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Synthesis of a Class of n-Port Networks 

V. G. K. MURTI, MEMBER, IEEE, AND K. THULASIRAMAN 

Absfracf-The properties of a class of Zn-node networks, called 
K-networks, are discussed. The characteristic of a K-network is 
that when any one of its ports is connected to a voltage source keep- 
ing all the other ports short circuited, then all the short-circuited 
ports are at the same potential. The Zn-node network with a pair of 
equal conductances joining any two ports, as obtained by the present- 
ly known procedure for the realization of a dominant conductance 
matrix, is shown to be a special structure belonging to this general 
class. It is shown that the realization of a real dominant matrix as 
the short-circuit conductance matrix Y of an n-port network can 
beconvenientlycarried out using K-networks. Further, the “modified 
cut-set matrix” of a K-network is of a special form, independent of 
edge conductances. This property can be made use of in generating 
a range of equivalent Sn-node n-port networks for a given Y. 
Examples illustrating the realization procedures are included. 

I. I~~TRoDUCTI~~ 

THIS PAPER considers the problem of realization 
of the short-circuit conductance matrix of a re- 
sistive n-port network with 2n nodes. The graph 

of the network is assumed to be complete and edges with 
zero conductance are permitted. The pair of nodes num- 
bered 2i - 1 and 2i constitutes the ith port. 

Given a real dominant matrix Y = [yii] of order n, 
it can be realized as the short-circuit admittance matrix 
of a resistive n-port network with 2n nodes by a well- 
known method. ‘I I In this realization the network con- 
figuration between any two ports i and j is as shown in 
Fig. 1, with the conductances g given by (1). 

gzi-l.Zi = gzi,zi-1 = 0, if vii<0 

= 2Y,i, if yii > 0 

gzi.zi = gzi-l.Zi-1 = 0, if yii>O 

= 2 Iyiil, if yii < 0 
(1) 

gzi-1.2i = Yii - g IYikl 
k#i 

gzi-1,zi = Yii - g IYikl. 

The important features of this realization are as follows. 
1) When any port i is excited with a voltage V and 

all the other ports short circuited, the short-circuited 
ports are all at the same potential, viz., at a potential 
of +V with respect to the terminal 2i - 1. 
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Fig. 1. Circuit used for the standard Sn-node realization of a 
dominant matrix. 

2) If two real dominant matrices Y, and YZ are realized 
as the short-circuit admittance matrices of two networks 
N, and N, according to this procedure, then the short- 
circuit admittance matrix of the parallel combination of 
N, and N, is given by Y, + YZ. (It is well known that 
an arbitrary pair of n-port networks may not have this 
property.) 

3) The transfer admittance yii between ports i and j 
is dependent only on the conductances of the edges 
directly joining the terminals of ports i and j. 

4) The modified cut-set matrix of the network is in- 
dependent of the edge conductances. [” * ‘31 

In this paper, a general class of networks, called K- 
networks, having the above properties is studied. The 
generalization consists in stipulating that the potential 
of all the short-circuited ports under the conditions in- 
dicated in 1) be KV where K is an arbitrary constant. 
The important properties of K-networks are discussed in 
Section II. The methods of synthesis are included in 
Section III. Finally, the generation of equivalent resistive 
networks using Cederbaum’s modified cut-set matrix is 
discussed in Section IV. 

II. K-NETWORKS AND THEIR PROPERTIES 

Consider an n-port network with 2n nodes. Let port i 
be excited with a voltage V and all the other ports be 
short circuited. If the short-circuited port j is at a po- 
tential KiiV with respect to the terminal 2i - 1, then 
Kii is referred to as the potential factor of port i with 
respect to port j. 14’ 

Definition i 

An n-port netkork with 2n nodes, in which each port i 
(i = 1,2, *-. ) h) is associated with a common potential 
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Fig. 2. Conductance values of the edges interconnecting any 
two ports. 

factor K, such that Kii = Ki for all j # i, is referred to as 
a K-network. 

Let, the network configuration between any two ports 
i and j be as shown in Fig. 2, where aii, bii, cii, and d,j 
refer to the conductances of the respective edges. These 
conductances are finite and assumed to be non-negative. 
However, the edges shunting the ports are permitted to 
have conductances of either sign unless the K-network 
is specified to contain no negative elements. 

Theorem 1 

The necessary and sufficient. condition that a given 
n-port network with 2n nodes be a K-network is that (2) 
is satisfied for every i and every j not, equal to i. 

