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Synthesis of a Cauer Equivalent Circuit for Electric 

 Devices from Computed and Measured Data 

Yoshitsugu Otomo and Hajime Igarashi, Member, IEEE 
 

 
    Abstract—This paper proposes a method for modeling electric 

devices based on a Cauer circuit whose circuit parameters are 

directly determined from measured or computed data using the 

adjoint variable method. It has been shown that electric devices 

that are governed by the quasi-static Maxwell’s equation can be 

modeled by the Cauer circuit. From the synthesized Cauer circuit, 

eddy current losses can be evaluated for a wide frequency range. 

Moreover, it can be embedded into circuit simulator to perform 

time-domain analysis. It is shown that the Cauer circuit whose 

parameters are identified using the proposed method works better 

for a simple numerical model than that whose parameters are 

identified using a genetic algorithm. Moreover, the Cauer 

equivalent circuit of a reactor and a power inductor is synthesized 

from the measured data using the proposed method. It is shown 

that the input impedance of the reactor and power inductor is well 

approximated by the Cauer circuit over the frequency domain of 

interest. 

 

Index Terms—Adjoint variable method (AVM), Cauer 

equivalent circuit, Curve fitting, Litz wire, Sensitivity analysis. 

I. INTRODUCTION 

O downsize electric devices such as transformers, electric 

motors, and inductors, the driving frequency has been 

increased, which has led to an increase in eddy current losses 

due to the skin and proximity effects. The finite element (FE) 

method can effectively compute the eddy currents, although its 

computational cost can be large because the device model has 

to be discretized into sufficiently fine elements that are smaller 

than the skin depth. In particular, repeated FE analysis in a 

design process can be unacceptably time-consuming. 

To accelerate computations, equivalent circuit models that 

consider the eddy current effects have been proposed. For 

example, the Cauer equivalent circuit of a steel sheet has been 

derived from the analytical solution to the quasi-static 

Maxwell’s equations [1]-[3]. The Foster equivalent circuit of an 

inductor with arbitrary geometry has been synthesized using 

model order reduction [4, 5] applied to the FE equation of the 

quasi-static Maxwell’s equation. It has been shown that the 

Cauer equivalent circuit can be derived from the Foster circuit 

via a rational polynomial representation [6]. Of note, the Cauer 

equivalent circuit has been directly derived from the FE 

equation of the 2-D and 3-D quasi-static Maxwell’s equations 

[7, 8]. This means that a wide class of electric devices can be 

modeled using the Cauer circuit. In fact, it has been shown that 

permanent magnet synchronous motors and induction motors 

can be modeled by the Cauer circuit [9, 10]. Moreover, the 

electrochemical impedance of a diffusion and reaction process 

has been represented by the Cauer circuit [11]. With these 

approaches, the synthesized Cauer equivalent circuit can be 

embedded into circuit simulators and time-domain analysis can 

be readily performed. 

One can also determine the circuit parameters of the Cauer 

circuit by curve fitting. The parameters are determined so that 

the error between the input impedance of the equivalent circuit 

and that of the electric device of interest is minimized. The 

identification of equivalent circuit parameters using stochastic 

approaches such as genetic algorithms (GAs) has been adopted 

because of their high search ability and versatility [12]-[16]. 

Moreover, the authors have successfully applied stochastic 

approach to the modeling of a wireless power transfer device 

[17], where the curve fitting was performed using a GA. One of 

the merits of the curve-fitting approach is that we only need the 

computed or measured input impedance of a device. This 

approach is especially effective when FE analysis is ineffective 

but measurements are available, as in the case when there is 

uncertainty in the material properties or extremely fine 

structures, such as litz wire, are considered. A stochastic 

method would fail to uniquely determine the circuit parameters 

because of its stochastic nature unless a suitably weighted 

regularization term is introduced to the cost function [18]. 

Stochastic approaches also have a relatively high computational 

cost. 

Sensitivity analysis based on the adjoint technique, which is 

a deterministic approach, has been used for circuit design and 

analysis [19]-[26]. Tellegen’s approach, which uses an adjoint 

network, is widely used for circuit design [19]-[21]. It is also 

possible to directly compute the sensitivity of circuit equations 

based on the adjoint variable method (AVM) [22]-[26]. In 

particular, the complex AVM has been proposed for analyzing 

complex linear systems such as RL circuits [25, 26]. 

