)

MS (EI):
$286\left(\mathrm{M}^{+}\right)$.

HRMS (EI):

Found: 286.2289
TLC (100\% toluene), R_{f} :
Major epimer: 0.07
Minor epimer: 0.13

21

22

Chloride 22

The alcohol 21 (major low R_{f} epimer, $5.2 \mathrm{mg}, 0.018 \mathrm{mmol}, 1.00$ equiv) was dissolved in dichloromethane (1.0 mL) and cooled to $-78^{\circ} \mathrm{C}$. Thionyl chloride ($39 \mu \mathrm{~L}$, $0.54 \mathrm{mmol}, 30$ equiv) was added to the alcohol 21, and the reaction was stirred for 20 min at $-78^{\circ} \mathrm{C}$. The reaction was then warmed to $0^{\circ} \mathrm{C}$ for 10 min . Hexanes (10 mL) were added, and the reaction was washed with saturated aqueous sodium chloride ($2 \times 10 \mathrm{~mL}$). The organic phase was dried over sodium sulfate and concentrated to give the crude chloride $22(5.0 \mathrm{mg})$ as a viscous oil. Chloride 22 was not purified further because of facile chloride elimination upon exposure to silica gel.

$$
\begin{aligned}
{ }^{1} \mathrm{H} \text { NMR }\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right), \delta: & 6.26(\mathrm{~d}, 1 \mathrm{H}, J=15.6 \mathrm{~Hz}, \mathrm{H}-3), 5.67(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-6), \\
& 5.38(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-11), 5.33(\mathrm{dd}, 1 \mathrm{H}, J=15.9,9.0 \\
& \mathrm{Hz}, \mathrm{H}-2), 4.86(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}-16), 4.82(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-16), \\
& 2.80(\mathrm{dd}, 1 \mathrm{H}, J=14.3,3.5 \mathrm{~Hz}, \mathrm{H}-5), 2.58(\mathrm{~m}, \\
& 1 \mathrm{H}), 2.42(\mathrm{~m}, 1 \mathrm{H}), 2.29(\mathrm{~m}, 1 \mathrm{H}), 2.20(\mathrm{dd}, 1 \mathrm{H}, \\
& 14.3,10.7 \mathrm{~Hz}, \mathrm{H}-5), 1.99(\mathrm{~m}, 1 \mathrm{H}), 1.71(\mathrm{~s}, 3 \mathrm{H}, \\
& \left.-\mathrm{CH}_{3}\right), 1.69\left(\mathrm{~s}, 3 \mathrm{H},-\mathrm{CH}_{3}\right), 1.64\left(\mathrm{~s}, 3 \mathrm{H},-\mathrm{CH}_{3}\right),
\end{aligned}
$$

$1.61\left(\mathrm{~s}, 3 \mathrm{H},-\mathrm{CH}_{3}\right), 1.30-1.80(\mathrm{~m}, 5 \mathrm{H})$.

FTIR (neat), cm^{-1} :

MS (EI):

HRMS (EI):
Calcd. for $\mathrm{C}_{20} \mathrm{H}_{29} \mathrm{Cl}: 304.1958$
Found: 304.1950

TLC (10% EtOAc in hexanes), $R_{f}: \quad$ Chloride 22: 0.70
Alcohol 21: 0.17

22

Dimeric Macrocycles 23

Samarium diiodide (0.10 M in THF, $1.9 \mathrm{~mL}, 0.15 \mathrm{mmol}, 5.0$ equiv) was added dropwise to a solution of the allylic chloride $22(9.0 \mathrm{mg}, 0.030 \mathrm{mmol}, 1.0$ equiv) in THF (5 mL) and stirred at $23^{\circ} \mathrm{C}$ for 40 min . Hexanes (10 mL) was added to the reaction, and the resulting solution was washed with aqueous hydrochloric acid ($0.10 \mathrm{~N}, 3 \times 25 \mathrm{~mL}$). The organic layer was dried over sodium sulfate and concentrated. Purification by repeated preparative thin-layer chromatography (100% hexanes, eluting twice with a cycle of drying between elutions) gave the four diastereomeric dimeric products 23 in near equimolar quantities, each as a viscous oil.

Dimeric Macrocycle 23 (lowest R_{f} diastereomer)

$$
\begin{aligned}
{ }^{1} \mathrm{H} \text { NMR }\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right), \delta: & 5.69(\mathrm{~d}, 1 \mathrm{H}, J=15.9 \mathrm{~Hz}, \mathrm{H}-3), 5.61(\mathrm{~d}, 1 \mathrm{H}, J= \\
& 15.6 \mathrm{~Hz}, \mathrm{H}-3), 5.14(\mathrm{~m}, 4 \mathrm{H}, \mathrm{H}-6,11), 4.69(\mathrm{~m}, \\
& 4 \mathrm{H}, \mathrm{H}-16), 2.40(\mathrm{~m}, 4 \mathrm{H}), 2.20(\mathrm{~m}, 1 \mathrm{H}), 1.90-2.15 \\
& (\mathrm{~m}, 6 \mathrm{H}), 1.60-1.80(\mathrm{~m}, \text { complex overlapping } \\
& \text { signals }), 1.74\left(\mathrm{~s}, 3 \mathrm{H},-\mathrm{CH}_{3}\right), 1.71\left(\mathrm{~s}, 3 \mathrm{H},-\mathrm{CH}_{3}\right), \\
& 1.68\left(\mathrm{~s}, 6 \mathrm{H},-\mathrm{CH}_{3}\right), 1.63\left(\mathrm{~s}, 6 \mathrm{H},-\mathrm{CH}_{3}\right), 1.04(\mathrm{~s},
\end{aligned}
$$

$\left.3 \mathrm{H},-\mathrm{CH}_{3}\right), 1.03\left(\mathrm{~s}, 3 \mathrm{H},-\mathrm{CH}_{3}\right)$.

FTIR (neat), cm^{-1} :

MS (EI):

HRMS (EI):

2965 (s), 2926 (s), 2855 (s), 1961 (w), 1642 (m), 1450 (m), 1373 (s), 984 (m), 887 (m).
$538\left(\mathrm{M}^{+}\right), 269\left(\mathrm{M}^{+} / 2\right)$.

Calcd. for $\mathrm{C}_{40} \mathrm{H}_{58}: 538.4539$
Found: 538.4553

Dimeric Macrocycle 23 (Mid- $R_{f}(=0,41)$ diastereomer)

${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right), \delta: \quad 5.60(\mathrm{~d}, 1 \mathrm{H}, J=15.6 \mathrm{~Hz}, \mathrm{H}-3), 5.45(\mathrm{~d}, 1 \mathrm{H}, J=$ $15.8 \mathrm{~Hz}, \mathrm{H}-3), 5.30(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-11), 5.11(\mathrm{~m}, 2 \mathrm{H}$, $\mathrm{H}-6,11), 4.94$ (m, 1H, H-6), 4.70 (m, 2H, H-16), 4.69 ($\mathrm{s}, 1 \mathrm{H}, \mathrm{H}-16$), 4.68 ($\mathrm{s}, 1 \mathrm{H}, \mathrm{H}-16$), 2.58 (m, $1 \mathrm{H}), 2.40(\mathrm{~m}, 3 \mathrm{H}), 2.00-2.30(\mathrm{~m}, 5 \mathrm{H}), 1.60-1.80$ (m, complex overlapping signals), 1.73 (s, 3H, $\left.-\mathrm{CH}_{3}\right), 1.68\left(\mathrm{~s}, 9 \mathrm{H},-\mathrm{CH}_{3}\right), 1.66(\mathrm{~d}, 3 \mathrm{H}, \mathrm{J}=2.9$ $\mathrm{Hz}, \mathrm{H}-19), 1.63$ (d, $3 \mathrm{H}, \mathrm{J}=2.7 \mathrm{~Hz}, \mathrm{H}-19), 1.04$ $\left(\mathrm{s}, 3 \mathrm{H},-\mathrm{CH}_{3}\right), 1.01\left(\mathrm{~s}, 3 \mathrm{H},-\mathrm{CH}_{3}\right)$.

FTIR (neat), cm^{-1} :
2964 (s), 2925 (s), 2854 (s), 1960 (w), 1711 (m), 1643 (m), 1450 (m), 1371 (s), 983 (m), 887 (m).

MS (EI): $\quad 538\left(\mathrm{M}^{+}\right), 269\left(\mathrm{M}^{+} / 2\right)$.

HRMS (EI): Calcd. for $\mathrm{C}_{40} \mathrm{H}_{58}: 538.4539$
Found: 538.4559

Dimeric Macrocycle 23 (Mid- $R_{f}(=0.46)$ diastereomer)

$$
\begin{aligned}
{ }^{1} \mathrm{H} \text { NMR }\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right), \delta: & 5.66(\mathrm{~d}, 1 \mathrm{H}, J=15.6 \mathrm{~Hz}, \mathrm{H}-3), 5.43(\mathrm{~d}, 1 \mathrm{H}, J= \\
& 16.1 \mathrm{~Hz}, \mathrm{H}-3), 5.30(\mathrm{dd}, 1 \mathrm{H}, J=16.4,6.4 \mathrm{~Hz}, \mathrm{H}- \\
& 11), 5.13(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-6,11), 4.94(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-6), \\
& 4.69(\mathrm{~m}, 4 \mathrm{H}, \mathrm{H}-16), 2.60(\mathrm{~m}, 1 \mathrm{H}), 2.43(\mathrm{~m}, 2 \mathrm{H}), \\
& 1.95-2.35(\mathrm{~m}, 9 \mathrm{H}), 1.80-1.94(\mathrm{~m}, \text { complex } \\
& \text { overlapping signals), 1.75(s,3H,-CH3),1,68(m,} \\
& \left.9 \mathrm{H},-\mathrm{CH}_{3}\right), 1.65(\mathrm{~d}, 3 \mathrm{H}, J=2.7 \mathrm{~Hz}, \mathrm{H}-19), 1.63 \\
& (\mathrm{~d}, 3 \mathrm{H}, J=2.9 \mathrm{~Hz}, \mathrm{H}-19), 1.02\left(\mathrm{~s}, 3 \mathrm{H},-\mathrm{CH}_{3}\right), \\
& 1.01\left(\mathrm{~s}, 3 \mathrm{H},-\mathrm{CH}_{3}\right) .
\end{aligned}
$$

FTIR (neat), cm^{-1} :
2965 (s), 2925 (s), 2854 (s), 1962 (w), 1710 (m), 1643 (m), 1450 (m), 1371 (s), 983 (m), 887 (m).

MS (EI):
$538\left(\mathrm{M}^{+}\right), 269\left(\mathrm{M}^{+} / 2\right)$.

HRMS (EI):
Calcd. for $\mathrm{C}_{40} \mathrm{H}_{58}: 538.4539$
Found: 538.4569

Dimeric Macrocycle $\mathbf{2 3}$ (Highest R_{f} diastereomer)

${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right), \delta: \quad 5.22-5.42(\mathrm{~m}, 4 \mathrm{H}, \mathrm{H}-3,11), 4.93(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-6)$, 4.71 (s, 2H, H-16), 4.68 (m, 2H, H-16), 2.58 (m, 2 H), $2.20(\mathrm{~m}, 4 \mathrm{H}), 1.60-1.90$ (m , complex overlapping signals), 1.69 ($\mathrm{s}, 3 \mathrm{H},-\mathrm{CH}_{3}$), 1.68 (s , $\left.9 \mathrm{H},-\mathrm{CH}_{3}\right), 1.65\left(\mathrm{~s}, 3 \mathrm{H},-\mathrm{CH}_{3}\right), 1.64(\mathrm{~s}, 3 \mathrm{H}$, $-\mathrm{CH}_{3}$), $1.02\left(\mathrm{~s}, 3 \mathrm{H},-\mathrm{CH}_{3}\right), 1.00\left(\mathrm{~s}, 3 \mathrm{H},-\mathrm{CH}_{3}\right)$.

FTIR (neat), cm^{-1} :
2965 (s), 2925 (s), 2854 (s), 1962 (w), 1711 (m), 1643 (m), 1441 (m), 1372 (s), 983 (m), 888 (m).

MS (EI):
$538\left(\mathrm{M}^{+}\right), 269\left(\mathrm{M}^{+} / 2\right)$.

HRMS (EI):

Calcd. for $\mathrm{C}_{40} \mathrm{H}_{58}: 538.4539$
Found: 538.4585

TLC (100% hexanes), R_{f} :
Lowest R_{f} Dimer 23: 0.37
Mid- R_{f} Dimer 23: 0.41
Mid- R_{f} Dimer 23: 0.46
Highest R_{f} Dimer 23: 0.50

21

24

Ester 24

3-(Trifluoromethyl)benzoyl chloride ($53 \mu \mathrm{~L}, 0.35 \mathrm{mmol}, 5.00$ equiv), and pyridine ($57 \mu \mathrm{~L}, 0.70 \mathrm{mmol}, 10.0$ equiv) were added to a solution of the alcohol 21 (major low R_{f} epimer, $20.0 \mathrm{mg}, 0.0698 \mathrm{mmol}, 1.00$ equiv) in dichloromethane (3.0 mL) at $23^{\circ} \mathrm{C}$. After stirring for 50 min at $23^{\circ} \mathrm{C}$, the reaction was diluted with hexanes (10 mL) and was washed with saturated aqueous sodium chloride ($3 \times 10 \mathrm{~mL}$). The organic layer was dried over sodium sulfate and concentrated. Purification by flash column chromatography (5\% ethyl acetate in hexanes) gave the ester $\mathbf{2 4}(23.9 \mathrm{mg}, 75 \%)$ as a viscous oil.

$$
\begin{aligned}
{ }^{1} \mathrm{H} \text { NMR }\left(400 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right), \delta: & 8.56(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}-28), 8.15(\mathrm{~d}, 1 \mathrm{H}, J=7.8 \mathrm{~Hz}, \mathrm{H}- \\
& 25), 7.28(\mathrm{~d}, 1 \mathrm{H}, J=7.8 \mathrm{~Hz}, \mathrm{H}-23), 6.81(\mathrm{t}, 1 \mathrm{H}, J \\
& =7.8 \mathrm{~Hz}, \mathrm{H}-24), 5.96(\mathrm{~d}, 1 \mathrm{H}, J=10.7,1.2 \mathrm{~Hz}, \mathrm{H}- \\
& 2), 5.35(\mathrm{~d}, 1 \mathrm{H}, J=9.5 \mathrm{~Hz}, \mathrm{H}-3), 5.18(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}- \\
& 6,11), 4.96(\mathrm{~d}, 1 \mathrm{H}, J=2.0 \mathrm{~Hz}, \mathrm{H}-16), 4.87(\mathrm{~m},
\end{aligned}
$$

$1 \mathrm{H}, \mathrm{H}-16$), 2.70 (dd, $1 \mathrm{H}, J=16.1,3.4 \mathrm{~Hz}, \mathrm{H}-5$), 2.39-2.52 (m, 2H), 2.20-2.31 (m, 2H), 2.11-2.19 $(\mathrm{m}, 2 \mathrm{H}), 1.98(\mathrm{~d}, 3 \mathrm{H}, J=0.5 \mathrm{~Hz}, \mathrm{H}-18), 1.80(\mathrm{~m}$, $2 \mathrm{H}), 1.69\left(\mathrm{~m}, 9 \mathrm{H},-\mathrm{CH}_{3}\right), 1.67(\mathrm{~m}, 1 \mathrm{H}), 1.41(\mathrm{~m}$, 1H).

FTIR (neat), cm^{-1} :
2955 (s), 1791 (s), 1724 (s), 1616 (m), 1333 (s), 1254 (s), 1171 (s), 1126 (s), 1072 (s), 929 (m), 752 (s), 742 (s), 695 (s).

TLC (20% EtOAc in hexanes), R_{f} : Ester 24: 0.70

16
 91\%

25

Ketone Chloride $\mathbf{2 5}$

Lithium tri-sec-butylborohydride ($1.00 \mathrm{M}, 11.1 \mathrm{~mL}, 11.1 \mathrm{mmol}, 2.00$ equiv) was added to a solution of the enone $16(1.78 \mathrm{~g}, 5.55 \mathrm{mmol}, 1.00$ equiv, $10: 1$ ratio of diastereomers at C 1 , including 10% 2-propenyl chloride elimination products) in THF (100 mL) at $-78^{\circ} \mathrm{C}$. After stirring for 2.5 h , the reaction was quenched with acetic acid (2.54 mL , excess) in THF (10 mL) and stirred for 15 min . Oxidation of the intermediate borate esters was then effected by addition of 10% aqueous sodium hydroxide (50 mL) and 30% aqueous hydrogen peroxide (20 mL) to the reaction mixture. The resulting biphasic mixture was stirred at $23^{\circ} \mathrm{C}$ for 3.3 h . The aqueous layer was separated and extracted with hexanes ($2 \times 100 \mathrm{~mL}$). The combined organic layers were washed with saturated aqueous sodium chloride (100 mL) and saturated aqueous sodium thiosulfate (100 mL), and the organic layer was dried over sodium sulfate. The solution was then partially concentrated to a volume of approximately 25 mL behind a protective blast shield. [Note: Concentration of such solutions containing organic peroxides to smaller volumes than this is strongly discouraged, for these compounds are known to be shock sensitive and potentially explosive in neat form.] The resulting solution was then diluted with methyl alcohol (50 mL) and dimethyl sulfide (15 mL) and stirred at $23^{\circ} \mathrm{C}$ until no traces of peroxides were present (as indicated by enzymatic
peroxide test strips-typically 12 h). Concentration of the solution and purification of the residue by filtration through a short column of silica (100% toluene) gave the ketone chloride 25 ($1.63 \mathrm{~g}, 91 \%, 10: 1$ ratio of diastereomers at C , including 10% 2-propenyl chloride elimination products) as a viscous oil. Smaller samples of pure $\mathbf{2 5}$ were obtained for analysis by flash chromatography (100% toluene) to give 25 as a crystalline solid (mp $\left.53-55^{\circ} \mathrm{C}\right)$.

Ketone Chloride 25

${ }^{1} \mathrm{H}$ NMR (400 MHz, $\left.\mathrm{C}_{6} \mathrm{D}_{6}\right), \delta: \quad 5.28(\mathrm{t}, 1 \mathrm{H}, J=7.1 \mathrm{~Hz}, \mathrm{H}-11), 5.13(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-6)$, $2.82(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-1), 2.76(\mathrm{dd}, 1 \mathrm{H}, J=19.2,4.0 \mathrm{~Hz}$, $\mathrm{H}-3), 2.56$ (m, 1H, H-4), 2.39 (dd, $1 \mathrm{H}, \mathrm{J}=19.2$, $8.2 \mathrm{~Hz}, \mathrm{H}-3$), 2.31 (ddd, $1 \mathrm{H}, J=15.6,6.2,3.0$ $\mathrm{Hz}, \mathrm{H}-5), 1.70-2.20(\mathrm{~m}, 9 \mathrm{H}), 1.67$ (br s, 3H, H20), $1.64(\mathrm{~d}, 3 \mathrm{H}, J=2.9 \mathrm{~Hz}, \mathrm{H}-19), 1.54(\mathrm{~s}, 3 \mathrm{H}$, $\mathrm{H}-16), 1.53(\mathrm{~s}, 3 \mathrm{H}, \mathrm{H}-17), 0.98(\mathrm{~d}, 3 \mathrm{H}, \mathrm{J}=6.6$ $\mathrm{Hz}, \mathrm{H}-18)$.
${ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}), $\delta: \quad 211.7,202.1,135.7,125.0,100.5,87.2,71.5$, $62.5,53.6,35.1,34.9,30.5,30.3,30.0,28.0$, 27.7, 26.7, 22.4, 20.6, 18.6.

FTIR (neat), cm^{-1} :
2956 (s), 2928 (s), 1960 (w), 1711 (s), 1457 (m), 1388 (m), 1371 (s), 1118 (m).

MS (CI, $\left.\mathrm{NH}_{3}\right)$:
$323\left(\mathrm{MH}^{+}\right), 287\left(\mathrm{MH}^{+}-\mathrm{HCl}\right)$

HRMS (CI, NH_{3}):

Calcd. for $\mathrm{C}_{20} \mathrm{H}_{32} \mathrm{OCl}\left(\mathrm{MH}^{+}\right)$: 323.2142
Found: 323.2149

Ketone Chloride 26

The enone 16 ($500 \mathrm{mg}, 1.56 \mathrm{mmol}, 1.00$ equiv) was dissolved in THF (50 mL) and cooled to $0^{\circ} \mathrm{C}$. Diisobutylaluminum hydride (DIBAL, 1.0 M in THF, $3.12 \mathrm{~mL}, 3.12$ mmol, 2.00 equiv) was added to the enone 16, and the resulting solution was stirred for 30 \min at $0^{\circ} \mathrm{C}$. The excess DIBAL was quenched slowly by dropwise addition of water $(0.120 \mathrm{~mL})$, and the reaction was diluted with hexanes $(50 \mathrm{~mL})$. The mixture was washed with a $1: 1$ mixture of saturated aqueous sodium potassium tartrate and saturated aqueous potassium carbonate (100 mL), and the aqueous layer was extracted with hexanes (2 x 50 mL). The combined organic layers were washed again with a $1: 1$ mixture of saturated aqueous sodium potassium tartrate and saturated aqueous potassium carbonate (2×100 mL). The resulting organic layer was dried over sodium sulfate and concentrated. Purification by flash column chromatography (35% toluene in hexanes) gave the ketone chloride 26 ($374 \mathrm{mg}, 50 \%$) as a crystalline solid ($\mathrm{mp} 69^{\circ} \mathrm{C}$), along with the epimeric ketone chloride $25(187 \mathrm{mg}, 25 \%)$ as a crystalline solid ($\mathrm{mp} 53-55^{\circ} \mathrm{C}$). The relative stereochemical configuration of 26 was established unequivocally by X-ray crystallographic analysis of crystals grown from a solution of $\mathbf{2 6}$ in methyl alcohol (see appendix).

Ketone Chloride 26

${ }^{1} \mathrm{H}$ NMR ($\left.500 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right), \delta:$	$5.27(\mathrm{t}, 1 \mathrm{H}, J=6.7 \mathrm{~Hz}, \mathrm{H}-11), 4.99(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-6)$,
	$2.99(\mathrm{~d}, 1 \mathrm{H}, J=17.8 \mathrm{~Hz}, \mathrm{H}-3), 2.55-2.62(\mathrm{~m}, 2 \mathrm{H}$,
	$\mathrm{H}-3,14), 1.80-2.30(\mathrm{~m}, 10 \mathrm{H}), 1.70(\mathrm{~s}, 3 \mathrm{H}, \mathrm{H}-20)$,
	$1.66(\mathrm{~d}, 3 \mathrm{H}, J=2.7 \mathrm{~Hz}, \mathrm{H}-19), 1.62(\mathrm{~m}, 1 \mathrm{H}), 1.52$
	$(\mathrm{~s}, 3 \mathrm{H}, \mathrm{H}-16), 1.47(\mathrm{~s}, 3 \mathrm{H}, \mathrm{H}-17), 1.06(\mathrm{~d}, 3 \mathrm{H}, J=$
	$5.6 \mathrm{~Hz}, \mathrm{H}-18)$.

FTIR (neat), cm^{-1} :

MS (EI):

HRMS (EI):

Elemental Analysis:
Calcd. \%: $\quad \mathrm{C}(74.38), \mathrm{H}(9.68)$
Found \%: \quad (74.52), $\mathrm{H}(9.40)$

TLC (50% toluene in hexanes), R_{f} : Ketone Chloride 26: 0.33
Ketone Chloride 25: 0.47

26
 82\%

27

Enone 27

1,8-diazabicylo[5.4.0]undec-7-ene (DBU, 2.0 mL , excess) was added to a solution of the ketone chloride 26 ($250 \mathrm{mg}, 0.774,1.00$ equiv) in THF (20 mL) , and the resulting solution was heated to reflux. After 23 h at reflux, the reaction was cooled to $23^{\circ} \mathrm{C}$ and diluted with hexanes $(100 \mathrm{~mL})$. The resulting solution was then washed with saturated aqueous citric acid (100 mL), and the aqueous layer was separated and extracted with hexanes (50 mL). The combined organic layers were washed again with saturated aqueous citric acid ($2 \times 100 \mathrm{~mL}$) and saturated aqueous sodium bicarbonate (100 mL). The organic layer was dried over sodium sulfate and concentrated. Purification by flash column chromatography (50% toluene in hexanes) gave the enone 27 ($180 \mathrm{mg}, 82 \%$) as a crystalline solid ($\mathrm{mp} 88^{\circ} \mathrm{C}$).

$$
\begin{aligned}
{ }^{1} \mathrm{H} \text { NMR }\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right), \delta: & 5.22(\mathrm{td}, 1 \mathrm{H}, J=7.8,1.4 \mathrm{~Hz}, \mathrm{H}-11), 4.95(\mathrm{~m}, 1 \mathrm{H}, \\
& \mathrm{H}-6), 3.27(\mathrm{dd}, 1 \mathrm{H}, J=17.7,1.4 \mathrm{~Hz}, \mathrm{H}-3), 2.39 \\
& (\mathrm{~m}, 1 \mathrm{H}), 1.91-2.29(\mathrm{~m}, 10 \mathrm{H}), 1.82(\mathrm{~s}, 3 \mathrm{H}, \mathrm{H}-16), \\
& 1.78(\mathrm{~s}, 3 \mathrm{H}, \mathrm{H}-17), 1.74(\mathrm{q}, 3 \mathrm{H}, J=1.2 \mathrm{~Hz}, \mathrm{H}- \\
& 20), 1.69(\mathrm{~d}, 3 \mathrm{H}, J=2.8 \mathrm{~Hz}, \mathrm{H}-19), 1.65(\mathrm{~m}, 1 \mathrm{H}),
\end{aligned}
$$

0.99 (d, 3H, J = 6.3 Hz, H-18).

FTIR (neat), cm^{-1} : 2911 (s), 1956 (w), 1680 (s).
MS (CI, NH_{3}): 287(MH^{+}).
HRMS (CI, NH_{3}):
Calcd. for $\mathrm{C}_{20} \mathrm{H}_{31} \mathrm{O}\left(\mathrm{MH}^{+}\right): 287.2375$
Found: 287.2357
TLC (50\% toluene in hexanes), $R_{f}:$ Enone 27: 0.23

25

Enone 28

28
$+$

29

The ketone chloride $25(1.00 \mathrm{~g}, 3.10 \mathrm{mmol}, 1.00$ equiv) was dissolved in a mixture of THF (15 mL) and DBU (5 mL) and the resulting solution was heated at reflux for 24 h . The reaction was cooled to $0^{\circ} \mathrm{C}$ and poured into saturated aqueous citric acid $(100 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$. The mixture was washed with hexanes $(2 \times 100 \mathrm{~mL})$, and the combined organic layers were washed sequentially with saturated aqueous citric acid (100 mL) and saturated aqueous sodium bicarbonate $(100 \mathrm{~mL})$. The organic layer was dried over sodium sulfate and concentrated. Purification by flash column chromatography (50% toluene in hexanes) gave α, β-unsaturated ketone 28 ($567 \mathrm{mg}, 64 \%$) as a crystalline solid (mp $44^{\circ} \mathrm{C}$), along with lesser amounts of the 2-propenyl elimination product $29(145 \mathrm{mg}$, 16%), also a crystalline solid ($\mathrm{mp} 35^{\circ} \mathrm{C}$), in a $4: 1$ thermodynamically controlled equilibrium ratio. The ketone 29 could be recycled using the same reaction conditions to give the same thermodynamic distribution of products (4:1 ratio of 28:29).

Enone 28

$$
\begin{aligned}
\left.{ }^{1} \mathrm{H} \text { NMR (400 MHz, } \mathrm{C}_{6} \mathrm{D}_{6}\right), \delta: & \\
& 2.28(\mathrm{t}, 1 \mathrm{H}, J=7.5 \mathrm{~Hz}, \mathrm{H}-11), 5.15(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-6), \\
& 2.89(\mathrm{dd}, 1 \mathrm{H}, J=18.2,4.5 \mathrm{~Hz}, \mathrm{H}-3), 2.62(\mathrm{~m}, 1 \mathrm{H}, \\
& \mathrm{H}-4), 1.90-2.45\left(\mathrm{~m}, 11 \mathrm{H},-\mathrm{CH}_{2}-\right), 1.86(\mathrm{~s}, 3 \mathrm{H}, \mathrm{H}- \\
& 16), 1.73(\mathrm{~d}, 3 \mathrm{H}, J=1.2 \mathrm{~Hz}, \mathrm{H}-20), 1.67(\mathrm{~d}, 3 \mathrm{H}, J \\
& =2.9 \mathrm{~Hz}, \mathrm{H}-19), 1.57(\mathrm{~s}, 3 \mathrm{H}, \mathrm{H}-17), 1.04(\mathrm{~d}, 3 \mathrm{H}, \\
& J=6.8 \mathrm{~Hz}, \mathrm{H}-18) .
\end{aligned}
$$

${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$), $\delta: \quad 207.0,202.4,136.6,136.4,135.8,124.9,99.6$, $86.9,47.3,35.8,34.8,31.7,29.2,27.9,27.1$, 23.6, 22.3, 20.9, 19.4, 19.0.

FTIR (neat), cm^{-1} :

MS (EI):

HRMS (EI):

2917 (s), 2850 (s), 1959 (w), 1678 (s), 1631 (m), 1435 (m), $1369(\mathrm{~m}), \quad 1132(\mathrm{~m})$, 1013 (m), 760 (m).
$286\left(\mathrm{M}^{+}\right), 271\left(\mathrm{M}^{+}-\mathrm{CH}_{3}\right), 243\left(\mathrm{M}^{+}-\mathrm{C}_{3} \mathrm{H}_{7}\right)$

Calcd. for $\mathrm{C}_{20} \mathrm{H}_{30} \mathrm{O}: 286.2297$
Found: 286.2300

Combustion Analysis:

Calcd. \%: \quad C (83.86), H (10.56)
Found \%: \quad C (83.59), H (10.46)

Ketone 29

${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$, δ :	$5.19(\mathrm{t}, 1 \mathrm{H}, \mathrm{J}=6.6 \mathrm{~Hz}, \mathrm{H}-11), 4.90(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-6)$, 4.76 (m, 1H, H-16), 4.72 (m, 1H, H-16), 2.96 (dd, $1 \mathrm{H}, J=11.8,1.6 \mathrm{~Hz}), 2.61(\mathrm{dd}, 1 \mathrm{H}, J=18.3,3.5$ $\mathrm{Hz}), 1.62-2.38(\mathrm{~m}, 11 \mathrm{H}), 1.57(\mathrm{~m}, 9 \mathrm{H}), 1.24(\mathrm{~m}$, 1H), 0.87 (d, 3H, $J=6.7 \mathrm{~Hz}, \mathrm{H}-18)$.
${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) , δ :	$\begin{aligned} & 209.3,201.7,145.1,133.8,126.1,113.3,100.0, \\ & 86.6,57.0,45.8,34.9,34.4,28.8,28.2,26.3 \text {, } \\ & 25.8,22.4,20.3,20.3,17.7 . \end{aligned}$
FTIR (neat), cm^{-1} :	$\begin{aligned} & 2967 \text { (s), } 2926 \text { (s), } 2852 \text { (s), } 1965 \text { (w), } 1712 \text { (s), } \\ & 1643 \text { (m), } 1452 \text { (m), } 1441 \text { (m), } 1401 \text { (m), } 1374 \text { (m), } \\ & 896 \text { (m). } \end{aligned}$

MS (EI): $\quad 286\left(\mathrm{M}^{+}\right)$.

HRMS (EI):
Calcd. for $\mathrm{C}_{20} \mathrm{H}_{30} \mathrm{O}: 286.2297$
Found: 286.2307

TLC (50% toluene in hexanes), R_{f} : Enone 28: 0.24
TLC (100% toluene), R_{f} :
Ketone 29: 0.56

28

30

Ketone 30

Samarium diiodide (0.100 M in THF, $50.0 \mathrm{~mL}, 5.00 \mathrm{mmol}, 2.60$ equiv) and methyl alcohol ($0.400 \mathrm{~mL}, 9.88 \mathrm{mmol}, 5.14$ equiv) were added to the enone $28(550 \mathrm{mg}$, $1.92 \mathrm{mmol}, 1.00$ equiv) in THF (50 mL), and the resulting solution was stirred at $23^{\circ} \mathrm{C}$ for 1 h . The excess samarium diiodide was then quenched by admitting ambient air to the stirring reaction until the characteristic deep blue Sm (II) color became the yellow Sm (III) color. The reaction was diluted with hexanes (50 mL) and was washed with aqueous hydrochloric acid $(0.50 \mathrm{~N}, 50 \mathrm{~mL})$. The aqueous layer was extracted with hexanes (50 mL), and the combined organic layers were washed with aqueous hydrochloric acid (0.50 $\mathrm{N}, 2 \times 50 \mathrm{~mL}$) and aqueous sodium bicarbonate (50 mL). The organic phase was dried over sodium sulfate and concentrated. Purification by flash column chromatography (10% ethyl acetate in hexanes) gave the ketone $30(550 \mathrm{mg}, 99 \%)$ as a crystalline solid (mp $36^{\circ} \mathrm{C}$).

Ketone 30
$\begin{aligned}{ }^{1} \mathrm{H} \text { NMR }\left(500 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right), \delta: & 5.30(\mathrm{t}, 1 \mathrm{H}, J=7.6 \mathrm{~Hz}, \mathrm{H}-11), 5.21(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-6), \\ & 2.82(\mathrm{dd}, 1 \mathrm{H}, J=18.3,4.2 \mathrm{~Hz}, \mathrm{H}-3), 2.49(\mathrm{~m}, 1 \mathrm{H},\end{aligned}$

H-4), 2.18-2.30 (m, 4H), 2.08 (dd, $1 \mathrm{H}, J=18.3$, $8.2 \mathrm{~Hz}, \mathrm{H}-3$), $1.74-2.03$ (m, 6H), 1.68 (s, 3H, H20), 1.65 (d, $3 \mathrm{H}, J=2.8 \mathrm{~Hz}, \mathrm{H}-19), 1.63(\mathrm{~m}, 1 \mathrm{H}$, $\mathrm{H}-15), 1.33$ (m, 1H), 1.06 (d, 3H, J = $6.8 \mathrm{~Hz}, \mathrm{H}-$ 18), $0.84(\mathrm{~d}, 3 \mathrm{H}, J=6.8 \mathrm{~Hz}, \mathrm{H}-16), 0.82(\mathrm{~d}, 3 \mathrm{H}, J$ $=6.8 \mathrm{~Hz}, \mathrm{H}-17$).
${ }^{13} \mathrm{C}$ NMR (100 MHz, $\left.\mathrm{CDCl}_{3}\right), \delta: \quad 214.0,201.7,135.9,124.7,100.5,87.8,62.3$, $43.1,35.5,34.7,30.4,30.1,28.6,27.2,26.7$, $23.3,21.3,20.6,20.5,18.9$.

FTIR (neat), cm^{-1} :

MS (EI):

HRMS (EI):

$288\left(\mathrm{M}^{+}\right), 273\left(\mathrm{M}^{+}-\mathrm{CH}_{3}\right), 245\left(\mathrm{M}^{+}-\mathrm{C}_{3} \mathrm{H}_{7}\right)$

Calcd. for $\mathrm{C}_{20} \mathrm{H}_{32} \mathrm{O}: 288.2453$
Found: 288.2444
2959 (s), 2927 (s), 1963 (w), 1703 (s), 1463 (m), 1454 (m), 1371 (m).