Ki = aji + cii 
aii -I- bi; + cii + dii’ (2) 

Proof 

Necessity: Let port i be excited with voltage V and 
all the other ports be short circuited. In a K-network, all 
the short-circuited ports are at the same potential, and 
hence, the edges interconnecting the terminals of the 
short-circuited ports do not carry aby current. From this 
it follows that the potential of the short-circuited port j 
with respect to the terminal 2i - 1 can be calculated from 
the circuit in Fig. 2 with nodes 2j and 2j - 1 short 
circuited. This is easily shown to be V(aii + c,j)/(a,i + 
b,j + cii + dij). Hence, K, = (aii + cii)/(aij + b,j + 
c,i + d(i) for j = 1, 2, * * * n; j # i. Obviously, such a 
relation should be valid for every i in a K-network. 

Suficiency: With port i excited with voltage V and all 
the other ports shorted, remove all the edges intercon- 
necting the short-circuited ports. Then the potential of 
any short-circuited port j with respect to terminal 2i - 1 
is obtained as V(aii + cii)/‘(aii + b,i + cii + dii). 
From hypothesis it follows that all the short-circuited 
ports, j = 1, 2, . . . n; j # i, are at the same potential, 
Fiz., K,V under these conditions. Now let an edge inter- 
‘connecting any two short-circuited ports j and k be 
:restored to its position. Using Thevenin’s theorem it can 
be seen that no current passes through this edge. (It may 
‘3e recalled that in the 2n-node network considered, only. 

edges with finite conductances are permitted.) Hence, 
the conditions in the rest of the network remain un- 
disturbed and the potentials of the short-circuited ports 
after the introduction of this edge remain as before, i.e., 
at the common potential of KiV with respect to terminal 
2i - 1. Continuing this process, all the edges removed 
originally can be restored and all the short-circuited ports 
shown to remain at the same potential KiV. The final 
stage corresponds to the given network, and hence, the 
sufficiency condition follows. 

Since in a K-network with port i excited and all the 
other ports shorted the edges interconnecting the shorted 
ports do not carry any current, it is easy to show that 

‘ii =.aij + bij + cij + dij 

= cij(l - Ki) - Kidi; 

= K,b,, - aii(l - KJ 

(3) 

and 

Yii = g (Yii)i + gzi--1.2; (4) 
ifi 

where 

(y..), = (ai, + ci;)(bii + dii) 
*I t ai, + bii + Cii + dii 

= Ki(bii + d<i) 

= (ajj + cii)(l - Ki). 

(5) 

(yii)j may be considered as the contribution to yii due 
to the conductances interconnecting the terminals of 
ports i and j. 

Some of the important properties of K-networks are 
now considered. 

Property 1 

The potential factor K, satisfies the inequality, 0 < 
Ki < 1. 

This follows from the consideration that there can be 
no voltage magnification in a resistive network with non- 
negative element values. Further, if K = 0 or K = 1, 
one or more conductances should be infinite and this 
possibility is precluded in the 2n-node ?a-port network 
considered. 

Property 2 

Consider any two 2n-node K-networks N, and N, with 
the same set of potential factors (i.e., the potential factors 
of port i in the two networks are the same for every i) 
and having Y, and Y, as the short-circuit admittance 
matrices. When connected in parallel, N1 and N, yield 
a resulting network NB having the following properties. 

1) N, is a K-network and the potential factor of any 
one of its pQrts is the same as that of the corresponding 
port in N, and N,. 

2) The short-circuit admittance matrix of N, is Y, + YZ. 
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Proof: When the networks are paralleled, each edge of 
N, is in parallel with the corresponding edge of N,. Let 
the unprimed quantities in the following refer to N, and 
the primed quantities to N,. 

1) For the common potential factor Ki of port i in 
N, and N,, we have 

Ki = aij + Cij CL{j + Clj 

aii + bii + Cij + dii = Zi + b:i + C:j + d:T ’ 

j = 1, ... ,n 
(6) 

j # i. 

For the parallel combination, 

(aij + aij) + (Cij + Clj) 

(ajj + di> + (bij + b:j) + (cij + C:j> + (dij + d:j) 

= Kdasj + bi; + cij + dij) + Ki(alj + bii + cli + di’i) 
(ai{ + bij + Cij + dij) + (ali + bij + clj + dij) 

(7) 

= ‘K, for all i and every j not equal to i. 

By Theorem 1, this is necessary and sufficient for N, 
to be a K-network. Furthermore, the potential factor of 
port i in N, is seen to be Ki. 