Deterministic approaches are rather simple and have a smaller 

computational cost compared with that of stochastic approaches. 

As described above, there are many studies on the application 

of AVM to optimal design. However, there have been little 

studies to identify the circuit parameters using AVM. In 

particular, AVM has not been applied to identification of the 

Cauer circuit that has the above-mentioned engineering 

importance. 
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In this paper, we propose a method for modeling electric 

devices based on a Cauer circuit whose circuit parameters are 

directly determined from either measured or computed data 

using AVM. To evaluate the effectiveness of the proposed 

method, we apply it to an FE model of a 20-turn inductor. 

Moreover, the proposed method is used to synthesize a Cauer 

circuit model from the measured data of a reactor and a power 

inductor. 

II. CAUER EQUIVALENT CIRCUIT REPRESENTATION 

Let us consider the Cauer equivalent circuit shown in Fig. 1, 

which can be derived from the quasi-static Maxwell’s equations 

to effectively evaluate the eddy current loss and perform 

dynamic simulation. The quasi-static Maxwell’s equations in 

the Laplace domain can be written as 

rot𝜈(rot𝑨) + j𝜔𝜎(𝑨 + grad𝜑) = 𝑱, (1a) 

div{j𝜔𝜎(𝑨 + grad𝜑)} = 0, (1b) 

where 𝑨 , 𝜑 , 𝜈 , j , 𝜔 , 𝜎 , and 𝑱  denote the vector and scalar 

potentials, magnetic reluctivity, imaginary unit, angular 

frequency, electric conductivity, and current density, 

respectively. By applying the weighted residual method in 

conjunction with the Galerkin method to (1), we obtain 

∑𝐴𝑗
𝑗

[∫ rot𝑵𝑖 ⋅ 𝜈rot𝑵𝑗
Ω

𝑑𝛺 + j𝜔𝜎∫𝑵𝑖 ⋅ 𝑵𝑗
Ω

𝑑𝛺] 

+j𝜔𝜎∑𝜑𝑘
𝑘

∫𝑵𝑖 ⋅ grad𝑁𝑘
Ω

𝑑𝛺 = 𝐼∫𝑵𝑖 ⋅
Ω

𝒋0𝑑𝛺, 

(2a) 

j𝜔𝜎∑𝐴𝑗
𝑗

∫𝑵𝑗 ⋅ grad𝑁𝑢
Ω

𝑑𝛺 

+j𝜔𝜎∑𝜑𝑘
𝑘

∫grad𝑁𝑘 ⋅ grad𝑁𝑢
Ω

𝑑𝛺 = 0, 

(2b) 

where 𝑵𝑖 , 𝑁𝑖 , 𝐼 , and 𝒋0  denote the vector and scalar 

interpolation function, current, and unit current density, 

respectively. The electromagnetic field is assumed to be 

coupled, as expressed by the following circuit equation: 

𝑉 = 𝑅0𝐼 + j𝜔(𝐿0𝐼 + 𝜙), (3) 

where 𝑅0 , 𝐿0 , 𝑉 , and 𝜙  respectively denote the external 

resistance and inductance, input voltage, and magnetic flux, 

which is computed as 𝜙 = ∑ 𝐴𝑗𝑗 ∫ 𝑵𝑗 ⋅ 𝒋0Ω
𝑑𝛺. We express (2) 

and (3) in matrix form as 

K𝒛 + j𝜔N𝒛 = 𝑉𝒃, (4a) 

where K, N ∈ ℝ𝑚×𝑚, 𝒛 ∈ ℂ𝑚, 𝒃 = [0,0, … ,1]t ∈ ℝ𝑚, and 𝑚 is 

the number of degrees of freedom in (2) and (3). In addition, the 

output current is expressed by 

𝐼 = 𝒃t𝒛. (4b) 

To obtain the transfer function that corresponds to the 

admittance function, denoted here by 𝑌(𝜔) , model order 

reduction techniques can be applied to (4) [4, 5]. Consequently, 

𝑌(𝜔) is represented by a rational function of the form 

𝑌(𝜔) =
𝛽0 + 𝛽1(j𝜔) + 𝛽2(j𝜔)