Found \%: \quad C (83.15), H (10.99)

Combustion Analysis:	Calcd. \%:	C (83.27), H (11.18)
	Found \%:	C (83.15), H (10.99)

TLC (100\% toluene), R_{f} :
Enone 28: 0.42
Ketone 30: 0.50

27

31, 32

Ketones $\mathbf{3 1}$ and $\mathbf{3 2}$

Samarium diiodide (0.100 M in THF, $24.8 \mathrm{~mL}, 2.48 \mathrm{mmol}, 4.18$ equiv) and methyl alcohol ($0.250 \mathrm{~mL}, 6.20 \mathrm{mmol}, 10.4$ equiv) added to a solution of the enone 27 ($170 \mathrm{mg}, 0.593 \mathrm{mmol}, 1.00$ equiv) in THF (30 mL), and the resulting solution was stirred at $23^{\circ} \mathrm{C}$ for 5.5 h . The excess samarium diiodide was then quenched by admitting ambient air to the stirring reaction until the characteristic deep blue Sm (II) color became the yellow Sm (III) color. The reaction was diluted with hexanes (50 mL) and was washed with aqueous hydrochloric acid $(0.50 \mathrm{~N}, 50 \mathrm{~mL})$. The aqueous layer was extracted with hexanes $(50 \mathrm{~mL})$, and the combined organic layers were washed with aqueous hydrochloric acid ($0.50 \mathrm{~N}, 2 \times 50 \mathrm{~mL}$), aqueous sodium bicarbonate (50 mL), saturated aqueous sodium thiosulfate $(50 \mathrm{~mL})$, and saturated sodium chloride (50 mL). The organic phase was dried over sodium sulfate and concentrated. Purification by flash chromatography (10% ethyl acetate in hexanes) gave the ketones 31 and 32 (170 mg , 99%) as a mixture of epimers in a $1.6: 1$ ratio. The mixture of epimers could be separated by flash column chromatography (30% toluene in hexanes) to give a higher R_{f} epimer (mp $31-33^{\circ} \mathrm{C}$) and a lower R_{f} epimer ($\mathrm{mp} 62^{\circ} \mathrm{C}$), both as crystalline solids.

Ketone $\mathbf{3 1}$ (higher R_{f} - epimer)

$$
\begin{aligned}
{ }^{1} \mathrm{H} \text { NMR }\left(500 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right), \delta: & 5.25(\mathrm{t}, 1 \mathrm{H}, J=6.6 \mathrm{~Hz}, \mathrm{H}-11), 5.11(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-6), \\
& 2.91(\mathrm{dd}, 1 \mathrm{H}, J=18.7,3.4 \mathrm{~Hz}, \mathrm{H}-3), 2.38(\mathrm{~m}, 1 \mathrm{H}, \\
& \mathrm{H}-4), 2.30(\mathrm{~m}, 1 \mathrm{H}), 2.11-2.19(\mathrm{~m}, 4 \mathrm{H}), 1.98-2.07 \\
& (\mathrm{~m}, 3 \mathrm{H}), 1.87-1.93(\mathrm{~m}, 3 \mathrm{H}), 1.70(\mathrm{~m}, 1 \mathrm{H}), 1.68 \\
& (\mathrm{~m}, 6 \mathrm{H}, \mathrm{H}-19,20), 1.45(\mathrm{~m}, 1 \mathrm{H}), 0.99(\mathrm{~d}, 3 \mathrm{H}, J= \\
& 6.7 \mathrm{~Hz}, \mathrm{H}-18), 0.92(\mathrm{~d}, 3 \mathrm{H}, J=6.7 \mathrm{~Hz}, \mathrm{H}-16), \\
& 0.83(\mathrm{~d}, 3 \mathrm{H}, J=6.8 \mathrm{~Hz}, \mathrm{H}-17) .
\end{aligned}
$$

FTIR (neat), cm^{-1} :

MS (EI):

HRMS (EI):

Ketone 32 (lower R_{f}-epimer)

${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right), \delta:$

2959 (s), 2929 (s), 2872 (s), 1960 (w), 1708 (s), 1462 (m), 1455 (m), 1371 (m), 1044 (m).
$288\left(\mathrm{M}^{+}\right), 270\left(\mathrm{M}^{+}-\mathrm{H}_{2} \mathrm{O}\right), 245\left(\mathrm{M}^{+}-\mathrm{C}_{3} \mathrm{H}_{7}\right)$.

Calcd. for $\mathrm{C}_{20} \mathrm{H}_{32} \mathrm{O}: 288.2453$
Found: 288.2459

FTIR (neat), cm^{-1} :

MS (EI):

HRMS (EI):
Calcd. for $\mathrm{C}_{20} \mathrm{H}_{32} \mathrm{O}: 288.2453$
Found: 288.2450

TLC (50% toluene in hexanes), R_{f} : Ketone 31: 0.40
Ketone 32: 0.30

Ketone 33

The ketone 30 was dissolved in toluene (20 mL) and 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU, 10 mL), and the resulting solution was heated at reflux for 46 h . The reaction was then cooled to $0^{\circ} \mathrm{C}$ and poured into saturated aqueous citric acid $(100 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$. The aqueous phase was washed with hexanes $(100 \mathrm{~mL})$, and the combined organic phases were washed with saturated aqueous citric acid $(2 \times 100 \mathrm{~mL})$ and saturated aqueous sodium bicarbonate $(100 \mathrm{~mL})$. The organic phase was then dried over sodium sulfate and concentrated. Purification by flash chromatography (33% toluene in hexanes) gave the ketone 33 ($325 \mathrm{mg}, 55 \%$) as a crystalline solid ($\mathrm{mp} 49^{\circ} \mathrm{C}$) along with recovered starting material $30(153 \mathrm{mg}, 26 \%)$ in a $2: 1$ thermodynamic equilibrium ratio.

Ketone 33

[^1]$\mathrm{Hz}, \mathrm{H}-13$), 1.89-2.12 (m, 9H), 1.66 (br s, 3H, H20), 1.62 (d, $3 \mathrm{H}, J=2.9 \mathrm{~Hz}, \mathrm{H}-19), 1.32(\mathrm{~m}, 1 \mathrm{H}$, $\mathrm{H}-14), 1.00(\mathrm{~d}, 3 \mathrm{H}, J=6.8 \mathrm{~Hz}, \mathrm{H}-18), 0.87$ (d, $3 \mathrm{H}, J=6.6 \mathrm{~Hz}, \mathrm{H}-16), 0.77(\mathrm{~d}, 3 \mathrm{H}, J=6.8 \mathrm{~Hz}, \mathrm{H}-$ 17).
${ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right), \delta: \quad 212.9,201.7,135.0,125.3,100.3,86.8,56.0$ (2C), 47.8, 35.1, 34.6, 29.0, 28.3, 28.1, 26.2, 22.8, 21.4, 20.7, 18.1, 17.9.

FTIR (neat), cm^{-1} :

MS (EI):

HRMS (EI):

TLC (100% toluene), R_{f} :

2960 (s), 2930 (s), 2872 (s), 1963 (w), 1707 (s), 1454 (m), 1370 (m).
$288\left(\mathrm{M}^{+}\right), 273\left(\mathrm{M}^{+}-\mathrm{CH}_{3}\right), 270\left(\mathrm{M}^{+}-\mathrm{H}_{2} \mathrm{O}\right)$

Calcd. for $\mathrm{C}_{20} \mathrm{H}_{32} \mathrm{O}: 288.2453$
Found: 288.2451

Ketone 30: 0.39
Ketone 33: 0.57

30

34

Alcohol 34

Lithium aluminum hydride ($0.92 \mathrm{M}, 0.942 \mathrm{~mL}, 0.866 \mathrm{mmol}, 1.00$ equiv) was added slowly to a solution of the ketone $\mathbf{3 0}$ ($250 \mathrm{mg}, 0.866 \mathrm{mmol}, 1.00$ equiv) in THF (25 mL) at $-78^{\circ} \mathrm{C}$ and stirred for 3 h . Additional lithium aluminum hydride ($0.92 \mathrm{M}, 0.600$ $\mathrm{mL}, 0.552 \mathrm{mmol}, 0.637$ equiv) was added, and the reaction was stirred for an additional 1 h. Water ($55 \mu \mathrm{~L}$) was added slowly, followed by 15% aqueous sodium hydroxide ($55 \mu \mathrm{~L}$) and more water ($165 \mu \mathrm{~L}$). The organic layer was filtered through a short column of silica and concentrated. Purification by flash chromatography (20% ethyl acetate in hexanes) gave the epimeric mixture of alcohols 34 ($250 \mathrm{mg}, 99 \%$, 2.5:1 ratio of epimers, stereochemistry not determined) as a viscous oil.

Alcohols 34 (mixture of epimers)

> ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right), \delta:$
> $5.33(\mathrm{t}, 1 \mathrm{H}, \mathrm{J}=7.7 \mathrm{~Hz}, \mathrm{H}-11), 5.31(\mathrm{t}, 1 \mathrm{H}, J=7.7$ $\mathrm{Hz}, \mathrm{H}-11$ '), 5.27 (m, 1H, H-6'), 5.20 (m, 1H, H6), 3.93 (m, 1H, H-2'), 3.50 (t, 1H, J = $9.5 \mathrm{~Hz} \mathrm{H}-$ 2), 2.56 ($\mathrm{td}, 1 \mathrm{H}, J=13.2,4.1 \mathrm{~Hz}$), 2.28-2.43 (m), 2.06-2.29 (m), 2.00 (m), 1.78 (m), $1.80(\mathrm{~s}, 3 \mathrm{H}, \mathrm{H}-$
20^{\prime}), 1.79 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{H}-20$), 1.67 (m), 1.53 (m), 1.42 $(\mathrm{m}), 1.29(\mathrm{~m}), 1.05\left(\mathrm{~d}, 3 \mathrm{H}, J=6.8 \mathrm{~Hz},-\mathrm{CH}_{3}{ }^{\prime}\right)$, $1.00\left(\mathrm{~d}, 3 \mathrm{H}, J=6.8 \mathrm{~Hz},-\mathrm{CH}_{3}{ }^{\prime}\right), 0.98(\mathrm{~d}, 3 \mathrm{H}, J=$ $\left.6.9 \mathrm{~Hz},-\mathrm{CH}_{3}\right), 0.95\left(\mathrm{~d}, 3 \mathrm{H}, J=6.5 \mathrm{~Hz},-\mathrm{CH}_{3}\right)$, $0.93\left(\mathrm{~d}, 3 \mathrm{H}, J=6.9 \mathrm{~Hz},-\mathrm{CH}_{3}\right), 0.87(\mathrm{~d}, 3 \mathrm{H}, J=$ $\left.6.8 \mathrm{~Hz},-\mathrm{CH}_{3}\right)$.

FTIR (neat), cm^{-1} :
3358 (br), 2956 (s), 2930 (s), 2870 (s), 1963 (w), 1462 (m), 1440 (m), 1385 (m), 1376 (m), 1068 (w)..

MS (EI):
$290\left(\mathrm{M}^{+}\right), 275\left(\mathrm{M}^{+}-\mathrm{CH}_{3}\right)$.

HRMS (EI):
Calcd. for $\mathrm{C}_{20} \mathrm{H}_{34} \mathrm{O}: 290.2610$
Found: 290.2597

TLC (5\% EtOAc in hexanes), $R_{f}: \quad$ Alcohol 34 (major epimer): 0.04
Alcohol 34 (minor epimer): 0.04
Ketone 30: 0.29

Alcohols 35

Lithium aluminum hydride ($0.92 \mathrm{M}, 0.40 \mathrm{~mL}, 0.37 \mathrm{mmol}, 4.00$ equiv) was added slowly to a solution of the ketone 32 ($26.0 \mathrm{mg}, 0.0901 \mathrm{mmol}, 1.00$ equiv) in THF (5.5 $\mathrm{mL})$ at $-78^{\circ} \mathrm{C}$ and stirred for 2 h . Water ($14 \mu \mathrm{~L}$) was added slowly, followed by 15% aqueous sodium hydroxide ($14 \mu \mathrm{~L}$) and more water ($42 \mu \mathrm{~L}$). The reaction was diluted with hexanes (10 mL) and washed with a 1:1 mixture of saturated aqueous potassium carbonate and saturated sodium potassium tartrate (50 mL). The aqueous layer was extracted with hexanes (10 mL), and the combined organic layers were washed with a 1:1 mixture of saturated aqueous potassium carbonate and saturated sodium potassium tartrate ($2 \times 50 \mathrm{~mL}$). The organic layer was dried over sodium sulfate and concentrated to give the epimeric mixture of alcohols $\mathbf{3 5}$ ($24.9 \mathrm{mg}, 95 \%, 4: 1$ ratio of epimers, stereochemistry not determined) as a viscous oil with some slurry of solid present.

Alcohols 35 (mixture of epimers)
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$), $\delta: \quad 5.30\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-11,11^{\prime}\right), 5.05$ ($\mathrm{m}, 2 \mathrm{H}, \mathrm{H}-6,6{ }^{\prime}$), 3.97 (d, 1H, J = $13.2 \mathrm{~Hz}, \mathrm{H}-2$ '), 3.56 (m, 1H, H2), 2.39 (m), 2.25 (m), 2.17 (m), $2.00(\mathrm{~m}), 1.82-$
1.98 (m), 1.81 (d, $3 \mathrm{H}, J=1.2 \mathrm{~Hz}, \mathrm{H}-20^{\prime}$), 1.78 (d, $3 \mathrm{H}, J=1.2 \mathrm{~Hz}, \mathrm{H}-20$), 1.71 (d, $3 \mathrm{H}, J=3.0 \mathrm{~Hz}, \mathrm{H}-$ 19'), 1.68 (d, 3H, J = $3.2 \mathrm{~Hz}, \mathrm{H}-19$), 1.65 (m), $1.50(\mathrm{~m}), 1.40(\mathrm{~m}, 1 \mathrm{H}), 1.18(\mathrm{~d}, 3 \mathrm{H}, \mathrm{J}=6.9 \mathrm{~Hz}$, $\left.-\mathrm{CH}_{3}\right), 1.14(\mathrm{~m}), 1.13\left(\mathrm{~d}, 3 \mathrm{H}, J=6.7 \mathrm{~Hz},-\mathrm{CH}_{3}{ }^{\prime}\right)$, 0.99 (d, 3H, $\left.J=6.7 \mathrm{~Hz},-\mathrm{CH}_{3}{ }^{\prime}\right), 0.97(\mathrm{~d}, 3 \mathrm{H}, J=$ $\left.7.0 \mathrm{~Hz},-\mathrm{CH}_{3}\right), 0.93\left(\mathrm{~d}, 3 \mathrm{H}, \mathrm{J}=6.6 \mathrm{~Hz},-\mathrm{CH}_{3}{ }^{\prime}\right)$, 0.90 (d, 3H, $\left.J=6.9 \mathrm{~Hz},-\mathrm{CH}_{3}\right), 0.75$ (m), 0.66 (m, $1 \mathrm{H})$.

FTIR (neat), cm^{-1} :

MS (EI):
$290\left(\mathrm{M}^{+}\right), 275\left(\mathrm{M}^{+}-\mathrm{CH}_{3}\right), 247\left(\mathrm{M}^{+}-\mathrm{C}_{3} \mathrm{H}_{7}\right), 229$ $\left(\mathrm{M}^{+}-\mathrm{C}_{3} \mathrm{H}_{7}, \mathrm{H}_{2} \mathrm{O}\right)$.

HRMS (EI):
Calcd. for $\mathrm{C}_{20} \mathrm{H}_{34} \mathrm{O}: 290.2610$
Found: 290.2620

TLC (10% EtOAc in hexanes), $R_{f}: \quad$ Alcohol 35 (major epimer): 0.31
Alcohol 35 (minor epimer): 0.31

31

36

Alcohols 36

Lithium aluminum hydride ($0.92 \mathrm{M}, 0.32 \mathrm{~mL}, 0.30 \mathrm{mmol}, 5.0$ equiv) was added slowly to a solution of the ketone 31 ($17.0 \mathrm{mg}, 0.0589 \mathrm{mmol}, 1.00$ equiv) in THF (6.0 mL) at $-78^{\circ} \mathrm{C}$ and stirred for 4.0 h . Water was added slowly until no further bubbling of hydrogen gas was observed. The reaction was then diluted with hexanes (10 mL) and washed with saturated sodium potassium tartrate $(3 \times 50 \mathrm{~mL})$ and saturated aqueous sodium chloride (50 mL). The organic layer was dried over sodium sulfate and concentrated. Purification by flash column chromatography (10% ethyl acetate in hexanes) gave the epimeric mixture of alcohols $36(15.3 \mathrm{mg}, 90 \%, 3: 1$ ratio of epimers, stereochemistry not determined) as a viscous oil.

Alcohols $\mathbf{3 6}$ (mixture of epimers)

$$
\begin{aligned}
{ }^{1} \mathrm{H} \text { NMR }\left(500 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right), \delta: & 5.34\left(\mathrm{t}, 1 \mathrm{H}, J=7.2 \mathrm{~Hz}, \mathrm{H}-11^{\prime}\right), 5.27(\mathrm{t}, 1 \mathrm{H}, J= \\
& 7.2 \mathrm{~Hz}, \mathrm{H}-11), 5.10(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-6,6 \text { '), } 3.90(\mathrm{~m}, \\
& 1 \mathrm{H}, \mathrm{H}-2), 3.76(\mathrm{~d}, 1 \mathrm{H}, J=10.7 \mathrm{~Hz}, \mathrm{H}-2 \mathrm{l}), 2.63 \\
& (\mathrm{td}, 1 \mathrm{H}, J=12.8,4.4 \mathrm{~Hz}), 2.52(\mathrm{~m}, 1 \mathrm{H}), 2.35(\mathrm{q}, \\
& 2 \mathrm{H}, J=7.7 \mathrm{~Hz}), 2.20-2.30(\mathrm{~m}), 1.96-2.19(\mathrm{~m}),
\end{aligned}
$$

1.80-1.95 (m), 1.79 (m, 6H, H-20, 20^{\prime}), 1.73 (d, $3 \mathrm{H}, J=3.0 \mathrm{~Hz}, \mathrm{H}-19), 1.71(\mathrm{~d}, 3 \mathrm{H}, J=2.9 \mathrm{~Hz}, \mathrm{H}-$ 19'), 1.68 (m), 1.51-1.62 (m), 1.47 (m, 1H), 1.42 (s, 1 H$), 1.32(\mathrm{~m}, 1 \mathrm{H}), 1.22(\mathrm{~m}), 1.06-1.18(\mathrm{~m})$, $1.03\left(\mathrm{~d}, 3 \mathrm{H}, J=6.8 \mathrm{~Hz},-\mathrm{CH}_{3}\right), 1.01(\mathrm{~d}, 3 \mathrm{H}, J=$ $\left.6.8 \mathrm{~Hz},-\mathrm{CH}_{3}\right), 0.97\left(\mathrm{~d}, 3 \mathrm{H}, J=6.7 \mathrm{~Hz},-\mathrm{CH}_{3}\right)$, 0.96 (d, $\left.3 \mathrm{H}, J=6.3 \mathrm{~Hz},-\mathrm{CH}_{3}{ }^{\prime}\right), 0.92(\mathrm{~d}, 3 \mathrm{H}, J=$ $\left.6.7 \mathrm{~Hz},-\mathrm{CH}_{3}\right), 0.92\left(\mathrm{~d}, 3 \mathrm{H}, J=6.8 \mathrm{~Hz},-\mathrm{CH}_{3}\right)$.

FTIR (neat), cm^{-1} :

MS (EI):
$290\left(\mathrm{M}^{+}\right), 275\left(\mathrm{M}^{+}-\mathrm{CH}_{3}\right), 247\left(\mathrm{M}^{+}-\mathrm{C}_{3} \mathrm{H}_{7}\right), 229$ $\left(\mathrm{M}^{+}-\mathrm{C}_{3} \mathrm{H}_{7}, \mathrm{H}_{2} \mathrm{O}\right)$.

Calcd. for $\mathrm{C}_{20} \mathrm{H}_{34} \mathrm{O}: 290.2610$
Found: 290.2609

TLC (10% EtOAc in hexanes), $R_{f}: \quad$ Alcohol 36 (major epimer): 0.23
Alcohol 36 (minor epimer): 0.19

33

37

Alcohols 37

Lithium aluminum hydride ($0.92 \mathrm{M}, 3.96 \mathrm{~mL}, 3.64 \mathrm{mmol}, 5.00$ equiv) was added slowly to a solution of the ketone 33 ($210 \mathrm{mg}, 0.728 \mathrm{mmol}, 1.00$ equiv) in THF (30 mL) at $-78^{\circ} \mathrm{C}$ and stirred for 18 h . The reaction was warmed to $0^{\circ} \mathrm{C}$ for 2 h , and the excess lithium aluminum hydride was quenched by dropwise addition of water. The reaction was diluted with hexanes (30 mL) and washed with a 1:1 mixture of saturated aqueous potassium carbonate and saturated sodium potassium tartrate (100 mL). The aqueous layer was extracted with hexanes (30 mL), and the combined organic layers were washed with a 1:1 mixture of saturated aqueous potassium carbonate and saturated sodium potassium tartrate ($2 \times 100 \mathrm{~mL}$). The organic layer was dried over sodium sulfate and concentrated. Purification by flash column chromatography (10% ethyl acetate in hexanes) gave the epimeric mixture of alcohols 37 ($210 \mathrm{mg}, 99 \%, 2.5: 1$ ratio of epimers, stereochemistry not determined) as a viscous oil.

Alcohols 37 (mixture of epimers)

$$
\begin{aligned}
\left.{ }^{1} \mathrm{H} \text { NMR (} 500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right), \delta: & 5.21(\mathrm{t}, 1 \mathrm{H}, J=7.1 \mathrm{~Hz}, \mathrm{H}-11 \mathrm{l}), 5.17(\mathrm{t}, 1 \mathrm{H}, \mathrm{~J}= \\
& 7.4 \mathrm{~Hz}, \mathrm{H}-11), 5.05(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-6), 4.98(\mathrm{~m}, 1 \mathrm{H},
\end{aligned}
$$

H^{\prime} '), 3.93 (d, 1H, $J=11.1 \mathrm{~Hz}, \mathrm{H}-2$), $3.66-3.71$ (m, 2H, H-2', -OH), 1.72-2.28 (m, 16H), 1.66 (s, $3 \mathrm{H}, \mathrm{H}-20$), 1.65 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{H}-20^{\prime}$), 1.64 (d, 3H, J = $3.0 \mathrm{~Hz}, \mathrm{H}-19), 1.63$ (d, $\left.3 \mathrm{H}, J=2.8 \mathrm{~Hz}, \mathrm{H}-19^{\prime}\right)$, $1.55-1.70(\mathrm{~m}, 2 \mathrm{H}), 1.20-1.47(\mathrm{~m}, 12 \mathrm{H}), 1.00(\mathrm{~d}$, $\left.3 \mathrm{H}, J=6.7 \mathrm{~Hz}, \mathrm{H}-18{ }^{\prime}\right), 0.94(\mathrm{~d}, 3 \mathrm{H}, J=6.9 \mathrm{~Hz}$, $\left.-\mathrm{CH}_{3}\right), 0.93\left(\mathrm{~d}, 3 \mathrm{H}, J=6.6 \mathrm{~Hz},-\mathrm{CH}_{3}\right), 0.92(\mathrm{~d}$, $\left.3 \mathrm{H}, J=7.0 \mathrm{~Hz},-\mathrm{CH}_{3}\right), 0.83(\mathrm{~d}, 3 \mathrm{H}, J=6.7 \mathrm{~Hz}$, $\left.-\mathrm{CH}_{3}{ }^{\prime}\right), 0.82\left(\mathrm{~d}, 3 \mathrm{H}, J=6.7 \mathrm{~Hz},-\mathrm{CH}_{3}{ }^{\prime}\right), 0.77(\mathrm{~m}$, 1H).
${ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right), \delta:$ 202.1, 201.6, 136.9, 135.0, 125.1, 124.1, 99.7, $99.0,87.9,86.4,70.8,69.8,50.8,47.2,41.9$, $40.6,37.3,34.2,34.1,34.1,33.4,30.2,30.1$, $28.7,27.7,27.5,27.4,26.0,25.8,23.6,23.2$, $22.5,22.3,21.0,20.9,20.8,19.4,19.2,18.9$, 17.5.

FTIR (neat), cm^{-1} :

MS (EI):

HRMS (EI):

3480 (br), 2955 (s), 2929 (s), 2871 (s), 1962 (s), 1462 (m), 1376 (m), 1213 (w), 968 (w), 832 (w).
$290\left(\mathrm{M}^{+}\right), 247\left(\mathrm{M}^{+}-\mathrm{C}_{3} \mathrm{H}_{7}\right)$

Calcd. for $\mathrm{C}_{20} \mathrm{H}_{34} \mathrm{O}: 290.2610$
Found: 290.2617

TLC (10% EtOAc in hexanes), $R_{f}: \quad$ Alcohol 37 (major epimer): 0.36
Alcohol 37 (minor epimer): 0.29

34

38

Esters 38

3-(Trifluoromethyl)benzoyl chloride ($0.730 \mathrm{~mL}, 4.81 \mathrm{mmol}, 6.21$ equiv) and pyridine ($0.830 \mathrm{~mL}, 10.3 \mathrm{mmol}, 13.3$ equiv) were added to a solution of the alcohols 34 ($225 \mathrm{mg}, 0.775 \mathrm{mmol}, 1.00$ equiv, 2.5:1 ratio of epimers) in dichloromethane (25 mL) at $23^{\circ} \mathrm{C}$. After stirring for 1.5 h , the reaction was diluted with pentane (25 mL) and was washed with saturated aqueous sodium bicarbonate ($2 \times 50 \mathrm{~mL}$) and aqueous hydrochloric acid (50 mL), and again with saturated aqueous sodium bicarbonate (50 mL). The organic layer was dried over sodium sulfate and concentrated. Purification by flash column chromatography (3% ethyl acetate in hexanes) gave the esters 38 ($355 \mathrm{mg}, 99 \%, 2.5: 1$ ratio of epimers, stereochemistry not determined) as a viscous oil.

Esters 38

${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$), $\delta: \quad 8.62$ ($\mathrm{s}, 1 \mathrm{H}, \mathrm{H}-28$), $8.60(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}-28$), 8.22 (d , $1 \mathrm{H}, J=7.8 \mathrm{~Hz}, \mathrm{H}-25), 8.15(\mathrm{~d}, 1 \mathrm{H}, J=7.8 \mathrm{~Hz}, \mathrm{H}-$

25 '), 7.33 (d, 1H, $J=7.3 \mathrm{~Hz}, \mathrm{H}-23$), 7.31 (d, 1 H , $\left.J=7.8 \mathrm{~Hz}, \mathrm{H}-23^{\prime}\right), 6.87(\mathrm{t}, 1 \mathrm{H}, \mathrm{J}=7.8 \mathrm{~Hz}, \mathrm{H}-24)$, 6.85 (t, 1H, $\left.J=7.8 \mathrm{~Hz}, \mathrm{H}-244^{\prime}\right), 5.82(\mathrm{t}, 1 \mathrm{H}, J=$ $\left.7.0 \mathrm{~Hz}, \mathrm{H}-2^{\prime}\right), 5.67(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-2), 5.37(\mathrm{t}, 1 \mathrm{H}, \mathrm{J}=$ $7.5 \mathrm{~Hz}, \mathrm{H}-11), 5.33\left(\mathrm{t}, 1 \mathrm{H}, \mathrm{J}=7.5 \mathrm{~Hz}, \mathrm{H}-11^{\prime}\right)$, 5.20 ($\mathrm{m}, 2 \mathrm{H}, \mathrm{H}-6,6$ '), 2.63 ($\mathrm{m}, 1 \mathrm{H}$), 2.51 (m , $1 \mathrm{H}), 2.36(\mathrm{~m}, 1 \mathrm{H}), 2.15-2.30(\mathrm{~m}), 2.07-2.14(\mathrm{~m})$, 1.89-2.04 (m), 1.80 (s, 3H, H-20'), 1.75 (d, 3H, J $=2.9 \mathrm{~Hz}, \mathrm{H}-19), 1.74(\mathrm{~s}, 3 \mathrm{H}, \mathrm{H}-20), 1.69(\mathrm{~d}, 3 \mathrm{H}$, $J=2.9 \mathrm{~Hz}, \mathrm{H}-19$ '), 1.56-1.70 (m), 1.20-1.30 (m), $1.01\left(\mathrm{~d}, 3 \mathrm{H}, J=6.1 \mathrm{~Hz},-\mathrm{CH}_{3}\right), 0.98(\mathrm{~d}, 3 \mathrm{H}, J=$ $6.8 \mathrm{~Hz},-\mathrm{CH}_{3}$), $0.97\left(\mathrm{~d}, 3 \mathrm{H}, J=6.5 \mathrm{~Hz}, \mathrm{CH}_{3}\right)$, $0.92-1.0\left(\mathrm{~m}, 9 \mathrm{H},-\mathrm{CH}_{3}\right)$.

FTIR (neat), cm^{-1} :

MS (EI):

HRMS (EI):

2960 (s), 2932 (s), 2875 (s), 1963 (w), 1721 (s), 1617 (w), 1463 (m), 1456 (m), 1442 (m), 1378 (m), 1370 (m), 1256 (s), 1170 (s), 1133 (s), 1086 (s), 1072 (s), 926 (w), 819 (w), 757 (s), 696 (s)

462 (M^{+}), $289\left(\mathrm{M}^{+}-\mathrm{C}_{8} \mathrm{H}_{4} \mathrm{OF}_{3}\right)$.

Calcd. for $\mathrm{C}_{28} \mathrm{H}_{37} \mathrm{O}_{2} \mathrm{~F}_{3}: 462.2746$
Found: 462.2739

TLC (5% EtOAc in hexanes), R_{f} : Ester 38 (major epimer): 0.44

35

39

Esters 39

3-(Trifluoromethyl)benzoyl chloride ($0.219 \mathrm{~mL}, 1.45 \mathrm{mmol}, 17.6$ equiv) and pyridine ($0.167 \mathrm{~mL}, 2.06 \mathrm{mmol}, 25.0$ equiv) were added to a solution of the alcohols 35 ($24.0 \mathrm{mg}, 0.0826 \mathrm{mmol}, 1.00$ equiv, $4: 1$ ratio of epimers) in dichloromethane (5 mL) at $23^{\circ} \mathrm{C}$. After stirring for 7 h at $23^{\circ} \mathrm{C}$, the reaction was diluted with hexanes (20 mL) and was washed with saturated aqueous sodium bicarbonate ($3 \times 25 \mathrm{~mL}$). The organic layer was dried over sodium sulfate and concentrated. Purification by flash chromatography (2.5% ethyl acetate in hexanes) gave the esters 39 ($31.2 \mathrm{mg}, 82 \%, 4: 1$ ratio of epimers, stereochemistry not determined) as a viscous oil.

Esters 39

$$
\begin{aligned}
{ }^{1} \mathrm{H} \mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right), \delta: & 8.66(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}-28), 8.60(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}-28), 8.22(\mathrm{~d}, \\
& 1 \mathrm{H}, J=7.8 \mathrm{~Hz}, \mathrm{H}-25), 8.14(\mathrm{~d}, 1 \mathrm{H}, J=7.8 \mathrm{~Hz}, \mathrm{H}- \\
& \left.25{ }^{\prime}\right), 7.34(\mathrm{~d}, 1 \mathrm{H}, J=7.8 \mathrm{~Hz}, \mathrm{H}-23), 7.28(\mathrm{~d}, 1 \mathrm{H},
\end{aligned}
$$

$J=7.8 \mathrm{~Hz}, \mathrm{H}-23), 6.90(\mathrm{t}, 1 \mathrm{H}, J=7.8 \mathrm{~Hz}, \mathrm{H}-24)$, $6.82(\mathrm{t}, 1 \mathrm{H}, J=7.8 \mathrm{~Hz}, \mathrm{H}-24$ '), $5.90(\mathrm{~d}, 1 \mathrm{H}, J=$ $\left.12.2 \mathrm{~Hz}, \mathrm{H}-2^{\prime}\right), 5.79$ (m, 1H, H-2), 5.33 (m, 2H, $\mathrm{H}-11,11$), 5.10 (m, 1H, H-6), 4.84 (m, 1H, H$\left.6^{\prime}\right), 2.78(\mathrm{~m}, 1 \mathrm{H}), 2.51(\mathrm{~m}, 1 \mathrm{H}), 2.23-2.39(\mathrm{~m})$, 1.86-2.22 (m), 1.81 ($\mathrm{s}, 1 \mathrm{H}$), 1.73 (m, 6H, H-20, $\left.20^{\prime}\right), 1.71$ (d, $3 \mathrm{H}, J=3.2 \mathrm{~Hz}, \mathrm{H}-19$), 1.68 (m, 3H, $J=3.0 \mathrm{~Hz}, \mathrm{H}-19 '), 1.42-1.65(\mathrm{~m}), 1.25(\mathrm{~m}), 1.13$ (d, $\left.3 \mathrm{H}, J=6.7 \mathrm{~Hz},-\mathrm{CH}_{3}{ }^{\prime}\right), 1.08(\mathrm{~d}, 3 \mathrm{H}, J=6.7$ $\left.\mathrm{Hz},-\mathrm{CH}_{3}{ }^{\prime}\right), 0.94\left(\mathrm{~m}, 12 \mathrm{H},-\mathrm{CH}_{3}, \mathrm{CH}_{3}{ }^{\prime}\right)$.

FTIR (neat), cm^{-1} :

MS (EI):

HRMS (EI):
462(M^{+}), $289\left(\mathrm{M}^{+}-\mathrm{C}_{8} \mathrm{H}_{4} \mathrm{OF}_{3}\right)$.

Calcd. for $\mathrm{C}_{28} \mathrm{H}_{37} \mathrm{O}_{2} \mathrm{~F}_{3}: 462.2746$
Found: 462.2763

TLC (5% EtOAc in hexanes), $R_{f}: \quad$ Ester 39 (major epimer): 0.52
Ester 39 (minor epimer): 0.52

36

40

Esters 40

3-(Trifluoromethyl)benzoyl chloride ($78 \mu \mathrm{~L}, 0.52 \mathrm{mmol}, 10$ equiv) and pyridine ($083 \mu \mathrm{~L}, 1.0 \mathrm{mmol}, 20$ equiv) were added to a solution of the alcohols $36(15.0 \mathrm{mg}$, 0.0515 mmol , 1.00 equiv, $3: 1$ ratio of epimers) in dichloromethane (5 mL) at $23^{\circ} \mathrm{C}$. After stirring for 24 h at $23^{\circ} \mathrm{C}$, the reaction was diluted with hexanes (20 mL) and was washed with saturated aqueous potassium carbonate ($3 \times 25 \mathrm{~mL}$). The organic layer was dried over sodium sulfate and concentrated. Purification by flash chromatography (2% ethyl acetate in hexanes) gave the esters 40 ($15.6 \mathrm{mg}, 65 \%, 3: 1$ ratio of epimers, stereochemistry not determined) as a viscous oil.

