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ABSTRACT

SYﬂTHESIS‘OF A FINITE TWO-TERMINAL NETWORK WHOSE DRIVING-

POINT IMPEDANCE IS A PRESCRIBED FUNCTION OF FREQUENCY.
by
O. Brune. -
A general method is given of synthesizing é finite
two-terminal network whose alternating current impedance is
prescribed as a function of frequency, provided only that

this'function satisfies the necessary and sufficient con-

~ditions that it may be the impedance'of a finite passive

network with constant circuit parameters.

In place of the complex alternating current lmpedance

it is often more convenient to deal with the scalar imped-

ance function Z(N) from which the impedance may be derived

by writing N =i®, and conversely.

The necessary and sufficient conditions to be fulfilled
by Z(A) are found to be

(1) Z(N) is a rationdl function (quotient of two
polynomials) which is real for real values of N;

(i) the real paft of Z(N) is positive when the real -
part of N is positive; (or Z(N) lies in the
right-half Z plane when N lies in the right-half
N plane). A
For the sske of brevity a function which satisfies these
conditions is called a "positive real® function; the process ‘
of synthesizing a network of which thé given "positive real”

function is the impedance function is called "finding a

network representation” of the function.

That it is necessary for Z(N) to be a "positive real”
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function is readily seen from physical considerations; a
‘contradiction of (i) would mean that a real voltage produces
a complex current, which has no physical meaning, while a

contradiction of (ii) means that the network can under certain

conditlons generate energy.

That it is sufficient for Z(n) to be a "positive real"
‘function cannbé proved only by showing that a physicaily n
realizable network representation of every "positive real

function can be found.

It is evident that the properties of "positiveness" and
 "reality" must play an important part in the pchess,of”find-
ing a nefwork representation of a given function. For‘this
reason a thorough investigation of the properties of "positive
real” functions is desirable. Various theorems for sﬁch.
functions are proved, the proofs for the most part being based
on well-known properties of functions of a complex variable.
| of espécial ihterest are cartain properties of dﬁality
~and reciprocity in virtue of which Z(Nn) and its reciprocal -
satisfy exactly similar conditions, as do also Z(N) and Z(x).
| Very important too are the pfoperties which can be dé- 
duced for Z(N) on the boundary of the right-halfj%lane (1.e.
on the axis of imaginaries). It follows that a "positi#e“ ‘
function Z(N) can have no poles or zeros within the right;half A
plane (corresponding to a well-known physical eondition fer.
electrical transients) and that poles or zeros on the boundary

mast be simple, while at such poles or zeros the residue or
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differential ¢oefficient (respectively) of Z(N) must be a
real positive constant, It follows further since Z(N) is
régular in the right-half plane that its real part assumes
a minimumAvalue for this region, on the.boundary.

A very 1nferesting conclusion, corresponding to the
expression of Z(N) and N in polar coordinates, is that the
‘radius vector of a "positive real" function Z(N) always lies
cioser to the reference line than‘the radius vector of A
provided the latter lles within the angle — X < arghN< -
On the same line of reasoning it can alsc bée shown that the
magnitude of Z(N) and N cannot coineide for more than one

point on the line of reference (considered as a half-liﬁé).

Using the properties of "positive real" functions a
P .

general process for finding a network representation can be

 established., The general preccedure adopted is to separate the

given "positive real” funetion into two components, one of
which shall correspond to a simple network element, or group
of elements, while the other component will be a simpler
"positive real" function., The method of combining the com-
ponents shall correspond to a known method of connecting
impedénces.' |

It is found that such a procedure ean be repeatedly
~applied until the entire function has been expanded into com=-
ponents corresponding to recognizable netwérk elements. The

main steps in this procedure are the following:

(a) Separate poles on the imaginary axis as partial

fractions. Every partial fraction corresponding to a peie
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willbeﬂymmmkdhga.pérallel combination of inductanece and
capacity (anti-resohant‘component) in series with the net-
work representation of the remaining "positive real” function.“

(b) Treat zeros oﬁ'the imaginary axis as poles of the
~reciprocal of the function. Every partial fraction cores-
ponding to a zero willtnrepﬁseMEd§ya series combination of
inductance and capacitance (resohant component) in parallel
with the network representation of the remaiﬁing "positive
real’ function. |

(c) Whén all the zeros are in the interior of the left-half
plene, consider the real part of the function on the boundary,.
The minimum value of this real part can be separated and re-
presented by & resistance in series with the_network»repres-
‘entation of the remaining "positive real® function.