2 +⋯

𝛼0 + 𝛼1(j𝜔) + 𝛼2(j𝜔)
2 +⋯

. (5) 

By applying the Euclid algorithm to (5), a continued fraction of 

the form  

𝑍(𝜔) =
1

𝑌(𝜔)
= 𝑅DC +

1

1
j𝜔𝐿1

+
1

𝑅1 +
1

1
j𝜔𝐿2

+⋯

, 

(6) 

can be derived [5]. One can find that the continued fraction in 

(6) corresponds to the input impedance of the Cauer circuit 

shown in Fig. 1. The input-output relation of the system 

governed by (1) can thus be approximately represented by a 

Cauer circuit. 

It is possible to assign a physical interpretation to the circuit 

parameters in the Cauer circuit. At sufficiently low frequencies, 

almost no current goes through 𝑅1; most of it goes through 𝐿1 

because j𝜔𝐿1 is sufficiently smaller than the impedance of the 

higher stages. This means that 𝑅DC  and 𝐿1  correspond to the 

DC resistance and inductance, respectively, for the main flux 

without the eddy current effect. An increase in frequency gives 

rise to eddy current loss and a demagnetizing field due to eddy 

currents, which are represented by 𝑅1  and 𝐿2 , respectively. 

Similarly, the effects at higher frequencies are represented by 

𝑅𝑘 (𝑘 ≥ 2) and 𝐿𝑘  (𝑘 ≥ 3).  
    The principal goal of this work is to model electric devices 

with a Cauer circuit via measurements, not field analysis. This 

method is particularly useful when FE modeling is difficult 

because of multiple spatial scales, as in the case for devices that 

include litz wires or soft magnetic composites and those with 

materials that have uncertain characteristics. 

 

Fig. 1. Cauer equivalent circuit 

𝑅DC 𝑅1 𝑅2

𝐿1 𝐿2 1  2   𝑉
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III.   IDENTIFICATION METHOD FOR EQUIVALENT  

CIRCUIT PARAMETERS 

To determine the circuit parameters 𝒙 =
[𝑅1, 𝑅2, … , 𝑅𝑃−1, 𝑋1, 𝑋2, … , 𝑋𝑃]

t ∈ ℝ2𝑃−1  of the Cauer circuit 

whose stage number is 𝑃, we solve the optimization problem 

defined by 

min
𝒙
𝐹(𝒙) , 𝐹(𝒙) = ∑|𝑍(𝒙, 𝑅DC, 𝜔𝑞) − 𝑍S(𝜔𝑞)|

2

𝑁S

𝑞=1

, 

sub. to 𝑅𝑘 ≥ 0, 𝐿𝑘 ≥ 0 (𝑘 = 1,2, … ), 

(7) 

where 𝑁S , 𝜔𝑞 , 𝑍(𝒙, 𝑅DC, 𝜔𝑞), and 𝑍S(𝜔𝑞) denote the number 

of sampling points, q-th angular frequency, impedance of the 

Cauer circuit, and measured (or computed) impedance, 

respectively. In addition, the reactance 𝑋𝑘 = 𝜔0𝐿𝑘  is defined 

with the maximum sampling frequency 𝜔0 . The circuit 

equation for the Cauer circuit is expressed as 

Z(𝜔)𝒊 = 𝒗, (8a) 

Z𝑘𝑙(𝜔) =

{
 
 

 
 −j

𝜔

𝜔0
𝑋𝑙−1 (𝑘 = 𝑙 − 1)

𝑅𝑙−1 + j
𝜔

𝜔0
(𝑋𝑙−1 + 𝑋𝑙) (𝑘 = 𝑙)

−j
𝜔

𝜔0
𝑋𝑙 (𝑘 = 𝑙 + 1)

, (8b) 

𝒗 = [𝑉, 0,0, … ,0]t, (8c) 

where 𝑉 denotes the input voltage, and 𝑅𝑙−1 = 𝑅DC when 𝑘 =
𝑙 = 1. Because it is difficult to directly evaluate the sensitivity 

𝜕𝐹(𝒙) 𝜕𝑥𝑛⁄  ( 𝑛 = 1,2, … ,2𝑃 − 1 ) , we adopt the AVM in 

which the augmented objective function 𝐹̅(𝒙) is minimized as 

follows: 

min
𝒙
𝐹̅(𝒙) , 𝐹̅(𝒙) = 𝐹(𝒙) +∑𝜱𝑞

t (Z(𝜔𝑞)𝒊𝑞 − 𝒗)