2) From (3), the transfer admittance y:; between ports 
i and j of the resulting K-network is given by 

y:: = (Cij + c:i)(l - Ki) - Ki(dii + d$i) 

= cij(l - KJ - Kidij + cij(l - KJ - Kidij (8) 

= Yij + ?/Ii* 

The driving-point admittance 1~:: of port i of the parallel 
combination is given from (4) and (5) by 

y:: = g2i-1.2i 

+ gl?i-l,?i + ;ii: (Uij + Cij + U:j + C:f)(l 
i=l 
i#i 

= gei--1.2; + 2 (acj + cij)(l - Ki) 

i#i 

+ di-1,s + 2 (aii + clJ(l - KJ 
i=l 
ifi 

= Yii + Y:i* 

Ki) 

(9) 

From (8) and (9), the second part of Property 2 follows. 

Property 3 

The short-circuit admittance matrix of a 2n-node K- 
network with non-negative conductances is dominant. 

Proof: It is enough if it is proved that (y,,)i 2 ]yii] 
for all i and j, since it would then follow from (4) that 
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Case 1: Yii > 0. From (3) and (5), 

(Y<i)j - IYiil = (Yii)j - Yij 

= (aij + cii)(l - Ki) - cij(l - Ki) + Kidii 

00) 

= aij(l - KJ + Kidif 2 0, 

since O<K,<l. 

Case 6: y,, < 0. From (3) and (5), 

(Yii)j - lyijl = (Yii)i + Yij 

= (aij + c<j)(l - Ki) - aii(l - Ki) + Kibii 

(11) 

= K<bii + cij(l - K<) 2 0, 

since O<K<<l. 

From (10) and (1 l), Property 3 follows. 

Definition 2 

A K-network in which all the ports are associated with 
the same potential factor K is called a constant-K network. 

Lemma 1 

In a constant-K network, bii = cij for all i and j. 
Proof: Since K, = Ki in a constant-K network, it 

follows from (2) that b,j = Cije 

III. REALIZATION OF SHORT-CIRCUIT ADMITTANCE 
~VATRICES BYK-NETWORKS 

Dejinition 3 

A real matrix Y = [yij] is marginally dominant if 

Yii = g IYiil for all i. 
i#i 

Theorem 2 

If a real marginally dominant short-circuit admittance 
matrix Y with all off-diagonal entries positive is to be 
realized by a K-network with non-negative elements, 
the realization is possible only with a constant-K network 
with K = 3. 

Proof: Consider any two ports i and j. Since Y is 
marginally dominant and since from (lo), the quantity 
[(yi,), - yii] can not be negative, it is required that 

(Yii)j - Yii = O 
(12) 

i.e., aij(l - Ki) + K<dii = 0. 

Equation (12) is satisfied for the following combinations 
of values: 

i) aij = dij = 0; 

ii) Ki=l, djj = 0; 
Yii 2 g IYCil. 

ifi iii) Ki = 0, aii = 0. 
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However, combinations ii) and iii) require that yii = 0. 
Hence, for yif > 0, (12) is satisfied only for combination i). 
Therefore, 

Ki = bii “;r Cii 
hi 

and Ki = jjii + Q’ (13) 

It therefore follows that Ki + K, = 1. Considering any 
other port m, it can be similarly shown that 

K, + Ki = 1 and K, + k!; = 1. (14) 

Equations (13) and (14) lead to Ki = Ki = K, = 4. 
Generalizing this result, 

Kj = 4 for all i = 1, 2, . . * , n. (15) 

Thus, a realization is possible only with constant-K 
networks with K = 8. It is seen that this network is the 
same as that obtained by the standard 2n-node realiza- 
tion procedure previously given. I1 ’ 

Theorem 3 

If a real marginally dominant short-circuit admittance 
matrix Y with all off-diagonal entries negative is to be 
realized by a K-network with non-negative elements, a 
realization is possible only with a constant-K network 
but with any value of K such that 0 < K < 1. 

Proof: A marginally dominant matrix Y with negative 
yii’s requires that 

(Yii)j + ?/ii = 0 for all i and all j f i 
(16) 

i.e., C<i(l - Ki) + Kibii = 0. 

Equation (16) is satisfied only for the following com- 
binations: 

i) bij = cii = 0; 

ii) Ki=l, bij = 0; 

iii) Ki = 0, Cii = 0. 