Esters 40

$$
\begin{aligned}
\left.{ }^{1} \mathrm{H} \text { NMR (500 MHz, C6 } \mathrm{D}_{6}\right), \delta: & 8.64(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}-28 \text { '), } 8.59(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}-28), 8.22(\mathrm{~d}, \\
& \left.1 \mathrm{H}, J=7.9 \mathrm{~Hz}, \mathrm{H}-25)^{\prime}\right), 8.17(\mathrm{~d}, 1 \mathrm{H}, J=7.8 \mathrm{~Hz}, \\
& \mathrm{H}-25), 7.32(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-23,23 \text { '), } 6.85(\mathrm{t}, 1 \mathrm{H}, J=
\end{aligned}
$$

$\left.7.8 \mathrm{~Hz}, \mathrm{H}-24), 6.84(\mathrm{t}, 1 \mathrm{H}, J=7.8 \mathrm{~Hz}, \mathrm{H}-24)^{\prime}\right)$, 5.70 (m, 2H, H-2, 2 '), 5.35 (t, $1 \mathrm{H}, J=6.9 \mathrm{~Hz}, \mathrm{H}-$ $\left.11^{\prime}\right), 5.28(\mathrm{t}, 1 \mathrm{H}, J=6.8 \mathrm{~Hz}, \mathrm{H}-11), 5.06(\mathrm{~m}, 1 \mathrm{H}$, H-6), $5.01(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-6$ '), $2.83(\mathrm{~m}, 1 \mathrm{H}), 2.62(\mathrm{~m}$, $2 \mathrm{H}), 2.20-2.41(\mathrm{~m}), 1.98-2.08(\mathrm{~m}), 1.81(\mathrm{~m}, 6 \mathrm{H}$, $\mathrm{H}-20,19$ '), 1.74 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{H}-20^{\prime}$), 1.72 (d, 3H, $J=$ $3.0 \mathrm{~Hz}, \mathrm{H}-19), 1.40-1.60(\mathrm{~m}), 1.10(\mathrm{~m}, 1 \mathrm{H}), 1.07$ $\left(\mathrm{d}, 3 \mathrm{H}, J=6.4 \mathrm{~Hz},-\mathrm{CH}_{3}\right), 1.04(\mathrm{~d}, 3 \mathrm{H}, J=6.8$ $\left.\mathrm{Hz},-\mathrm{CH}_{3}{ }^{\prime}\right), 0.97\left(\mathrm{~m}, 12 \mathrm{H},-\mathrm{CH}_{3},-\mathrm{CH}_{3}{ }^{\prime}\right)$.

FTIR (neat), cm^{-1} :

MS (EI):

HRMS (EI):

TLC (100% hexanes), R_{f} :

2959 (s), 2931 (s), 2875 (s), 1960 (w), 1721 (s), 1617 (w), 1463 (m), 1441 (m), 1370 (m), 1334 (s), 1300 (m), 1256 (s), 1170 (s), 1133 (s), 1086 (s), 1072 (s), 925 (m), 757 (s), 696 (s).

462(M^{+}), $289\left(\mathrm{M}^{+}-\mathrm{C}_{8} \mathrm{H}_{4} \mathrm{OF}_{3}\right)$.

Calcd. for $\mathrm{C}_{28} \mathrm{H}_{37} \mathrm{O}_{2} \mathrm{~F}_{3}: 462.2746$
Found: 462.2757

Ester 40 (major epimer): 0.03
Ester 40 (minor epimer): 0.03

37

41

Esters 41

3-(Trifluoromethyl)benzoyl chloride ($0.544 \mathrm{~mL}, 3.61 \mathrm{mmol}, 5.00$ equiv) and pyridine ($0.584 \mathrm{~mL}, 7.22 \mathrm{mmol}, 10.0$ equiv) were added to a solution of the alcohols 37 ($210 \mathrm{mg}, 0.722 \mathrm{mmol}, 1.00$ equiv, 2.5:1 ratio of epimers) in dichloromethane (10 mL) at $23^{\circ} \mathrm{C}$. After stirring for 36 h at $23^{\circ} \mathrm{C}$, the reaction was diluted with hexanes (20 mL) and was washed with saturated aqueous sodium bicarbonate $(3 \times 50 \mathrm{~mL})$. The organic layer was dried over sodium sulfate and concentrated. Purification by flash chromatography (2% ethyl acetate in hexanes) gave the esters 41 ($322 \mathrm{mg}, 97 \%, 2.5: 1$ ratio of epimers, stereochemistry not determined) as a viscous oil.

Esters 41

$$
\begin{aligned}
{ }^{1} \mathrm{H} \text { NMR }\left(500 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right), \delta: & 8.62(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}-28 '), 8.61(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}-28), 8.21(\mathrm{~d}, \\
& 1 \mathrm{H}, J=7.9 \mathrm{~Hz}, \mathrm{H}-25), 8.18(\mathrm{~d}, 1 \mathrm{H}, J=7.9 \mathrm{~Hz}, \mathrm{H}- \\
& 25 '), 7.32(\mathrm{~d}, 1 \mathrm{H}, J=7.8 \mathrm{~Hz}, \mathrm{H}-23), 7.32(\mathrm{~d}, 1 \mathrm{H},
\end{aligned}
$$

$\left.J=7.8 \mathrm{~Hz}, \mathrm{H}-23^{\prime}\right), 6.88(\mathrm{t}, 1 \mathrm{H}, J=7.8 \mathrm{~Hz}, \mathrm{H}-24)$, 6.87 (t, 1H, $J=5.6 \mathrm{~Hz}, \mathrm{H}-24$ '), $5.95(\mathrm{~d}, 1 \mathrm{H}, J=$ $\left.12.0 \mathrm{~Hz}, \mathrm{H}-2^{\prime}\right), 5.91(\mathrm{~d} 1 \mathrm{H}, J=11.8 \mathrm{~Hz}, \mathrm{H}-2)$, 5.41 (m, 2H, H-11, 11 '), 5.20 (m, 1H, H-6), 5.08 (m, 1H, H-6'), 1.20-2.90 (m, 30H), 1.77 (br s, 3H, $\mathrm{H}-20$), 1.71 (br s, 3H, H-20'), 1.69 (d, 3H, $J=3.0$ Hz, H-19), 1.68 (d, 3H, J = $2.9 \mathrm{~Hz}, \mathrm{H}-19$ '), 1.07 (d, $3 \mathrm{H}, J=3.7 \mathrm{~Hz},-\mathrm{CH}_{3}$), 1.06 (d, $3 \mathrm{H}, J=3.6$ $\left.\left.\mathrm{Hz},-\mathrm{CH}_{3}\right), 1.03\left(\mathrm{~d}, 3 \mathrm{H}, J=6.9 \mathrm{~Hz},-\mathrm{CH}_{3}\right)^{\prime}\right), 0.92$ (d, $3 \mathrm{H}, J=6.6 \mathrm{~Hz},-\mathrm{CH}_{3}$), $0.92(\mathrm{~d}, 3 \mathrm{H}, J=7.0$ $\left.\mathrm{Hz},-\mathrm{CH}_{3}{ }^{\prime}\right), 0.87\left(\mathrm{~d}, 3 \mathrm{H}, J=6.9 \mathrm{~Hz},-\mathrm{CH}_{3}{ }^{\prime}\right)$.
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$), $\delta: \quad 202.7,201.6,165.3,164.9,136.7,134.7,132.7$, $131.8,131.6,131.2\left(\mathrm{q}, 2 \mathrm{C},{ }^{2} \mathrm{~J}_{\mathrm{C}-\mathrm{F}}=32.3 \mathrm{~Hz}\right)$, $129.2\left(\mathrm{q}, 1 \mathrm{C},{ }^{4} \mathrm{~J}_{\mathrm{C}-\mathrm{F}}=1.5 \mathrm{~Hz}\right), 129.0,129.0,126.7$ (q, 2C, $\left.{ }^{3} J_{\mathrm{C}-\mathrm{F}}=4.0 \mathrm{~Hz}\right), 126.5\left(\mathrm{q}, 2 \mathrm{C},{ }^{3} \mathrm{~J}_{\mathrm{C}-\mathrm{F}}=3.7\right.$ $\mathrm{Hz}), 125.9,124.7,123.7\left(\mathrm{q}, 2 \mathrm{C},{ }^{1} \mathrm{~J}_{\mathrm{C}-\mathrm{F}}=272.4\right.$ $\mathrm{Hz}), 100.1,99.5,88.2,85.8,74.5,74.4,50.0$, $45.7,40.1,38.0,36.8,34.8,34.6,34.3,32.8$, 31.6, 29.9, 28.9, 28.7, 28.7, 27.7, 26.3, 23.6, $23.0,22.6,21.8,21.2,20.7,20.3,19.8,19.2$, 18.5, 17.7, 14.0.

FTIR (neat), cm^{-1} :
2959 (s), 2932 (s), 1964 (w), 1721 (s), 1617 (m), 1462 (m), 1443 (m), 1334 (s$), 1256$ (s$), 1170$ (s$)$,

1133 (s), 1086 (s), 1072 (s), 921 (m), 819 (m), 756 (s), 695 (s).

MS (EI):
462(M^{+}).

HRMS (EI):
Calcd. for $\mathrm{C}_{28} \mathrm{H}_{37} \mathrm{O}_{2} \mathrm{~F}_{3}: 462.2746$
Found: 462.2737

TLC (5% EtOAc in hexanes), $R_{f}: \quad$ Ester 41 (major epimer): 0.42
Ester 41 (minor epimer) 0.31

38

43

Epoxides 42 and 43

The esters 38 ($360 \mathrm{mg}, 0.778 \mathrm{mmol}, 1.00$ equiv), N-methylcarbazole (141 mg , $0.778 \mathrm{mmol}, 1.00$ equiv), and 1,4 -cyclohexadiene ($1,4-\mathrm{CHD}, 7.36 \mathrm{~mL}, 77.8 \mathrm{mmol}, 100$ equiv, 0.200 M) were dissolved in THF-water ($350 \mathrm{~mL}, 10: 1 \mathrm{v} / \mathrm{v}$) in a pyrex reaction vessel and degassed by purging the vigorously stirred solution with argon for 10 min at $23^{\circ} \mathrm{C}$. The reaction was irradiated at $40^{\circ} \mathrm{C}$ for 7 h . After cooling to $23^{\circ} \mathrm{C}$, the reaction was diluted with hexanes $(100 \mathrm{~mL})$ and washed with saturated sodium bicarbonate (3 x 100 mL). The organic layers were dried over sodium sulfate and concentrated. Purification by flash column chromatography (100% hexanes) gave an inseparable mixture of alkene products (170 mg). The crude mixture of alkenes ($170 \mathrm{mg}, 0.620 \mathrm{mmol}, 1.00$ equiv) was dissolved in dichloromethane (2.5 mL) and cooled to $0^{\circ} \mathrm{C}$. Sodium bicarbonate ($270 \mathrm{mg}, 3.21 \mathrm{mmol}, 3.30$ equiv) was added, followed by addition of m chloroperoxybenzoic acid ($65 \%, 500 \mathrm{mg}, 1.88 \mathrm{mmol}, 3.04$ equiv), and the reaction was stirred at $0^{\circ} \mathrm{C}$ for 2.3 h . The excess oxidant was quenched by adding saturated aqueous sodium thiosulfate $(10 \mathrm{~mL})$ to the reaction and stirring for 40 min at $0^{\circ} \mathrm{C}$. The mixture
was diluted with hexanes (10 mL), and the layers were separated. The organic layer was washed with saturated aqueous sodium bicarbonate ($2 \times 10 \mathrm{~mL}$), dried over sodium sulfate, and concentrated. Purification by flash column chromatography (100% toluene) gave the epoxide 42 ($13.2 \mathrm{mg}, 6 \%$ for two steps) and the epoxide 43 ($17.8 \mathrm{mg}, 8 \%$ for two steps), along with lesser amounts of inseparable epoxides as minor products.

Epoxide 42

${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right), \delta:$	$2.72(\mathrm{~d}, 1 \mathrm{H}, J=8.8 \mathrm{~Hz}, \mathrm{H}-11), 2.56(\mathrm{~m}, 1 \mathrm{H}), 2.36$
	$(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-4), 2.15(\mathrm{~m}, 1 \mathrm{H}), 2.08(\mathrm{~m}, 1 \mathrm{H}), 1.83$
	$(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-10,15), 1.25-1.60(\mathrm{~m}, 9 \mathrm{H}), 1.27(\mathrm{~s}$,
	$3 \mathrm{H}, \mathrm{H}-19), 1.15(\mathrm{~m}, 1 \mathrm{H}), 0.95(\mathrm{~m}, 2 \mathrm{H}), 0.94(\mathrm{~d}$,
	$3 \mathrm{H}, J=6.9 \mathrm{~Hz}, \mathrm{H}-16), 0.88(\mathrm{~d}, 3 \mathrm{H}, J=6.4 \mathrm{~Hz}, \mathrm{H}-$
	$18), 0.82(\mathrm{~s}, 3 \mathrm{H}, \mathrm{H}-20), 0.79(\mathrm{~d}, 3 \mathrm{H}, J=6.8 \mathrm{~Hz}$,
	$\mathrm{H}-17)$.

FTIR (neat), cm^{-1} :

MS (EI):

HRMS (EI):

Found: 290.2612

Epoxide 43

${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$), $\delta: \quad 3.24(\mathrm{t}, 1 \mathrm{H}, J=2.4 \mathrm{~Hz}, \mathrm{H}-6), 2.35(\mathrm{~d}, 1 \mathrm{H}, J=8.6$
$\mathrm{Hz}, \mathrm{H}-11), 2.12(\mathrm{~m}, 3 \mathrm{H}), 2.03(\mathrm{~m}, 1 \mathrm{H}), 1.89(\mathrm{~m}$, $1 \mathrm{H}, \mathrm{H}-4), 1.79(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}=13.4,8.4 \mathrm{~Hz}), 1.70$ $(\mathrm{m}, 2 \mathrm{H}), 1.53(\mathrm{~m}, 1 \mathrm{H}), 1.40(\mathrm{~m}, 2 \mathrm{H}), 1.22-1.39$ (m, 6H), 0.98 (d, 3H, J = 7.4 Hz, H-19), 0.95 (d, $3 \mathrm{H}, J=6.8 \mathrm{~Hz}, \mathrm{H}-16), 0.86(\mathrm{~d}, 3 \mathrm{H}, J=6.7 \mathrm{~Hz}, \mathrm{H}-$ 18), 0.83 (d, $3 \mathrm{H}, J=6.7 \mathrm{~Hz}, \mathrm{H}-17$), 0.78 ($\mathrm{s}, 3 \mathrm{H}$, $\mathrm{H}-20$).

FTIR (neat), cm^{-1} :

MS (EI):

HRMS (EI):

2954 (s), 2870 (s), 1462 (m), 1377 (m).
$290\left(\mathrm{M}^{+}\right), 272\left(\mathrm{M}^{+}-\mathrm{H}_{2} \mathrm{O}\right)$.

Calcd. for $\mathrm{C}_{20} \mathrm{H}_{34} \mathrm{O}: 290.2610$
Found: 290.2610

TLC (100% toluene), R_{f} :

Epoxide 42: 0.34
Epoxide 43: 0.41

Allylic Alcohol 44

Lithium diethylamide solution was prepared immediately before use by adding n butyllithium (1.37 M in hexanes, $5.00 \mathrm{~mL}, 6.85 \mathrm{mmol}$) to a solution of diethylamine ($0.780 \mathrm{~mL}, 7.54 \mathrm{mmol}$) in diethyl ether $(20 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$ and stirring for 20 min . The resulting solution (0.268 M in diethyl ether) was stable for more than 24 h at $0^{\circ} \mathrm{C}$.

The epoxide 43 ($6.0 \mathrm{mg}, 0.021 \mathrm{mmol}, 1.0$ equiv) was dissolved in diethyl ether $(1.5 \mathrm{~mL})$ and cooled to $0^{\circ} \mathrm{C}$. Freshly prepared lithium diethylamide (0.268 M in diethyl ether, $10.0 \mathrm{~mL}, 2.68 \mathrm{mmol}$, excess) was added to the epoxide 43 at $0^{\circ} \mathrm{C}$. The solution was stirred at $0^{\circ} \mathrm{C}$ for 10 min , and then warmed to $23^{\circ} \mathrm{C}$ and stirred for 15 h . Hexanes $(25 \mathrm{~mL})$ was added to the reaction, and the resulting mixture was washed with aqueous hydrochloric acid ($1.0 \mathrm{~N}, 25 \mathrm{~mL}$) and saturated aqueous sodium bicarbonate (25 mL). The organic layer was dried over sodium sulfate and concentrated. Purification by flash column chromatography (10% ethyl acetate in hexanes) gave the allylic alcohol 44 as a viscous oil.

$$
\begin{aligned}
{ }^{1} \mathrm{H} \text { NMR }\left(400 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right), \delta: \quad & 4.82(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}-6), 2.95(\mathrm{~d}, 1 \mathrm{H}, J=8.3 \mathrm{~Hz}, \mathrm{H}-11), \\
& 2.39(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-3), 2.38(\mathrm{~m}, 2 \mathrm{H}), 1.93(\mathrm{dd}, 1 \mathrm{H}, J \\
& =14.6,3.9 \mathrm{~Hz}), 1.63-1.89(\mathrm{~m}, 4 \mathrm{H}), 1.61(\mathrm{~m}, 1 \mathrm{H}),
\end{aligned}
$$

$1.58(\mathrm{~s}, 3 \mathrm{H}, \mathrm{H}-19), 1.52(\mathrm{~m}, 1 \mathrm{H}), 1.30-1.44(\mathrm{~m}$, $4 \mathrm{H}), 1.10\left(\mathrm{~d}, 3 \mathrm{H}, J=65.7 \mathrm{~Hz},-\mathrm{CH}_{3}\right), 0.95-1.08$ (m, 2H), 0.94 (s, 3H, H-20), 0.93 (d, 3H, J $=6.9$ $\left.\mathrm{Hz},-\mathrm{CH}_{3}\right), 0.78\left(\mathrm{~d}, 3 \mathrm{H}, J=6.8 \mathrm{~Hz},-\mathrm{CH}_{3}\right), 0.58$ ($\mathrm{s}, 1 \mathrm{H},-\mathrm{OH}$).

FTIR (neat), cm^{-1} :

MS (EI):

HRMS (EI):

3394 (br), 2953 (s), 2925 (s), 2869 (s), 1709 (w), 1456 (m), 1385 (m), 1376 (m), 1028 (w), 1009 (w).
$290\left(\mathrm{M}^{+}\right), 272\left(\mathrm{M}^{+}-\mathrm{H}_{2} \mathrm{O}\right)$.

Calcd. for $\mathrm{C}_{20} \mathrm{H}_{34} \mathrm{O}: 290.2610$
Found: 290.2612

TLC (20\% EtOAc in hexanes), $R_{f}: \quad$ Allylic Alcohol 44: 0.37
Epoxide 43: 0.61

44

45

Epoxyalcohol 45

The allylic alcohol 44 ($3.5 \mathrm{mg}, 0.012 \mathrm{mmol}, 1.00$ equiv) was dissolved in dichloromethane (12 mL) and cooled to $-14^{\circ} \mathrm{C}$. Sodium bicarbonate ($24 \mathrm{mg}, 0.28 \mathrm{mmol}$, 5.0 equiv) was added, followed by addition of m-chloroperoxybenzoic acid $(65 \%, 9.6 \mathrm{mg}$, $0.036 \mathrm{mmol}, 3.0$ equiv). After stirring for 2 h at $-14^{\circ} \mathrm{C}$, additional sodium bicarbonate ($5.0 \mathrm{mg}, 0.060 \mathrm{mmol}, 5.0$ equiv) and m-chloroperoxybenzoic acid ($65 \%, 3.0 \mathrm{mg}, 0.012$ mmol, 1.0 equiv) were added, and the solution was stirred for 3.3 h at $-14^{\circ} \mathrm{C}$. Saturated aqueous sodium thiosulfate (12 mL) was added to the reaction, and the biphasic mixture was stirred until all excess oxidant was reduced (typically 1 h). The layers were separated, and the organic layer was washed with saturated aqueous sodium bicarbonate ($2 \times 25 \mathrm{~mL}$). The organic layer was dried over sodium sulfate and concentrated. Purification by flash column chromatography (5% ethyl acetate in hexanes) gave the sensitive epoxyalcohol 45 $(1.5 \mathrm{mg}, 41 \%)$ as a crystalline solid $\left(\mathrm{mp} 88^{\circ} \mathrm{C}\right)$.
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$), $\delta: \quad 4.77(\mathrm{td}, 1 \mathrm{H}, \mathrm{J}=10.3,5.4 \mathrm{~Hz}, \mathrm{H}-6), 2.80(\mathrm{~d}, 1 \mathrm{H}$, $J=9.9 \mathrm{~Hz},-\mathrm{OH}), 2.61(\mathrm{~d}, 1 \mathrm{H}, J=8.5 \mathrm{~Hz}, \mathrm{H}-11)$, 2.19 (m, 1H, H-4), 1.83-1.97 (m, 2H), 1.77 (dd,
$1 \mathrm{H}, J=13.0,8.5 \mathrm{~Hz}), 1.63-1.71(\mathrm{~m}, 3 \mathrm{H}), 1.62(\mathrm{~s}$, $3 \mathrm{H}, \mathrm{H}-19), 1.48(\mathrm{~m}, 2 \mathrm{H}), 1.08-1.40(\mathrm{~m}, 7 \mathrm{H}), 0.89$ $\left(\mathrm{d}, 3 \mathrm{H}, J=6.9 \mathrm{~Hz},-\mathrm{CH}_{3}\right), 0.86(\mathrm{~d}, 3 \mathrm{H}, J=6.4$ $\left.\mathrm{Hz},-\mathrm{CH}_{3}\right), 0.73(\mathrm{~s}, 3 \mathrm{H}, \mathrm{H}-20), 0.71(\mathrm{~d}, 3 \mathrm{H}, \mathrm{J}=$ 6.8 Hz, $-\mathrm{CH}_{3}$).

FTIR (neat), cm^{-1} :
3506 (br), 2956 (s), 2834 (s), 1458 (m), 1421 (m), 1386 (m), 1379 (m), 1234 (m), 1031 (m), 1010 (m), 748 (m).

TLC (20% EtOAc in hexanes), $R_{f}: \quad$ Epoxyalcohol 45: 0.45

45

46

Epoxyketone 46

Oxalyl chloride ($60 \mu \mathrm{~L}, 0.69 \mathrm{mmol}, 150$ equiv) was dissolved in dichloromethane (3.0 mL) and cooled to $-78^{\circ} \mathrm{C}$. Dimethyl sulfoxide ($0.10 \mathrm{~mL}, 1.4 \mathrm{mmol}, 300$ equiv) was added dropwise to the oxalyl chloride, and the resulting solution was stirred for 10 min at $-78^{\circ} \mathrm{C}$. A solution of the epoxyalcohol 45 ($1.4 \mathrm{mg}, 0.0046 \mathrm{mmol}, 1.00$ equiv) in dichloromethane (1.5 mL) was added to the oxalyl chloride-dimethyl sulfoxide reaction, and the resulting solution was stirred 40 min at $-78^{\circ} \mathrm{C}$, followed by stirring for 40 min at $-14^{\circ} \mathrm{C}$. The reaction was then poured into a $1: 1$ mixture of hexanes and water $(10 \mathrm{~mL})$, and the layers were separated. The aqueous layer was extracted with hexanes (10 mL), and the combined organic layers were washed with saturated aqueous sodium chloride (10 mL) and dried over sodium sulfate. Concentration and purification of the residue by flash column chromatography (2% ethyl acetate in hexanes) gave the epoxyketone 46 (1.2 mg , $86 \%)$ as a crystalline solid ($\mathrm{mp} 69^{\circ} \mathrm{C}$).

[^2]$1 \mathrm{H}, J=14.8,11.6 \mathrm{~Hz}, \mathrm{H}-5), 1.80(\mathrm{~s}, 3 \mathrm{H}, \mathrm{H}-19)$, 1.64-1.72 (m, 3H), 1.48-1.56 (m, 2H), 1.12-1.43 $(\mathrm{m}, 8 \mathrm{H}), 0.87\left(\mathrm{~d}, 3 \mathrm{H}, J=6.9 \mathrm{~Hz},-\mathrm{CH}_{3}\right), 0.78(\mathrm{~d}$, $\left.3 \mathrm{H}, J=6.8 \mathrm{~Hz},-\mathrm{CH}_{3}\right), 0.71(\mathrm{~d}, 3 \mathrm{H}, J=6.4 \mathrm{~Hz}$, $-\mathrm{CH}_{3}$), 0.69 (s, 3H, H-20).

FTIR (neat), cm^{-1} :

MS (EI):

HRMS (EI):

3372 (w), 2957 (s), 2929 (s), 2873 (s), 1695 (s), 1456 (m), 1413 (m), 1388 (m), 1379 (m), 1011 (m), 873 (m), 858 (m), 747 (m).
$304\left(\mathrm{M}^{+}\right), 286\left(\mathrm{M}^{+}-\mathrm{H}_{2} \mathrm{O}\right)$.

Calcd. for $\mathrm{C}_{20} \mathrm{H}_{32} \mathrm{O}_{2}: 304.2402$
Found: 304.2397

TLC (10% EtOAc in hexanes), R_{f} : Epoxyketone 46: 0.48

46

47

Basmenone 47

An activated silylating reagent was prepared by adding trimethylsilyl chloride (TMSCl, $5.2 \mathrm{~mL}, 41 \mathrm{mmol}$) to triethylamine ($9.0 \mathrm{~mL}, 64 \mathrm{mmol}$) and stirring the resulting suspension for 20 min at $23^{\circ} \mathrm{C}$. Centrifugation gave a homogeneous, colorless supernatant solution with a white precipitate. Lithium diisopropylamide (LDA) was prepared immediately before use by adding n-butyllithium ($1.37 \mathrm{M}, 1.7 \mathrm{~mL}, .2 .4 \mathrm{mmol}$) to a solution of diisopropylamine ($0.40 \mathrm{~mL}, 2.9 \mathrm{mmol}$) in THF $(8.0 \mathrm{~mL})$ at $-78^{\circ} \mathrm{C}$. The solution was warmed to $0^{\circ} \mathrm{C}$ for 20 min and then stored at $-78^{\circ} \mathrm{C}$ until needed.

The epoxyketone 46 ($0.2 \mathrm{mg}, 0.7 \mu \mathrm{~mol}, 1.00$ equiv) was dissolved in THF (2.0 mL) and cooled to $-78^{\circ} \mathrm{C}$. TMSCl-triethylamine supernatant solution ($0.10 \mathrm{~mL}, 400$ equiv) was added to the epoxyketone, followed by addition of LDA ($0.10 \mathrm{~mL}, 33$ equiv). The reaction was stirred for 15 min at $-78^{\circ} \mathrm{C}$ and quenched with a $1: 1$ mixture of triethylamine and methanol $(0.25 \mathrm{~mL})$. After stirring 15 min at $-78^{\circ} \mathrm{C}$, the reaction was diluted with hexanes $(10 \mathrm{~mL})$ and washed with 4% aqueous sodium bicarbonate (10 mL). The organic layer was dried over sodium sulfate and concentrated to give the corresponding labile trimethylsilyl enol ether. The enol ether was immediately dissolved in
dichloromethane (1.0 mL) and cooled to $-78^{\circ} \mathrm{C}$. Pyridine (0.10 mL , excess) was added to the enol ether, followed by addition of phenylselenenyl chloride (20 mg , excess) at $-78^{\circ} \mathrm{C}$. The reaction was warmed to $23^{\circ} \mathrm{C}$ for 10 min , and poured into a $1: 1$ mixture of hexanes and 4% aqueous sodium bicarbonate (10 mL), and the layers were separated. The organic layer was washed with saturated aqueous sodium chloride (10 mL) and dried over sodium sulfate. Concentration and purification of the residue by flash column chromatography (2% ethyl acetate in hexanes) gave the α-phenylselenoketone as a single diastereomer (stereochemistry not determined). The α-phenylselenoketone was then dissolved in dichloromethane (0.50 mL) and cooled to $-78^{\circ} \mathrm{C}$. Sodium bicarbonate (5.0 mg , excess) and m-chloroperoxybenzoic acid (3.0 mg , excess) were added to the α phenylselenoketone, and the reaction was stirred at $-78^{\circ} \mathrm{C}$ for 40 min . Methyl sulfide (0.20 mL , excess) was added to quench the remaining oxidant, and the solution was stirred for 2.5 h at $23^{\circ} \mathrm{C}$. The reaction was diluted with hexanes (10 mL) and washed with saturated aqueous sodium bicarbonate ($2 \times 10 \mathrm{~mL}$). The organic layer was dried over sodium sulfate and concentrated. Purification by preparative thin-layer chromatography (5% ethyl acetate in hexanes) gave the basmenone $47(<0.2 \mathrm{mg})$ as a viscous oil.
${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right), \delta:$
5.77 (s, 1H, H-5), 2.48 (d, 1H, J = $9.3 \mathrm{~Hz}, \mathrm{H}-11$), $2.20(\mathrm{~d}, 1 \mathrm{H}, J=20.2 \mathrm{~Hz}, \mathrm{H}-3), 2.08(\mathrm{dd}, 1 \mathrm{H}, J=$ $20.2,10.0 \mathrm{~Hz}, \mathrm{H}-3$), 1.86 (dd, $1 \mathrm{H}, J=13.8,9.3$ $\mathrm{Hz}), 1.83(\mathrm{~s}, 3 \mathrm{H}, \mathrm{H}-18), 1.78(\mathrm{~m}, 1 \mathrm{H}), 1.72(\mathrm{~s}$, $3 \mathrm{H}, \mathrm{H}-19$), $1.50-1.70$ (m , obscured by residual $\mathrm{H}_{2} \mathrm{O}$), 1.34-1.46 (m, 2H), 1.21-1.30 (m, obscured by residual hydrocarbons), $0.88(\mathrm{~s}, 3 \mathrm{H}, \mathrm{H}-20), 0.86$
(d, $3 \mathrm{H}, J=6.9 \mathrm{~Hz}, \mathrm{H}-16$), $0.69(\mathrm{~d}, 3 \mathrm{H}, J=6.9 \mathrm{~Hz}$, $\mathrm{H}-17$).

$$
\text { MS (EI): } 302\left(\mathrm{M}^{+}\right) .
$$

HRMS (EI):

Calcd. for $\mathrm{C}_{20} \mathrm{H}_{30} \mathrm{O}_{2}: 302.2246$
Found: 302.2242

TLC (10% EtOAc in hexanes), R_{f} : Intermediate Trimethylsilyl Enol Ether: 0.62
Intermediate α-Phenylselenoketone: 0.42
TLC (40\% EtOAc in hexanes), R_{f} : Intermediate α-Phenylselenoxide Ketone: 0.06
TLC (5\% EtOAc in hexanes), R_{f} : Basmenone 47: 0.17

41

50

51

Alkenes 50 and 51

Esters 41 ($90.0 \mathrm{mg}, 0.195 \mathrm{mmol}, 1.00$ equiv), N-methylcarbazole (39.0 mg , $0.215 \mathrm{mmol}, 1.10$ equiv), and 1,4-cyclohexadiene (1,4-CHD, $1.80 \mathrm{~mL}, 19.0 \mathrm{mmol}, 100$ equiv, 0.200 M) were dissolved in THF-water ($99.0 \mathrm{~mL}, 10: 1 \mathrm{v} / \mathrm{v}$) in a pyrex reaction vessel and purged by bubbling argon through the vigorously stirred solution for 5 min at $23^{\circ} \mathrm{C}$. The reaction was heated to $55^{\circ} \mathrm{C}$ prior to irradiation and placed in a water bath of the same temperature. The reaction was irradiated at $55^{\circ} \mathrm{C}$ for 4 h . After cooling to room temperature, the reaction was diluted with hexanes $(100 \mathrm{~mL})$ and washed with saturated sodium bicarbonate ($3 \times 100 \mathrm{~mL}$). The organic layers were dried over sodium sulfate and concentrated. Purification by flash column chromatography (100% hexanes) gave an inseparable mixture of three alkene products 50 and $51(26.9 \mathrm{mg}, 51 \%, \sim 1: 1: 1$ molar ratio).

Alkenes 50 and 51 (inseparable mixture with complex overlapping ${ }^{1} \mathrm{H}$ NMR signals)

[^3](m), 2.24-2.36 (m), 1.20-1.90 (m), 1.67 (dd, $J=$ $\left.2.0,1.0 \mathrm{~Hz},-\mathrm{CH}_{3}\right), 1.16\left(\mathrm{~d}, J=6.5 \mathrm{~Hz},-\mathrm{CH}_{3}\right)$, 1.09 (d, $J=7.1 \mathrm{~Hz},-\mathrm{CH}_{3}$), 1.07 (bs, $-\mathrm{CH}_{3}$), 1.06 $\left(\mathrm{d}, 6.4 \mathrm{~Hz},-\mathrm{CH}_{3}\right), 1.03\left(\mathrm{~d}, J=6.5 \mathrm{~Hz},-\mathrm{CH}_{3}\right)$, $1.03\left(\mathrm{~d}, J=6.5 \mathrm{~Hz},-\mathrm{CH}_{3}\right), 1.02(\mathrm{~d}, J=6.6 \mathrm{~Hz}$, $-\mathrm{CH}_{3}$), $1.00-1.06\left(\mathrm{~m},-\mathrm{CH}_{3}\right), 0.96(\mathrm{~d}, J=6.6 \mathrm{~Hz}$, $-\mathrm{CH}_{3}$), 0.96 ($\mathrm{d}, \mathrm{J}=6.6 \mathrm{~Hz},-\mathrm{CH}_{3}$), $0.96\left(\mathrm{~s},-\mathrm{CH}_{3}\right)$, $0.95\left(\mathrm{~d}, J=6.7 \mathrm{~Hz},-\mathrm{CH}_{3}\right), 0.94(\mathrm{~d}, J=6.6 \mathrm{~Hz}$, $\left.-\mathrm{CH}_{3}\right), 0.83\left(\mathrm{~s},-\mathrm{CH}_{3}\right)$.
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$), $\delta: \quad 152.0,151.5,138.9,131.2,117.2,116.9,61.7$, 57.5, 57.2, 54.0, 53.9, 53.1, 52.1, 52.0, 50.1, 46.6, 46.3, 44.5, 44.0, 43.7, 41.1, 40.9, 40.8, $40.6,39.5,38.5,38.0,37.2,36.6,36.3,36.1$, $35.1,34.1,33.5,32.3,31.8,31.5,30.9,28.1$, 27.6, 27.5, 26.2, 25.9, 25.3, 25.3, 25.2, 24.4, 23.6, 23.2, 22.7, 22.6, 22.4, 22.3, 21.6, 21.0, 20.9, 20.2, 19.4, 18.8, 14.0.

FTIR (neat), cm^{-1} :
2951 (s), 2868 (s), 1453 (m), 1383 (m), 1376 (m), 1366 (m).

TLC (100% hexanes), R_{f} :
Ester 41: 0.08
Alkenes 50 and 51: 0.66

Alkene 50

The mixture of three alkene products 50 and $51(\sim 1: 1: 1$ molar ratio, $145 \mathrm{mg}, 0.529$ mmol, 1.00 equiv) as obtained from the cyclization of ester 41 was dissolved in heptane $(10 \mathrm{~mL})$ containing thiophenol $(4.0 \mathrm{~mL})$ and 2,2'-azobis-(2-methylpropionitrile) (AIBN, $100 \mathrm{mg}, 0.609 \mathrm{mmol}, 1.15$ equiv). The reaction mixture was thoroughly degassed by three cycles of freezing (liquid nitrogen bath) followed by thawing under vacuum (~ 0.1 torr). The reaction was started at $23^{\circ} \mathrm{C}$ and was steadily warmed to $62^{\circ} \mathrm{C}$ over a period of 2 h , after which the volatile components were removed under vacuum (~ 0.1 torr). Purification by repeated flash column chromatography (twice in 100% hexanes) gave $\mathbf{5 0}$ ($107 \mathrm{mg}, 74 \%$) along with an inseparable mixture of isomeric cyclopentenes (27.5 mg , 19%) which were typically recycled under the same reaction conditions to give additional 50.