𝑁S

𝑞=1

, 

sub. to 𝑅𝑘 ≥ 0, 𝐿𝑘 ≥ 0 (𝑘 = 1,2, … ), 

(9) 

where 𝜱𝑞 ∈ ℂ
𝑃  denotes the adjoint variable, which 

corresponds to the Lagrange multiplier in the context of 

nonlinear programming. Note that 𝐹̅(𝒙) ≈ 𝐹(𝒙) provided that 

𝒊𝑞  is a good approximation of the solution to (8a). The 

derivative of 𝐹̅(𝒙) with respect to the 𝑛-th circuit parameter 𝑥𝑛 

is given by 

𝜕𝐹̅(𝒙)

𝜕𝑥𝑛
=∑[𝜱𝑞

t
𝜕Z(𝜔𝑞)

𝜕𝑥𝑛
𝒊𝑞

𝑁S

𝑞=1

+ {Z(𝜔𝑞)𝜱𝑞 +
𝜕𝐹(𝒙)

𝜕𝒊𝑞
}

t
𝜕𝒊𝑞

𝜕𝑥𝑛
], 

(10) 

 

Fig. 2. Flow diagram of the proposed method 

where it is assumed that the current 𝒊𝑞 is an implicit function of 

𝑥𝑛. It is difficult to directly evaluate the second term in (10). To 

eliminate it, we solve the adjoint equations 

Z(𝜔𝑞)𝜱𝑞 = −
𝜕𝐹(𝒙)

𝜕𝒊𝑞
, 𝑞 = 1,2, … , 𝑁𝑠, (11) 

to obtain the adjoint variable 𝜱𝑞 . By substituting 𝜱𝑞  into the 

first term in (10), we can obtain the derivative of 𝐹̅(𝒙). Here, 

the right-hand side in (11) needs to be carefully treated because 

there it is not guaranteed that 𝐹(𝒙) is a holomorphic function 

that satisfies the Cauchy-Riemann equations 

𝜕𝐹𝑟(𝒙)

𝜕𝒊𝑞
𝑟

=
𝜕𝐹𝑖(𝒙)

𝜕𝒊𝑞
𝑖
, (12a) 

𝜕𝐹𝑟(𝒙)

𝜕𝒊𝑞
𝑖

= −
𝜕𝐹𝑖(𝒙)

𝜕𝒊𝑞
𝑟
, (12b) 

start

Initialize 𝒙(0),  (0),  0

Compute circuit equations

Z 𝜔 𝒊 = 𝒗

Compute adjoint equations

Eq. (13)

Compute sensitivity

Eq. (16)

Update 𝒙(𝑖) to get 𝒙(𝑖 1)

 =  + 1

Stopping criterion

of augmented Lagrangian

method is satisfied?

end

Stopping criterion

of quasi-Newton method

is satisfied?

NO

YES

YES

NO

Update  𝑗 ,  (𝑗) to get 

 (𝑗 1),  (𝑗 1)

 =  + 1
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where the superscripts   and   denote the real and imaginary 

parts, respectively. For this reason, we apply the complex AVM 

[25, 26] so that (11) is modified to 

Z(𝜔𝑞)𝜱𝑞 =
𝜕𝐹(𝒙)

𝜕𝒊𝑞
𝑟
− j
𝜕𝐹(𝒙)

𝜕𝒊𝑞
𝑖
, (13) 

where the right-hand side in (13) is computed only with respect 

to the circuit current of the first stage  1𝑞  because the input 

impedance of the Cauer circuit can be evaluated as 

𝑍(𝒙, 𝑅DC, 𝜔𝑞) = 𝑉  1𝑞⁄ . The derivative of 𝐹̅(𝒙) is now given 

by [26] 

𝜕𝐹̅(𝒙)

𝜕𝑥𝑛
= −Re(∑𝒊𝑞

t
𝜕Z(𝜔𝑞)

𝜕𝑥𝑛

𝑁S

𝑞=1

𝜱𝑞). (14) 