However, combinations ii) and iii) require that yit = 0. 
Hence, for yii < 0, (16) is satisfied only with bij = Cii = 0. 
We then have 

Ki = aij 
aii + dti 

= K,. for all i and j # i. (17) 

Thus, K, = K, = . . . = K, = K. Any value of K such 
that 0 < K < 1 may be chosen for the constant-K 
network realization. From (3) and combination i), it 
follows that 

(18) 

It is interesting to note that the choice of K = 0 or K = 1 
under the conditions of Theorem 3 leads to the standard 
realization of a n + 1 node n-port network with a common 
terminal for all the ports. 

In a general case, if a marginally dominant matrix 
can be made to have the following sign pattern by re- 

arranging the rows and columns, then it can be shown that 
a realization is possible choosing any K, 0 < K < 1, as 
the common potential factor for the first n, ports and 
1 - K as the potential factor for the remaining n, ports. 
Where this is not possible and where a constant-K netc 
work is required, the choice is limited to K = 4 for all 
the ports. 

c n, columns + c n, columns --) 

+++ . . . + +- 

+ + + --* + + 

+ + + --- + + -- . ..-- + n, rows . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..I... 
--- . . . + - 

I 

t 

n2 rows 

- - - . . . -+ 

+ + + *** + + 

+ + + *** + + 
. . . . . . . . . . . . . . . . . 
. . . . . . . . . . . . . . . . . 
+ + + a** + + 

+ - - . . . - - 

- + - . . . - - 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
--- . . . + - 

- - - . . . - +. 1 -+ + + **- + + 

From the foregoing discussion it is seen that for a 
marginally dominant matrix, the network between any 
two ports has essentially the same form as in Fig. 1 in 
that either bii and cif or aii and dij are zero. However, 
new types of realization are possible when the Y matrix 
is not marginally dominant. 

................. ................. 

+ + + *** + + 

+ + + **- + + 

Dejinition 4 

A matrix Y is said to be superdominant if 

yii > 2 lyiil for all i. 
i=1 
;#i 

Theorem 4 

A superdominant matrix Y with any arbitrary sign 
pattern for the off-diagonal entries can be realized by a 
constant-K network with any K within a certain range 
of values. 

Proof: For a constant-K network, b<i = Cii for all 
i and j (Lemma 1). Let K be the common potential factor 
of the network. We wish to prove the theorem by giving 
a realization procedure and identifying the permissible 
range of values for K. 

If yii is negative, then bi, and tit are taken as zero 
SO that (yii)i - lyiil = 0 for all values of K. aii and dii 
are then given by (18). 

If yii is positive, then from (10) 

(yii)i - yii = aii(l - K) + d,,K 

= b,,(2K - 1) + 2K dj, (19) 

for a constant-K network. 
Type A Realization: Choose dir = 0 when yii > 0. 
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Then leading to the requirement 

(Yi,>i - Yii = (1 - K)a,, = (2K - l)b,, 

and from (3), 

(20) (1 - 2K) 
Ei=$’ K 

where 
(21) Yii>O 

or 
yii = bii(l - K) since bii = Cii. 

Equations (20) and (21) lead to 

(Yii)j - j/ii = f/ii ::“-i:,’ ; 

a,, = yij ysmKt? ; b,, = cij = (1 “iK). 

It is seen that K 2 3 for a proper realization. Let 

Aii = yii - 2 Iviil. 
i=1 
ifi 

Now consider the realization of the admittances in the 
ith row of Y. If K is the potential factor of the n-port, 
then 

in order that gsi-l,Zi be non-negative. Therefore, 

A.. (2K - 1) 
It - Ei 2 (1 _ K) 
az Yii - 

or 

where 
Vii>0 

(27) 

C-22) If Emin is the smallest value of {Ei), i = 1, 2, * * * , n, 
then K can have any value in the interval [+, (l/E,,, + 2)] 
for proper realization. 

It is thus demonstrated that for a superdominant matrix 
with any sign pattern for the off-diagonal entries, a 

(23) proper realization with a constant-K network is possible 
with a value of K satisfying the relation, 

K Emin + 1 > K > 1 
mnr = Emin + 2 - - Emin + 2 = Ken. (28) 

Realization Procedure for a Superdominant Matrix 

1) Determine Emin and choose any value of K in the 
interval 

[ 
1 Emin + 1 1 Emin + 2 ’ Emin + 2 ’ 

2) If yir is negative, then 

b,, = csj = 0; a,j = +.$ ; dij = h$. 