Alkene 50

${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$), $\delta: \quad 2.98(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-11), 2.66(\mathrm{dd}, 1 \mathrm{H}, J=14.9,10.4$ $\mathrm{Hz}, \mathrm{H}-6), 2.30(\mathrm{~m}, 2 \mathrm{H}), 1.90(\mathrm{~m}, 1 \mathrm{H}), 1.78(\mathrm{~m}$,

2 H), 1.67 (dd, $3 \mathrm{H}, J=2.0,1.0 \mathrm{~Hz}, \mathrm{H}-19$), $1.00-$ $1.70(\mathrm{~m}, 12 \mathrm{H}), 1.02(\mathrm{~d}, 3 \mathrm{H}, \mathrm{J}=6.6 \mathrm{~Hz}, \mathrm{H}-16)$, 0.96 (d, 3H, $J=6.6 \mathrm{~Hz}, \mathrm{H}-17$), 0.96 (d, 3H, $J=$ $6.6 \mathrm{~Hz}, \mathrm{H}-18), 0.83$ (s, 3H, H-20).
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$), $\delta: \quad 138.8,131.1,61.6,53.8,51.9,46.2,44.4,39.3$, $38.4,37.1,36.0,35.1,27.6,25.3,25.2,25.1$, 22.3, 21.5, 21.0, 14.1.

FTIR (neat), cm^{-1} :

MS (EI):

HRMS (EI):

2951 (s), 2868 (s), 1453 (m), 1383 (m), 1376 (m), 1366 (m).
$274\left(\mathrm{M}^{+}\right), 259\left(\mathrm{M}^{+}-\mathrm{CH}_{3}\right), 231\left(\mathrm{M}^{+}-\mathrm{C}_{3} \mathrm{H}_{7}\right)$

Calcd. for $\mathrm{C}_{20} \mathrm{H}_{34}$: 274.2661
Found: 274.2661

Alkene 51: 0.66 (both epimers)
Alkene 50: 0.66
Isomeric cyclopentenes mixture: 0.67

51

63

52

Epoxides 52 and 63

The inseparable mixture of alkene products 50 and 51 from the cyclization of esters 41 ($45.8 \mathrm{mg}, 0.167 \mathrm{mmol}, 1.00$ equiv) was dissolved in dichloromethane (10 mL) and cooled to $0^{\circ} \mathrm{C}$. Sodium bicarbonate ($84.0 \mathrm{mg}, 1.00 \mathrm{mmol}, 6.00$ equiv) was added, followed by addition of m-chloroperoxybenzoic acid $(80 \%, 108 \mathrm{mg}, 0.501 \mathrm{mmol}, 3.00$ equiv). After stirring at $0^{\circ} \mathrm{C}$ for 4 h , the excess oxidant was reduced by adding saturated aqueous sodium thiosulfate (10 mL) and stirring the biphasic mixture vigorously for 2 h at $0^{\circ} \mathrm{C}$. Hexanes (10 mL) was added to the reaction, and the mixture was washed with saturated aqueous sodium bicarbonate ($2 \times 50 \mathrm{~mL}$). The organic layer was dried over sodium sulfate and concentrated. Purification by flash column chromatography (50% toluene in hexanes) gave the major product epoxides $\mathbf{6 3}$ ($16.2 \mathrm{mg}, \mathbf{3 4 \%}$) and 52 (15.4 $\mathrm{mg}, 32 \%$) as viscous oils with small amounts of impurities, along with several minor epoxide products ($2.1 \mathrm{mg}, 4 \%$). Further purification of epoxide 52 by preparative thin-
layer chromatography (30% toluene in hexanes) afforded pure $52(5.6 \mathrm{mg}$) as a crystalline solid ($\mathrm{mp} 60-62^{\circ} \mathrm{C}$), along with a fraction of 52 still containing trace impurities (6.7 mg). The relative stereochemical configuration of epoxide 52 was established unequivocally by X-ray crystallographic analysis of crystals from ethyl alcohol (see appendix).

Epoxide 52

$\left.{ }^{1} \mathrm{H} \mathrm{NMR} \mathrm{(500} \mathrm{MHz}, \mathrm{CDCl}_{3}\right), \delta:$	$2.78(\mathrm{dd}, 1 \mathrm{H}, J=7.9,2.6 \mathrm{~Hz}, \mathrm{H}-6), 1.96(\mathrm{t}, 1 \mathrm{H}, J$
	$=8.4 \mathrm{~Hz}, \mathrm{H}-11), 1.88(\mathrm{ddd}, 1 \mathrm{H}, J=14.7,7.9,1.7$
	$\mathrm{Hz}, \mathrm{H}-5), 1.85(\mathrm{~m}, 4 \mathrm{H}, \mathrm{H}-2,10,13,14), 1.78(\mathrm{~m}$,
	$1 \mathrm{H}, \mathrm{H}-4), 1.64(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-3), 1.50-1.63(\mathrm{~m}, 5 \mathrm{H})$,
	$1.42(\mathrm{~m}, 2 \mathrm{H}), 1.25(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-2), 1.22(\mathrm{~m}, 1 \mathrm{H})$,
	$1.18(\mathrm{~s}, 3 \mathrm{H}, \mathrm{H}-20), 1.13(\mathrm{~m}, 1 \mathrm{H}), 1.00(\mathrm{~d}, 3 \mathrm{H}, J=$
	$\left.7.1 \mathrm{~Hz},-\mathrm{CH}_{3}\right), 1.00(\mathrm{~d}, 3 \mathrm{H}, J=6.6 \mathrm{~Hz},-\mathrm{CH} 3)$,
	$0.94(\mathrm{~d}, 3 \mathrm{H}, J=7.0 \mathrm{~Hz},-\mathrm{CH} 3), 0.92(\mathrm{~d}, 3 \mathrm{H}, J=$
	$6.6 \mathrm{~Hz},-\mathrm{CH} 3)$.

FTIR (neat), cm^{-1} :
2954 (s), 2870 (s), 1460 (m), 1450 (m), 1374 (m), 1365 (m), 1320 (w), 1075 (w), 935 (w), 914 (w).

MS (EI):
$290\left(\mathrm{M}^{+}\right), 275\left(\mathrm{M}^{+}-\mathrm{CH}_{3}\right), 247\left(\mathrm{M}^{+}-\mathrm{C}_{3} \mathrm{H}_{7}\right), 229$ $\left(\mathrm{M}^{+}-\mathrm{C}_{3} \mathrm{H}_{7}, \mathrm{H}_{2} \mathrm{O}\right)$.

HRMS (EI):
Calcd. for $\mathrm{C}_{20} \mathrm{H}_{34} \mathrm{O}: 290.2610$
Found: 290.2602

TLC (100\% toluene), R_{f} :

Epoxide 63

${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right), \delta:$

FTIR (neat), cm^{-1} :

MS (EI):

HRMS (EI):

TLC (100% toluene), R_{f} :
Epoxide 63: 0.19

33

Aldol 56

56

Trichlorotitanium isopropoxide was prepared by adding titanium tetrachloride (3.29 $\mathrm{mL}, 30.0 \mathrm{mmol}$) to a solution of titanium isopropoxide ($2.98 \mathrm{~mL}, 10.0 \mathrm{mmol}$) in dichloromethane (5.4 mL) at $0^{\circ} \mathrm{C}$. The resulting stock solution $(0.67 \mathrm{M}$ in dichloromethane) was warmed to $23^{\circ} \mathrm{C}$ and stirred for 30 min before use.

Triethylamine ($1.00 \mathrm{~mL}, 7.17 \mathrm{mmol}, 32.9$ equiv) was added to a solution of the ketone 33 ($63.0 \mathrm{mg}, 0.218 \mathrm{mmol}, 1.00$ equiv) in dichloromethane (50 mL) at $0^{\circ} \mathrm{C}$. Trichlorotitanium isopropoxide (0.67 M in dichloromethane, $7.00 \mathrm{~mL}, 4.67 \mathrm{mmol}, 21.4$ equiv) was added dropwise and the resulting deep reddish-brown homogeneous solution was stirred for 1.4 h at 0 C . Trimethylacetaldehyde ($1.25 \mathrm{~mL}, 11.5 \mathrm{mmol}, 52.3$ equiv) was added quickly at $0^{\circ} \mathrm{C}$, and the reaction was warmed to $23^{\circ} \mathrm{C}$ and stirred for 5.5 h . The reaction mixture was then poured into a 2:1 mixture of saturated aqueous ammonium chloride and saturated aqueous sodium bicarbonate (250 mL), and the layers were separated. The aqueous layer was extracted with hexanes (50 mL), and the combined organic layers were washed with a $4: 1$ mixture of saturated aqueous sodium potassium tartrate and saturated aqueous sodium bicarbonate ($2 \times 100 \mathrm{~mL}$). The organic layer was dried over sodium sulfate and concentrated. Purification by repeated flash column chromatography (5\% ethyl acetate in hexanes, followed by 100% dichloromethane) gave
clean aldol 56 ($82.0 \mathrm{mg}, 87 \%$) as a viscous oil.

${ }^{1} \mathrm{H}$ NMR ($\left.500 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right), \delta:$	$6.01(\mathrm{~d}, 1 \mathrm{H}, J=7.8 \mathrm{~Hz},-\mathrm{OH}), 5.19(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-6$,
	$11), 3.49(\mathrm{~d}, 1 \mathrm{H}, J=7.8 \mathrm{~Hz}, \mathrm{H}-21), 3.03(\mathrm{~s}, 1 \mathrm{H}$,
	$\mathrm{H}-3), 2.66(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-1), 2.36(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-4), 2.27$
	$(\mathrm{~m}, 1 \mathrm{H}), 2.04-2.20(\mathrm{~m}, 5 \mathrm{H}), 1.77-1.95(\mathrm{~m}, 4 \mathrm{H})$,
	$1.67(\mathrm{~d}, 3 \mathrm{H}, J=2.8 \mathrm{~Hz}, \mathrm{H}-19), 1.59(\mathrm{~s}, 3 \mathrm{H}, \mathrm{H}-$
	$20), 1.51(\mathrm{~m}, 1 \mathrm{H}), 1.27(\mathrm{~d}, 3 \mathrm{H}, J=7.1 \mathrm{~Hz}, \mathrm{H}-18)$,
	$1.02(\mathrm{~s}, 9 \mathrm{H}, \mathrm{H}-22), 0.98(\mathrm{~d}, 3 \mathrm{H}, J=6.8 \mathrm{~Hz}, \mathrm{H}-$
	$16), 0.90(\mathrm{~d}, 3 \mathrm{H}, J=6.8 \mathrm{~Hz}, \mathrm{H}-17)$.

FTIR (neat), cm^{-1} :

MS (EI):

HRMS (EI):

Calcd. for $\mathrm{C}_{25} \mathrm{H}_{42} \mathrm{O}_{2}: 374.3185$
Found: 374.3169
3450 (s), 2959 (s), 2902 (s), 1960 (w), 1686 (s), 1682 (s), 1455 (m), 1392 (m), 1362 (m), 1267 (m), 1236 (m), 1129 (m), 1115 (m), 1047 (m), 876 (w).
$374\left(\mathrm{M}^{+}\right), 317\left(\mathrm{M}^{+}-\mathrm{C}_{4} \mathrm{H}_{9}\right), 288\left(\mathrm{M}^{+}-\mathrm{C}_{5} \mathrm{H}_{11} \mathrm{O}\right)$.

Aldol 56: 0.10

Diol 57

Diisobutylaluminum hydride (1.0 M in toluene, $2.66 \mathrm{~mL}, 2.66 \mathrm{mmol}, 23.7$ equiv) was added to a solution of the aldol 56 in toluene (30 mL) at $-78^{\circ} \mathrm{C}$. Hydrogen gas evolved slowly for 1 h at $-78^{\circ} \mathrm{C}$, after which time the reaction was warmed to $0^{\circ} \mathrm{C}$ and stirred for 6.5 h . The excess diisobutylaluminum hydride was quenched slowly with water (1 mL , excess) at $0^{\circ} \mathrm{C}$, and the reaction was diluted with hexanes (50 mL) and washed with a $1: 1$ mixture of saturated potassium carbonate and saturated sodium potassium tartrate $(6 \times 100 \mathrm{~mL})$. The organic phase was dried over sodium sulfate and concentrated. The residue was purified by flash column chromatography (100% dichloromethane) to give diol 57 ($33.8 \mathrm{mg}, 80 \%$) as a crystalline solid ($\mathrm{mp} 65^{\circ} \mathrm{C}$). The relative stereochemical configuration of diol 57 was determined unequivocally by X-ray crystallography of crystals from dichloromethane (see appendix).

$$
\begin{aligned}
{ }^{1} \mathrm{H} \text { NMR }\left(500 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right), \delta: & 5.22(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-6,11), 3.87(\mathrm{~d}, 1 \mathrm{H}, J=11.0 \mathrm{~Hz}, \\
& \mathrm{H}-2), 3.40(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}-21), 3.17(\mathrm{br} \mathrm{~s}, 1 \mathrm{H},-\mathrm{OH}), \\
& 2.21-2.38(\mathrm{~m}, 4 \mathrm{H}), 1.90-2.20(\mathrm{~m}, 4 \mathrm{H}), 1.83(\mathrm{~m}, \\
& 2 \mathrm{H}), 1.77(\mathrm{~s}, 3 \mathrm{H}, \mathrm{H}-20), 1.74(\mathrm{~m}, 2 \mathrm{H}), 1.71(\mathrm{~d},
\end{aligned}
$$

$3 \mathrm{H}, \mathrm{H}-19), 1.63$ (m, 2H), 1.44 (m, 1H), 1.27 (d, $3 \mathrm{H}, J=6.6 \mathrm{~Hz}, \mathrm{H}-18), 1.14(\mathrm{~d}, 3 \mathrm{H}, J=6.6 \mathrm{~Hz}, \mathrm{H}-$ 16), 1.08 (d, $3 \mathrm{H}, J=6.6 \mathrm{~Hz}, \mathrm{H}-17$), $1.00(\mathrm{~s}, 9 \mathrm{H}$, H-22).

FTIR (neat), cm^{-1} :

MS (EI):
$376\left(\mathrm{M}^{+}\right), 358\left(\mathrm{M}^{+}-\mathrm{H}_{2} \mathrm{O}\right), 319\left(\mathrm{M}^{+}-\mathrm{C}_{4} \mathrm{H}_{9}\right), 301$ $\left(\mathrm{M}^{+}-\mathrm{C}_{4} \mathrm{H}_{9}, \mathrm{H}_{2} \mathrm{O}\right)$.

Calcd. for $\mathrm{C}_{25} \mathrm{H}_{44} \mathrm{O}_{2}: 376.3341$
Found: 376.3341

TLC (100\% dichloromethane), $R_{f}:$ Diol 57: 0.20

57

58

Ester 58

Triethylamine ($0.31 \mathrm{~mL}, 2.2 \mathrm{mmol}, 30$ equiv) was added to a solution of the diol 57 ($28 \mathrm{mg}, 0.074 \mathrm{mmol}, 1.0$ equiv) in dichloromethane (5 mL) at $-78^{\circ} \mathrm{C} . t$-Butyldimethylsilyl trifluoromethanesulfonate (TBSOTf, $0.17 \mathrm{~mL}, 0.74 \mathrm{mmol}, 10$ equiv) was added to the mixture, and the reaction was stirred at $-78^{\circ} \mathrm{C}$ for 30 min . Methyl alcohol $(0.50 \mathrm{~mL})$ was added to the reaction at $-78^{\circ} \mathrm{C}$, followed by addition of hexanes $(10 \mathrm{~mL})$. The mixture was washed with saturated aqueous sodium bicarbonate $(2 \times 25 \mathrm{~mL})$ and dried over sodium sulfate. Purification by rapid flash chromatography (50% dichloromethane in pentane) gave the corresponding sensitive t-butyldimethylsilyl enol ether (33 mg) as a viscous oil. The t-butyldimethylsilyl enol ether ($32 \mathrm{mg}, 0.069 \mathrm{mmol}, 1.0$ equiv) was then dissolved in THF (5.0 mL) and cooled to $-78^{\circ} \mathrm{C}$. Lithium bis(trimethylsilyl)amide (1.0 M in THF, $0.35 \mathrm{~mL}, 0.35 \mathrm{mmol}, 5.0$ equiv) was added to the enol ether, and the solution was stirred for 15 min at $-78^{\circ} \mathrm{C}$. 3-(Trifluoromethyl)benzoyl chloride ($0.10 \mathrm{~mL}, 0.69$ mmol, 10 equiv) was then added to the reaction, and stirring was continued at $-78^{\circ} \mathrm{C}$ for 30 min . Methyl alcohol $(0.50 \mathrm{ml})$ and hexanes $(10 \mathrm{ml})$ were added to the reaction, and the
resulting mixture was washed with saturated aqueous sodium bicarbonate ($2 \times 25 \mathrm{~mL}$). The organic layer was dried over sodium sulfate and concentrated. Purification by flash chromatography (2% ethyl acetate in hexanes) gave the ester 58 ($40 \mathrm{mg}, 84 \%$ for two steps) as a viscous oil.

Intermediate Enol Ether
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$), $\delta: \quad 5.24(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-11), 5.21(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-6), 4.30(\mathrm{t}$, $1 \mathrm{H}, J=1.8 \mathrm{~Hz}, \mathrm{H}-2), 3.98(\mathrm{~d}, 1 \mathrm{H}, J=10.4 \mathrm{~Hz}, \mathrm{H}-$ 21), 3.92 (d, 1H, $J=2.0 \mathrm{~Hz},-\mathrm{OH}), 2.41$ (m, 1H), $2.34(\mathrm{~m}, 2 \mathrm{H}), 2.28(\mathrm{~m}, 1 \mathrm{H}), 2.12-2.22(\mathrm{~m}, 3 \mathrm{H})$, $2.08(\mathrm{~m}, 1 \mathrm{H}), 1.88-2.02(\mathrm{~m}, 3 \mathrm{H}), 1.82(\mathrm{~m}, 1 \mathrm{H})$, 1.81 (s, 3H, H-20), 1.70 (d, $3 \mathrm{H}, J=3.3 \mathrm{~Hz}, \mathrm{H}-$ 19), $1.68(\mathrm{~m}, 1 \mathrm{H}), 1.54(\mathrm{~d}, 1 \mathrm{H}, J=8.7 \mathrm{~Hz}), 1.41$ (d, $3 \mathrm{H}, J=6.9 \mathrm{~Hz}, \mathrm{H}-18), 1.16(\mathrm{~d}, 3 \mathrm{H}, J=6.7 \mathrm{~Hz}$, H-16), 1.11 (d, $3 \mathrm{H}, J=6.7 \mathrm{~Hz}, \mathrm{H}-17$), 1.04 (s, 9H, H-22), $1.00\left(\mathrm{~s}, 9 \mathrm{H},-\mathrm{SiC}\left(\mathrm{CH}_{3}\right)_{3}\right), 0.27(\mathrm{~s}, 3 \mathrm{H}$, $\left.-\mathrm{SiCH}_{3}\right), 0.15\left(\mathrm{~s}, 3 \mathrm{H},-\mathrm{SiCH}_{3}\right)$.

FTIR (neat), cm^{-1} :
3507 (s), 2955 (s), 1965 (w), 1471 (m), 1463 (m), 1397 (m), 1362 (m), 1254 (m), 1054 (m), 1021 (m), 833 (s), 775 (m).

TLC (100\% dichloromethane), R_{f} : Intermediate Enol Ether: 0.77

Ester 58

${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$), $\delta: \quad 8.70(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}-30), 8.29(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=7.8 \mathrm{~Hz}, \mathrm{H}-$ 27), 7.31 (d, 1H, $J=7.8 \mathrm{~Hz}, \mathrm{H}-25$), 6.89 (t, $1 \mathrm{H}, J$ $=7.8 \mathrm{~Hz}, \mathrm{H}-26), 5.68(\mathrm{~d}, 1 \mathrm{H}, J=15.4 \mathrm{~Hz}, \mathrm{H}-2)$, 5.22 (m, 2H, H-6, 11), 3.71 (s, 1H, H-21), 2.56 (d, $1 \mathrm{H}, \mathrm{J}=15.4 \mathrm{~Hz}$), $2.40(\mathrm{~m}, 2 \mathrm{H}), 2.22(\mathrm{~m}, 1 \mathrm{H})$, $2.12(\mathrm{~m}, 2 \mathrm{H}), 1.80-2.00(\mathrm{~m}, 4 \mathrm{H}), 1.77(\mathrm{~s}, 3 \mathrm{H}, \mathrm{H}-$ 20), 1.73 (d, 3H, J = $3.6 \mathrm{~Hz}, \mathrm{H}-19$), 1.60 ($\mathrm{m}, 2 \mathrm{H}$), 1.25 (m, 2H), 1.21 (m, 6H, -CH3), 1.04 (s, 9H, $\left.-\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 0.99\left(\mathrm{~m}, 3 \mathrm{H},-\mathrm{CH}_{3}\right), 0.88(\mathrm{~s}, 9 \mathrm{H}$, $\left.-\mathrm{SiC}\left(\mathrm{CH}_{3}\right)_{3}\right), 0.58\left(\mathrm{~s}, 3 \mathrm{H},-\mathrm{SiCH}_{3}\right), 0.18(\mathrm{~s}, 3 \mathrm{H}$, $\left.-\mathrm{SiCH}_{3}\right)$.

FTIR (neat), cm^{-1} :
2958 (s), 2905 (s), 2858 (s), 1967 (w), 1721 (s), 1717 (s), 1472 (m), 1335 (s$), 1254$ (s), 1169 (s), 1134 (s), 1073 (m), 833 (s), 772 (m), 755 (m).

58

62

Enol Ether 62

The ester 58 ($22 \mathrm{mg}, 0.033 \mathrm{mmol}, 1.0$ equiv), N-methylcarbazole ($6.0 \mathrm{mg}, 0.033$ mmol, 1.0 equiv), pyridine ($27 \mu \mathrm{~L}, 0.33 \mathrm{mmol}, 10$ equiv), and 1,4 -cyclohexadiene ($1,4-$ CHD, $0.31 \mathrm{~mL}, 3.3 \mathrm{mmol}$, 100 equiv, 0.200 M) were dissolved in THF-water (99.0 mL , 10:1 v / v) in a pyrex reaction vessel. The reaction mixture was degassed by two cycles of freezing in liquid nitrogen and thawing under vacuum (~ 1 torr). The reaction was heated to $55^{\circ} \mathrm{C}$ prior to irradiation and placed in a water bath of the same temperature. The reaction was irradiated at $55^{\circ} \mathrm{C}$ for 6 h . After cooling to room temperature, the reaction was diluted with hexanes (50 mL) and washed with saturated sodium bicarbonate $(2 \times 50 \mathrm{~mL})$. The organic layers were dried over sodium sulfate and concentrated. Purification by preparative thin-layer chromatography.(20% toluene in hexanes) gave the enol ether 62 ($4.4 \mathrm{mg}, 28 \%$) as a viscous oil, along with recovered starting material 58 ($11.0 \mathrm{mg}, 50 \%$).

Enol Ether 62

${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right), \delta:$
${ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right), \delta:$
$166.5,154.4,133.0,132.0,131.0\left(\mathrm{q},{ }^{2} J_{\mathrm{C}-\mathrm{F}}=32\right.$ $\mathrm{Hz}), 129.2\left(\mathrm{q},{ }^{3} \mathrm{~J}_{\mathrm{C}-\mathrm{F}}=4 \mathrm{~Hz}\right), 128.9,126.9\left(\mathrm{q},{ }^{3} J_{\mathrm{C}}\right.$ $\mathrm{F}=4 \mathrm{~Hz}), 126.4\left(\mathrm{q},{ }^{1} J_{\mathrm{C}-\mathrm{F}}=272.4 \mathrm{~Hz}\right), 101.0$, $79.2,78.4,60.0,57.8,49.0,47.4,47.3,37.1$, $34.1,32.0,31.8,30.5,30.2,27.1,26.3,25.2$, $24.5,23.5,20.4,18.5,17.7,12.6,10.0,-2.0$, -4.6.

FTIR (neat), cm^{-1} :
2957 (s), 2933 (s), 2870 (s), 1720 (s), 1716 (s), 1486 (m), 1471 (m), 1463 (m), 1335 (s), 1255 (s), 1170 (m), 1134 (s), 1071 (s), 1026 (m), 863 (m),

MS (FAB, NBA):

HRMS (FAB, NBA): Calcd. for $\mathrm{C}_{39} \mathrm{H}_{59} \mathrm{O}_{3} \mathrm{~F}_{3} \mathrm{Si}\left(\mathrm{M}^{+}-\mathrm{H}\right): \mathbf{6 6 1 . 4 2 6 4}$

Found: 661.4241

TLC (2\% EtOAc in hexanes), $R_{f}: \quad$ Enol Ether 62: 0.48

Diketone 64

The alkene 50 was dissolved in a biphasic mixture of carbon tetrachloride (5.0 $\mathrm{mL})$, acetonitrile $(5.0 \mathrm{~mL})$ and water $(7.5 \mathrm{~mL})$ at $23^{\circ} \mathrm{C}$. Sodium periodate ($234 \mathrm{mg}, 1.10$ mmol, 5.00 equiv) was added and allowed to dissolve completely. Ruthenium dioxide ($1.5 \mathrm{mg}, 0.011 \mathrm{mmol}, 0.050$ equiv) was added in one portion, and the reaction was stirred vigorously at $23^{\circ} \mathrm{C}$. The black precipitate of ruthenium dioxide oxidized and dissolved to give a yellow biphasic reaction mixture after 2 min at $23^{\circ} \mathrm{C}$. After stirring for 1 h , the reaction was diluted with dichloromethane $(25 \mathrm{~mL})$, and the layers were separated. The aqueous layer was washed with dichloromethane $(10 \mathrm{~mL})$, and the combined organic layers were dried over sodium sulfate and concentrated. The residue was purified immediately by flash chromatography (20% ethyl acetate in hexanes) to give the diketone $64(43.0 \mathrm{mg}$, 68%) as a viscous oil.

$$
\begin{aligned}
{ }^{1} \mathrm{H} \text { NMR }\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right), \delta: & 2.97(\mathrm{dd}, 1 \mathrm{H}, J=11.5,2.7 \mathrm{~Hz}, \mathrm{H}-11), 2.38-2.53 \\
& (\mathrm{~m}, 2 \mathrm{H}), 2.30(\mathrm{ddd}, 1 \mathrm{H}, J=14.5,10.5,1.6 \mathrm{~Hz}) \\
& 2.16(1 \mathrm{H}, \mathrm{ddd}, 14.5,8.0,1.5 \mathrm{~Hz}), 2.07(\mathrm{~s}, 3 \mathrm{H}, \mathrm{H}-
\end{aligned}
$$

19), $1.92(\mathrm{~m}, 1 \mathrm{H}), 1.55-1.76(\mathrm{~m}, 6 \mathrm{H}), 1.15-1.48$ $(\mathrm{m}, 7 \mathrm{H}), 0.93\left(\mathrm{~d}, 3 \mathrm{H}, J=6.6 \mathrm{~Hz},-\mathrm{CH}_{3}\right), 0.92(\mathrm{~d}$, $\left.3 \mathrm{H}, J=6.5 \mathrm{~Hz},-\mathrm{CH}_{3}\right), 0.82(\mathrm{~d}, 3 \mathrm{H}, J=6.5 \mathrm{~Hz}$, $\left.-\mathrm{CH}_{3}\right), 0.72$ (s, 3H, H20).
${ }^{13} \mathrm{C} \mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right), \delta:$

FTIR (neat), cm^{-1} :

MS (EI):

HRMS (EI):
$215.6,208.9,59.9,52.8,52.6,46.5,44.4,42.6$, $42.4,38.5,36.4,34.3,31.3,29.8,26.9,24.5$, $22.5,22.2,21.5,20.4$.

2953 (s), 2870 (s), 1714 (s), 1694 (s), 1462 (s), 1455 (s), 1416 (m), 1384 (s), 1366 (s), 1163 (m), 1115 (m), 872 (w).
$306\left(\mathrm{M}^{+}\right), 291\left(\mathrm{M}^{+}-\mathrm{CH}_{3}\right), 263\left(\mathrm{M}^{+}-\mathrm{C}_{3} \mathrm{H}_{7}\right)$.

Calcd. for $\mathrm{C}_{20} \mathrm{H}_{34} \mathrm{O}_{2}: 306.2559$
Found: 306.2560

TLC (20\% EtOAc in hexanes), $R_{f}: \quad$ Alkene 50: 0.85
Diketone 64: 0.34

Dithiane 65

The diketone 64 ($66.4 \mathrm{mg}, 0.217 \mathrm{mmol}, 1.00$ equiv) was dissolved in dichloromethane $(10 \mathrm{~mL})$ at $23^{\circ} \mathrm{C}$. 1,3-Propanedithiol ($0.218 \mathrm{~mL}, 2.17 \mathrm{mmol}, 10.0$ equiv) was added to the diketone 64 , followed by addition of boron trifluoride etherate ($0.020 \mathrm{~mL}, 0.16 \mathrm{mmol}, 0.74$ equiv). After stirring for 15 min at $23^{\circ} \mathrm{C}$, the reaction was diluted with hexanes (10 mL) and washed with 5% aqueous sodium hydroxide (3×10 mL). The organic layer was dried over sodium sulfate and concentrated. Purification of the residue by flash chromatography (10% ethyl acetate in hexanes) gave the dithiane 65 ($84.1 \mathrm{mg}, 98 \%$) as a viscous oil.
$\begin{aligned}{ }^{1} \mathrm{H} \text { NMR }\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right), \delta: & 2.90(\mathrm{dd}, 1 \mathrm{H}, J=9.3,2.3 \mathrm{~Hz}, \mathrm{H}-11), 2.68-2.87 \\ & (\mathrm{~m}, 6 \mathrm{H}, \mathrm{H}-21,22,23), 2.48(\mathrm{ddd}, 1 \mathrm{H}, J=16.1, \\ & 8.4,1.6 \mathrm{~Hz}, \mathrm{H}-6), 2.29(\mathrm{ddd}, 1 \mathrm{H}, J=16.1,10.3, \\ & 1.5 \mathrm{~Hz}, \mathrm{H}-6), 1.78-1.98(\mathrm{~m}, 6 \mathrm{H}), 1.18-1.77(\mathrm{~m}, \\ & 10 \mathrm{H}), 1.53(\mathrm{~s}, 3 \mathrm{H}, \mathrm{H}-19), 0.92(\mathrm{~d}, 3 \mathrm{H}, J=6.3 \mathrm{~Hz}, \\ & \left.-\mathrm{CH}_{3}\right), 0.88\left(\mathrm{~d}, 3 \mathrm{H}, J=6.5 \mathrm{~Hz},-\mathrm{CH}_{3}\right), 0.80(\mathrm{~d}, J\end{aligned}$
$\left.=6.5 \mathrm{~Hz},-\mathrm{CH}_{3}\right), 0.72(\mathrm{~s}, 3 \mathrm{H}, \mathrm{H}-20)$.
$\begin{aligned} &{ }^{13} \mathrm{C} \text { NMR }\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right), \delta: \quad 215.5,59.9,53.7,52.6,49.1,46.7,44.3,42.6, \\ & 40.0,38.7,36.1,34.3,31.3,27.4,26.8,26.4, \\ & 26.3,25.1,24.5,22.7,22.6,22.2,20.3 .\end{aligned}$

FTIR (neat), cm^{-1} :

MS (EI):

HRMS (EI):
Calcd. for $\mathrm{C}_{20} \mathrm{H}_{34} \mathrm{OS}_{2}$: 396.2521
Found: 396.2515

TLC (20\% EtOAc in hexanes), R_{f} : Diketone 64: 0.32
Dithiane 65: 0.42

Enone 66

The ketone 65 ($23.0 \mathrm{mg}, 0.0580 \mathrm{mmol}, 1.00$ equiv) was dissolved in anhydrous ethyl alcohol (3.0 mL) at $23^{\circ} \mathrm{C}$. The reaction vessel was shielded from light to avoid facile photochemical isomerization of the benzylidene double bond to a corresponding mixture of geometric isomers. Distilled benzaldehyde ($0.400 \mathrm{~mL}, 3.94 \mathrm{mmol}, 67.8$ equiv) and sodium hydroxide ($10.0 \mathrm{mg}, 0.250 \mathrm{mmol}, 4.31$ equiv) were added to the ketone $\mathbf{6 5}$, and the solution was stirred for 40 h at 23 C . The reaction was diluted with hexanes (10 mL) and washed with saturated aqueous sodium bicarbonate ($3 \times 10 \mathrm{~mL}$). The organic layer was dried over sodium sulfate and concentrated. Purification of the residue by flash column chromatography (100% toluene) gave the enone 66 ($26.9 \mathrm{mg}, 96 \%$) as a viscous oil.

$$
\begin{aligned}
{ }^{1} \mathrm{H} \text { NMR }\left(500 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right), \delta: & 7.83(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}-21), 7.32(\mathrm{~d}, 2 \mathrm{H}, J=7.4 \mathrm{~Hz}, \mathrm{H}-23, \\
& \left.23 '), 7.15(\mathrm{dd}, 2 \mathrm{H}, J=7.4,7.4 \mathrm{~Hz}, \mathrm{H}-24,24)^{\prime}\right), \\
& 7.06(\mathrm{tt}, 1 \mathrm{H}, J=7.4,1.1 \mathrm{~Hz}, \mathrm{H}-25), 3.42(\mathrm{dd}, 1 \mathrm{H}, \\
& J=11.4,2.5 \mathrm{~Hz}, \mathrm{H}-11), 2.82(\mathrm{~m}, 1 \mathrm{H}), 2.74(\mathrm{~d},
\end{aligned}
$$

$1 \mathrm{H}, J=14.0 \mathrm{~Hz}), 2.58-2.65(\mathrm{~m}, 2 \mathrm{H}), 2.40-2.54$ (m, 3H), $2.04(\mathrm{dd}, 1 \mathrm{H}, J=14.0,11.7 \mathrm{~Hz}), 1.85-$ 1.95 (m, 2H), 1.78 (s, 3H, H-19), 1.73-1.80 (m, $2 \mathrm{H}), 1.52-1.62(\mathrm{~m}, 4 \mathrm{H}), 1.40-1.47(\mathrm{~m}, 2 \mathrm{H}), 1.29-$ $1.36(\mathrm{~m}, 2 \mathrm{H}), 1.12-1.23(\mathrm{~m}, 2 \mathrm{H}), 0.98(\mathrm{~d}, 3 \mathrm{H}, \mathrm{J}=$ $\left.6.6 \mathrm{~Hz},-\mathrm{CH}_{3}\right), 0.86(\mathrm{~s}, 3 \mathrm{H}, \mathrm{H}-20), 0.83(\mathrm{~d}, 3 \mathrm{H}, \mathrm{J}$ $\left.=6.5 \mathrm{~Hz},-\mathrm{CH}_{3}\right), 0.82\left(\mathrm{~d}, 3 \mathrm{H}, J=6.5 \mathrm{~Hz},-\mathrm{CH}_{3}\right)$.
${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$), $\delta: \quad 203.9,141.2,136.8,136.6,132.7,129.9$ (2C), 128.8 (2C), 128.4, 61.4, 53.5, 51.7, 49.8, 47.2, 46.9, 40.7, 38.0, 37.9, 35.8, 35.7, 28.1, 27.8, 26.6, 25.5, 25.0, 23.5, 22.6, 22.1, 21.4.