In addition, we impose a constraint on 𝐹̅(𝒙) so that the resultant 

circuit parameters take non-negative values. To do so, the 

constraint functions 𝑔𝑘(𝒙), 𝑘 = 1, 2, …  are introduced on the 

basis of the augmented Lagrangian method [27] as follows: 

min
𝒙
𝑀(𝒙,  ;  ), 

𝑀(𝒙,  ;  ) = 𝐹(𝒙) +∑𝜱𝑞
t (Z(𝜔𝑞)𝒊𝑞 − 𝒗)

𝑁S

𝑞=1

 

+
1

4 
∑[{min(0, 2 𝑔𝑘(𝒙) + 𝜆𝑘)}

2 − (𝜆𝑘)
2]

𝑘

, 

(15) 

where   and   denote the penalty coefficient and Lagrangian 

multiplier, respectively. The derivative of 𝑀(𝒙,  ;  ) is given 

by 

𝜕𝑀(𝒙,  ;  )

𝜕𝑥𝑛
= −Re(∑𝒊𝑞

t
𝜕Z(𝜔𝑞)

𝜕𝑥𝑛

𝑁S

𝑞=1

𝜱𝑞) 

+
1

2 
∑[min(0,2 𝑔𝑘(𝒙) + 𝜆𝑘)min (0,2 

𝜕𝑔𝑘(𝒙)

𝜕𝑥𝑛
)]

𝑘

 

(16) 

To update the circuit parameters using (16), the quasi-Newton 

method based on the Broyden–Fletcher–Goldfarb–Shanno 

algorithm is employed in this work. The above process is 

schematically shown in Fig. 2. 

IV. NUMERICAL RESULTS 

A.  Frequency Characteristics and Circuit Parameters 

Although the proposed method can be applied to various 

electric devices, we confine ourselves to inductor and reactor 

models for the verification. Let us first consider the simple 

inductor model shown in Fig. 3 whose input impedance is  

 

Fig. 3. 20-turn inductor model 

(strand radius: 0.15 mm, relative permeability of the magnetic core: 1000, 

conductivity of the strand: 5.76 × 107 S/m) 

TABLE I 

OPTIMIZATION PARAMETERS FOR PROPOSED METHOD 

Initial circuit parameter 𝑥𝑛
(0)

 1.0 Ω 

Initial multiplier value 𝜆𝑛
(0)

 0.0 

Initial penalty parameter  (0) 5.0 

Stopping criterion of  

the quasi-Newton method 
|
𝜕𝑀(𝒙,  ,  )

𝜕𝒙
| < 10−8 

Stopping criterion of  

the augmented Lagrangian method 
|min{𝒈(𝒙), − /2 }| < 10−6 

TABLE II 

OPTIMIZATION PARAMETERS FOR GA 

Number of generations 10,000 

Number of populations1 50 × (2𝑃 − 1) 

1Note that P denotes the number of stages of the Cauer circuit shown in  

  Fig. 1. 

analyzed using the FE method. We compare the performance of 

the proposed method with that of conventional circuit 

parameter identification using the GA [12]-[17]. The 

parameters for the proposed method and the GA are 

summarized in TABLE I and TABLE II, respectively. The 

results are plotted in Fig. 4. The input resistance and reactance 

values computed from the equivalent circuits whose parameters 

were determined by the two approaches agree well with those 

computed from FE analysis over the frequency range of interest. 

Because the skin depth, about 0.15 mm at the highest frequency 

(200 kHz), is larger than the strand radius, the proximity effect 

is stronger than the skin effect. 

The corresponding fitting errors for both methods are plotted 

in Fig. 5. It can be concluded that the proposed method has 

smaller fitting errors in comparison with GA for this model. 

The convergence histories are shown in Fig. 6. The circuit 

parameters after convergence for the proposed method and the 

GA are summarized in TABLE III and TABLE IV, respectively. 