" (d) When (¢) has been performed the function whicﬁ remains
is pure imaginary at some point on the beundary;,‘Subtraetion
of a term corresponding té this éure imaginary value on the
boundary leaves a function with a zero on the boundary (i.e.

a resonant component in parallel with the remaining network
‘representation) and a pole at infinity. Separation of these
according to (b) and (a), together with the term subtracted

to produce a zero on the boundary, corresponds to the cal¢ula-
tien of a reactive four-terminal network of T structure,
having capacitance ih the plllar and two perfectly coupled
induétanees in the branch-arms; across one pair of terminals
of this four-terminal network is connected the network re-

presentation of the remaining "positive real" function.
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These four processes are sufficient to reduce any;_
positive real function completely for network representation.
Simple formulae for numerical application are also discussed,

The proceés lends itself alngthe calculation of certain
equivalent networks. Most important are such as are not de-
rivable from each other by affine transformation of their
quadratic forms. These eqﬁivaients arise as follows: If
.Z(h) be regarded as the sum of an even and an odd function, the
even part becomes the real part of Z(iw) by the substitution
- N =w@"; let this even part of Z(n) be written as R(-N) = R(Q).
Thén ﬁhe series resistance uséd in (¢) corresponds to the ﬁini-
mum of R(Q) for positive values of Q. If, however, R{a) has
stationary values for negative @ which are less than (or equal
to) the value used in (c), any one of these can be subtracted
from Z(A) as in (c¢), and thereéfter a procedure exsactly corres-
ponding to (d) applied to the remaining "positive feal" functiong
this leads also to a physicaily realisable network. |

The possibility of further extending the method to obtain

other equivalents is pointed out.

Finally a brief discussion is given of the derivation of
the impedance function from other prescribed gharacteristics;
A purely algebraic procedure is outlined for obtaining the
impedance‘funct;on wﬁen the real part, imaginary part, squaréd
modulus; or tangént of the argument of the alternating current
impedance are:given as rational functions of the_frequencj.
The solution of this type of problem probably forms the most
Amportant link, still to be forged, in the application of the

metﬁbds of network synthesis here submitted to practical problems.
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INTRODUCTION

(a) Statement of the Problem.

1. The discussion presented in this thesis is a contri-
bution to the theory of synthesis of electriesl networks. In
network synthesis the behavior of a network for certain con-
ditions is specified, and the structure of such a network is
ﬁesired. This is the inverse of network analysis 1n which
the structure of the network is given and its behavior under
given conditions is to be found. The problem of network:
synthesis hasAassumed inereasing impdrtance In view of the
present needs in electrical communications and sound re-

cording for talking pictures.

2. The partieular problem.to be‘attacked here will-be re-~
stricted as follows:-
(i) One pair of terminsls only of the networkvis to be
conéidered;
(ii) The network is assumed to be finite with constant
dissipative 1um§ed circuit parameters (i.e. 1t contains
only ordinary ohmic resistances, condensers, and inductance

coils which may or may not be mutually coupled);

(iii) The behavior of the network at its terminals is
to be specifiéd by thé impedance function Z(N).
‘ It will be seen that in (iii) we have assumed as done
that paf£ of the problem which derives the impedance function
ffem the'preseribed behavior of the network at its terminals.
Some dlscussion of this will be found in the last chapter of
this thesis,
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3e The restrietion (i1) means that Z(N) must be given as

the quotient of two polynbmials, i.e,

z(\) = £(A) ' .
Z(N) el | ( )
where - (M) = ap + a] + a27\" - anln (10)
g() = by + BN + ba-ht +--- bmlm (Ib)

Furthermore the coefficients of f(N) and g(\) are not
entirely arbitrary since for a dissipative network we must
‘ have, for example,