FTIR (neat), cm^{-1} :

MS (EI):

HRMS (EI):
Calcd. for $\mathrm{C}_{30} \mathrm{H}_{44} \mathrm{OS}_{2}: 484.2834$
Found: 484.2830

TLC (20% EtOAc in Hexanes), R_{f} : Ketone 65: 0.45
Enone 66: 0.48

Trimethylsilyl Enol Ether 67

The dithiane 66 ($37.2 \mathrm{mg}, 0.0767 \mathrm{mmol}, 1.00$ equiv) was dissolved in dichloromethane (5.0 mL) in a pressure reactor at $23^{\circ} \mathrm{C}$. Triethylamine ($0.59 \mathrm{~mL}, 4.2 \mathrm{mmol}, 55$ equiv) was added, followed by addition of trimethylsilyl iodide ($0.44 \mathrm{~mL}, 3.1 \mathrm{mmol}, 40$ equiv). The reaction mixture was degassed by two freeze-thaw cycles under vacuum (~ 1 torr), and the reaction vessel was sealed under vacuum and heated to $50^{\circ} \mathrm{C}$ behind a protective blast shield. After 13 h at $50^{\circ} \mathrm{C}$, the reaction was cooled to $23^{\circ} \mathrm{C}$, and additional trimethylsilyl iodide ($0.12 \mathrm{~mL}, 0.84 \mathrm{mmol}, 11$ equiv) was added. The reaction was degassed as before, and heated to $50^{\circ} \mathrm{C}$ for an additional 24 h . The reaction was cooled to $23^{\circ} \mathrm{C}$ and diluted with hexanes (10 mL). The reaction mixture was washed with a 1:1 mixture of saturated aqueous sodium bicarbonate and saturated aqueous sodium chloride ($2 \times 50 \mathrm{~mL}$). Concentration of the organic layer gave the clean trimethylsilyl enol ether 67 ($41.0 \mathrm{mg}, 96 \%$) as a viscous oil.

[^4]$J=7.7 \mathrm{~Hz}, \mathrm{H}-24), 7.09(\mathrm{t}, 1 \mathrm{H}, J=7.5 \mathrm{~Hz}, \mathrm{H}-25)$, 6.64 (s, 1H, H-21), 2.87 (dd, $1 \mathrm{H}, \mathrm{J}=12.4,5.4$ $\mathrm{Hz}), 2.62-2.81(\mathrm{~m}, 3 \mathrm{H}), 2.59(\mathrm{~m}, 6 \mathrm{H}), 2.30(\mathrm{td}$, $1 \mathrm{H}, J=12.5,3.5 \mathrm{~Hz}$), 2.17 (m, 1H, H-4), 2.10 (m, $1 \mathrm{H}), 1.99(\mathrm{t}, 1 \mathrm{H}, J=11.9 \mathrm{~Hz}), 1.88(\mathrm{~s}, 3 \mathrm{H}, \mathrm{H}-19)$, $1.84(\mathrm{~m}, 1 \mathrm{H}), 1.75(\mathrm{~m}, 1 \mathrm{H}), 1.62(\mathrm{~m}, 2 \mathrm{H}), 1.36$ (m, 3H), 1.29 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{H}-20$), 1.20 (d, 1H, $J=13.8$ $\mathrm{Hz}), 1.00\left(\mathrm{~d}, 3 \mathrm{H}, J=5.8 \mathrm{~Hz},-\mathrm{CH}_{3}\right), 0.94(\mathrm{~d}, 3 \mathrm{H}$, $\left.J=6.4 \mathrm{~Hz},-\mathrm{CH}_{3}\right), 0.89(\mathrm{~d}, 3 \mathrm{H}, J=5.9 \mathrm{~Hz}$, $\left.-\mathrm{CH}_{3}\right), 0.32\left(\mathrm{~s}, 9 \mathrm{H},-\mathrm{Si}\left(\mathrm{CH}_{3}\right)_{3}\right)$.
${ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right), \delta:$

FTIR (neat), cm^{-1} :

MS (EI):

HRMS (EI):

2953 (s), 2867 (s), 1626 (w), 1453 (m), 1368 (m), 1250 (s), 1196 (m), 1126 (w), 1099 (m), 1041 (m), 922 (m), 902 (m), 886 (m), 875 (m), 843 (s$)$, 753 (m).
$556\left(\mathrm{M}^{+}\right), 541\left(\mathrm{M}^{+}-\mathrm{CH}_{3}\right), 513\left(\mathrm{M}^{+}-\mathrm{C}_{3} \mathrm{H}_{7}\right)$.

Calcd. for $\mathrm{C}_{33} \mathrm{H}_{52} \mathrm{OS}_{2} \mathrm{Si}: 556.3229$
Found: 556.3224

TLC (10\% EtOAc in hexanes), R_{f} : Dithiane 66: 0.25
Trimethylsilyl Enol Ether 67: 0.42

67
68

Dithiane 68

The trimethylsilyl enol ether $67(42.0 \mathrm{mg}, 0.0754 \mathrm{mmol}, 1.00$ equiv) was dissolved in methyl alcohol $(7.0 \mathrm{~mL})$ at $23^{\circ} \mathrm{C} .37 \%$ Aqueous hydrochloric acid $(0.250$ mL) was added dropwise. After 3 min at $23^{\circ} \mathrm{C}$, the solution became cloudy, and a white precipitate formed. After 10 min , the reaction was diluted with ethyl acetate until it was homogeneous. The resulting solution was washed with saturated sodium bicarbonate (2 x 50 mL), and the combined aqueous layers were washed with dichloromethane (25 mL). The combined organic layers were dried over sodium sulfate and concentrated to give a partially crystalline mixture of 68 and $66(36.2 \mathrm{mg}, 99 \%, 1.8: 1$ ratio, respectively). Although the two epimers were inseparable by flash chromatography, the undesired epimer 66 could be removed by trituration with hexanes to give clean 68 as a crystalline solid (mp $162{ }^{\circ} \mathrm{C}$).
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$), $\delta: \quad 7.59$ (s, $1 \mathrm{H}, \mathrm{H}-21$), $7.29(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=7.7 \mathrm{~Hz}, \mathrm{H}-$ 23), 7.14 (t, 2H, $J=7.6 \mathrm{~Hz}, \mathrm{H}-24$), 7.07 (t, 1H, J
$=7.0 \mathrm{~Hz}, \mathrm{H}-25), 3.17(\mathrm{~d}, 1 \mathrm{H}, J=9.8 \mathrm{~Hz}, \mathrm{H}-11)$, $2.86(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=4.2 \mathrm{~Hz}), 2.48-2.64(\mathrm{~m}, 3 \mathrm{H}), 2.37-$ 2.47 (m, 2H), 2.10-2.23 (m, 2H), $1.99(\mathrm{t}, 1 \mathrm{H}, \mathrm{J}=$ 10 Hz), 1.80-1.91 (m, 2H), 1.68 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{H}-19$), $1.50-1.62(\mathrm{~m}, 5 \mathrm{H}), 1.38-1.46(2 \mathrm{H}), 1.11(\mathrm{~m}, 2 \mathrm{H})$, 1.08 (s, 3H, H-20), 1.04 (d, 1H, J = 12 Hz), 0.90 (d, $3 \mathrm{H}, J=6.4 \mathrm{~Hz},-\mathrm{CH}_{3}$), $0.85(\mathrm{~d}, 3 \mathrm{H}, J=6.4$ $\left.\mathrm{Hz},-\mathrm{CH}_{3}\right), 0.78\left(\mathrm{~d}, 3 \mathrm{H}, J=6.8 \mathrm{~Hz},-\mathrm{CH}_{3}\right)$.
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$) , $\delta: \quad 209.1,143.6,137.0,134.6,129.5,128.6,127.8$, $58.8,56.3,54.4,50.3,49.6,43.3,40.6,35.0$, $34.4,33.2,31.1,29.8,28.0,27.2,26.7,26.7$, 26.6, 25.5, 22.6, 22.4, 20.8.

FTIR (neat), cm^{-1} :

MS (EI):

HRMS (EI):

2953 (s), 2870 (s), 1687 (s), 1683 (s), 1615 (m), 1463 (s), 1446 (s), 1383 (m) 1367 (m), 1275 (w), 1168 (m), 1072 (m), 739 (m).
$484\left(\mathrm{M}^{+}\right), 409\left(\mathrm{M}^{+}-\mathrm{C}_{3} \mathrm{H}_{7} \mathrm{~S}\right), 377\left(\mathrm{M}^{+}-\mathrm{C}_{3} \mathrm{H}_{7} \mathrm{~S}_{2}\right)$.

Calcd. for $\mathrm{C}_{30} \mathrm{H}_{44} \mathrm{OS}_{2}$: 484.2834
Found: 484.2848

TLC (10% EtOAc in hexanes), R_{f} : Dithiane 68: 0.25
Trimethylsilyl Enol Ether 67: 0.42

Diketone 69

The dithiane 68 ($19.0 \mathrm{mg}, 0.0392 \mathrm{mmol}, 1.00$ equiv) was dissolved in acetonitrile $(6.0 \mathrm{~mL})$, water (1.5 mL), and methyl iodide (3.0 mL , excess), and the biphasic mixture was stirred at $23^{\circ} \mathrm{C}$ for 17 h . Diethyl ether (10 mL) was added, and the reaction was washed with a $1: 1$ mixture of saturated aqueous sodium bicarbonate and saturated aqueous sodium chloride ($2 \times 50 \mathrm{~mL}$). The organic layer was dried over sodium sulfate and concentrated to give the clean diketone $69(14.9 \mathrm{mg}, 96 \%)$ as a crystalline solid (mp $99^{\circ} \mathrm{C}$).

$$
\begin{aligned}
{ }^{1} \mathrm{H} \text { NMR }\left(500 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right), \delta: & 7.54(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}-21), 7.31(\mathrm{~d}, 2 \mathrm{H}, J=7.4 \mathrm{~Hz}, \mathrm{H}- \\
& 23), 7.16(\mathrm{t}, 2 \mathrm{H}, J=7.6 \mathrm{~Hz}, \mathrm{H}-24), 7.08(\mathrm{t}, 1 \mathrm{H}, J \\
& =7.4 \mathrm{~Hz}, \mathrm{H}-25), 3.23(\mathrm{dd}, 1 \mathrm{H}, J=11.6,2.2 \mathrm{~Hz}, \\
& \mathrm{H}-11), 2.83(\mathrm{~d}, 2 \mathrm{H}, J=4.3 \mathrm{~Hz}), 2.20-2.27(\mathrm{~m}, \\
& 1 \mathrm{H}), 1.97-2.17(\mathrm{~m}, 4 \mathrm{H}), 1.81(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-4), 1.66 \\
& (\mathrm{~s}, 3 \mathrm{H}, \mathrm{H}-19), 1.37-1.62(\mathrm{~m}, 5 \mathrm{H}), 1.12(\mathrm{~m}, 2 \mathrm{H}), \\
& 1.09(\mathrm{~s}, 3 \mathrm{H}, \mathrm{H}-20), 1.03(\mathrm{dd}, 1 \mathrm{H}, J=16.1,3.8
\end{aligned}
$$

$\mathrm{Hz}), 0.89\left(\mathrm{~d}, 3 \mathrm{H}, J=6.6 \mathrm{~Hz},-\mathrm{CH}_{3}\right), 0.85(\mathrm{~d}, 3 \mathrm{H}$, $\left.J=6.6 \mathrm{~Hz},-\mathrm{CH}_{3}\right), 0.74(\mathrm{~d}, 3 \mathrm{H}, J=6.9 \mathrm{~Hz}$, $-\mathrm{CH}_{3}$).
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$), δ :

FTIR (neat), cm^{-1} :

MS (EI):

HRMS (EI):
Calcd. for $\mathrm{C}_{27} \mathrm{H}_{38} \mathrm{O}_{2}$: 394.2872
Found: 394.2869

TLC (20% EtOAc in hexanes), R_{f} : Dithiane 68: 0.53
Diketone 69: 0.37

69
70

Diene 70

Zinc-copper couple (196 mg , excess) and $\mathrm{TiCl}_{3} \bullet(\mathrm{DME})_{1.5}$ (208 mg , excess) were transferred to a schlenk-type flask under inert atmosphere of dry nitrogen. The nitrogen was then exchanged with dry argon, and 1,2-dimethoxyethane (DME, 4.0 mL) was added. After the mixture was heated at reflux for 1.5 h , a solution of the diketone $69(14.9 \mathrm{mg}$, $0.0378 \mathrm{mmol}, 1.00$ equiv) in DME (1.50 mL) was added to the mixture, and the reaction was heated at reflux for an additional 3.5 h . The reaction was then cooled to $23^{\circ} \mathrm{C}$, hexanes (6.0 mL) was added, and the slurry was filtered through a short column of silica. The filtrate was concentrated, and the residue was purified by flash chromatography (100% hexanes) to give the diene $\mathbf{7 0}$ ($10.0 \mathrm{mg}, 73 \%$) as a viscous oil.
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$), $\delta: \quad 7.34(\mathrm{~d}, 2 \mathrm{H}, J=7.6 \mathrm{~Hz}, \mathrm{H}-23), 7 . .25(\mathrm{t}, 2 \mathrm{H}, \mathrm{J}=$ $7.6 \mathrm{~Hz}, \mathrm{H}-24), 7.10(\mathrm{t}, 1 \mathrm{H}, J=7.6 \mathrm{~Hz}, \mathrm{H}-25)$, 6.33 ($\mathrm{s}, 1 \mathrm{H}, \mathrm{H}-21$), 3.17 (m, 1H), 2.65 (dt, $1 \mathrm{H}, \mathrm{J}=$ $15.2,2.0 \mathrm{~Hz}), 2.42(\mathrm{dd}, 1 \mathrm{H}, J=15.2,11.0 \mathrm{~Hz})$, 2.11-2.26 (m, 3H), $2.03(\mathrm{~m}, 1 \mathrm{H}), 1.90(\mathrm{~m}, 1 \mathrm{H})$,
1.81 (s, 3H, H-19), 1.49-1.77 (m, 7H), 1.41 (m, $1 \mathrm{H}), 1.27(\mathrm{~m}, 1 \mathrm{H}), 1.23(\mathrm{~s}, 3 \mathrm{H}, \mathrm{H}-20), 0.93$ (d, $\left.3 \mathrm{H}, J=6.6 \mathrm{~Hz},-\mathrm{CH}_{3}\right), 0.85(\mathrm{~d}, 3 \mathrm{H}, J=6.7 \mathrm{~Hz}$, $\left.-\mathrm{CH}_{3}\right), 0.81\left(\mathrm{~d}, 3 \mathrm{H}, J=6.7 \mathrm{~Hz},-\mathrm{CH}_{3}\right)$.

FTIR (neat), cm^{-1} :

MS (EI):

HRMS (EI):

3056 (w), 3021 (w), 2952 (s), 2867 (s), 2834 (s), 1940 (w), 1598 (w), 1574 (m), 1493 (m), 1453 (s), 1445 (s), 1384 (s), 1375 (s), 1367 (s), 1154 (w), 1073 (w), 1030 (w), 914 (w), 863 (w), 756 (s), 697 (s).
$362\left(\mathrm{M}^{+}\right), 319\left(\mathrm{M}^{+}-\mathrm{C}_{3} \mathrm{H}_{7}\right)$.

Calcd. for $\mathrm{C}_{27} \mathrm{H}_{38}$: 362.2974
Found: 362.2957

TLC (20% EtOAc in hexanes), R_{f} : Diene 70: 0.70
Diketone 69: 0.37

70
71

Allylic Epoxide 71

The diene 70 ($9.0 \mathrm{mg}, 0.025 \mathrm{mmol}, 1.0$ equiv) was dissolved in dichloromethane $(5.0 \mathrm{~mL})$ and cooled to $-14^{\circ} \mathrm{C}$. Sodium bicarbonate ($42 \mathrm{mg}, 0.50 \mathrm{mmol}, 20$ equiv) was added in one portion, followed by the addition of MCPBA $(85 \%, 22 \mathrm{mg}, 0.13 \mathrm{mmol}, 5.0$ equiv). After stirring for 1.5 h at $-14^{\circ} \mathrm{C}$, the excess oxidant was quenched by adding saturated aqueous sodium thiosulfate $(10 \mathrm{~mL})$ and stirring for 1 h at $0^{\circ} \mathrm{C}$. The reaction was diluted with hexanes $(10 \mathrm{~mL})$, and the layers were separated. The organic layer was washed saturated aqueous sodium bicarbonate ($2 \times 15 \mathrm{~mL}$) and dried over sodium sulfate. Concentration of the organic layer gave the sensitive allylic epoxide $71(9.0 \mathrm{mg}, 96 \%)$ as a viscous oil. [Note: The epoxide 71 undergoes spontaneous elimination upon standing in neat form as well as during NMR analysis while in chloroform solution. Only limited ${ }^{1} \mathrm{H}$ NMR analysis was possible.]
${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right), \delta: \quad 7.22-7.40(\mathrm{~m}, 5 \mathrm{H}, \mathrm{H}-23,24,25), 5.83(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}-$ 21), $3.13(\mathrm{t}, 1 \mathrm{H}, J=9.0 \mathrm{~Hz}), 2.18(\mathrm{~m}, 1 \mathrm{H}), 1.67-$ $1.95(\mathrm{~m}, 6 \mathrm{H}), 1.54-1.62(\mathrm{~m}, 2 \mathrm{H}), 1.44-1.51(\mathrm{~m}$, $3 \mathrm{H}), 1.43$ ($\mathrm{s}, 3 \mathrm{H}, \mathrm{H}-19$), $1.20-1.29$ (m, 2H), 0.96-
$1.04(\mathrm{~m}, 2 \mathrm{H}), 0.95\left(\mathrm{~d}, 3 \mathrm{H}, J=6.6 \mathrm{~Hz},-\mathrm{CH}_{3}\right)$, 0.87 (s, 3H, H-20), $0.86(\mathrm{~d}, 3 \mathrm{H}, J=6.6 \mathrm{~Hz}$, $\left.-\mathrm{CH}_{3}\right), 0.81\left(\mathrm{~d}, 3 \mathrm{H}, J=6.6 \mathrm{~Hz},-\mathrm{CH}_{3}\right)$.

TLC (5\% EtOAc in hexanes), R_{f} : Diene 70: 0.70

Allylic Epoxide 71: 0.23

Epoxyketone 72

m-Chloroperoxybenzoic acid ($18.7 \mathrm{mg}, 0.12 \mathrm{mmol}, 4.25$ equiv) added to a solution of the diene 70 ($9.0 \mathrm{mg}, 0.025 \mathrm{mmol}, 1.0$ equiv) and sodium bicarbonate (42 mg , $0.50 \mathrm{mmol}, 20$ equiv) in dichloromethane (5.0 mL) at $-14^{\circ} \mathrm{C}$. After stirring 1.5 h at $-14^{\circ} \mathrm{C}$, saturated aqueous sodium thiosulfate (5.0 mL) was added to the reaction, and the resulting biphasic mixture was stirred for 1 h at $0^{\circ} \mathrm{C}$. Hexanes (10 mL) was added to the reaction, and the layers were separated. The organic phase was washed with saturated sodium bicarbonate ($2 \times 10 \mathrm{~mL}$), dried over sodium sulfate, and concentrated. The crude allylic epoxide ($9.0 \mathrm{mg}, 0.024 \mathrm{mmol}, 1.0$ equiv) was immediately dissolved in a biphasic mixture of carbon tetrachloride (2.0 mL), acetonitrile (2.0 mL) and water (3.0 mL). Sodium periodate ($51 \mathrm{mg}, 0.24 \mathrm{mmol}, 10$ equiv) was added and allowed to dissolve completely. Ruthenium dioxide ($0.50 \mathrm{mg}, 0.0038 \mathrm{mmol}, 0.16$ equiv) was added, and the resulting suspension was stirred vigorously at $23^{\circ} \mathrm{C}$. The black suspension of ruthenium dioxide became an opaque yellow suspension after 1 min at $23^{\circ} \mathrm{C}$, and a clear yellow solution after 8 min . After 15 min at $23^{\circ} \mathrm{C}$, the reaction was diluted with dichloromethane $(10 \mathrm{~mL})$ and the dark green organic phase was separated. The aqueous phase was washed with dichloromethane (10 mL), and the combined organic phases were dried over sodium
sulfate and concentrated. Immediate purification by flash chromatography (10% ethyl acetate in hexanes) gave epoxyketone 72 ($6.7 \mathrm{mg}, 89 \%$ for two steps).

$$
\begin{aligned}
{ }^{1} \mathrm{H} \text { NMR }\left(500 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right), \delta: & 2.79(\mathrm{dd}, 1 \mathrm{H}, J=14.8,4.7 \mathrm{~Hz}, \mathrm{H}-5), 2.76(\mathrm{dd}, \\
& 1 \mathrm{H}, J=9.1,4.6 \mathrm{~Hz}, \mathrm{H}-11), 2.42(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-4), \\
& 2.11(\mathrm{dd}, 1 \mathrm{H}, J=14.8,9.4 \mathrm{~Hz}, \mathrm{H}-5), 1.50-1.78 \\
& (\mathrm{~m}, 9 \mathrm{H}), 1.48(\mathrm{~s}, 3 \mathrm{H}, \mathrm{H}-19), 1.43(\mathrm{~m}, 1 \mathrm{H}), 1.34 \\
& (\mathrm{~m}, 1 \mathrm{H}), 1.19(\mathrm{~m}, 1 \mathrm{H}), 1.13(\mathrm{~m}, 1 \mathrm{H}), 0.93(\mathrm{~d}, 3 \mathrm{H}, \\
& \left.J=6.5 \mathrm{~Hz},-\mathrm{CH}_{3}\right), 0.93(\mathrm{~s}, 3 \mathrm{H}, \mathrm{H}-20), 0.78(\mathrm{~d}, \\
& \left.3 \mathrm{H}, J=6.6 \mathrm{~Hz},-\mathrm{CH}_{3}\right), 0.74(\mathrm{~d}, 3 \mathrm{H}, J=6.6 \mathrm{~Hz}, \\
& \left.-\mathrm{CH}_{3}\right) .
\end{aligned}
$$

FTIR (neat), cm^{-1} : 2956 (s), 2871 (s), 1704 (s), 1456 (s), 1383 (m), 1329 (m), 1272 (w), 1258 (w), 1215 (w), 1072 (w).

MS (FAB, 3-NBA Matrix): $\quad 305\left(\mathrm{MH}^{+}\right)$

HRMS (FAB, 3-NBA Matrix): \quad Calcd. for $\mathrm{C}_{20} \mathrm{H}_{33} \mathrm{O}_{2}\left(\mathrm{MH}^{+}\right): 305.2481$
Found (MH^{+}): 305.2487

TLC (5 \% EtOAc in hexanes), R_{f} : Diene 70: 0.70
Intermediate allylic epoxide 71: 0.24

TLC (10\% EtOAc in hexanes), $R_{f} \quad$ Intermediate allylic epoxide 71: 0.29
Epoxyketone 72: 0.21

72
 LDA, THF, $0^{\circ} \mathrm{C}$ $\xrightarrow[\text { 3. } 30 \% \mathrm{H}_{2} \mathrm{O}_{2}(\mathrm{aq})]{\text { 2. }}$ Pyridine, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $23^{\circ} \mathrm{C}, 75 \%$

(\pm)-1

Synthetic (\pm)-7,8-Epoxy-4-basmen- 6 -one (± 1)

Lithium diisopropylamide (LDA) was prepared immediately before use by adding n-butyllithium ($2.51 \mathrm{M}, 0.960 \mathrm{~mL}, 2.41 \mathrm{mmol}$) to a solution of diisopropylamine (0.400 $\mathrm{mL}, 2.85 \mathrm{mmol})$ in THF (8.50 mL) at $-78^{\circ} \mathrm{C}$. The solution was warmed to $0^{\circ} \mathrm{C}$ for 10 min and again cooled to $-78^{\circ} \mathrm{C}$.

Freshly prepared LDA ($0.24 \mathrm{M}, 0.70 \mathrm{~mL}, 0.17 \mathrm{mmol}, 6.5$ equiv) was added to a solution of the epoxyketone 72 ($8.0 \mathrm{mg}, 0.026 \mathrm{mmol}, 1.0$ equiv) in THF (2.5 mL) at $0^{\circ} \mathrm{C}$. After stirring 8 min at $0^{\circ} \mathrm{C}$, phenylselenenyl chloride ($70 \mathrm{mg}, 0.37 \mathrm{mmol}, 14$ equiv) was added in one portion. After stirring for 10 min at $0^{\circ} \mathrm{C}$, the reaction was partitioned between hexanes $(10 \mathrm{~mL})$ and saturated aqueous sodium bicarbonate $(10 \mathrm{~mL})$. The organic layer was dried over sodium sulfate and concentrated. Purification of the residue by flash column chromatography provided the corresponding sensitive α phenylselenoketone, which was immediately dissolved in dichloromethane (8.0 mL) buffered with pyridine ($0.20 \mathrm{~mL}, 2.5 \mathrm{mmol}, 94$ equiv) at $23^{\circ} \mathrm{C}$. Excess 30% aqueous hydrogen peroxide (2.0 mL) was added to the α-phenylselenoketone solution at $23^{\circ} \mathrm{C}$ and stirred vigorously for 30 min at $23^{\circ} \mathrm{C}$. The reaction was diluted with hexanes (25 mL) and washed with water ($3 \times 25 \mathrm{~mL}$). The organic layer was dried over sodium sulfate and concentrated. Flash column chromatography (25% ethyl acetate in hexanes) provided clean
$(\pm)-1(5.9 \mathrm{mg}, 75 \%)$ as a crystalline solid ($\mathrm{mp} 122^{\circ} \mathrm{C}$). The stereochemical configuration of (\pm)-1 was established unequivocally by X-ray crystallographic analysis of crystals from hexanes (see appendix).
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$), $\delta: \quad 6.10(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{H}-5), 2.68(\mathrm{t}, 1 \mathrm{H}, J=12.5 \mathrm{~Hz}$, $\mathrm{H}-2), 2.61(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-11), 2.00-2.12(\mathrm{~m}, 2 \mathrm{H}), 1.99$ $(\mathrm{d}, 3 \mathrm{H}, J=1.0 \mathrm{~Hz}, \mathrm{H}-18)$, $1.88-1.97(\mathrm{~m}, 3 \mathrm{H})$, 1.68-1.75 (m, 2H), 1.52-1.62 (m, 2H), 1.31-1.49 (m, 3H), 1.30 (s, 3H, H-19), 1.16 (s, 3H, H-20), $0.96(\mathrm{~d}, 3 \mathrm{H}, J=6.7 \mathrm{~Hz}, \mathrm{H}-16), 0.81(\mathrm{~d}, 3 \mathrm{H}, J=$ 6.7 Hz, H-17).
${ }^{13} \mathrm{C}$ NMR (75 MHz, CDCl_{3}), $\delta: \quad 195.08$ (C), 157.36 (C), $129.89(\mathrm{CH}), 74.46$ (2C), $54.68(\mathrm{CH}), 53.35(\mathrm{CH}), 47.56(\mathrm{C}), 47.27(\mathrm{CH})$, $41.65\left(\mathrm{CH}_{2}\right), 34.35\left(\mathrm{CH}_{3}\right), 33.69\left(\mathrm{CH}_{2}\right), 32.46$ $\left(\mathrm{CH}_{2}\right), 27.52(\mathrm{CH}), 27.52\left(\mathrm{CH}_{3}\right), 27.25\left(\mathrm{CH}_{2}\right)$, $22.54\left(\mathrm{CH}_{3}\right), 22.35\left(\mathrm{CH}_{2}\right), 15.82\left(\mathrm{CH}_{3}\right), 14.98$ $\left(\mathrm{CH}_{3}\right)$.

FTIR (neat), cm^{-1} :
2955 (s), 2875 (s), 1651 (s), 1462 (m), 1436 (m), 1385 (m), 1375 (m), 1276 (m), 1180 (w), 1141 (w), 1070 (w), 1008 (m), 924 (w), 892 (w), 868 (w), 660 (w).

MS (FAB, 3-NBA Matrix):
$303\left(\mathrm{MH}^{+}\right), 285\left(\mathrm{M}^{+}-\mathrm{H}_{2} \mathrm{O}\right)$

HRMS (FAB, 3-NBA Matrix): Calcd. for $\mathrm{C}_{20} \mathrm{H}_{33} \mathrm{O}_{2}\left(\mathrm{MH}^{+}\right): 303.2324$

Found (MH^{+}): 303.2334

TLC (40% EtOAc in Hexanes), R_{f} : Epoxyketone 72: 0.67
Synthetic (\pm)7,8-Epoxy-4-basmen-6-one (1): 0.40

References

References

1. For recent examples, see (a) Begley, M. J.; Pattenden, G.; Smithies, S. -A. J.; Walter, D. S. Tetrahedron Lett. 1994, 35, 2413, 2417; (b) Curran, D. P.; Shen, W. Tetrahedron 1993, 49, 755; (c) Hitchcock, S. A.; Pattenden, G. Tetrahedron Lett. 1992, 33, 4843; (d) Winkler, J. D.; Sridar, V. J. Am. Chem. Soc. 1986, 108, 1708; (e) Mehta, G.; Rao, K. S. J. Am. Chem. Soc. 1986, 108, 8015; (f) Gonzalez, A.; Galindo, A.; Palenzuela, J. A.; Mansilla, H. Tetrahedron Lett. 1986, 27, 2771; (g) Shizuri, Y.; Yamaguchi, S.; Terada, Y.; Yamamura, S. Tetrahedron Lett. 1986, 27, 57.
2. (a) Nishitani, K.; Konomi, T.; Mimaki, Y.; Tsunoda, T. Heterocycles 1993, 36, 1957; (b) Hayward, C. M.; Yohannes, D.; Danishefsky, S. J. J. Am. Chem. Soc. 1993, 115, 9345; (c) Oppolzer, W.; Radinov, R. N. J. Am. Chem. Soc. 1993, 115, 1593; (d) Marshall, J. A.; DeHoff, B. S.; Crooks, S. L. Tetrahedron Lett. 1987, 28 , 527; (e) Nicolau, K. C.; Chakraborty, T. K.; Daines, R. A.; Simpkins, N. S. J. Chem. Soc., Chem. Commun. 1986, 413; (f) Marshall, J. A.; DeHoff, B. S.; Tetrahedron Lett. 1986, 27, 4873; (g) Deslongchamps, P.; Brillon, D.; Tetrahedron Lett. 1986, 27, 1131; (h) Deslongchamps, P. Aldrichimica Acta 1984, 17, 59; (i) Deslongchamps, P.; Lamothe, S.; Lin, H.-S. Can. J. Chem. 1984, 62, 2395; (j) Still, W. C.; Mobilio, D.; J. Org. Chem. 1983, 48, 4875; (k) Takahashi, T.; Nemoto, H.; Tsuji, J. Tetrahedron Lett. 1983, 24, 2005, 3485; (1) McMurry, J. E.; Matz, J. R. Tetrahedron Lett. 1982, 23, 2723; (m) Trost, B. M.; Warner, R. W. J. Am. Chem. Soc. 1982, 104, 6112; (n) Illuminati, G.; Mandolini, L. Acc. Chem. Res. 1981, 14, 95.
3. Wahlberg, I.; Eklund, A. -M.; Nishida, T.; Enzell, C. R.; Berg, J. -E. Tetrahedron Lett. 1983, 24, 843.
4. Previous work directed toward the synthesis of 1: (a) Kang, H.-J.; Paquette, L. A. J. Am. Chem. Soc. 1990, 112, 3252. (b) Paquette, L. A.; Kang, H.-J. J. Am. Chem. Soc. 1991, 113, 2610.
5. (a) Beckwith, A. L. J.; Schiesser, C. J. Tetrahedron Lett. 1985, 26, 373; (b) Beckwith, A. L. J.; Easton, C. J.; Lawrence, T.; Serelis, A. K. Aust. J. Chem. 1983, 36, 545; (c) Beckwith, A. L. J. Tetrahedron 1981, 37, 3073; (d) Beckwith, A. L. J.;

Serelis, A. K. J. Chem. Soc., Chem. Commun. 1980, 484; (e) Beckwith, A. L. J.; Serelis, A. K.; Easton, C. J. J. Chem. Soc., Chem. Commun. 1980, 482.
6. For an explanation of terminology, see Baldwin, J. E. J. Chem. Soc., Chem. Commun., 1976, 734.
7. (a) Surzur, J. -M. in "Reactive Intermediates", Abramovitch, R. A., Ed.; Plenum Press: New York, 1982; Vol. 2; (b) Stork, G. in "Current Trends in Organic Synthesis", Nozaki, H., Ed.; Pergammon Press: New York, 1983; (c) Hart, D. J. Science 1984, 223, 883.
8. (a) Dowbenko, R. Tetrahedron 1964, 20, 1843; (b) Dowbenko, R J. Am. Chem. Soc. 1964, 86, 946; (c) Gancarz, R. A.; Kice, J. J. J. Org. Chem. 1981, 46, 4899.
9. (a) Sam, T. W.; Sutherland, J. K. J. Chem. Soc., Chem. Commun. 1971, 970; (b) Traynham, J. G.; Hsieh, H. H. J. Org. Chem. 1973, $38,868$.
10. Dauben, W. G.; Hubben, J. P.; Thiessen, W. E. J. Org. Chem. 1979, 44, 669.
11. Drew, M. G. B.; Templeton, D. H.; Zalkin, A. Acta Crystallogr., Sect. B 1969, 25, 261; note that all atoms in Figure 1 are presented as isotropic ellipsoids.
12. Myers, A. G. Unpublished work, California Institute of Technology, 1987.
13. Leading references, intramolecular radical additions to allenes: (a) Apparu, M.; Crandall, J. K. J. Org. Chem. 1984, 49, 2125; (b) Pattenden, G.; Robertson, G. M. Tetrahedron 1985, 41, 4001; (c) Crandall, J. K.; Mualla, M. Tetrahedron Lett. 1986, 27, 2243; (d) Belotti, D.; Cossy, J.; Pete, J. P.; Portella, C. J. Org. Chem. 1986, 51, 4196; (e) Crandall, J. K.; Ayers, T. A. Tetrahedron Lett. 1991, 32, 3659.
14. Beumel, Jr., O. F.; Harris, R. F. J. Org. Chem. 1964, 29, 1872.
15. Crossland, R. K.; Servis, K. L. J. Org. Chem. 1970, 35, 3195.
16. (a) Huckin, S. N.; Weiler, L. J. Am. Chem. Soc. 1974, 96, 1082; (b) Sum, F.-W.; Weiler, L. Can. J. Chem. 1979, 57, 1431; (c) Weiler, L. J. Am. Chem. Soc. 1970, 92, 6702.
17. Copper (I) iodide, 99.999%, available from the Aldrich Chemical Company, Milwaukee, WI.
18. This procedure involved modifications to the methods in reference 16 (see experimental section).
19. (a) Kato, T.; Kobayashi, T.; Kumagai, T.; Kitihara, Y. Synth. Commun. 1976, 6, 365; (b) Kato, T.; Suzuki, M.; Kobayashi, T.; Moor, B. P. J. Org. Chem. 1980, 45, 1126; (c) Aoki, M.; Tooyama, Y.; Uyehara, T.; Kato, T. Tetrahedron Lett. 1983, 24, 2267.
20. (a) Kobayashi, T.; Kumazawa, S.; Kato, T.; Kitahara, Y. Chem. Lett. 1977, 301; (b) Kato, T.; Suzuki, M.; Nakazima, Y.; Shimizu, K.; Kitahara, Y. Chem. Lett. 1977, 705.
21. The product of chloride elimination (2-propenyl derivative) was also observed (typically $<10 \%$). Neither this impurity nor the minor diastereomer of enone 16 were routinely separated from 16, because all three compounds are processed identically in subsequent steps and converge upon common intermediates.
22. Kim, S.; Ahn, K. H. J. Org. Chem. 1984, 49, 1717.
23. Barton, D. H. R.; McCombie, S. W. J. Chem. Soc., Perkin Trans. 1 1975, 1574.
24. This product was used in crude form due to the lability of the tertiary chloride during silica gel chromatography.
25. Such a complication was not unanticipated; for a recent study of tin-centered radical additions to allenes, see Mitchell, T. N.; Schneider, U. J. Organomet. Chem. 1991, 405, 195.
26. Girard, P.; Namy, J. L.; Kagan, H. B. J. Am. Chem. Soc. 1980, 102, 2693.
27. Precedent for the formation of dimers during the reduction of allylic and benzylic halides using samarium (II) iodide can be found in reference 26.
28. Saito, I.; Ikehira, H.; Kasatani, R.; Watanabe, M.; Matsuura, T. J. Am. Chem. Soc.