The value of 𝑅DC  is pre-computed from the geometry of the 

model shown in Fig. 3 without curve fitting. We found that the 

squared error for the proposed method shown in Fig. 6(a) 

decreases to about 5.0 × 10−10  when the number of circuit 

stages, 𝑃, is greater than 4. In contrast, the squared error for the  

unit: mm
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(a) Proposed method 

  

(b) GA 

Fig. 4. Frequency characteristics of equivalent circuits obtained with  

           proposed method and GA 

  

Fig. 5. Fitting errors with 4-stage circuit 

  

(a) Proposed method (b) GA 

Fig. 6. Convergence histories for proposed method and GA 

GA shown in Fig. 6(b) tends to stagnate at around 10−4 

regardless of 𝑃 , even though the evolution process was 

continued for over 10,000 generations. In addition, the 

synthesized circuit parameters determined from the GA include 

extraordinarily large values (e.g., 𝑅4 = 1.3 × 10
1 7 Ω) due to 

the stochastic nature of the algorithm. 

TABLE III 

CIRCUIT PARAMETERS DETERMINED FROM PROPOSED METHOD 

 
Number of circuit stages 

2 3 4 5 6 

𝑅DC (Ω) 4.13×10−2 4.13×10−2 4.13×10−2 4.13×10−2 4.13×10−2 

𝑅1 (Ω) 4.49×102 4.45×102 4.45×102 4.46×102 4.46×102 

𝑅2 (Ω)  6.20×103 6.77×103 3.14×103 9.01×103 

𝑅  (Ω)   1.23×103 6.02×103 1.03×104 

𝑅4 (Ω)    2.23×104 1.45×101 

𝑅5 (Ω)     6.78×10−4 

𝐿1 (H) 5.57×10−6 5.57×10−6 5.57×10−6 5.57×10−6 5.57×10−6 

𝐿2 (H) 1.53×10−4 1.55×10−4 1.54×10−4 1.54×10−4 1.53×10−4 

𝐿   (H)  2.93×10−3 6.61×10−2 9.48×10−3 4.02×10−4 

𝐿4 (H)   2.18×10−3 2.72×10−5 3.82×10−3 

𝐿5 (H)    6.45×10−7 4.32×10−6 

𝐿6 (H)     7.44×10−5 

 

 

TABLE IV 

CIRCUIT PARAMETERS DETERMINED FROM GA 

 
Number of circuit stages 

2 3 4 5 6 

𝑅DC (Ω) 4.13×10− 4.13×10−2 4.13×10−2 4.13×10−2 4.13×10−2 

𝑅1 (Ω) 5.08×10 4.60×10 4.85×10 4.96×10 4.91×10 

𝑅2 (Ω)  2.61×100 4.48×10 2.04×10 8.34×10 

𝑅  (Ω)   1.64×1018 8.3×10 9.28×10 

𝑅4 (Ω)    1.3×10 9.06×10 

𝑅5 (Ω)     2.8×10 

𝐿1 (H) 5.56×10−6 5.57×10−6 5.56×10−6 5.56×10−6 5.56×10−6 

𝐿2 (H) 4.45×10−5 1.41×10−4 1.01×10−4 7.48×10−5 9.35×10−5 

𝐿   (H)  7.61×10−1 2.8×10−15 7.5×10−17 7.1×10−12 

𝐿4 (H)   6.12×100 1.9×10117 9.24×10−7 

𝐿5 (H)    8.1×10119 4.0×10−12 

𝐿6 (H)     4.6×10140 

 

B.  Dependence of Settings on Convergence 

In order to study the dependence of the convergence of the 

proposed method and GA on the initial guess and hyper 

parameters, we perform the circuit identification under different 

settings. The convergence histories for 4-stage circuit are 

plotted for the five cases in Figs. 7 and 8. We can see that the 

squared errors for the proposed method shown in Fig. 7 

decrease to about 5.0 × 10−10 regardless of the initial circuit 

parameter. In contrast, the squared error for GA shown in Fig. 

8 tends to stagnate at around 10−4 even when the random seed 

and number of populations, which is chosen 30 times larger 

than the number of unknowns at least, are changed. 

C.  High-Frequency Characteristics of Equivalent Circuit 

The Cauer circuit model was evaluated at a frequency that is 

above the highest frequency (200 kHz) considered for the curve 

fitting. The frequency characteristics of the input impedance of 

the Cauer circuit up to 1 MHz are plotted in Fig. 9, where the 

circuit parameters were identified using the proposed method 

and the GA. It can be seen that the Cauer circuit works well  
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Fig. 7. Dependence of initial parameter on convergence for proposed  

method 

  

(a) Random seed (b) Number of populations 

Fig. 8. Dependence of hyper parameters on convergence of GA. 
           Convergence for different number of populations is shown in (b). 