K<&+l -. 
-E,+2 

3) If yi, is positive, use Type A realization if K 2 3 
(24) and Type B realization’ if K 5 3. Adopt the following 

values. 
Hence, for the realization of admittances in this row, 

-. 
Type A 

(2K - 1) - 

Type B 
-I__ 

Similarly, the permissible range of K can be calculated 
ait (1 - K)2 yii, 

0 

for all the other mws. If the minimum value of {Ei), - - 

i = 1,2, ..a ,n, is E. then K can have any value in 
Yii Yii 

mln, bjj = c,j ___- 
t,he following interval. (1 - K) -2 

--~- __~- 

+ 5 K 5 zrnrn 1 ; = K,,,. 
(1 - ZK) 

(25) dij 0 ---Y i i 
K= ml” 

Type B Realization: This corresponds to the choice of 
ai j = 0 when yi j > 0 and is applicable for values of K 4) Conductances shunting the ports: 
less than 4. Proceeding as before, it can be shown that g2i--1 2i 

(YiJj - yij = yii 0 -K2K) ; A,, _ W - 1) 

(26) ” 
(1 _ K) .z yii for Type A realization 

where 
b.. = Cij = @i . d.. = y.. Cl - 2K) = l/ii>0 

II K , 11 II K2 

and that for a proper realization of the admittances in 
I 

A,, _ (1 - 2K) “1 K 
a% yii for Type B realization. 

the ith row, 
where 
#ii>0 

It may be noted that for every potential factor K in 
the interval [+, K,,,] there exists a potential factor (1 - K) 
in the interval [K,:,, t] such that a Type A realization 
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with a potential factor K is the same as the Type B 
realization with the potential factor (1 - K) except for 
a reversal of the polarities of the ports. 

69 

Example i 

The following short-circuit conductance matrix of a 
4-port network is to be realized. 

10-4 2 1 

12-3 4 

For the foregoing matrix, El = 1, E, = a, E, = +, and 
E, = $. Therefore, Emin = $, and the permissible range 
of K is given by 

PORT 1 

Fig. 3. Circuit realized in Example 1. 

1 4 
2 + Emin = 9 ’ K ’ 

Emin + 1 5 
Emin + 2 = 9’ 

and 

Choose K = -i;- for Type A realization. Using (18) and 
b2i = c2< = 0; a23 = Iy2<1/(1 - K); 

(22), we obtain the network shown in Fig. 3, where the d2i = ]yzij/K for ?~zi < 0. 
conductances in mhos are marked near the respective 
edges. The transfer admittances in row 1 can also be similarly 

realized. 

Example of Synthesis of a Nonconstant Type K-Network 
It is then seen that for port 3, 

In case the given short-circuit admittance matrix is (Y33h = y31 and (y3312 = y32. 

neither marginally dominant nor superdominant, the Similarly for port 4 
realizations indicated by Theorems 2, 3, and 4 can not 
be directly used. However, the results obtained in the (Y44)l I: Y41 and (y44)2 = y42. 

proofs of these theorems can be made use of in obtaining 
a K-network realization (not necessarily a constant-K 

The choice of the common potential factor of ports 3 

type) of such matrices. The following example illustrates 
and 4 may now be made so as to eliminate the shunt 

the techniques that may be used. 
conductance at one of these ports. Since (A33/y34) < 
(A44/y34), the choice of 

Example 2 
K 3 K 4 

@33/~34) + 1 = = 

@33/~34) + 2 

7 -3 2 1 is appropriate. Therefore, 

y= -3 6 2 1 1. K, = K, = $; K, = K, = 3. 

1 2 2 6 1 

1 1 1 6 

This matrix is not superdominant, since the second row 
is marginally dominant. In this row, y23 and y24 are 
positive but y2, is negative. Equations (13) and (17) can 
be applied here and the following relations obtained. 

K, + K, = 1; K, + K, = 1; K, = K,. 

We may therefore choose a potential factor K for ports 
1 and 2 and a potential factor (1 - K) for ports 3 and 4. 
The realization of the transfer admittances in the second 
row may be done under the constraint (yz2){ - [ yzi[ = 0, 
making use of the following relations: 

a2; = d2, = 0; bzr = yzi/K; 

czi = y2i/(l - K) for y,i > 0 

Using the above sets of potential factors, the K-network 
shown in Fig. 4 is obtained. It may be noted that the 
network has the same number of elements as the standard 
realization (constant-K network with K = $.) according 
to the scheme in Fig. 1. 