1986, 108, 3115.
29. Ganem, B.; Fortunato, J. M. J. Org. Chem. 1975, 40, 2846; (b) Fortunato, J. M.; Ganem, B. J. Org. Chem. 1976, 41, 2194.
30. Cope, A. C.; Heeren, J. K. J. Am. Chem. Soc. 1965, 87, 3125; (b) For a review, see Smith, J. G. Synthesis 1984, 629.
31. Epoxidation done without buffer resulted in epoxide ring-opening and incorporation of m-chlorobenzoate into the product.
32. Omura, K.; Swern, D. Tetrahedron 1978, 34, 1651.
33. Houk, K. N.; Paddon-Row, M. N.; Spellmeyer, D. C.; Rondan, N. G.; Nagase, S. J. Org. Chem. 1986, 51, 2874.
34. Spellmeyer, D. C.; Houk, K. N. J. Org. Chem. 1987, 52, 959.
35. Macromodel V3.5X: Mohamadi, F.; Richards, N. G. J.; Guida, W. C.; Liskamp, R.; Caufield, C.; Chang, G.; Hendrickson, T.; Still, W. C. J. Comp. Chem. 1990, 11, 440. Parameters have been implemented in the MM2* force field.
36. (a) Chang, G.; Guida, W. C.; Still, W. C. J. Am. Chem. Soc. 1989, 111, 4379; (b) Saunders, M.; Houk, K. N.; Wu, Y. -D.; Still, W. C.; Lipton, M.; Chang, G.; Guida, W. C. J. Am. Chem. Soc. 1990, 112, 1419.
37. Monte Carlo conformational searches were done using one closure bond in the forming eleven-membered ring while varying the remaining six torsions. The energy window for saved structures and for subsequent structure selection was set to 50 $\mathrm{kJ} / \mathrm{mol}$. Typically, 1000 conformations were generated and minimized for each of the transition structures studied; conformational searching routines were sometimes terminated before 1000 structures had been processed if convergence to a global minimum was demonstrated reproducibly and repetitively at an earlier point.
38. Based upon a Boltzmann distribution at 323 K , a relative energy difference of 3.82 $\mathrm{kcal} / \mathrm{mol}$ between two transition structures corresponds to an estimated 384:1 ratio of products; minor products will likely be present only in trace amounts.
39. Because the MM2* force field included with MACROMODEL version 3.5X did not contain proper parameters for radical additions to the central carbon of allenes, an $a b$ initio calculation was done to locate the transition structure for such a reaction. The transition structure for methyl radical addition to the central carbon of allene was located and optimized at the UHF/6-31G* level using the GAUSSIAN 92 program (Frisch, M.; Foresman, J.; Frisch, A. 1992, Gaussian, Inc., Pittsburg, PA). Frequency calculations were performed to verify that the geometry was a saddle point with a single negative force constant (imaginary frequency). These data were then used to modify the bond lengths and angles used in the radical addition substructure in the MM2* force field as necessary to achieve the proper transition structure geometry for addition to allene.
40. (a) Gage, J. R.; Evans, D. A. Org. Synth. 1989, 68, 77; (b) Evans, D. A.; Urpi, F.; Somers, T. C.; Clark, J. S.; Bilodeau, M. T. J. Am. Chem. Soc. 1990, 112, 8215; (c) Evans, D. A.; Rieger, D. L.; Bilodeau, M. T.; Urpi, F. J. Am. Chem. Soc. 1991, 113, 1047.
41. Relative steric energy values among stereoisomers are significant and readily interpretable as potential energy differences (entropic differences between stereoisomers are insignificant). The absolute values of steric energy are not directly comparable between structures that are not related by stereoisomerism. For further information, see Burkert, U.; Allinger, N. L. Molecular Mechanics; ACS: Washington, D. C., 1982.
42. Suzuki, M.; Koyano, H.; Noyori, R. J. Org. Chem. 1987, 52, 5583.
43. Carlsen, P. H. J.; Katsuki, T.; Martin, V. S.; Sharpless, K. B. J. Org. Chem. 1981, 46, 3936.
44. Wattanasin, S.; Murphy, W. S. Synthesis 1980, 647.
45. Takano, S.; Hatakeyama, S.; Ogasawara, K. J. Chem. Soc., Chem. Commun., 1977, 68.
46. (a) McMurry, J. E.; Lectka, T.; Rico, J. G. J. Org. Chem. 1989, 54, 3748. (b) McMurry, J. E. Chem. Rev. 1989, 89, 1513.
47. Oxidation performed without pyridine buffer resulted in increased side-reactions and lower yields of the desired enone.
48. (a) Reich, H. J.; Renga, J. M.; Reich, I. L. J. Org. Chem. 1974, 39, 2133. (b) Sharpless, K. B.; Lauer, R. F.; Teranishi, A. Y. J. Am. Chem. Soc. 1973, 95, 6137. (c) Reich, H. J.; Renga, J. M.; Reich, I. L. J. Am. Chem. Soc. 1975, 97, 5434.
49. Still, W. C.; Kahn, M.; Mitra, A. J. Org. Chem. 1978, 43, 2923.
50. Kofron, W. G.; Baclawski, L. M. J. Org. Chem. 1976, 41, 1879.

Appendices

Appendix I

Catalog of Spectra

Synthetic (\pm)-1 $500 \mathrm{MHz}, \mathrm{CDCl}_{3}$

Synthetic (\pm)-1
$200 \mathrm{MHz}, \mathrm{CDCl}_{3}$

| 7.5 | 7.0 | 6.5 | 6.0 | 5.5 | 5.0 | 4.5 | 4.0 | 3.5 | 3.0 | 2.5 | 2.0 | 1.5 | 1.0 | .5 | 0.0 |
| :--- |

Highest R_{f} Diastereomer

2nd Highest R_{f} Diastereomer
23

24

PPM

39

42

43

52

56

63

70

72

Appendix II

Transition Structure Geometry for Methyl Radical Addition to Allene

UHF/6-31G* calculated transition structure of methyl radical addition to allene

Bond

$\mathrm{C}(1)-\mathrm{C}(2)$	1.367
$\mathrm{C}(1)-\mathrm{H}(4)$	1.077
$\mathrm{C}(1)-\mathrm{H}(5)$	1.077
$\mathrm{C}(2)-\mathrm{C}(9)$	1.321
$\mathrm{C}(3)-\mathrm{H}(6)$	1.075
$\mathrm{C}(3)-\mathrm{H}(7)$	1.075
$\mathrm{C}(3)-\mathrm{H}(8)$	1.075
$\mathrm{C}(9)-\mathrm{H}(10)$	1.074
$\mathrm{C}(9)-\mathrm{H}(11)$	1.078
$\mathrm{C}(2)-\mathrm{C}(3)$	

Angle

$\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{H}(4)$	120.687
$\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{H}(5)$	120.687
$\mathrm{H}(4)-\mathrm{C}(1)-\mathrm{H}(5)$	117.237
$\mathrm{C}(1)-\mathrm{C}(2), \mathrm{C}(3)$	107.160
$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(9)$	149.513
$\mathrm{C}(3), \mathrm{C}(2)-\mathrm{C}(9)$	103.329
$\mathrm{C}(2), \mathrm{C}(3)-\mathrm{H}(6)$	98.687
$\mathrm{C}(2), \mathrm{C}(3)-\mathrm{H}(7)$	98.685
$\mathrm{C}(2), \mathrm{C}(3)-\mathrm{H}(8)$	104.176
$\mathrm{H}(6)-\mathrm{C}(3)-\mathrm{H}(7)$	116.998
$\mathrm{H}(6)-\mathrm{C}(3)-\mathrm{H}(8)$	116.620
$\mathrm{H}(7)-\mathrm{C}(3)-\mathrm{H}(8)$	116.622
$\mathrm{C}(2)-\mathrm{C}(9)-\mathrm{H}(10)$	122.525
$\mathrm{C}(2)-\mathrm{C}(9)-\mathrm{H}(11)$	120.495
$\mathrm{H}(10)-\mathrm{C}(9)-\mathrm{H}(11)$	116.987

Length ((\mathbb{A})

1.367
1.077
1.077
1.321
1.075
1.075
1.075
1.074
1.078
2.360

Degrees

120.687
120.687
117.237
107.160
149.513
103.329
98.687
98.685
116.998
116.620
116.622
122.525
120.495
116.987

Dihedral

```
\(\mathrm{H}(4)-\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(9)\)
\(\mathrm{H}(5)-\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(9)\)
\(\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(9)-\mathrm{H}(10)\)
\(\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(9)-\mathrm{H}(11)\)
H(4)-C(1)-C(2)-C(9)
    .169
-96.690
180.000
    0.000
```


Appendix III

X-ray Crystallographic Data

The Structure of a Cembrene Cyclization Compound

Kevin R. Condroski and William P. Schaefer
Arthur Amos Noyes Laboratory of Chemical Physics
Division of Chemistry and Chemical Engineering
California Institute of Technology
Pasadena, California 91125
March 29, 1990

Abstract

. The structure of a cembrene cyclization compound, $\mathrm{C}_{21} \cdot \mathrm{H}_{32} \mathrm{Cl}_{4}$, has been determined. It crystallizes in the monoclinic system, in space group P2 $\mathbf{1}_{1}$, (\#4), with $a=6.257(2) \AA, b=11.143(2) \AA, c=16.033(4) \AA, \beta=98.14(2)^{\circ}$, and volume $=1106.5$ (5) $\AA^{3} ; Z=2$.

Experimental.

The only crystal that appeared single was glued to a glass fiber with epoxy cement; oscillation and zero-layer Weissenberg photographs showed monoclinic symmetry and revealed a small twin, estimated at 2% of the main crystal, attached to it. Since no better material was available, we moved the crystal to the diffractometer and collected two data sets. Systematic absences indicated space groups $\mathrm{P} 2_{1}$ or $\mathrm{P} 21 / \mathrm{m}$; with two molecules in the cell and an optically active compound we chose $\mathrm{P} 2_{1}$. The data were averaged in point group $2 / \mathrm{m}$, however, and the averaged data used for structure solution and refinement. The data were corrected for a slight decay and reduced to structure amplitudes. A MULTAN solution gave the four chlorine atoms and 10 carbon atoms; a Fourier map phased on those atoms revealed the remaining carbon atoms. After three cycles of least squares, hydrogen atoms were introduced as constant contributions to the structure factors at calculated positions or, for terminal
methyl groups, at idealized positions based on difference maps calculated in their expected planes. They were assigned isotropic thermal parameters 20% greater than the equivalent isotropic thermal parameter of the carbon atom they were bonded to. Six cycles of full-matrix least squares, adjusting positional and anisotropic thermal parameters for all non-hydrogen atoms and a scale factor, completed the refinement. The final R-index for the 2190 reflections with $F_{0}{ }^{2}>3 \sigma\left(F_{0} 2\right)$ is 0.048 . The final difference map had features of +0.43 and $-0.42 e^{\AA}-3$; the largest of these were near chlorine atoms.

Calculations were done with programs of the CRYM Crystallographic Computing System and ORTEP. Scattering factors and corrections for anomalous scattering were taken from a standard reference (International Tables for X-ray Crystallography, Vol. IV, p. 71, p. 149; Birmingham, Kynoch Press, 1974). $R=\Sigma\left|F_{o}-\left|F_{c}\right| / \Sigma F_{o}\right.$, for only $F_{o}{ }^{2}>0$, and goodness of fit $=\left[\Sigma w\left(F_{o}{ }^{2}-F_{c}{ }^{2}\right) 2 /(n-p)\right]^{\frac{1}{2}}$ where n is the number of data (3373) and p the number of parameters (225) refined. The function minimized in least squares was $\Sigma \mathrm{w}\left(\mathrm{F}_{\mathrm{o}}{ }^{2}-\mathrm{F}_{\mathrm{c}}{ }^{2}\right)^{2}$, where $\mathrm{w}=1 / \sigma^{2}\left(\mathrm{~F}_{\mathrm{o}}{ }^{2}\right)$. Variances of the individual reflections were assigned based on counting statistics plus an additional term, $0.014 \mathrm{I}^{2}$. Variances of the merged reflections were determined by standard propagation of error plus another additional term, $0.014<\mathrm{I}>2$.

Discussion

The molecule shows nicely normal bond distances and angles throughout. The $\mathrm{C}-\mathrm{Cl}$ bonds on the $-\mathrm{CCl}_{3}$ group average $1.776[12] \AA$, somewhat shorter than the single $\mathrm{C}-\mathrm{Cl}$ bond at $1.829(4) \AA$. The two double bonds in the structure average $1.320(5) \AA$, while the 20 single bonds average $1.529[19] \AA$. The five-membered ring shows no sign of unusual strain.

Legend for Figure.

An ORTEP drawing of the molecule roughly perpendicular to the least-squares plane of the atoms. Thermal ellipsoids are shown at the 60% probability level; hydrogen atoms were given arbitrary, small thermal parameters.

Acknowledgements.
We thank the NSF for Grant CHE-8219039 to purchase the diffractometer.

References.
International Tables for X-ray Crystallography, Vol. IV, p. 71, p. 149; Birmingham, Kynoch Press, 1974

Table I.

Crystallographic Data for Cembrene Cyclization Compound

Formula: $\mathrm{C}_{21} \mathrm{H}_{32} \mathrm{Cl}_{4}$	Formula Weight: 426.30
$a=6.257(2) \AA$	Space Group: $\mathrm{P}_{1}, \# 4$
$b=11.143(2) \AA$	$\mathrm{T}=22^{\circ} \mathrm{C}$
$c=16.033(4)^{\circ}$	$\rho_{\text {calc }}=1.28 \mathrm{~g} \mathrm{~cm}^{-3}$
$\mathrm{~B}=98.14(2)^{\circ}$	$\mathrm{\mu}=5.36 \mathrm{~cm}^{\circ}$
$\lambda=0.71073 \AA$	$\mathrm{R}\left(\mathrm{F}_{\mathrm{o}}\right)=0.070$
$\mathrm{~V}=1106.5(5) \AA^{3}$	$\mathrm{GOF}=1.83$
$\mathrm{Z}=2$	

Table II. Heavy Atom Parameters for Cembrene

Cyclization Compound.

$$
x, y, z \text { and } U_{e q}{ }^{a} \times 10^{4}
$$

Atom	x	y	z	$U_{e q}$
Cl1	$4519(2)$	$320(2)$	$5617(1)$	$708(3)$
C12	$112(2)$	$-439(2)$	$5324(1)$	$641(3)$
Cl3	$3395(2)$	$-1869(2)$	$4727(1)$	$669(3)$
C1	$2513(6)$	$-375(4)$	$4868(2)$	$411(9)$
C2	$2299(5)$	$307(4)$	$4028(2)$	$326(8)$
C3	$1391(6)$	$1593(4)$	$4100(2)$	$407(9)$
C4	$1271(6)$	$2208(4)$	$3262(3)$	$386(9)$
C5	$-456(6)$	$2503(4)$	$2733(3)$	$389(9)$
C6	$-2743(7)$	$2463(5)$	$2925(3)$	$581(12)$
C7	$-319(7)$	$2806(4)$	$1820(3)$	$491(11)$
C8	$-358(6)$	$1651(4)$	$1296(3)$	$416(9)$
C9	$1884(6)$	$1078(4)$	$1308(2)$	$378(9)$
C14	$3332(2)$	2000	$628(1)$	$643(3)$
C10	$1954(6)$	$-247(4)$	$1066(2)$	$389(9)$
C11	$526(7)$	$-478(5)$	$227(2)$	$538(11)$
C12	$4306(6)$	$-654(5)$	$1016(3)$	$494(11)$
C13	$4472(7)$	$-1959(5)$	$1299(3)$	$594(12)$
C14	$2289(6)$	$-2314(4)$	$1568(3)$	$424(10)$
C15	$2428(8)$	$-3270(4)$	$2247(3)$	$529(11)$
C16	$3630(8)$	$-4385(5)$	$2003(4)$	$715(15)$

Table II. (Cont.)

Atom	x	y	z	$U_{\text {eq }}$
C17	$233(10)$	$-3644(5)$	$2439(4)$	$810(17)$
C18	$1300(6)$	$-1086(4)$	$1771(2)$	$351(9)$
C19	$2152(5)$	$-631(4)$	$2636(2)$	$311(8)$
C20	$1107(5)$	$-367(4)$	$3274(2)$	$316(7)$
C21	$-1280(6)$	$-600(5)$	$3273(3)$	$517(11)$

${ }^{a} U_{e q}=\frac{1}{3} \sum_{i} \sum_{j}\left[U_{i j}\left(a_{i}^{*} a_{j}^{*}\right)\left(\vec{a}_{i} \cdot \vec{a}_{j}\right)\right]$

Table III. Distances and Angles not involving Hydrogen for Cembrene Cyclization Compound.

Distance (\AA)		Distance (\AA)	
Cl1 -C1	1.786(4)	C14-C18	1.556(6)
Cl2 - Cl^{1}	1.763(4)	C15-C16	$1.532(7)$
Cl3-C1	1.778(4)	C15-C17	1.507(7)
C1 -C2	1.536(5)	C18-C19	1.502(5)
C2 - C3	1.552(5)	C19-C20	1.322(5)
C2-C20	$1.525(5)$	C20-C21	1.516(6)
C3 - 44	1.500(6)		
C4-C5	1.318(6)		
C5 - 66	1.506(6)		
C5 - C 7	1.516(6)		
C7-C8	1.535(6)		
C8 - 89	1.539(6)		
C9 - Cl 4	1.829(4)		
C9 - C10	1.528(6)		
C10-C11	1.528(6)		
C10-C12	1.553(6)		
C10-C18	1.566(5)		
C12-C13	1.522(6)		
C13-C14	1.541(6)		
C14-C15	1.518(6)		

Table III. (Cont.)

Angle(${ }^{\circ}$)			Angle(${ }^{\circ}$)	
Cl2-C1	-Cl1	107.3(2)	C12-C10-C9	110.9(3)
Cl3-C1	- Cl 1	106.9(2)	C18-C10-C9	112.0(3)
C2 - 11	-Cl1	110.0(3)	C12-C10-C11	110.2(3)
$\mathrm{Cl3}-\mathrm{C} 1$	-Cl2	108.2(2)	C18-C10-C11	110.8(3)
C2-C1	-Cl2	114.2(3)	C18-C10-C12	102.1(3)
C2-C1	-Cl3	110.0(3)	C13-C12-C10	106.8(3)
C3 - 22	-C1	112.3(3)	C14-C13-C12	107.6(4)
C20-C2	-C1	115.1(3)	C15-C14-C13	114.7(4)
C20-C2	-C3	111.8(3)	C18-C14-C13	103.2(3)
C4-C3	-C2	109.2(3)	C18-C14-C15	116.8(3)
C5 -C4	-C3	128.6(4)	C16-C15-C14	111.5(4)
C6 -C5	-C4	125.2(4)	C17-C15-C14	112.3(4)
C7 -C5	-C4	121.6(4)	C17-C15-C16	108.8(4)
C7 -C5	-C6	112.9(3)	C14-C18-C10	102.8(3)
C8 -C7	-C5	110.1(3)	C19-C18-C10	111.7(3)
C9 -C8	-C7	113.4(3)	C19-C18-C14	113.0(3)
Cl4 -C9	-C8	106.7	C20-C19-C18	129.7(3)
C10-C9	-C8	117.2(3)	C19-C20-C2	118.9(3)
C10-C9	-Cl4	110.9	C21-C20-C2	117.1(3)
C11-C10	-C9	110.6(3)	C21-C20-C19	123.8(3)

Table IV.
Data Collection Information for Cembrene Cyclization Compound

Crystal Color: clear, colorless
$a=6.257(2) \AA$
$b=11.143(2) \AA$
$c=16.033(4) \AA$
$\mathrm{T}=22^{\circ} \mathrm{C}$
$\mathrm{B}=98.14(2)^{\circ}$
$\lambda=0.71073 \AA$
$\mu=5.36 \mathrm{~cm}^{-1}$
$\mu r_{\text {max }}=0.21$
Crystal Size: $0.08 \times 0.15 \times 0.77 \mathrm{~mm}$
Total Number Reflections: 6784
Total Independent Reflections: $\mathbf{3 3 7 3}$
GOF for Merging: 0.97
R merge for reflections with exactly 2 observations: 0.038
Number of Reflections used in Refinement: 3373
Number of Reflections with $\mathrm{F}_{\mathrm{o}}{ }^{2}>0$: 3033
Number of Reflections with $\mathrm{F}_{\mathrm{o}}{ }^{2}>3 \sigma\left(\mathrm{~F}_{\mathrm{o}}{ }^{2}\right): 2190$
R for reflections with $\mathrm{F}_{\mathrm{o}}{ }^{2}>3 \sigma\left(\mathrm{~F}_{\mathrm{o}}{ }^{2}\right): 0.048$

Table V. Assigned Hydrogen Parameters for Cembrene Cyclization Compound.
x, y and $z \times 10^{4}$

Atom	\boldsymbol{x}	\boldsymbol{y}	\boldsymbol{z}	B
H2	3778	395	3907	3.1
H3a	2272	2038	4528	3.9
H3b	-33	1535	4254	3.9
H4	2651	2415	3089	3.7
H6a	-2736	2033	3432	5.5
H6b	-3615	2088	2474	5.5
H6c	-3203	3270	2991	5.5
H7a	981	3220	1781	4.7
H7b	-1516	3302	1593	4.7
H8a	-970	1822	741	3.9
H8b	-1295	1093	1537	3.9
H9	2518	1092	1897	3.6
H11a	-984	-355	291	5.1
H11b	699	-1279	53	5.1
H11c	870	67	-195	5.1
H12a	5349	-163	1370	4.7
H12b	4647	-592	451	4.7
H13a	5631	-2032	1785	5.6
H13b	4873	-2460	870	5.6
H14	1367	-2707	1125	4.0
H15	3272	-2959	2762	5.0
H16a	4915	-4121	1767	6.8
H16b	2727	-4805	1578	6.8
H16c	4069	-4870	2474	6.8
H17a	-592	-2919	2539	7.7
H17b	265	-4165	2879	7.7
H17c	-566	-3998	1922	7.7
H18	-244	-1150	1791	3.3
H19	3709	-514	2741	2.9
H21a	-1943	100	3480	4.9
H21b	-1481	-1264	3625	4.9
H21c	-1981	-760	2711	4.9

Table VI. Anisotropic Displacement Parameters for Cembrene Cyclization Compound.

Atom	U_{11}	U_{22}	U_{33}	U_{12}	U_{13}	U_{23}
Cl1	781(9)	838(9)	443(6)	$-112(8)$	$-133(6)$	$3(7)$
Cl2	716(7)	704(8)	$570(7)$	$-36(7)$	326(6)	67(6)
Cl3	$924(10)$	$525(7)$	$555(7)$	245(7)	97(7)	94(6)
C1	425(21)	$459(24)$	$355(20)$	$-16(19)$	81(16)	-50(19)
C2	268(18)	$362(20)$	353 (19)	-26(16)	66(14)	-29(17)
C3	387(22)	$410(23)$	427(23)	-3(18)	64(18)	$-79(18)$
C4	364(21)	$334(22)$	464(23)	$-37(17)$	$75(18)$	$-17(18)$
C5	$403(22)$	$350(21)$	$424(23)$	33(17)	97(18)	-22(18)
C6	$409(24)$	$736(35)$	604(29)	92(23)	95(22)	-56(25)
C7	590(29)	387 (24)	508(26)	$38(20)$	116(21)	59(20)
C8	381 (22)	$437(24)$	420 (22)	$34(18)$	$22(17)$	57(19)
C9	$353(21)$	459(24)	$335(20)$	$-73(18)$	97(16)	107(17)
Cl4	617 (7)	672 (8)	693 (8)	$-71(6)$	$274(6)$	$213(6)$
C10	$362(20)$	506(25)	308(19)	$-31(18)$	$77(16)$	-21(17)
C11	617(29)	620(29)	348(22)	$-52(26)$	-28(19)	$-59(23)$
C12	$410(24)$	621 (30)	$482(24)$	$-22(21)$	175(19)	-48(22)
C13	$526(27)$	563 (29)	734(32)	$72(24)$	227(24)	$-172(27)$
C14	413(23)	418(24)	$432(23)$	$-17(19)$	$31(18)$	$-111(19)$
C15	$579(28)$	460(27)	$512(26)$	$23(21)$	$-44(22)$	$-91(21)$
C16	$708(35)$	$509(32)$	903 39)	$76(26)$	31(29)	-28(28)
C17	998(45)	$517(32)$	998(44)	97(30)	429(37)	235(31)
C18	$332(21)$	390(22)	$336(20)$	$-7(17)$	61(16)	$-54(17)$
C19	275(18)	$329(20)$	326(19)	$-20(15)$	$33(15)$	$18(16)$
C20	281(17)	337(19)	332(18)	$2(16)$	52(14)	-3(16)
C21	362(22)	679(30)	529(25)	$-101(22)$	130(19)	$-132(24)$

$U_{i, j}$ values have been multiplied by 10^{4}
The form of the displacement factor is:
$\exp -2 \pi^{2}\left(U_{11} h^{2} a^{*^{2}}+U_{22} k^{2} b^{*^{2}}+U_{33} \ell^{2} c^{*^{2}}+2 U_{12} h k a^{*} b^{*}+2 U_{13} h \ell a^{*} c^{*}+2 U_{23} k \ell b^{*} c^{*}\right)$

The Structure of
Macro Ketone Chloride
Kevin R. Condroski and Lawrence M. Henling
Arthur Amos Noyes Laboratory of Chemical Physics
Division of Chemistry and Chemical Engineering
California Institute of Technology
Pasadena, California 91125
Apr 12, 1990

Abstract

. The structure of macro ketone chloride, $\mathrm{C}_{20} \mathrm{OClH}_{31}$, has been determined. It crystallizes in the triclinic system, in space group $\mathrm{P} \overline{1}$ (\#2), with $a=7.405(4) \AA, b=10.755(9) \AA$, $c=13.478(6) \AA, \alpha=107.18(6)^{\circ}, \beta=90.85(4)^{\circ}, \gamma=106.61(6)^{\circ}$, volume $=976.9(11) \AA^{3}$; $Z=2$ and density $=1.098 \mathrm{~g} \mathrm{~cm}^{-3}$.

Experimental.

A large, chunky crystal was mounted with epoxy on a glass fiber, coated with epoxy to retard oxidation, and centered on a CAD-4 diffractometer. Unit cell parameters and an orientation matrix were obtained by a least squares calculation from the setting angles of 24 reflections with $30^{\circ}<2 \theta<36^{\circ}$. Two equivalent data sets out to a 2θ of 45° were collected. A background function of 2θ calculated from weak reflections was used. No adjustment was made for the minimal absorption and there was no decay of the three check reflections. Lorentz and polarization factors were applied and the two data sets were then merged to yield the final data set. Preliminary photographs suggested the triclinic system.

The structure was solved by MULTAN and successfully refined by full matrix least squares in space group P1. Hydrogen atom positions were determined from difference maps
for the methyl groups and by calculation for the remainder. All hydrogen atoms were given isotropic B values 20% greater than that of the attached atom. No hydrogen parameters were refined. The complete least squares full matrix, consisting of spatial and anisotropic thermal parameters for the non-hydrogen atoms, a secondary extinction coefficient, and a scale factor, contained 200 parameters. A final difference Fourier map showed deviations ranging from $-0.35 \mathrm{e} \AA^{-3}$ to $+0.68 \mathrm{e} \AA^{-3}$. The one large positive peak was near $\mathrm{C}(8)$ and $\mathrm{C}(9)$. These two carbon atoms have large displacement parameters corresponding to a rotary oscillation about the center of the bond. Replacement of each anisotropic atom by two isotropic atoms and a population factor did not yield any significant improvement in the refinement, however; and this model was discarded. The refinement converged with an R-factor of $0.0659\left(0.0589\right.$ for $\left.\mathrm{F}_{\mathrm{o}}^{2}>3 \sigma\left(F_{\mathrm{o}}^{2}\right)\right)$ and a goodness of fit of 4.59 for all 2558 reflections. Crystallographic data are given in Table I. The final parameters are listed in Table II.

Calculations were done with MULTAN and programs of the CRYM Crystallographic Computing System and ORTEP. Scattering factors and corrections for anomalous scattering were taken from a standard reference (International Tables for X-ray Crystallography, Vol. IV, p. 71, p. 149; Birmingham, Kynoch Press, 1974). $R=\Sigma\left|\mathrm{F}_{\mathrm{o}}-\left|\mathrm{F}_{\mathrm{c}}\right|\right| / \Sigma \mathrm{F}_{\mathrm{o}}$, for only $\mathrm{F}_{\mathrm{o}}^{2}>0$, and goodness of fit $=\left[\Sigma \mathrm{w}\left(\mathrm{F}_{\mathrm{o}}^{2}-\mathrm{F}_{\mathrm{c}}^{2}\right)^{2} /(\mathrm{n}-\mathrm{p})\right]^{1 / 2}$, where n is the number of data and p the number of parameters refined. The function minimized in least squares was $\Sigma \mathrm{w}\left(\mathrm{F}_{\mathrm{o}}^{2}-\mathrm{F}_{\mathrm{c}}^{2}\right)^{2}$, where $\mathrm{w}=1 / \sigma^{2}\left(\mathrm{~F}_{\mathrm{o}}^{2}\right)$. Variances of the individual reflections were assigned based on counting statistics plus an additional term, $0.014 \mathrm{I}^{2}$. Variances of the merged reflections were determined by standard propagation of error plus another additional term, $0.014\langle\mathrm{I}\rangle^{2}$. The secondary extinction parameter (Larson, eqn. 3) refined to $5.2(8) \times 10^{-6}$.

Description of the Structure.

The fourteen membered macrocycle incorporates an allene and an isolated double bond. The allene bond lengths are $1.299(6)$ and $1.303(6) \AA$. The two terminal atoms of
the allene make an angle of $177.4(4)^{\circ}$ about the central atom. The angle between the best planes through each terminal atom and the adjacent non-hydrogen atoms (three carbon atoms on one side; four on the other) is $91(10)^{\circ}$. The torsional angle between ring carbon atoms bonded to the terminal allene atoms is $85.7(5)^{\circ}$. The eight angles in the ring about aliphatic carbon atoms average 114.7°, ranging from $109.6(3)$ to $119.2(4)^{\circ}$. The largest angle is about one of the two disordered atoms. The single bond between these two atoms is only $1.390(7) \AA$, reflecting the large displacement parameters. The molecule is arranged in a double chair configuration. The ring is fairly flat and square; the deviations from the best plane through the fourteen ring atoms range from $-.64 \AA$ to $.55 \AA$. The remaining bond lengths and angles are normal. The shortest intermolecular distance is $3.61 \AA$ between two methyl group carbons.

Acknowledgements.

We thank the NSF for Grant CHE-8219039 to purchase the diffractometer.

References.

Larson, E. C.,Acta Cryst.,1967,2s,664
International Tables for X-ray Crystallography, Vol. IV, p. 71, p. 149; Birmingham, Kynoch Press, 1974

Supplementary Material Available.

Table IV., crystal and intensity collection data; Table V., anisotropic displacement parameters; Table VI., assigned hydrogen parameters; Table VII., complete distances and angles; and numbering scheme (seven pages); Table VIII., observed and calculated structure factors (twelve pages).

Table I. Crystallographic Data for Macro Ketone Chloride

Formula: $\mathrm{C}_{20} \mathrm{OClH}_{31}$
$a=7.405(4) \AA$
$b=10.755(9) \AA$
$c=13.478(6) \AA$
$\alpha=107.18(6)^{\circ}$
$\beta=90.85(4)^{\circ}$
$\gamma=106.61(6)^{\circ}$
$V=976.9(11) \AA^{3}$

Space group: $\mathrm{P} \overline{1}$ (\#2)

$$
\mathrm{T}=293^{\circ} \mathrm{K}
$$

$$
\lambda=0.7107 \AA
$$

$$
\rho_{\text {calc }}=1.098 \mathrm{~g} \mathrm{~cm}^{-3}
$$

$$
\mu=2.00 \mathrm{~cm}^{-1}
$$

$$
\begin{aligned}
& \mathrm{R}\left(\mathrm{~F}_{\mathrm{o}}\right)=0.0659 \\
& \mathrm{GOF}=4.59
\end{aligned}
$$

Table II. Final Non-Hydrogen Parameters for Macro Ketone Chloride

$$
x, y, z \text { and } U_{e q}{ }^{a} \times 10^{4}
$$

Atom	x	y	z	$U_{e q}$
$\mathrm{C}(1)$	$10063(4)$	$-373(3)$	$1776(2)$	$552(8)$
$\mathrm{C}(2)$	$10179(4)$	$-693(3)$	$2790(2)$	$595(8)$
$\mathrm{C}(3)$	$12148(4)$	$-362(4)$	$3335(2)$	$654(9)$
$\mathrm{C}(4)$	$12029(5)$	$-1089(4)$	$4171(3)$	$804(10)$
$\mathrm{C}(5)$	$11354(6)$	$-2614(5)$	$3769(3)$	$821(10)$
$\mathrm{C}(6)$	$9739(6)$	$-3384(4)$	$3911(3)$	$788(10)$
$\mathrm{C}(7)$	$8093(6)$	$-4109(4)$	$4066(3)$	$813(10)$
$\mathrm{C}(8)$	$6293(7)$	$-4449(6)$	$3356(4)$	$1265(17)$
$\mathrm{C}(9)$	$6428(7)$	$-4298(5)$	$2369(4)$	$1203(15)$
$\mathrm{C}(10)$	$4612(5)$	$-4373(4)$	$1785(3)$	$875(11)$
$\mathrm{C}(11)$	$4489(5)$	$-3692(3)$	$1147(3)$	$650(9)$
$\mathrm{C}(12)$	$6192(4)$	$-2688(3)$	$911(2)$	$637(8)$
$\mathrm{C}(13)$	$6441(4)$	$-1214(3)$	$1559(2)$	$531(7)$
$\mathrm{C}(14)$	$8238(4)$	$-190(3)$	$1386(2)$	$505(7)$
$\mathrm{C}(15)$	$8228(4)$	$1315(3)$	$1766(2)$	$596(8)$
$\mathrm{C}(16)$	$10088(5)$	$2301(3)$	$1611(3)$	$828(11)$
$\mathrm{C}(17)$	$6511(5)$	$1515(3)$	$1231(3)$	$700(9)$
C 1	$7988(2)$	$1808(1)$	$3163(1)$	$907(3)$
$\mathrm{C}(18)$	$2619(5)$	$-3873(4)$	$598(3)$	$882(11)$
$\mathrm{C}(19)$	$7787(5)$	$-4607(4)$	$4994(3)$	$880(11)$
C				

Table II. (Cont.)


```
C(20) 13064(5) 1158(4) 3809(3) 890(11)
O 11391(3) -301(3) 1253(2) 786(7)
\({ }^{a} U_{e q}=\frac{1}{3} \sum_{i} \sum_{j}\left[U_{i j}\left(a_{i}^{*} a_{j}^{*}\right)\left(\vec{a}_{i} \cdot \vec{a}_{j}\right)\right]\)
```

Table III. Selected Distances and Angles for
Macro Ketone Chloride

\[

\]

Table III. (Cont.)