  

(a) Proposed method 

  

(b) GA 

Fig. 9. High-frequency characteristics of equivalent circuits obtained with 

proposed method and GA 

over the frequency range with a rather small stage number when 

the proposed method is applied. In contrast, the GA requires a 

greater number of stages for the identified Cauer circuit. The 

results demonstrate the superiority of the proposed method for 

the considered problem. 

  

(a) Reactor with 10-turn litz wire (b) Power inductor [28] 

Fig. 10. Reactor and power inductor for experimental validation 

TABLE V 

SPECIFICATIONS OF REACTOR WITH 10-TURN LITZ WIRE 

Number of strands 12 

Strand radius 0.16 mm 

Twist pitch 20 mm 

Magnetic core type PQ 50/50 

Magnetic core material PC47 

Air gap in magnetic core 0.3 mm 

  

(a) Reactor with 10-turn litz wire 

  

(b) Power inductor 

Fig. 11. Frequency dependence of reactor and power inductor 

V. EXPERIMENTAL VALIDATION AND  

SIMULATED TIME RESPONSE 

A.  Circuit Identification 

The proposed method was used to identify the Cauer circuit 

parameters from the measured input impedance of the reactor 

with 10-turn litz wire and power inductor used in, e.g. a DC-DC 

converter [28] shown in Fig. 10. TABLE V summarizes 

specifications of the reactor. The frequency characteristics of 

the input impedance are plotted in Fig. 11. 
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TABLE VI 
IDENTIFIED CIRCUIT PARAMETERS FOR REACTOR  

WITH 10-TURN LITZ WIRE 

 
Number of circuit stages 

2 3 4 5 6 

𝑅DC (Ω) 1.85×10− 1.85×10−2 1.85×10−2 1.85×10−2 1.85×10−2 

𝑅1 (Ω) 3.61×104 3.61×104 3.61×104 3.61×104 2.50×10−3 

𝑅2 (Ω)  2.27×101 1.16×10−5 6.41×104 3.63×104 

𝑅  (Ω)   1.87×102 5.48×103 1.86×104 

𝑅4 (Ω)    7.43×102 3.02×103 

𝑅5 (Ω)     2.14×103 

𝐿1 (H) 1.19×10−4 1.19×10−4 1.19×10−4 1.19×10−4 7.30×10−3 

𝐿2 (H) −1.6×10−13 8.62×10−3 2.97×10−2 −1.6×10−13 1.21×10−4 

𝐿   (H)  −1.6×10−13 −1.6×10−13 7.08×10−3 −1.6×10−13 

𝐿4 (H)   8.10×10−3 1.40×10−3 1.58×10−4 

𝐿5 (H)    7.68×10−4 3.97×10−3 

𝐿6 (H)     1.03×10−3 

 
TABLE VII 

IDENTIFIED CIRCUIT PARAMETERS FOR POWER INDUCTOR 

 
Number of circuit stages 

2 3 4 5 6 

𝑅DC (Ω) 5.73×10−3 5.73×10−3 5.73×10−3 5.73×10−3 5.73×10−3 

𝑅1 (Ω) 3.32×101 2.58×101 2.56×101 2.57×101 2.57×101 

𝑅2 (Ω)  7.70×102 7.68×102 7.69×102 7.15×102 

𝑅  (Ω)   5.62×10−3 2.05×10−2 5.48×101 

𝑅4 (Ω)    4.03×10−1 1.96×100 

𝑅5 (Ω)     2.25×100 

𝐿1 (H) 2.18×10−6 2.19×10−6 2.19×10−6 2.19×10−6 2.19×10−6 

𝐿2 (H) 7.10×10−5 6.99×10−5 6.99×10−5 6.99×10−5 7.00×10−5 

𝐿   (H)  4.95×10−9 4.50×10−5 2.70×10−5 1.56×10−4 

𝐿4 (H)   3.91×10−5 1.06×10−5 2.26×10−5 

𝐿5 (H)    1.82×10−5 1.21×10−16 

𝐿6 (H)     1.61×10−7 

The AC resistance and reactance were measured with an LCR 

meter (HIOKI IM3523), where the signal level for the 

measurements was set to 10 (mA) to exclude the magnetic core 

losses. The resistance and reactance computed from the 

identified Cauer circuit parameters agree well with those 

obtained from the measurements. The resultant circuit 

parameters are summarized in TABLEs VI, VII and the 

convergence histories are shown in Fig. 12. The converged 

values in Fig. 12(a) plateau at about 1.0 whereas those in Figs. 