IV. GENERATION OF EQUIVALENT NETWORKS 

Cederbaum has given a procedure for generating equiv- 
alent n-port networks from a given realization, making 
use of the modified cut-set matrix. 12’ It was also reported 
by the authors [31 that this method can be readily used 
only when the modified cut-set matrices of the original 
and the equivalent networks are the same. In this section 
it is shown that all K-networks having a specified set of 
poten$ial factors have the same modified cut-set matrix 
independent of edge conductances. Hence, Cederbaum’s 
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Fig. 4. Circuit realized in Example 2. 

(2i-f) th GROUP OF EDGES 

Fig. 5. Edge and port orientations. 

procedure may be conveniently used to generate equiv- 
alent K-networks. 

Consider a linear tree of the 2n-node network with the 
nodes numbered in serial order starting from one end 
vertex of the linear tree so that the nodes numbered 2i - 1 
and 2i constitute the port i (see Fig. 5). Let any edge eii 
(with j > i) joining nodes i and j and having conductance 
g,i be oriented away from j. Let the edges be so grouped 
that the ith group consists of all the edges eij with j > i, 
the mth edge in the ith group being e,.i+,,,. Consider next 
the fundamental cut-set matrix C, of the network with 
respect to the foregoing tree. The rows are arranged so 
that the first n rows correspond to the branches of the 
tree identified as the ports, i.e., e,,, e34, . . + , e2n--1,2n in 
that order, and the next (n - 1) rows correspond to the 
remaining branches of the tree, i.e., e23, e45, * . * , e2n-2,2n-1 
in that order. The columns are arranged so that the first 
(2n - 1) columns correspond to the first group of edges, 
i.e., e12, e13, - - - e1,2n; the next (2n - 2) columns cor- 
respond to the second group of edges, i.e., ez3, e24, . . * e2,2,, 
and so on. Then C, can be partitioned as follows. 

Let G be the diagonal matrix of edge conductances with 
identical column ordering as that of the fundamental 
cut-set matrix C,. Let 

~~G~~=[~:~~I~~~~]=~~I~l. (30) 

The short-circuit admittance matrix Y of the n-port net- 
work is then given by 

* 
y = Yll - Y,,y;,y2* 

= (C, - Y,,Y,;C,)G(C, - Y,,Y,:CJ (31) 

= CGC’ 

where 

c = c, - Y,,Y,:c, (32) 

and is termed as the modified cut-set matrix with respect 
to the n accessible ports; it is, in general, dependent on 
both the network geometry and the edge conductances 
gii. 

c; = 

- t2n - 1 col.-+ t2n - 2 cols.-+ 61 col.+- 
t 

Cl C C 102 . . . 1.1 Cl ,278-l n rows 
1 -= . . . (29) 
t 

c2 c 201 c 292 
. . . C2.2*-1 n - 1 rows. 

- L 
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Now let the columns of the modified cut-set matrix C 
be partitioned in the same way as for CO, so that 

c = [Cl 1 fy 1 . . . 1 p-1 1 p 1 . . . 1 f-y’] (33) 

where the submatrices C2’-’ and C2’ correspond to the 
(2i - 1)th and 2ith groups of edges. 

Theorem 5 

The necessary and sufficient condition that a 2n-node 
n-port network be a K-network is that its modified cut- 
set matrix be of the form specified by (34). 

From the foregoing results and the interpretation of the 
entries of C as the pertinent potentials according to (35), 
it follows that the submatrices C2’-l and C2’ should have 
the form in (34) for a K-network. 

Xuficiency: We consider the entries in the ith row of 
the modified cut-set matrix, which has the form given by 
(34) and observe the following. 

i) The entry corresponding to the edge e2(i-m)-l,2i-1, 
i.e., in the 2mth column of the (2i - 2m - 1)th 
group is --Ki for m = 1, 2, *** , i - 1. 

ii) The entry corresponding to the edge e2i-l,z(i+n)-l 
is Ki for m = 1, 2, * * * , (n - i). 

v-1 I c2v 
r 

= 

O 
. . 
0 

1 

0 0 o***o 0 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

0 0 o-*-o 0 

Ki Ki Ki ... Ki Ki 

.o 0 I- 0 o*** ---Ii, 1 - K,I 0 

0 
. . 