	Angle(${ }^{\circ}$)			Angle(${ }^{\circ}$)	
C(14)	-C(1)	-C(2)	119.7(3)	$\mathrm{C}(14)-\mathrm{C}(13)-\mathrm{C}(12)$	113.5(2)
0	-C(1)	-C(2)	120.4(3)	$\mathrm{C}(13)-\mathrm{C}(14)-\mathrm{C}(1)$	113.0(2)
0	-C(1)	-C(14)	119.8(3)	$\mathrm{C}(15)-\mathrm{C}(14)-\mathrm{C}(1)$	112.8(2)
C(3)	-C(2)	$-\mathrm{C}(1)$	117.0(3)	$\mathrm{C}(15)-\mathrm{C}(14)-\mathrm{C}(13)$	114.2(2)
C(4)	-C(3)	$-\mathrm{C}(2)$	109.6(3)	$\mathrm{C}(16)-\mathrm{C}(15)-\mathrm{C}(14)$	112.0(3)
C(20)	$-\mathrm{C}(3)$	-C(2)	111.6(3)	$\mathrm{C}(17)-\mathrm{C}(15)-\mathrm{C}(14)$	112.0(3)
C(20)	$-\mathrm{C}(3)$	-C(4)	111.0(3)	$\mathrm{C}(17)-\mathrm{C}(15)-\mathrm{C}(16)$	110.1(3)
C(5)	-C(4)	-C(3)	115.5(3)	$\mathrm{Cl}-\mathrm{C}(15)-\mathrm{C}(14)$	109.2(2)
C(6)	-C(5)	-C(4)	125.5(4)	$\mathrm{Cl}-\mathrm{C}(15)-\mathrm{C}(16)$	107.1(2)
$\mathrm{C}(7)$	$-\mathrm{C}(6)$	$-\mathrm{C}(5)$	177.4(4)	$\mathrm{Cl}-\mathrm{C}(15)-\mathrm{C}(17)$	106.2(2)
C(8)	$-\mathrm{C}(7)$	$-\mathrm{C}(6)$	122.9(4)		
C(19)	$-\mathrm{C}(7)$	$-\mathrm{C}(6)$	123.1(4)		
C(19)	$-\mathrm{C}(7)$	$-\mathrm{C}(8)$	113.9(4)		
C(9)	-C(8)	$-\mathrm{C}(7)$	119.2(4)		
C(10)	$-\mathrm{C}(9)$	$-\mathrm{C}(8)$	116.6(4)		
C(11)	-C(10)	-C(9)	125.6(4)		
C(12)	-C(11)	-C(10)	123.0(3)		
C(18)	-C(11)	-C(10)	120.8(3)		
C(18)	-C(11)	-C(12)	116.1(3)		
C(13)	-C(12)	-C(11)	112.8(3)		

Table IV. Crystal and Intensity Collection Data for Macro Ketone Chloride

Formula: $\mathrm{C}_{20} \mathrm{OClH}_{31}$

Crystal color: Clear Habit: Chunky

Crystal size: $0.60 \times 0.70 \times 0.75 \mathrm{~mm}$
Space group: Pī (\#2)
$a=7.405(4) \AA$

$$
\alpha=107.18(6)^{\circ}
$$

$b=10.755(9) \AA$

$$
\beta=90.85(4)^{\circ}
$$

$c=13.478(6) \AA$
$\gamma=106.61(6)^{\circ}$
$\mathrm{V}=976.9(11) \AA^{3}$
$\rho_{\text {calc }}=1.098 \mathrm{~g} \mathrm{~cm}^{-3}$
$\mu=2.00 \mathrm{~cm}^{-1}\left(\mu \mathrm{r}_{\text {max }}=0.24\right)$
CAD-4 diffractometer
$\theta-2 \theta$ scan
$\lambda=0.7107 \AA$
Graphite monochromator
2θ range: $3^{\circ}-45^{\circ}$
Octants collected: $\pm h, \pm k, \pm l$
$\mathrm{T}=293^{\circ} \mathrm{K}$
Number of reflections measured: 5179
Number of independent reflections: 2558
Number with $\mathrm{F}_{\mathrm{o}}^{2}>0: 2304$
Number with $\mathrm{F}_{\mathrm{o}}^{2}>3 \sigma\left(\mathrm{~F}_{\mathrm{o}}^{2}\right): 2060$
Number of reflections used in refinement: 2558
Goodness of fit for merging data: 1.69
Final R-index: 0.0659 for 2304 reflections with $\mathrm{F}_{\mathrm{o}}^{2}>0$
Final R-index: 0.0589 for 2060 reflections with $\mathrm{F}_{\mathrm{o}}^{2}>3 \sigma\left(\mathrm{~F}_{\mathrm{o}}^{2}\right)$
Final goodness of fit: 4.59 for 200 parameters and 2558 reflections

Table V. Anisotropic Displacement Parameters for Macro Ketone Chloride

Atom	U_{11}	U_{22}	U_{33}	U_{12}	U_{13}	U_{23}
C(1)	518(18)	614(20)	517(18)	128(15)	105(15)	207(15)
C(2)	501(18)	744(22)	606(19)	185(15)	100(15)	310(16)
C(3)	467(18)	934(26)	646(20)	223(17)	126(15)	359(19)
C(4)	589(21)	1224 (34)	761 (24)	311(21)	31(17)	514(23)
C(5)	840(27)	$1144(34)$	814(26)	562(25)	223(21)	540(24)
C(6)	899(29)	990(29)	726(24)	465(25)	110(21)	464(22)
C(7)	856(27)	866(27)	800(25)	293(22)	-1(21)	355(21)
C(8)	1017(34)	1630(48)	1028(35)	50(31)	-116(27)	592(34)
C(9)	1142(36)	1319(40)	1169(37)	46(29)	-101(28)	747 (32)
C(10)	768 (25)	$755(25)$	976(28)	-105(19)	-188(21)	423(22)
C(11)	678(21)	504(19)	641(21)	50(16)	-65(16)	125(16)
C(12)	681(20)	532(19)	617(20)	95(16)	16(16)	152(16)
C(13)	502(17)	537(18)	526(17)	106(14)	6(13)	176(14)
C(14)	536(17)	552(18)	410(16)	115(14)	74(13)	174(14)
$\mathrm{C}(15)$	636(20)	528(18)	580(19)	86(15)	70 (15)	195(15)
C(16)	853 (25)	540(21)	1015(28)	48(18)	144(21)	287(19)
C(17)	843(23)	509(19)	774(23)	207(17)	-55(18)	242(17)
Cl	1101(8)	836(7)	678(6)	300(6)	91(5)	75(5)
C(18)	765(24)	854(27)	866(26)	-42(20)	-134(20)	322(21)
C(19)	863 (26)	917(28)	930(28)	242(21)	96(21)	417(23)
C(20)	647(22)	1022(31)	914(27)	$45(20)$	13(19)	382(23)
O	647(15)	1171(20)	670(15)	343(13)	249(12)	404(14)

$U_{i, j}$ values have been multiplied by 10^{4}
The form of the displacement factor is:
$\exp -2 \pi^{2}\left(U_{11} h^{2} a^{*^{2}}+U_{22} k^{2} b^{*^{2}}+U_{33} \ell^{2} c^{*^{2}}+2 U_{12} h k a^{*} b^{*}+2 U_{13} h \ell a^{*} c^{*}+2 U_{23} k \ell b^{*} c^{*}\right)$

Table VI. Assigned Hydrogen Parameters for Macro Ketone Chloride

$$
x, y \text { and } z \times 10^{4}
$$

Atom	x	y	z	B
HC2a	9574	-1644	2646	5.2
HC2b	9505	-193	3260	5.2
HC3	12926	-685	2830	6.2
HC4a	11184	-797	4644	7.6
HC4b	13259	-816	4533	7.6
HC5	12174	-3057	3376	7.8
HC8a	5581	-3881	3716	11.9
HC8b	5612	-5378	3260	11.9
HC9a	6891	-4998	1953	11.4
HC9b	7316	-3432	2443	11.4
HC10	3465	-4968	1896	8.3
H12a	6037	-2764	192	6.0
H12b	7297	-2913	1053	6.0
H13a	6503	-1155	2277	5.0
H13b	5371	-972	1381	5.0
HC14	8216	-413	649	4.8
H16a	10027	3211	1852	7.8
H16b	11121	2230	1994	7.8
H16c	10264	2071	890	7.8
H17a	6554	2448	1483	6.6
H17b	6558	1256	496	6.6
H17c	5367	964	1385	6.6
H18a	1651	-4520	799	8.4
H18b	2359	-3023	782	8.4
H18c	2657	-4191	-135	8.4
H19a	8966	-4361	5402	8.3
H19b	6948	-4203	5404	8.3
H19c	7252	-5572	4766	8.3
H20a	14289	1329	4143	8.4
H20b	13174	1579	3275	8.4
H20c	12307	1524	4308	8.4

The Structure of an 8-Ring Epoxide Compound
 Kevin R. Condroski and William P. Schaefer Arthur Amos Noyes Laboratory of Chemical Physics Division of Chemistry and Chemical Engineering California Institute of Technology

Pasadena, California 91125
May 1, 1990

Abstract

. The structure of an 8-ring epoxide compound, $\mathrm{C}_{20} \mathrm{H}_{34} \mathrm{O}$, has been determined. It crystallizes in the monoclinic system, in space group $\mathrm{P} 2_{1} / \mathrm{c}$, (\#14), with $a=12.866$, $b=12.189, c=11.393 \AA, B=91.60(3)^{\circ}$, and volume $=1786.0(9) \AA 3 ; Z=4$.

Experimental.

A suitable crystal was cut from a cluster and sealed in a capillary tube to protect it from air and moisture (an earlier crystal had decayed rapidly when unprotected). Unit cell dimensions and an orientation matrix were calculated from the setting angles of 25 reflections with 2θ about 15°. Two sets of data were collected and the intensities were reduced to structure factors. They were merged to give the final data set and placed on an approximately absolute scale by Wilson's method. Final unit cell dimensions came from 25 reflections (various forms of 8 independent reflections) with $34^{\circ}<2 \theta<40^{\circ}$. The structure was solved by MULTAN and refined by fullmatrix least squares. The oxygen and carbon atoms were given anisotropic thermal parameters. Hydrogen atoms were placed at calculated positions (C-H, $0.95 \AA$; staggered configurations) and were re-positioned once before the final three cycles. The final difference map had features of +0.47 and $-0.55 \mathrm{e}^{-3}$, the largest being near C3 and C 13.

Calculations were done with programs of the CRYM Crystallographic Computing System and ORTEP. Scattering factors and corrections for anomalous scattering were taken from a standard reference (International Tables for X-ray Crystallography, Vol. IV, p. 71, p. 149; Birmingham, Kynoch Press, 1974). $R=\Sigma\left|F_{0}-\left|F_{c}\right| / \Sigma F_{0}\right.$, for only $F_{0}{ }^{2}>0$, and goodness of fit $=\left[\Sigma w\left(F_{0}{ }^{2}-F_{c}{ }^{2}\right) 2 /(n-p)\right]^{\frac{1}{2}}$ where n is the number of data(2626) and p the number of parameters (190)refined. The function minimized in least squares was $\Sigma \mathrm{w}\left(\mathrm{F}_{\mathrm{o}}{ }^{2}-\mathrm{F}_{\mathrm{c}}{ }^{2}\right)^{2}$, where $\mathrm{w}=1 / \mathrm{o}^{2}\left(\mathrm{~F}_{\mathrm{o}}{ }^{2}\right)$. Variances of the individual reflections were assigned based on counting statistics plus an additional term, $0.014 \mathrm{I}^{2}$. Variances of the merged reflections were determined by standard propagation of error plus another additional term, $0.014<\mathrm{I}>2$.

Discussion

The structure has normal bond distances and angles throughout. The epoxide $\mathrm{C}-\mathrm{O}$ bonds are $1.446(6)$ and $1.447(5) \AA$; expected is $1.446 \AA$. The $\mathrm{C}-\mathrm{C}($ epoxide) bond is $1.458(7) \AA$, within about 1 sigma of the $1.466 \AA$ distance expected. The remaining 21 C-C bonds average $1.527[15] \AA$ and range from $1.500(8)$ to $1.564(6) \AA$, this last bond between $\mathbf{C} 6$ and $\mathbf{C 7}$ being a bridge between the 8 -membered ring and one 5 -membered ring. C-C-C angles in the 8 -membered ring (excluding those at C 1 and C2, which average $123.8[21]^{\circ}$) average $118.6[11]^{\circ}$, rather larger than tetrahedral. The interior angles of the expoxide ring are all nearly equal, differing from 60° by an average of 0.3°.

Most intermolecular contacts are $3.0 \AA$ or greater, although C19-H13A is $2.85 \AA$ and there are $32 \mathrm{H}-\mathrm{H}$ contacts shorter than $3 \AA$, the shorter being H12A - H20A ($2.48 \AA$) and H13A-H19A ($2.21 \AA$). This last is $0.19 \AA$ shorter than two van der Waals radii of hydrogen ; C13-C19 is also shorter than a predicted methyl-methyl group
contact, $4.0 \AA$, by $0.29 \AA$. There are two $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds to the epoxide oxygen atom, from $\mathrm{H} 2(2.82 \AA ; \mathrm{C} 2 \cdots \mathrm{O}, 3.398(5) \AA$) and H3A (2.68 \AA
C3 \cdots O, 3.41(5) \AA).

Acknowledgements.

We thank the NSF for Grant CHE-8219039 to purchase the diffractometer.

References.

International Tables for X-ray Crystallography, Vol. IV, p. 71, p. 149; Birmingham, Kynoch Press, 1974

Legend to Figure.

An ORTEP drawing of the molecule approximately perpendicular to its least squares plane. Thermal ellipsoids are shown at the 50% probability level; hydrogen atoms were given arbitrary, small thermal parameters.

Table I. Crystallographic Data for an 8-ring Epoxide Compound

Formula: $\mathrm{C}_{20} \mathrm{H}_{34} \mathrm{O}$

$$
\begin{aligned}
& a=12.866(2) \AA \\
& b=12.189(3) \AA \\
& c=11.393(5) \AA \\
& B=91.60(3)^{\circ} \\
& \mathrm{V}=1786.0(9) \AA^{\circ} \\
& \mathrm{Z}=4
\end{aligned}
$$

Formula Weight: 290.49
Space Group: $\mathrm{P}_{1} / \mathrm{c}, \# 14$
$\mathrm{T}=22^{\circ} \mathrm{C}$
$\rho_{c a l c}=1.08 \mathrm{~g} \mathrm{~cm}^{-3}$
$\mu=0.68 \mathrm{~cm}^{-1}$
$R\left(F_{0}\right)=0.126$
GOF $=1.87$

Table II. Final Heavy Atom Parameters for An 8-Ring Epoxide.

$$
x, y, z \text { and } U_{e q}{ }^{a} \times 10^{4}
$$

Atom	x	y	z	$U_{e q}$
0	3484(2)	413(2)	4980(2)	511(8)
C1	2919(3)	-153(3)	5876(4)	409(12)
C2	4048(3)	-91(4)	5951(4)	507(13)
C3	4676(3)	657(4)	6784(4)	533(14)
C4	4626(4)	1888(4)	6600(4)	525(14)
C5	3664(3)	2488(4)	6998(4)	526(13)
C6	2700(3)	2576(3)	6191(3)	419(12)
C7	1872(3)	1649(3)	6242(3)	390(13)
C8	2226(3)	523(3)	6674(3)	384(12)
C9	2414(3)	-1236(4)	5577(4)	556(13)
C10	1732(4)	-1421(4)	6641(4)	650(15)
C11	1328(3)	-279(4)	6915(4)	536(13)
C12	1773(4)	-1219(4)	4417(4)	748(16)
C13	1088(3)	2136(4)	7077(4)	561(15)
C14	1003(4)	3345(4)	6725(4)	622(15)
C15	2115(4)	3653(4)	6421(4)	493(13)
C16	2171(5)	4524(4)	5446(4)	709(18)
C17	1516(5)	5539(4)	5732(5)	1085(23)
C18	3287(5)	4854(4)	5214(5)	1026(22)
C19	1341(3)	1556(4)	5008(4)	531(14)

Table II. (Cont.)

Atom	x	y	z	$U_{e q}$

C20 5588(4) 2391(5) 7177(5) 986(21)
${ }^{a} U_{e q}=\frac{1}{3} \sum_{i} \sum_{j}\left[U_{i j}\left(a_{i}^{*} a_{j}^{*}\right)\left(\vec{a}_{i} \cdot \vec{a}_{j}\right)\right]$

Table III. Distances and Angles Not Involving Hydrogen for An 8-Ring Epoxide.

Distance (\AA)			Distance(\AA)	
0	-C1	1.445(5)	C14-C15	1.528(6)
0	-C2	1.443(5)	C15-C16	1.540(7)
C1	-C2	1.455(6)	C16-C17	1.536(7)
C1	-C8	1.531(6)	C16-C18	1.522(8)
C1	-C9	1.506(6)		
C2	-C3	1.530(6)		
C3	-C4	1.517(6)		
C4	-C5	1.517(6)		
C4	-C20	1.515(7)		
C5	-C6	1.527(6)		
C6	-C7	1.555(6)		
C6	-C15	1.539(6)		
C7	-C8	1.523(6)		
C7	-C13	1.526(6)		
C7	-C19	1.551(6)		
C8	-C11	1.543(6)		
C9	-C10	1.533(6)		
C9	-C12	1.538(7)		
C10	-C11	1.521(6)		
C13	-C14	1.530(6)		

Table III. (Cont.)

Table IV. Crystal and Intensity Collection Data for an 8-Ring Epoxide Compound

Crystal Color: colorless
$a=12.866(2) \AA$
$b=12.189(3) \AA$
$c=11.393(5) \AA$
$\mathrm{T}=22^{\circ} \mathrm{C}$
CAD-4
$\theta-2 \theta$ scan
Graphite monochromator: yes
$\mu r_{\text {max }}=0.02$
Crystal Size: $0.37 \times 0.26 \times 0.57 \mathrm{~mm}$
Total Number Reflections: 5837
Total Independent Reflections: 2626
GOF for Merging: 0.951
R merge for reflections with exactly 2 observations: 0.060
Number of Reflections used in Refinement: 2626
Number of Reflections with $\mathrm{F}_{\mathrm{o}}{ }^{2}>0$: 2183
Number of Reflections with $\mathrm{F}_{0}{ }^{2}>3 \sigma\left(\mathrm{~F}_{0}{ }^{2}\right): 1122$
R for reflections with $\mathrm{F}_{\mathrm{o}}{ }^{\mathbf{2}}>\mathbf{3 \sigma}\left(\mathrm{F}_{\mathrm{o}}{ }^{2}\right): 0.067$

Table V. Assigned Hydrogen Parameters for An 8-Ring Epoxide.

$$
x, y \text { and } z \times 10^{4}
$$

Atom	\boldsymbol{x}	y	z	B
H2	4571	-639	6072	4.8
H3A	5384	452	6734	5.1
H3B	4442	520	7552	5.1
H4	4585	1974	5769	4.9
H5A	3877	3217	7178	5.0
H5B	3452	2133	7693	5.0
H6	3001	2532	5438	4.0
H8	2606	758	7359	3.6
H9	2912	-1798	5451	5.1
H10A	2127	-1709	7285	6.3
H10B	1174	-1903	6446	6.3
H11A	1143	-239	7718	4.9
H11B	741	-113	6429	4.9
H12A	2227	-1104	3786	7.0
H12B	1430	-1902	4322	7.0
H12C	1280	-645	4443	7.0
H13A	1140	2185	7908	5.2
H13B	423	1868	6845	5.2
H14A	770	3778	7360	5.8
H14B	547	3438	6065	5.8
H15	2458	4013	7062	4.6
H16	1862	4179	4770	6.7
H17A	1589	6043	5100	10.4
H17B	830	5337	5817	10.4
H17C	1803	5854	6432	10.4
H18A	3275	5392	4608	9.8
H18B	3587	5155	5909	9.8
H18C	3659	4232	4976	9.8
H19A	1124	2263	4754	5.0
H19B	1821	1264	4475	5.0
H19C	754	1086	5047	5.0
H20A	6178	2010	6911	9.3
H20B	5622	3139	6943	9.3
H20C	5539	2335	7992	9.3

Table VI. Anisotropic Displacement Parameters for An 8-Ring Epoxide.

Atom	U_{11}	U_{22}	U_{33}	U_{12}	U_{13}	U_{23}
O	$568(21)$	$587(21)$	$383(18)$	$-2(18)$	$112(16)$	$-19(17)$
C1	$483(31)$	$364(28)$	$384(27)$	$-9(26)$	$62(23)$	$35(24)$
C2	$354(29)$	$658(34)$	$508(30)$	$91(28)$	$-22(23)$	$93(28)$
C3	$450(30)$	$727(37)$	$423(30)$	$45(29)$	$26(24)$	$-105(27)$
C4	$462(32)$	$516(33)$	$596(34)$	$-36(28)$	$-5(27)$	$-88(26)$
C5	$534(33)$	$585(33)$	$457(29)$	$-10(28)$	$-21(25)$	$-75(27)$
C6	$547(30)$	$438(29)$	$277(25)$	$-14(28)$	$77(23)$	$-20(23)$
C7	$421(30)$	$530(30)$	$221(25)$	$98(26)$	$19(22)$	$-19(23)$
C8	$410(28)$	$463(30)$	$278(25)$	$-20(25)$	$-11(22)$	$-22(22)$
C9	$553(33)$	$522(32)$	$594(34)$	$36(29)$	$52(28)$	$-96(29)$
C10	$724(38)$	$576(34)$	$654(37)$	$-68(32)$	$83(29)$	$50(30)$
C11	$574(32)$	$665(35)$	$374(28)$	$-58(29)$	$91(23)$	$52(26)$
C12	$862(40)$	$818(39)$	$560(35)$	$-65(35)$	$-66(30)$	$-203(30)$
C13	$593(34)$	$768(37)$	$323(28)$	$114(30)$	$24(24)$	$-128(26)$
C14	$840(42)$	$612(35)$	$411(31)$	$219(32)$	$-39(28)$	$-94(27)$
C15	$670(35)$	$452(31)$	$352(28)$	$86(29)$	$-80(26)$	$-48(25)$
C16	$1249(51)$	$418(33)$	$448(32)$	$9(36)$	$-177(34)$	$-16(27)$
C17	$1880(65)$	$583(39)$	$773(43)$	$262(43)$	$-296(42)$	$11(33)$
C18	$1647(62)$	$819(43)$	$606(40)$	$-424(46)$	$-53(41)$	$148(34)$
C19	$659(34)$	$691(33)$	$240(24)$	$98(28)$	$-31(23)$	$-32(24)$
C20	$551(38)$	$922(44)$	$1485(55)$	$-103(35)$	$3(37)$	$-333(39)$

$U_{i, j}$ values have been multiplied by 10^{4}
The form of the displacement factor is:
$\exp -2 \pi^{2}\left(U_{11} h^{2} a^{*^{2}}+U_{22} k^{2} b^{*^{2}}+U_{33} \ell^{2} c^{*^{2}}+2 U_{12} h k a^{*} b^{*}+2 U_{13} h \ell a^{*} c^{*}+2 U_{23} k \ell b^{*} c^{*}\right)$

The Structure of a Macrocyclic Diol
 Kevin R. Condroski and Lawrence M. Henling Arthur Amos Noyes Laboratory of Chemical Physics
 Division of Chemistry and Chemical Engineeering
 California Institute of Technology
 Pasadena, California 91125

April 22, 1991

Abstract

The structure of a macrocyclic diol, $\mathrm{C}_{25} \mathrm{H}_{44} \mathrm{O}_{2}$, has been determined. It crystallizes in the monoclinic system, in the space group $\mathrm{P} 2{ }_{1} / \mathrm{c}$, (\#14), with $a=20.658$ (6) $\AA, b=25.701(11) \AA, c=9.459(17) \AA \AA, \beta=96.81(6)^{\circ}$, and density $\mathrm{D}_{\mathrm{x}}=1.003 \mathrm{~g} \mathrm{~cm}^{-3}$, $Z=8$.

Experimental Data

Radiation: $\mathrm{MoK} \alpha$
Absorption Coefficient: $0.57 \mathrm{~cm}^{-1}$
Absorption Correction: None

Wavelength: $0.71073 \AA$
Temperature: 297 K
Crystal color: Clear

Crystal shape: Prismatic
Source of crystal: Recrystallized from dichloromethane
Type of diffractometer: Enraf-Nonius Cad-4 Data Collection Method: ω scan
Lattice parmaeters: Number of reflections: 25; θ range: $9-11$
θ range for data collection: 1-20
$h_{\text {min }}=-19 ; h_{\text {max }}=19 ; k_{\text {min }}=-24 ; k_{\max }=0 ; 1_{\min }=-9 ; 1_{\max }=0$.
Number of reflections measured: 5220

Number of independent reflections: 4663
Number of reflections used in refinement: 4663 Criterion for reflections used: all
Goodness of fit for merging data: 0.97 (number of multiples $=380$)
$\mathrm{R}_{\text {int }}$ for duplicate reflections: 0.058 (number of duplicates $=267$)
Number of standard reflections: 3 Interval: 2.5 h
Variation of standards: within counting statistics
Structure solved using MULTAN
Hydroxyl atoms calculated from difference map; remaining calculated from geometry.

Refinement on $F^{2}, w=1 / o^{2}\left(F_{0}^{2}\right)$, one full matrix used.
$\mathrm{R}=0.204$ on F for 3691 reflections with $\mathrm{F}_{\mathrm{o}}{ }^{2}>0$
$\mathrm{R}=0.096$ on F for 1410 reflections with $\mathrm{F}_{\mathrm{o}}^{2}>3 \mathrm{o}\left(\mathrm{F}_{\mathrm{o}}{ }^{2}\right)$
$w R=0.033$ on F^{2} for 4663 reflections
Goodness of fit $(S)=1.54$ for 4663 data and 367 parameters
$(\Delta / 0)_{\max }$ in final least squares cycle $=0.01$
$\operatorname{Dr}_{\text {max }}=0.74 \mathrm{e}^{-3}, \mathrm{Dr}_{\text {min }}=-0.84 \mathrm{e}^{-3} \mathrm{~A}^{-3}$ in final difference map.

MULTAN 88

Debaerdemaeker, T.; Germain, G.; Main, P.; Refaat, L. S.; Tate, C.; Woolfson, M. M.; (1988) MULTAN 88. Computer Programs for the Automatic Solution of Crystal Structures from X-ray Diffraction Data, Universities of York, England, and Louvain, Belgium.

Figures

A thermal ellipsoid drawing of molecules with 50% probability ellipsoids showing the numbering system. Hydrogen atoms, when shown, at arbitrary scale. Inverted molecule also shown.

A thermal ellipsoid drawing of the unit cell, with outlines. Atoms are shown as 20% probability ellipsoids, hydrogen atoms are omitted. View is drawn down the a axis. Hydrogen bonding between molecules is obvious.

Table 1. Final Refined Atomic Parameters for Macrocyclic Diol $\mathrm{C}_{\mathbf{2 5}} \mathrm{H}_{\mathbf{4 4}} \mathrm{O}_{\mathbf{2}}$

> (a)

	(a)				
	x, y, z and $U_{e q}{ }^{a} \times 10^{4}$				
Atom	x	y	z	$U_{e q}$ or $\quad B$	
C1a	$531(4)$	$3286(4)$	$7705(11)$	$3.6(2) *$	
C2a	$761(4)$	$3559(3)$	$9067(10)$	$3.0(2) *$	
C3a	$144(4)$	$3740(4)$	$9991(11)$	$3.7(3) *$	
C4a	$286(5)$	$4214(4)$	$10896(12)$	$5.2(3) *$	
C5a	$-292(6)$	$4541(5)$	$11421(14)$	$783(42)$	
C6a	$-889(8)$	$4461(5)$	$11224(15)$	$757(47)$	
C7a	$-1472(8)$	$4344(6)$	$11015(20)$	$927(60)$	
C8a	$-1772(7)$	$4485(5)$	$9644(21)$	$1122(64)$	
C9a	$-1396(6)$	$4261(5)$	$8290(17)$	$1112(57)$	
C10a	$-1378(6)$	$3690(5)$	$8293(15)$	$921(52)$	
C11a	$-1125(6)$	$3383(6)$	$7226(18)$	$893(57)$	
C12a	$-797(6)$	$3567(6)$	$5861(16)$	$1056(56)$	
C13a	$-62(6)$	$3423(4)$	$5532(12)$	$5.6(3) *$	
C14a	$372(5)$	$3698(4)$	$6555(12)$	$4.6(3) *$	
C15a	$952(5)$	$3984(5)$	$5820(12)$	$5.0(3) *$	
C16a	$723(7)$	$4489(5)$	$5145(13)$	$1189(70)$	
C17a	$1386(5)$	$3690(4)$	$4670(12)$	$867(44)$	
C18a	$-1178(6)$	$2796(5)$	$7400(16)$	$1271(58)$	
C19a	$-1921(7)$	$4031(6)$	$12083(19)$	$1297(60)$	
C20a	$-218(5)$	$3318(4)$	$10893(11)$	$5.1(3) *$	

Table 1. (Cont.)

Atom	x	y	z	$U_{\text {eq }}$ or B
C21b	$4754(5)$	$3177(4)$	$3916(11)$	$3.8(3) *$
C22b	$4033(5)$	$3383(5)$	$3921(13)$	$4.7(3) *$
C23b	$3706(5)$	$3033(4)$	$2864(13)$	$6.6(3) *$
C24b	$4050(5)$	$3943(5)$	$3324(12)$	$974(48)$
C25b	$3621(5)$	$3356(5)$	$5365(12)$	$801(43)$
O1b	$4754(3)$	$2937(2)$	$6925(7)$	$4.5(2) *$
O2b	$4741(3)$	$2645(3)$	$4357(7)$	$4.3(2) *$

${ }^{a} U_{e q}=\frac{1}{3} \sum_{i} \sum_{j}\left[U_{i j}\left(a_{i}^{*} a_{j}^{*}\right)\left(\vec{a}_{i} \cdot \vec{a}_{j}\right)\right]$

* Isotropic displacement parameter, B

Table 1. (Cont.)

(b)

Atom	x	y	z	$U_{\text {eq }}$ or B
C1b	$5265(4)$	$3271(4)$	$6337(11)$	$3.6(2) *$
C2b	$5194(4)$	$3507(4)$	$4837(11)$	$3.3(2) *$
C3b	$5871(5)$	$3575(4)$	$4043(12)$	$4.4(3) *$
C4b	$5927(5)$	$4029(5)$	$2968(12)$	$753(42)$
C5b	$5889(6)$	$4555(5)$	$3727(14)$	$741(45)$
C6b	$6395(8)$	$4812(5)$	$4012(14)$	$740(52)$
C7b	$6950(7)$	$5040(5)$	$4223(18)$	$756(57)$
C8b	$7248(7)$	$5003(5)$	$5586(23)$	$1200(72)$
C9b	$6911(6)$	$4647(7)$	$6773(16)$	$1063(56)$
C10b	$7090(6)$	$4083(6)$	$6489(16)$	$907(56)$
C11b	$6872(7)$	$3689(6)$	$7312(18)$	$951(61)$
C12b	$6430(7)$	$3758(5)$	$8654(16)$	$1032(53)$
C13b	$5749(5)$	$3495(4)$	$8676(12)$	$5.4(3) *$
C14b	$5380(5)$	$3715(4)$	$7416(11)$	$4.3(3) *$
C15b	$4797(5)$	$4037(4)$	$7945(12)$	$4.9(3) *$
C16b	$4979(6)$	$4559(5)$	$8559(15)$	$1223(57)$
C17b	$4270(6)$	$3774(5)$	$8990(13)$	$956(47)$
C18b	$7105(6)$	$3149(5)$	$6929(17)$	$1384(70)$
C19b	$7289(6)$	$5379(5)$	$3047(18)$	$1304(61)$
C20b	$6170(5)$	$3079(4)$	$3308(12)$	$713(40)$

Table 1. (Cont.)

Atom	x	y	z	$U_{e q}$ or B
C21a	$1202(4)$	$3208(4)$	$9934(10)$	$3.3(2) *$
C22a	$1937(4)$	$3325(4)$	$9738(11)$	$3.1(2) *$
C23a	$2261(5)$	$2951(4)$	$10769(12)$	$845(41)$
C24a	$2029(5)$	$3891(4)$	$10286(11)$	$786(41)$
C25a	$2263(4)$	$3271(4)$	$8238(11)$	$4.6(3) *$
O1a	$996(3)$	$2913(2)$	$7069(7)$	$3.8(2) *$
O2a	$1077(3)$	$2665(2)$	$9613(7)$	$3.5(2) *$

Table 2. Selected Distances and Angles for Macrocyclic Diol $\mathrm{C}_{\mathbf{2 5}} \mathrm{H}_{\mathbf{4 4}} \mathrm{O}_{\mathbf{2}}$

(a)

Distance (\AA)		Distance (\AA)	
C1a -C2a	1.494(13)	C15a-C16a	1.499(17)
C1a -C14a	1.526(14)	C15a-C17a	1.671(16)
C1a -O1a	1.531(11)	C21a-C22a	1.581(13)
C2a -C3a	1.695(13)	C21a-O2a	1.443(11)
C2a -C21a	1.464(13)	C22a-C23a	1.473(14)
C3a -C4a	1.496(14)	C22a-C24a	1.548(14)
C3a - 200	1.617(14)	C22a-C25a	1.647(14)
C4a -C5a	1.587(17)		
C5a -C6a	1.244(19)		
C6a -C7a	1.23(2)		
C7a -C8a	1.42(2)		
C7a -C19a	1.66(2)		
C8a -C9a	1.68(2)		
C9a - C 10 a	1.47(2)		
C10a-C11a	1.43(2)		
C11a-C12a	1.60(2)		
C11a-C18a	1.52(2)		
C12a-C13a	1.629(18)		
C13a-C14a	1.426(15)		
C14a-C15a	1.629(15)		

Table 2. (Cont.)