(1) if . 1is any root of F(A) = 0, By any root of

(M) = 0 the
& Coen Reok, =0 ¥ | (22)
| Re B, =0 o {2b)
(i1) also Joo Ziw)= 0 | (z)

Equation (2a) correspénds to the physical feact that if

- the network of Which Z(n) 1s the impedance function be dis-
turbed eleetricalij and then left to itself with its terminals’
short-circulted, it cannot generate an inereasing amount of
energy; A similar physical inﬁerpretation holds for equation
(Eb) except that for this case the network is disturbedband
then left to itself with open terminéls. Condition (3) is
equivalent to the statement that the network canﬁot generate
energy when a steady»alternating electromotive force E,.coswl

is applied at the terminals.

4, These conditibns arebneceésary; the question arises as -
- to whether they are sufficient. Purthermore they may not
be independent. Evidently a solution of the problem of

constructing a network corresponding to Z(A) will require

*The notation Re’ means "real part 6fifthroughout this thesis.
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a clear underétanding as to what constitutes an independent
set of necessary conditions. The proof of the fact that
such a set of conditions is suffiecient can only be furhished
by showling that a corresponding network can be built in

every case when they are satisfied.

5. We may therefore state our problem thus:

To find the necessary and sufficient conditions that

a quotient of two polynomials may be regarded as the

driving=-point impedance function of a finite network; this

1nvelves also g1v1ng 8 method of finding the structure of a

network corresponding to any function satlsfylng these

conditions.

(b) Contributions of Previous Investigators.

6;' The first important coﬁtribution to the theory of
synthesis of two-terminsl networks was probably made by
Foster, when iﬁ his "Reactance Theorem"(12) he gave the
necessary and sufficient conditions which must be satis-
fied by the impedance function of a purely reactive net-.
work. These conditions are:
(1) poles and zeros of Z(A) are pure iméginary and

oceur in conjugate pairs;

(1ii) thelpoles and zeros mutually separate each other

°n the imaginary axis; this together with (i) includes the

.necessity for a pole or zero at the origin énd at infinity.

(12) For all references by number see Bibllography.



-4

is assumed to be purely reactive.

either Z(M) or its reciprocal.

are shown in Figs. 1((&) and (b).

Introd.

It will be seen that (i) is a limiting case of con-

-7

dition (1) in section 2; the second condition mentioned in

section £ also exists in g limiting form because the network

It can be shown, however,#

.R_p_z(iw) = 0 as a limit of Fe z(iw) =

The networks so obtained

sufficient conditions for a pure reactive network;

in (ii) of this section can be obtained by considering

‘FOSter'gives two methods of constructing a network

Whose>impedance function Z(N) satisfies the necessary and

these

that the mutual separation of poles and zeros as specified .

methods ccrrespond to a development in partial fractions of

Lk

pr—

mwﬁiézhi. Networks Représénting a General Reacténéev

satisfying Foster's

"peactance"

conditions.

ladder structures shown in Figs. 1(c¢) and (a).

The

7.  Cauer(14) has amplified these results of Foster by

This partial

fraction development of the function corresponds to the

pointing out a continued fraction development for functions

Section 70,

*See Blbllog. (31), c.f. also Chapter III of this the31s,
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structures (a) (b) (c¢) and (&) in Fig. 1 are equivalent
networks.
Cauer next extends Foster's results to include all

networks whiech contain only two kinds of elements, viz,

networks containing only inductance and resistance, and
networks containing only resistance and capacitance. For

these networks Foster'!s conditions apply if

(i) for each pair of conjugate poles or zeros in Foster's
case is substltuted a single pole or zero (respectively) on

the negative resl axis; and if further

(11) for inductance-resistance networks the order of thé
2eros‘d,' and the poles:ﬁ,. is |

O0<PB <o, <By<dl,<-=—-<d, <00 (4a)

The zero o4, = 0 and the pole B,= c© may or xﬁay not be -

present; for resistance capacitance networks the order is

O<d, <R <k, < B, <-—=—- <3, ,<0© (4b)
and here the pole (3,= 0 and the zero «,= oo may or may
‘not be present. | |
 The corresponding networks are obtalined from those

of Fig. 1 by replacing condensers or coils (respectively)
with resistances, ,

The particular case of our problemvin whick the net-
work contains only two kinds of elements has thérefore_been

completely solved.