A-K,+1 1 - X,+1 0 .a* 0 0 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

0 0 0 . . . 0 0 . 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

0 0 q **- 0 0 

Ki - 1 KC - 1 Ki - 1 . . . Ki - 1 Ki - 1 

-Ki+l 1 - K,+l 0 *.. 0 0 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

0 0 . . . -K, l-K, -I 

Proof 

Necessity: Cederbaumt2’ has shown that 

v. = C’V, (35) 

where V, represents the column vector of edge voltages 
and VP represents the column vector of port voltages. 
It is clear from (35) that the entry in C in the rth row 
and the column corresponding to the edge e,, is equal 
to the voltage appearing across the edge e,,( when port r 
is excited with a source of unit voltage and all the other 
ports short circuited. In a K-network the potential across 
any edge under these conditions can be determined 
readily, as all nodes in the network except (2r - 1) 
and 2r assume a common potential of K, with respect to 
the node (2r - 1). We now wish to determine the voltages 
across the (2i - 1)th and the Pith groups of edges for 
these conditions. We consider three cases separately. 

Case1:r=i-mm;m=1,2,~~~,i-l.Uponreference 
to Fig. 5, it is clear that the voltages across every edge 
of the (2i - 1)th group and the 2ith groups is zero. 

Case 2: r = i. The port of excitation coincides with 
port i. The voltage across the edge eZi-l,2i shunting the 
port is unity; all other edges in the (2i - 1)th group 
have an equal voltage of Ki. Every edge in the 2ith group 
has a voltage of -(l - Ki) taking its orientation into 
account. 

Case 3: r = i + m; m = 1, 2, . . . , n - i. It is evident 
from Fig. 5 that the voltage across the edges e2i-1,2i+zm-1 
and e2i-1,2<+2,,, are -K<+, and (1 - Ki+,), respectively. 
The voltage across every other edge in the (2i - 1)th 
group is zero. Similarly, the voltages across the edges 
eai.c+zm-1 and ezs.zi+zm are --Ki+m and (1 - Ki+m), 
respectively. Every other edge in the 2ith group has zero 
potential across it. 

(i T_ 1) rows 
-1 (34) 
t 

:n - i + 1) 
rows. 

I 

Taking the edge orientations into account, the inter- 
pretation of statement i) is that when port i is excited 
with a source of unit voltage and all the other ports short 
circuited, the potential of port j, j < i, is Ki with respect 
to the terminal 2i - 1. Similarly, statement ii) implies 
that the potential of every port j, j > i, for the same condi- 
tions is Ki with respect to the terminal 2i - 1. Thus, 
all the short-circuited ports are at a common potential. 
Since this is true for a general index i, an n-port network 
having the modified cut-set matrix according to (34) is a 
K-network. 

The generation of an equivalent network using the 
modified cut-set matrix C is next considered. Let G, be 
the diagonal matrix of edge conductances of an n-port 
K-network, N,, which has Y as its short-circuit con- 
ductance matrix. Then 

CG,C’ = Y. (36) 

Now consider a second K-network N, with identical 
potential factors and therefore having the same modified 
cut-set matrix C. Let G2, the diagonal conductance matrix 
of N,, satisfy the relation, 

CG,C’ = 0. (37) 

If the two networks N, and N, are connected in parallel, 
then the resulting network is also a similar K-network 
as a consequence of Property 2 of Section II. That this 
combined network is a new realization of Y can be seen 
by adding (36) and (37), and recognizing that C continues 
to be the modified cut-set matrix of the combined K- 
network. In finding a suitable N, it should be ensured 
that its edge conductances not only satisfy (37) but also 
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meet the requirement that N, is a K-network having the 
same set of potential factors as N,. These requirements, 
in essence, imply that the network N, has the edge con- 
ductances between any pair of ports i and j as given 
in (38), where zii is an arbitrary parameter. This ps 
rameter may be chosen differently for each pair of ports 
and may be zero for some. 

(!&.2f = zij 

Using the foregoing set of equations, a variety of equiv- 
alent networks can be readily obtained. 

Example, 3 

Let an equivalent network realizing the matrix Y of 
Example 2 be required, avoiding the conductance shunting 
the port 1. 

This can be done by connecting in parallel to the net- 
work in Fig. 4 a network N, interconnecting ports 1 and 
4 only (i.e., all xii except xl4 are zero). The value of xl4 
is obtained by the equation, -x14(1 - K,)/K, = -1, 
which yields xl4 = 1. The new network realizing I’ is 
shown in Fig. 6. 

The above example is intended to point out the inherent 
facility available with K-networks to force certain edge 
conductances to preassigned values, without altering the 
port-conductance matrix. Extending the technique used 
in this example, one can always reduce the conductances 
shunting (n - 1) ports to zero. We, however, wish to 
illustrate this property in a more general way. Suppose 
we are given a K-network. A new value not greater than 
the one existing in this K-network is specified for each 
conductance shunting the n-ports and it is desired to find 
an equivalent network in which as many edges shunting 
the ports as possible have these preassigned conductance 
values. We proceed to show that an equivalent network 
can always be found satisfying (n - 1) of these specifica- 
tions. 