6(a) and 12(b) continue to decrease. This might be due to the 

measurement errors that cannot be well approximated by the 

Cauer circuit. 

B.  Computation of Time Response 

As an application of the proposed method, we computed the 

time evolution of the eddy current loss in the 10-turn reactor 

using the identified Cauer circuit parameters. The test circuit 1 

with a sinusoidal input voltage is shown in Fig. 13 where 𝑍p 

denotes the parasitic impedance of 𝐶  and 𝑅LOAD . The time 

response was computed with the software LTspice® and  

  

(a) Reactor with 10-turn litz wire (b) Power inductor 

Fig. 12. Convergence history for reactor and power inductor 

 

Fig. 13. Test circuit 1 for transient analysis 

             (VAC = −11 to 11 V, Frequency = 183 kHz, 𝐶 = 6 nF,  

𝑅LOAD = 5 Ω, 𝑍p = 1.4 + j1.6 Ω) 

measured with a power analyzer (HIOKI PW6001). We take the 

absolute value of 𝐿 , negative value close to zero, in the 

simulation to stabilize the circuit behavior. The transient 

responses of the 10-turn reactor and load resistance are plotted 

in Fig. 14. TABLE VIII summarizes the simulated and 

measured active powers of 𝑅LOAD . The loss in the proposed 

circuit shown in Fig. 14(b) is mainly contributed from 𝑅DC and 

𝑅1. It is found that the relative error between the active powers 

obtained from the proposed circuit and measurement is less than 

5 % while the relative error for the conventional circuit is 

greater than 10 %, in which the eddy current loss is not 

considered. 

In order to apply the proposed circuit to practical electric 

devices such as a DC-DC converter, we consider here the test 

circuit 2 with a pulsed input voltage as shown in Fig. 15. The 

transient losses of the reactor are plotted in Fig. 16. It can be 

seen that the loss evaluated using the proposed circuit is greater 

than that of the simple circuit due to the eddy current loss. 

C.  Discussion 

The losses due to eddy currents and circulating current in the 

multi-turn litz wire coils have to be considered at high 

frequencies. Numerical methods have been proposed to 

evaluate these effects considering the bundling and twisting 

structures in the winding coils [29]-[32]. An experimental 

method for extracting the AC resistance in a transformer with 

litz wire has been proposed, where the geometric tolerance in 

the litz wire is directly considered [33]. This experimental 

method is more practical because accurate information on 

internal components in electric devices is often unavailable. 
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TABLE VIII 

SIMULATED AND MEASURED ACTIVE POWERS OF 𝑅LOAD 

Measured 3.76 W 

Proposed 3.91 W 

Conventional 4.21 W 

 

(a) Measured results of load voltage and load current 

  

(b) Loss of 10-turn reactor (c) Load power 

Fig. 14. Transient responses for test circuit 1 

 

Fig. 15. Test circuit 2 for transient analysis 

(VAC = −10 to 10 V, period = 10 μs, duty = 50 %, RLOAD = 5.0 Ω) 

 
Fig. 16. Transient losses of 10-turn reactor in test circuit 2 

 

For such cases, even if the internal device structure is unknown, 

the circuit model with eddy current effects, which can be readily 

embedded into circuit simulators, can be constructed using the 

proposed method. 

VI. CONCLUSION 

In this paper, we proposed a method for modeling electric 

devices using the Cauer equivalent circuit considering the eddy 

current losses. The circuit parameters are directly determined 

from measured data using AVM. The proposed method was 

demonstrated to outperform a conventional method using a GA 

for the FE model of a simple inductor. Moreover, the proposed 

method was shown to be valid for the identification of Cauer 

circuit parameters from the measured input impedance of a 

reactor with litz wire and a power inductor. 

The validity of the proposed method for the modeling of 

windings in electric motors and generators should be verified in 

future studies. Moreover, the validity for devices with saturable 

magnetic cores should be examined. 
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