Angle(${ }^{\circ}$)		Angle(${ }^{\circ}$)	
C14a-C1a -C2a	108.0(8)	C18a-C11a-C12a	115.0(12)
O1a - C1a -C2a	118.9(7)	$\mathrm{C} 13 \mathrm{a}-\mathrm{C} 12 \mathrm{a}-\mathrm{C} 11 \mathrm{a}$	125.5(11)
O1a -C1a -C14a	104.3(7)	C14a-C13a-C12a	106.4(9)
C3a - C2a - C1a	113.1(7)	C13a-C14a-C1a	101.7(8)
C21a-C2a-C1a	107.9(8)	C15a-C14a-C1a	120.7(8)
C21a-C2a - 3 a	109.6(7)	C15a-C14a-C13a	111.6(9)
C4a - 3 a - C 2 a	114.2(8)	C16a-C15a-C14a	111.2(9)
C20a-C3a - 20 a	120.8(7)	C17a-C15a-C14a	123.6(9)
C20a-C3a - C 4 a	108.4(8)	C17a-C15a-C16a	106.3(9)
C5a -C4a -C3a	120.4(9)	C22a-C21a-C2a	111.0(8)
C6a -C5a - C4a	129.4(12)	O2a - C21a-C2a	113.3(7)
C7a -C6a -C5a	175.4(17)	O2a - $\mathrm{C} 21 \mathrm{a}-\mathrm{C} 22 \mathrm{a}$	108.0(7)
C8a -C7a -C6a	113.4(15)	C23a-C22a-C21a	99.5(8)
C19a-C7a -C6a	128.7(15)	C24a-C22a-C21a	102.8(8)
C19a-C7a - C 8 a	117.8(14)	C25a-C22a-C21a	125.6(8)
C9a -C8a -C7a	114.8(13)	C24a-C22a-C23a	111.3(8)
C10a-C9a-C8a	110.8(11)	C25a-C22a-C23a	108.4(8)
C11a-C10a-C9a	124.2(12)	C25a-C22a-C24a	108.7(8)
C12a-C11a-C10a	129.3(13)		
C18a-C11a-C10a	115.7(12)		

(b)

C1b	Distance(\AA)		Distance($\left(\begin{array}{l}\text {) }\end{array}\right.$	
	-C2b	1.533(13)	C15b-C16b	1.492(17)
C1b	-C14b	1.531(14)	C15b-C17b	1.696(16)
C1b	-O1b	1.518(11)	C21b - C 22 b	1.581(15)
C2b	-C3b	1.673(14)	C21b-O2b	1.430(11)
C2b	-C21b	1.455(14)	C22b - C 23 b	1.452(16)
C3b	-C4b	1.562(16)	C22b-C24b	1.547(16)
C3b	-C20b	1.610(15)	C22b-C25b	1.696(16)
C4b	-C5b	1.537(17)		
C5b	-C6b	1.239(19)		
C6b	-C7b	1.28(2)		
C7b	-C8b	1.36(2)		
C7b	-C19b	1.63(2)		
C8b	-C9b	1.66(2)		
C9b	-C10b	1.53(2)		
C10b	-C11b	1.38(2)		
C11b	-C12b	1.66(2)		
C11b	-C18b	1.53(2)		
C12b	-C13b	1.564(18)		
C13b	-C14b	1.451(15)		
C14b	-C15b	1.590(15)		

Table 2. (Cont.)

Angle(${ }^{\circ}$)			Angle(${ }^{\circ}$)	
C14b-C1b	-C2b	108.3(8)	C18b-C11b-C12b	119.8(12)
O1b -C1b	-C2b	124.7(8)	C13b-C12b-C11b	122.8(11)
O1b -C1b	-C14b	103.7(7)	C14b-C13b-C12b	101.9(9)
C3b -C2b	-C1b	117.6(8)	C13b-C14b-C1b	106.4(8)
C21b-C2b	-C1b	108.0(8)	C15b-C14b-C1b	122.3(8)
C21b-C2b	-C3b	106.8(8)	C15b-C14b-C13b	106.7(9)
C4b -C3b	-C2b	120.1(8)	C16b-C15b-C14b	115.2(9)
C20b-C3b	-C2b	119.7(8)	C17b-C15b-C14b	122.5(9)
C20b -C3b	-C4b	104.4(8)	C17b-C15b-C16b	106.4(9)
C5b -C4b	-C3b	109.9(9)	C22b-C21b-C2b	108.9(8)
C6b -C5b	-C4b	118.8(12)	O2b - 21 b - C 2 b	114.5(8)
C7b -C6b	-C5b	173.5(15)	O2b - C21b-C22b	105.7(8)
C8b -C7b	-C6b	114.2(14)	C23b-C22b-C21b	98.6(9)
C19b-C7b	-C6b	125.8(13)	C24b-C22b-C21b	104.4(9)
C19b-C7b	-C8b	119.9(13)	C25b -C22b-C21b	123.5(9)
C9b -C8b	-C7b	119.8(14)	C24b-C22b-C23b	110.8(9)
C10b -C9b	-C8b	105.9(11)	C25b -C22b-C23b	107.0(9)
C11b-C10b	-C9b	119.6(12)	C25b - $222 \mathrm{~b}-\mathrm{C} 24 \mathrm{~b}$	111.6(9)
C12b-C11b	-C10b	126.6(13)		
C18b -C11b	-C10b	113.5(12)		

Table S1. Anisotropic Displacement Parameters for Macrocyclic Diol $\mathbf{C}_{\mathbf{2 5}} \mathbf{H}_{\mathbf{4 4}} \mathrm{O}_{\mathbf{2}}$
(a)

Atom	U_{11}	U_{22}	U_{33}	U_{12}	U_{13}	U_{23}
C 5 a	752(94)	731(97)	788(111)	-129(93)	-232(96)	$-300(81)$
C6a	949(117)	611(104)	704(113)	115(118)	75(121)	-36(84)
C7a	977(140)	589(113)	1265(178)	72(115)	345(150)	-188(110)
C8a	935(118)	570(102)	1658(189)	243(84)	-689(124)	-182(117)
9a	997(118)	745(112)	1382(152)	426(93)	-737(103)	-480(110)
C10a	755(100)	683(110)	1161(139)	162(85)	-571(91)	-346(100)
C11a	590(103)	722(117)	1209(156)	269(88)	-549(101)	-288(122)
C12a	858(112)	1317(136)	820(128)	123(99)	-615(93)	-356(110)
C16a	2260(161)	703(101)	463(102)	243(102)	-427(100)	94(82)
C17a	1053(101)	655(91)	762(106)	-136(80)	-433(81)	386(82)
C18a	763(97)	958(119)	1916(164)	205(90)	-571(99)	-611(124)
C19a	1061(126)	1067(127)	1689(172)	255(103)	-139(115)	-277(129)
C23a	748(86)	738(89)	855(102)	40(72)	-715(75)	109(80)
C24a	880(90)	661(88)	636(95)	-198(71)	-667(72)	-22(75)

(b)

C4b	$788(94)$	$839(102)$	$593(101)$	$-140(82)$	$-86(74)$	$-239(89)$
C5b	$840(107)$	$709(108)$	$639(109)$	$-64(89)$	$-54(87)$	$204(92)$
C6b	$974(123)$	$370(92)$	$829(117)$	$36(84)$	$-93(113)$	$100(86)$
C7b	$721(115)$	$331(88)$	$1191(156)$	$-94(79)$	$8(111)$	$62(99)$
C8b	$1088(141)$	$541(107)$	$1823(205)$	$23(92)$	$-441(140)$	$-155(128)$
C9b	$808(109)$	$1027(134)$	$1222(150)$	$-89(102)$	$-424(97)$	$60(118)$
C10b	$635(95)$	$515(101)$	$1447(156)$	$-62(83)$	$-388(92)$	$-138(107)$
C11b	$845(120)$	$556(113)$	$1290(166)$	$-243(99)$	$-550(105)$	$149(122)$
C12b	$937(113)$	$939(117)$	$1005(131)$	$-229(95)$	$-784(92)$	$354(107)$
C16b	$1568(129)$	$607(94)$	$1253(130)$	$190(89)$	$-839(103)$	$-461(93)$
C17b	$902(98)$	$1171(118)$	$709(107)$	$311(90)$	$-265(81)$	$-460(91)$
C18b	$1102(115)$	$556(100)$	$2182(186)$	$-164(87)$	$-1102(18)$	$373(112)$
C19b	$1231(133)$	$686(101)$	$2029(183)$	$-200(96)$	$329(128)$	$198(124)$
C20b	$440(73)$	$936(99)$	$726(101)$	$32(69)$	$-79(67)$	$-139(80)$
C24b	$1096(108)$	$969(106)$	$666(102)$	$371(86)$	$-688(81)$	$-12(87)$
C25b	$488(75)$	$1137(107)$	$669(101)$	$145(76)$	$-381(69)$	$-109(86)$

$U_{i, j}$ values have been multiplied by 10^{4}
The form of the displacement factor is:
$\exp -2 \pi^{2}\left(U_{11} h^{2} a^{*^{2}}+U_{22} k^{2} b^{*^{2}}+U_{33} \ell^{2} c^{*^{2}}+2 U_{12} h k a^{*} b^{*}+2 U_{13} h \ell a^{*} c^{*}+2 U_{23} k \ell b^{*} c^{*}\right)$

Table S2. Hydrogen Atom Parameters for
Macrocyclic Diol $\mathbf{C}_{\mathbf{2 5}} \mathbf{H}_{\mathbf{4 4}} \mathrm{O}_{2}$
(a)

	x, y and $z \times 10^{4}$			
Atom	x	y	z	B
H1a	181	3081	7959	9.0
H2a	969	3872	8862	9.0
H3a	-167	3810	9186	9.0
H4a	524	4444	10353	9.0
H5a	559	4103	11714	9.0
H6a	-158	4843	11963	9.0
H7a	-1788	4857	9624	9.0
H8a	-2210	4356	9569	9.0
H9a	-968	4395	8371	9.0
H10a	-1634	4379	7420	9.0
H11a	-1544	3510	9062	9.0
H12a	-812	3937	5887	9.0
H13a	-1076	3444	5068	9.0
H14a	1	3529	4599	9.0
H15a	12	3060	5634	9.0
H16a	214	3999	6978	9.0
H17a	1252	4001	6657	9.0
H18a	1069	4645	4728	9.0
H19a	367	4424	4435	9.0
H20a	586	4711	5853	9.0
H21a	1695	3929	4375	9.0
H22a	1606	3399	5115	9.0
H23a	1102	3578	3862	9.0
H24a	-983	2623	6655	9.0
H25a	-963	2692	8289	9.0
H26a	-1626	2698	7328	9.0
H27a	-1671	3953	12965	9.0
H28a	-2282	4248	12269	9.0
H29a	-2091	3719	11650	9.0
H30a	-551	3487	11339	9.0
H31a	-407	3055	10273	9.0
H32a	90	3168	11599	9.0
H33a	1129	3270	10887	9.0
H34a	2720	2980	10778	9.0
H35a	2148	3028	11696	9.0
H36a	2125	2610	10509	9.0
H37a	2469	3997	10197	9.0
H38a	1740	4113	9706	9.0

Table S2. (Cont.)

Atom	x	y	z	B
H39a	1952	3912	11238	9.0
H40a	2710	3364	8412	9.0
H41a	2223	2922	7923	9.0
H42a	2043	3497	7556	9.0
H43a	1298	3101	6650	9.0
H44a	888	2514	10383	9.0

(b)

Atom	x	y	z	B
H1b	5602	3031	6113	9.0
H2b	5040	3851	4968	9.0
H3b	6126	3645	4921	9.0
H4b	5573	4008	2230	9.0
H5b	6326	4007	2584	9.0
H6b	5487	4683	3970	9.0
H7b	7297	5353	5933	9.0
H8b	7676	4867	5508	9.0
H9b	6449	4693	6632	9.0
H10b	7075	4750	7703	9.0
H11b	7346	3998	5759	9.0
H12b	6356	4121	8754	9.0
H13b	6688	3634	9491	9.0
H14b	5562	3590	9519	9.0
H15b	5780	3131	8621	9.0
H16b	5576	3974	6881	9.0
H17b	4555	4044	7032	9.0
H18b	4637	4723	8859	9.0
H19b	5303	4519	9360	9.0
H20b	5149	4767	7862	9.0
H21b	3958	4026	9186	9.0
H22b	4047	3487	8501	9.0
H23b	4500	3652	9853	9.0
H24b	6942	2892	7503	9.0
H25b	6955	3081	5949	9.0
H26b	7570	3141	7051	9.0
H27b	7026	5365	2154	9.0
H28b	7346	5728	3350	9.0
H29b	7708	5232	2938	9.0
H30b	6552	3182	2906	9.0
H31b	6276	2818	3999	9.0
H32b	5857	2950	2573	9.0
H33b	4910	3212	3010	9.0
H34b	3252	3105	2760	9.0
H35b	3873	3079	1987	9.0
H36b	3776	2682	3180	9.0
H37b	3628	4090	3288	9.0
H38b	4353	4144	3920	9.0

Table S2. (Cont.)

Atom	x	y	z	B
H39b	4177	3930	2389	9.0
H40b	3196	3494	5127	9.0
H41b	3592	3005	5669	9.0
H42b	3846	3556	6118	9.0
H43b	4461	3173	7320	9.0
H44b	5035	2458	3937	9.0

Kevin R. CondroskiCalifornia Institute of TechnologyDepartment of Chemistry and Chemical EngineeringPasadena, California 91125
and
Joseph W. Ziller
University of California, Irvine
Department of Chemistry (X-ray Laboratory)
Irvine, CA 92715
July 9, 1993

Collection of X-ray Diffraction Data. A colorless crystal of approximate dimensions $0.33 \times 0.47 \times 0.50 \mathrm{~mm}$ was oil-mounted ${ }^{1}$ on a glass fiber and transferred to the Syntex $\mathrm{P}_{1} 1_{1}$ automated four-circle diffractometer which is equipped with a modified LT-1 low temperature system. The determination of Laue symmetry, crystal class, unit cell parameters and the crystal's orientation matrix were carried out by previously described methods similar to those of Churchill ${ }^{2}$. Intensity data were collected at 163 K using a $\theta-2 \theta$ scan technique with Mo Ka radiation under the conditions described in Table 1 . All 2557 data were corrected for Lorentz and polarization effects and were placed on an approximately absolute scale. The diffraction symmetry was $2 / m$ with systematic absences $0 k 0$ for $k=2 n+1$ and $h 0 \ell$ for $\ell=2 n+1$. The centrosymmetric monoclinic space group $P 2{ }_{1} / c\left[C_{2 h}^{5}\right.$; No. 14] is therefore uniquely defined.

Solution and Refinement of the Crystal Structure. All crystallographic calculations were carried out using either our locally modified version of the UCLA Crystallographic Computing Package ${ }^{3}$ or the SHELXTL PLUS program set ${ }^{4}$. The analytical scattering factors ${ }^{5}$ for neutral atoms were used throughout the analysis; both the real (Δf^{\prime}) and imaginary ($i \Delta f^{\prime \prime}$) components of anomalous dispersion were included. The quantity minimized during least-squares analysis was $\sum w\left(\left|F_{o}\right|-\left|F_{c}\right|\right)^{2}$ where $\left.w^{-1}=\sigma^{2}\left(\left|F_{0}\right|\right)+0.0005\left|F_{0}\right|\right)^{2}$.

The structure was solved via direct methods (SHELXTL) and refined by full-matrix least-squares techniques. Hydrogen atoms were located from a difference-Fourier map and included with isotropic temperature factors. Refinement of positional and thermal parameters led to convergence with $R_{F}=$ 4.0%; $R_{w F}=4.6 \%$ and $G O F=1.50$ for 320 variables refined against those 2115 data with $\left|F_{0}\right|>1.0 \sigma\left(\left|F_{0}\right|\right)$. A final difference-Fourier synthesis was featureless.

Table 1. Experimental Data for the X-ray Diffraction Study Formula: $\mathrm{C}_{20} \mathrm{H}_{30} \mathrm{O}_{2}$
Fw: 302.4
Temperature (K): 163
Crystal System: Monoclinic
Space Group: $\mathrm{P} 2_{1} / \mathrm{c}$ [$\mathrm{C}_{2 h}^{5}$; No. 14]
$a=8.8452(7) \dot{\AA}$
$b=15.810(2) \AA$
$c=12.3894(12) \dot{A}$
$\beta=95.979(7)^{\circ}$
$V=1723.1(3) \dot{\AA}^{3}$
$z=4$
$D_{\text {calcd, }} \mathrm{g} / \mathrm{cm}^{3}=1.166$
Diffractometer: Syntex P2 ${ }_{1}$ (Siemens R3m/V System)
Radiation: Mo $\mathrm{K} \alpha(\bar{\lambda}=0.710730 \dot{\mathrm{~A}})$
Monochromator: Highly oriented graphite
Data Collected: $+h,+k, \pm \ell$
Scan Type: $\theta-2 \theta$
Scan Width: 1.2° plus K α-separation
Scan Speed: $3.0 \mathrm{deg} \mathrm{min}^{-1}$ (in ω)
2θ Range, deg: 4.0 to 45.0
$\mu(\mathrm{Mo} \mathrm{K} \alpha), \mathrm{mm}^{-1}=0.068$
Reflections Collected: 2557
Reflections with $\left|F_{0}\right|>1.0 \sigma\left(\left|F_{0}\right|\right): 2115$
No. of Variables: 320
$R_{F}=4.0 \%, R_{w F}=4.6 \%$
Goodness of Fit: 1.50

Table 2. Atomic coordinates ($\times 10^{4}$) and equivalent isotropic displacement coefficients ($\dot{\mathrm{A}}^{2} \times 10^{4}$)

	x	y	z	$\mathrm{U}(\mathrm{eq})$
C(1)	$-6054(2)$	$-1462(1)$	$1796(1)$	$271(6)$
C(2)	$-7499(2)$	$-1528(1)$	$998(1)$	$236(5)$
C(3)	$-8934(2)$	$-1801(1)$	$1506(1)$	$252(6)$
C(4)	$-10332(2)$	$-1428(1)$	$899(1)$	$277(6)$
C(5)	$-11008(2)$	$-1697(1)$	$-55(2)$	$318(6)$
C(6)	$-10650(2)$	$-2428(1)$	$-719(1)$	$295(6)$
C(7)	$-9515(2)$	$-3082(1)$	$-272(1)$	$246(5)$
C(8)	$-9995(2)$	$-3761(1)$	$434(1)$	$285(6)$
C(9)	$-8647(2)$	$-4088(1)$	$1146(2)$	$331(7)$
C(10)	$-7256(2)$	$-3612(1)$	$812(2)$	$309(6)$
C(11)	$-7781(2)$	$-2970(1)$	$-109(1)$	$255(6)$
C(12)	$-7071(2)$	$-2072(1)$	$14(1)$	$259(5)$
C(13)	$-5310(2)$	$-2150(1)$	$213(2)$	$337(7)$
C(14)	$-4785(2)$	$-1477(1)$	$1045(2)$	$353(7)$
C(15)	$-6012(2)$	$-719(1)$	$2598(1)$	$308(6)$
C(16)	$-4661(3)$	$-803(2)$	$3459(2)$	$448(8)$
C(17)	$-6018(3)$	$152(1)$	$2066(2)$	$463(8)$
C(18)	$-10877(3)$	$-640(1)$	$1409(2)$	$420(8)$
C(19)	$-11563(2)$	$-3849(2)$	$779(2)$	$400(7)$
C(20)	$-7471(2)$	$-1581(1)$	$-1047(2)$	$339(7)$
O(1)	$-11326(2)$	$-2526(1)$	$-1623(1)$	$460(5)$
O(2)	$-9848(1)$	$-3921(1)$	$-706(1)$	$322(4)$

[^5]Table 3. Interatomic Distances (\dot{A}) with Esd's

$$
\begin{array}{ll}
C(1)-C(2) & 1.536(2) \\
C(1)-C(15) & 1.536(2) \\
C(2)-C(12) & 1.570(2) \\
C(4)-C(5) & 1.336(2) \\
C(5)-C(6) & 1.473(3) \\
C(6)-O(1) & 1.223(2) \\
C(7)-C(11) & 1.536(2) \\
C(8)-C(9) & 1.499(2) \\
C(8)-O(2) & 1.454(2) \\
C(10)-C(11) & 1.561(2) \\
C(12)-C(13) & 1.556(2) \\
C(13)-C(14) & 1.520(3) \\
C(15)-C(17) & 1.526(3)
\end{array}
$$

$C(1)-C(14)$	$1.530(3)$
$C(2)-C(3)$	$1.536(2)$
$C(3)-C(4)$	$1.500(2)$
$C(4)-C(18)$	$1.498(3)$
$C(6)-C(7)$	$1.506(2)$
$C(7)-C(8)$	$1.474(2)$
$C(7)-O(2)$	$1.450(2)$
$C(8)-C(19)$	$1.500(3)$
$C(9)-C(10)$	$1.535(3)$
$C(11)-C(12)$	$1.553(2)$
$C(12)-C(20)$	$1.535(2)$
$C(15)-C(16)$	$1.522(3)$

Table 4. Interatomic Angles (Deg.) with Esd's

$C(2)-C(1)-C(14)$	$102.8(1)$	$C(2)-C(1)-C(15)$	$115.5(1)$
$C(14)-C(1)-C(15)$	$115.8(1)$	$C(1)-C(2)-C(3)$	$115.1(1)$
$C(1)-C(2)-C(12)$	$106.6(1)$	$C(3)-C(2)-C(12)$	$116.2(1)$
$C(2)-C(3)-C(4)$	$110.9(1)$	$C(3)-C(4)-C(5)$	$126.0(2)$
$C(3)-C(4)-C(18)$	$113.6(2)$	$C(5)-C(4)-C(18)$	$120.2(2)$
$C(4)-C(5)-C(6)$	$129.9(2)$	$C(5)-C(6)-C(7)$	$120.4(1)$
$C(5)-C(6)-O(1)$	$119.9(2)$	$C(7)-C(6)-O(1)$	$119.6(2)$
$C(6)-C(7)-C(8)$	$119.7(1)$	$C(6)-C(7)-C(11)$	$126.0(1)$
$C(8)-C(7)-C(11)$	$110.6(1)$	$C(6)-C(7)-O(2)$	$112.9(1)$
$C(8)-C(7)-O(2)$	$59.6(1)$	$C(11)-C(7)-O(2)$	$108.4(1)$
$C(7)-C(8)-C(9)$	$109.9(1)$	$C(7)-C(8)-C(19)$	$124.6(2)$
$C(9)-C(8)-C(19)$	$120.2(2)$	$C(7)-C(8)-O(2)$	$59.3(1)$
$C(9)-C(8)-O(2)$	$111.4(1)$	$C(19)-C(8)-O(2)$	$116.1(1)$
$C(8)-C(9)-C(10)$	$106.4(1)$	$C(9)-C(10)-C(11)$	$109.3(1)$
$C(7)-C(11)-C(10)$	$103.7(1)$	$C(7)-C(11)-C(12)$	$120.4(1)$
$C(10)-C(11)-C(12)$	$115.9(1)$	$C(11)-C(12)-C(13)$	$109.3(1)$
$C(2)-C(12)-C(13)$	$103.8(1)$	$C(11)-C(12)-C(20)$	$108.8(1)$
$C(2)-C(12)-C(20)$	$109.6(1)$	$C(12)-C(13)-C(14)$	$106.3(2)$
$C(13)-C(12)-C(20)$	$108.3(1)$	$C(1)-C(15)-C(16)$	$110.6(2)$
$C(1)-C(14)-C(13)$	$103.4(2)$	$C(16)-C(15)-C(17)$	$110.4(2)$
$C(1)-C(15)-C(17)$	$114.3(2)$		
$C(7)-O(2)-C(8)$	$61.0(1)$		

Table 5. Anisotropic displacement coefficients ($\dot{\mathrm{A}}^{2} \times 10^{4}$)

	U_{11}	U_{22}	U_{33}	U_{12}	U_{13}	U_{23}
$\mathrm{C}(1)$	$262(10)$	$263(10)$	$290(10)$	$-34(8)$	$32(8)$	$12(8)$
$\mathrm{C}(2)$	$254(10)$	$196(10)$	$261(9)$	$-17(7)$	$45(7)$	$11(7)$
$\mathrm{C}(3)$	$285(10)$	$227(11)$	$248(10)$	$-29(8)$	$45(8)$	$-40(8)$
$\mathrm{C}(4)$	$236(9)$	$253(10)$	$352(10)$	$-21(7)$	$84(8)$	$3(8)$
$\mathrm{C}(5)$	$260(10)$	$310(11)$	$380(11)$	$51(8)$	$16(9)$	$52(9)$
$\mathrm{C}(6)$	$262(10)$	$350(11)$	$270(10)$	$-37(8)$	$13(8)$	$30(8)$
$\mathrm{C}(7)$	$303(10)$	$224(9)$	$205(9)$	$-22(8)$	$1(7)$	$-49(7)$
$\mathrm{C}(8)$	$369(10)$	$248(10)$	$238(9)$	$-53(8)$	$29(8)$	$-53(8)$
$\mathrm{C}(9)$	$441(12)$	$241(11)$	$305(11)$	$-26(9)$	$8(9)$	$5(8)$
$\mathrm{C}(10)$	$328(11)$	$251(10)$	$341(11)$	$48(9)$	$5(9)$	$-8(9)$
$\mathrm{C}(11)$	$279(10)$	$260(10)$	$228(9)$	$20(8)$	$39(7)$	$-27(7)$
$\mathrm{C}(12)$	$267(10)$	$255(10)$	$265(9)$	$-12(8)$	$74(7)$	$-15(7)$
$\mathrm{C}(13)$	$286(11)$	$364(12)$	$374(11)$	$-18(9)$	$97(9)$	$-52(9)$
$\mathrm{C}(14)$	$239(11)$	$405(12)$	$419(11)$	$-53(9)$	$58(9)$	$-45(10)$
$\mathrm{C}(15)$	$314(10)$	$299(11)$	$316(10)$	$-96(8)$	$58(8)$	$-21(8)$
$\mathrm{C}(16)$	$435(14)$	$494(14)$	$398(12)$	$-160(11)$	$-33(10)$	$-64(11)$
$\mathrm{C}(17)$	$630(16)$	$311(12)$	$447(13)$	$-94(11)$	$57(12)$	$-42(10)$
$\mathrm{C}(18)$	$311(12)$	$338(12)$	$613(15)$	$44(10)$	$59(11)$	$-119(10)$
$\mathrm{C}(19)$	$420(13)$	$391(13)$	$395(12)$	$-141(10)$	$75(10)$	$-28(10)$
$\mathrm{C}(20)$	$438(13)$	$300(11)$	$295(11)$	$-29(10)$	$114(9)$	$2(9)$
$\mathrm{O}(1)$	$455(9)$	$582(10)$	$314(8)$	$77(7)$	$-105(7)$	$-31(6)$
$\mathrm{O}(2)$	$430(8)$	$274(7)$	$258(7)$	$-73(6)$	$21(5)$	$-56(5)$

The anisotropic displacement exponent takes the form:
$-2 \pi^{2}\left(h^{2} a *^{2} U_{11}+\ldots+2 h k a * b * U_{12}\right)$

Table 6. H-Atom coordinates $\left(\times 10^{4}\right)$ and isotropic displacement coefficients ($\dot{\mathrm{A}}^{2} \times 10^{4}$)

x	y	z	U

H(1A)	$-5946(18)$	$-1982(11)$	$2261(13)$	$269(43)$
H(2A)	$-7706(17)$	$-941(10)$	$701(12)$	$185(39)$
H(3A)	$-8997(17)$	$-2427(11)$	$1543(12)$	$211(41)$
H(3B)	$-8868(18)$	$-1584(10)$	$2250(14)$	$279(45)$
H(5A)	$-11862(22)$	$-1382(11)$	$-408(14)$	$345(49)$
H(9A)	$-8828(20)$	$-3979(11)$	$1912(15)$	$363(49)$
H(9B)	$-8548(19)$	$-4708(13)$	$1070(13)$	$330(47)$
H(10A)	$-6722(19)$	$-3303(11)$	$1442(14)$	$313(47)$
H(10B)	$-6489(22)$	$-4002(12)$	$570(14)$	$378(50)$
H(11A)	$-7442(17)$	$-3181(10)$	$-804(13)$	$216(40)$
H(13A)	$-5002(20)$	$-2708(13)$	$500(15)$	$390(52)$
H(13B)	$-4796(19)$	$-2102(11)$	$-476(14)$	$323(46)$
H(14A)	$-3774(22)$	$-1626(11)$	$1396(14)$	$361(49)$
H(14B)	$-4718(21)$	$-923(13)$	$677(15)$	$410(53)$
H(15A)	$-6983(20)$	$-766(10)$	$2980(14)$	$296(44)$
H(16A)	$-4668(23)$	$-364(14)$	$4038(18)$	$569(62)$
H(16B)	$-4607(25)$	$-1411(16)$	$3815(18)$	$653(67)$
H(16C)	$-3721(28)$	$-710(14)$	$3140(18)$	$620(67)$
H(17A)	$-6003(23)$	$591(14)$	$2646(17)$	$544(60)$
H(17B)	$-5027(27)$	$220(14)$	$1729(18)$	$651(67)$
H(17C)	$-6933(25)$	$224(13)$	$1521(17)$	$549(63)$
H(18A)	$-11729(23)$	$-388(12)$	$982(15)$	$416(53)$
H(18B)	$-11177(25)$	$-759(14)$	$2172(19)$	$648(68)$
H(18C)	$-9999(23)$	$-201(13)$	$1478(15)$	$482(55)$
H(19A)	$-12359(25)$	$-3594(13)$	$218(17)$	$556(62)$
H(19B)	$-11815(22)$	$-4438(14)$	$889(16)$	$490(58)$
H(19C)	$-11636(21)$	$-3514(12)$	$1447(16)$	$449(55)$
H(20A)	$-7235(20)$	$-1930(12)$	$-1662(15)$	$399(52)$
H(20B)	$-8626(24)$	$-1405(12)$	$-1166(15)$	$496(57)$
H(20C)	$-6870(21)$	$-1036(12)$	$-1032(14)$	$391(50)$

STRUCTURE DETERMINATION SUMMARY

Crystal Data

Empirical Formula	$\mathrm{C}_{20} \mathrm{H}_{30} \mathrm{O}_{2}$
Color; Habit	Colorless prisms
Crystal Size (mm)	$0.33 \times 0.47 \times 0.50$
Crystal System	Monoclinic
Space Group	$\mathrm{P}_{1} / \mathrm{c}$
Unit Cell Dimensions	$\underline{\mathrm{a}}=8.8452(7) \dot{\mathrm{A}}$
	$\underline{\mathrm{b}}=15.810(2) \dot{\mathrm{A}}$
	$\underline{\mathrm{c}}=12.3894(12) \dot{\mathrm{A}}$
Volume	$\beta=95.979(7)^{\circ}$
Z	$1723.1(3) \dot{\mathrm{A}}^{3}$
Formula weight	4
Density (calc.)	302.4
Absorption Coefficient	$1.166 \mathrm{Mg}^{\mathrm{o}} \mathrm{m}^{3}$
F(000)	$0.068 \mathrm{~mm}^{-1}$

Data Collection

Diffractometer System	Siemens $\mathrm{R} 3 \mathrm{~m} / \mathrm{V}$
Radiation	MoK $\alpha(\lambda=0.71073 \mathrm{~A})$
Temperature (K)	163
Monochromator	Highly oriented graphite crystal
2θ Range	4.0 to 45.0°
Scan Type	$\theta-2 \theta$
Scan Speed	Fixed; $3.00^{\circ} /$ min. in ω
Scan Range (ω)	1.20° plus K $\alpha-$ separation
Background Measurement	Estimated from 96 step profile
Standard Reflections	2 measured every 98 reflections
Index Ranges	$0 \leq h \leq 9,0 \leq k \leq 17$
	$-13 \leq \ell \leq 13$
Reflections Collected	2557
Independent Reflections	$2159\left(R_{\text {int }}=0.73 \%\right) ;\left(\left\|F_{o}\right\|>0\right)$
Observed Reflections	$2115\left(\left\|F_{0}\right\|>1.0 \sigma\left(\left\|F_{0}\right\|\right)\right)$

System Used	Siemens SHELXTL PLUS/SHELXTL PC
Solution	Direct Methods
Refinement Method	Full-Matrix Least-Squares
Quantity Minimized	$\sum \mathrm{w}\left(\left\|\mathrm{F}_{0}\right\|-\left\|\mathrm{F}_{\mathrm{c}}\right\|\right)^{2}$
Extinction Correction	$x=0.0034(4)$, where
	$F^{*}=F\left[1+0.002 \chi \mathrm{~F}^{2} / \sin (2 \theta)\right]^{-1 / 4}$
Hydrogen Atoms	Refined ($\mathrm{x}, \mathrm{y}, \mathrm{z}$) and U (iso)
Weighting Scheme	$w^{-1}=\sigma^{2}\left(\left\|F_{0}\right\|\right)+0.0005\left(\left\|F_{0}\right\|\right)^{2}$
Final R Indices (obs. data)	$\mathrm{R}_{\mathrm{F}}=4.0 \%, \mathrm{R}_{\mathrm{wF}}=4.6 \%$
R Indicies (all data)	$\mathrm{R}_{\mathrm{F}}=4.17 \%, \mathrm{R}_{\mathrm{wF}}=4.6 \%$
Goodness-of-Fit	1.50
Number of Variables	320
Data-to-Parameter Ratio	6.6:1
Largest and Mean Δ / σ	$<0.001,<0.001$
Largest Difference Peak	$0.17 \mathrm{e}^{-3}$
Largest Difference Hole	$-0.15 \mathrm{e}^{-3}$

References.

1. The crystal was immersed in a lube-oil additive which allows for manipulation on the bench-top and prevents decomposition due to air or moisture. The crystal was secured to a glass fiber (the oil acts as the adhesive) which is attached to an elongated brass mounting-pin. Further details appear in Hope, H.; Experimental Organometallic Chemistry: A Practicum in Synthesis and Characterization, ACS Symposium Series No. 357, Wayda, A. L. and Darensbourg, M. Y., Eds., 1987.
2. Churchill, M. R.; Lashewycz, R. A.; Rotella, F. J. Inorg. Chem. 1977, 16, 265-271.
3. UCLA Crystallographic Computing Package, University of California Los Angeles 1981, C. Strouse; personal communication.
4. Sheldrick, G. M., Siemens Analytical X-Ray Instruments, Inc.; Madison, WI 1990.
5. International Tables for X-Ray Crystallography 1992, Vol. C., Dordrecht: Kluwer Academic Publishers.

* The thermal ellipsoid plot is shown at the 50% probability level.

[^0]: ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$), δ :
 $12.09\left(\mathrm{br} \mathrm{s}, 1 \mathrm{H},-\mathrm{CO}_{2} \mathrm{H}\right), 5.77(\mathrm{~d}, 1 \mathrm{H}, J=1.0 \mathrm{~Hz}$, $\mathrm{H}-3), 5.13$ ($\mathrm{m}, 2 \mathrm{H}, \mathrm{H}-1,11$), 4.98 (m, 1H, H-6), $2.80(\mathrm{~d}, 2 \mathrm{H}, J=7.1 \mathrm{~Hz}, \mathrm{H}-5), 2.19(\mathrm{~d}, 3 \mathrm{H}, J=1.2$ $\mathrm{Hz}, \mathrm{H}-18), 1.93-2.10(\mathrm{~m}, 8 \mathrm{H}, \mathrm{H}-9,10,13,14)$, 1.68 ($\mathrm{s}, 9 \mathrm{H}, \mathrm{H}-16,17,20$), 1.61 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{H}-19$).

[^1]: ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$), δ :
 5.23 (m, 1H, H-11), 5.10 (m, 1H, H-6), 2.74 (dd, $1 \mathrm{H}, J=19.0,4.9 \mathrm{~Hz}, \mathrm{H}-3), 2.51(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-4)$, 2.43 (m, 1H, H-1), 2.35 (ddd, 1H, $J=16.0,6.1$, $3.2 \mathrm{~Hz}, \mathrm{H}-5$), 2.18 (ddd, $1 \mathrm{H}, \mathrm{J}=10.2,5.9,2.0$

[^2]: ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right), \delta:$
 2.83 (dd, 1H, $J=14.8,5.0 \mathrm{~Hz}, \mathrm{H}-5), 2.78$ (d, 1H, $J=8.1 \mathrm{~Hz}, \mathrm{H}-11$), 2.52 (m, 1H, H-4), 2.16 (dd,

[^3]: ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right), \delta:$
 5.51-6.00 (m), 2.98(m), 2.53-2.69 (m), 2.40-2.47

[^4]: ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right), \delta$: 7.46 (dd, 2H, $J=7.6,0.5 \mathrm{~Hz}, \mathrm{H}-23$), 7.23 (t, 2 H ,

[^5]: * Equivalent isotropic U defined as one third of the trace of the orthogonalized $U_{i j}$ tensor