Consider first any pair of ports. Using (38), the con- 
ductance across one of them can always be reduced to 
its specified value keeping the conductance across the 
other port at a value not less than the corresponding 
specified value. In this new equivalent scheme, apart from 
the two conductances shunting the ports, only those of the 
edges interconnecting the two particular ports get altered. 
This process of reduction is repeated, considering a pair of 
ports at a time, the conductance across neither of which 
has been previously reduced by the required amount. 
At each stage one specification is complied with. Finally, 

IEEE TRANSACTIONS ON CIRCUIT THEORY, MARCH 1968 

Fig. 6. Circuit realized in Example 3. 

only one port remains having a shunt conductance value 
higher than specified. This conductance can not be further 
reduced without reducing one of the other shunt con- 
ductances to less than the specified value. Hence, it is 
seen that only some (n - 1) of the shunt conductances 
can be reduced to arbitrarily specified values. 

Example 4 

Consider a 4-port K-network whose edge conductance 
values are specified in the third column of Table I. The 
potential factors of the ports are K, = 0.5, K, = 0.6, 
K, = 0.4, and K, = 0.3. It is desired that the conductances 
shunting the ports have the following values: g12 = 6, 
9 34 = 12, gs6 = 3, and g78 = 12. 

The calculations are summarized in Table I. In Step 1, 
the conductances of the edges related to ports 1 and 2 
are altered to force the value of g12 to 6. In Step 2, ports 
2 and 3 are considered and gs6 made equal to 3. Finally, 
in Step 3, the value of the conductance shunting port 2 is 
reduced to 12. gT8 is left at the value 14.235 as it can not 
be further reduced. It can be verified that the 4-port 
network with the original set of edge conductances or the 
new set has the following short-circuit conductance matrix. 

Y= 

81 14.4 7.2 -7.2- 

14.4 126 -9 5.4 

7.2 -9 126 - 12.6 

-7.2 5.4 -12.6 108 _ 

Similarly, starting from a given K-network it may be 
possible to increase the values of the conductances shunt- 
ing the ports to preassigned values, but the general ap- 
plicability of this procedure is restricted as the con- 
ductances interconnecting the ports may turn out to be 
negative during this process in certain cases. 
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TABLE I 
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CALCULATIONS FOR EXAMPLE 4: Kl = 0.5, KS = 0.6, Kz = 0.4, Kd = 0.3 

ports 

1 

2 

3 

1,3 

124 

2,3 

2,4 

3,4 

.- 

.- 

.- 

.- 

.- 

._ 

._ 

-- 

__ 

__ 

- 

Conductance 

Q12 

LZZ 

I I Step 1 

Original 
I 

Incremental 
values value 

7.50 -1.50 

16.02 -1.44 

4.74 

14.97 

7.20 1.80 
36.00 1.80 
28.80 1.20 

- 1.20 

3.60 
18.00 
23.40 

9.00 

32.40 
18.00 
51.60 + 
66.00 

76.50 
36.00 
92.25 
76.50 

13.50 
18.00 
49.50 
24.00 

33.00 
18.00 
35.00 
84.00 

- 

.- 

.- 

- 

Final 
value 

6.00 

14.58 

Step 2 Step 3 

Incremental Final Final 
value value 

Incfieamusjrtal 
value 

-1.74 12.84 -0.84 12.00 

-1.74 3.00 

-0.735 14.235 

37.80 
30.00 

1.20 

v. CONCLUSIONS 

A class of 2n-node networks called K-networks which 
have interesting properties from the point of view of n- 
port realization of dominant matrices has been identified. 
New realization procedures using constant-K networks have 
been discussed. The presently known 2n-node realization 
has been shown to be a special case belonging to this class. 
The advantage of these realization procedures is that for 
a given matrix Y, a network, choosing any value of K 
over a continuous range, can be found. In particular cases 
this may lead to a realization having a number of elements 
less than in the conventional realization. 

A valuable feature of K-networks is that for a given 
network, a range of continuously equivalent networks can 
be obtained in a direct and easy manner. This has par- 

ticular advantages when the conductance values of one 
or more edges of the network to be realized have been 
arbitrarily specified beforehand. 11 is shown in particular 
that (n - 1) conductances shunting the ports can always 
be reduced to zero in the 2n-node realization of a dominant 
matrix. 
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