B We turn next to such cases where the network may
contain all three kinds of elements. Both'Foster(15) and

Cauer(14) nave Studied in considerable detall the funetion
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Z(N) capable of representation by a two-mesh circuit,

Such a function hasvthe form

_ 8yt aN * a N+ a AT+ oant
2N = e A T oA (5)

In parficular they have discussed the conditions whiéh the
a's and b's (coefficients in Z{N) ) must satisfy ih order
that (5) may correspond to a two-mesh circuit. These con-
ditions are best visualized with the aid of a dlagram uséd
by Cauer (also suggested by Foster) and reproduced in Fig.
2(a). Here the ratios Pz, ;3 in (5) have been used for

! '

coordinate axes, while the ratios of the a's have been

taken as parameters which fix the shape and position of the

curves in this plane. In other words if the coefficients

LEz-abrak ;_zi a.by-a,b,+ a,b, ; L,= asb —o,b

e .
trg A, + "‘rbz * b;,

 Fig.2 (a) Region in which (5) represents a 2-mesh network
(b) Region in whiech (5) satisfies condition (3).
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of the numerator are fixed, a point representing the
coefficlents of the denominator (except‘for & constant
faétor) is restricted by certain inequalities to lie within
a limited region. In Fig. 2(a) this region is shown shaded,
for the case where all the roots of the numerator are real,
In Fig. 2(b) is shown the corresponding region when
Z(N) in (5) satisfies condition (3)., A comparison of
Figs. 2(a) and 2(b) discloses the fact that two-mesh net-
works are not capable of representing all functions which
satisfy condition (3). A first step in the solution of our
problem would thus be to fiﬁd the networks capable of re=
presenting (5) for the regions unshaded in Fig. 2(a) but
shaded in Fig. 2(b)¥*, |

9. T.C., Fry(15) nas disecussed in some detail the possi-
bility of using the Stieltjes continued fraction as a means
of expanding the impedance function in a'form usable fdr the
eonstruéﬁion of a correspénding network. He is guided in
this by the fact that a continued fraction déveiopment of
the function is the counterpart of a ladder structure in

the ﬁetwork. The functidns which are capable of being ex-
panded as Stieltjes continued fractions, however, must
satisfy somewhat more severe conditions than those imposed
by conditions (2) and (3). Fry overcomes this difficulty

to some extent by several very ingenious transformations of

*¥This problem was pointed out to me by Dr. Cauer as & First
step in the approach to the more general problem. Its
solution is contained in Chapter III of this thesis.
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the functlon but does not succeed in making the method
general for all functions satisfying conditlons (2) and (5)
Moreo#er the Stieltjes continued fraction is an infinite ex-
>pgnsion; 1.2, for practlcal purposes it is an approximate

rather than an exact representation of the function.

10. Yuk-Wing Lee(24) has treated a problem in the synthesis

of networks in which the transfer admittance of the network
is prescribed, The solution is carried through by a method
of expanding the transfer admiﬁtance in a series of orthogonal
functioné, each of which reﬁresents the transfer admittance
of a known nntwdrk: The sum of such a series corresponds
to a parallel combination of four-terminal networks* a change
of sign in the coefficient of a term corresponds to a re-
versal of one pair of terminals in the corresnonding network.
This method may be termed approximate in the same sense as
that of.Fry gince the expansion in orthogonal funetions in-
volves an infinite series.

Two importent differences between driving point and
transfer impedéﬁce come into play here, Firstly there is
no restriction on the sign of the real part of a transfer
“impedance, since the product of inpuf voltaée and output
current has no physical significance in terms of energy
flow.. ‘Secondly driving point impedances can only be added
in serles or in parallel; they cannot be subtracted as is
péésible with transfer admittances. These factors con-
stitute an essential difference between tﬁe me thods appli-

cable for buillding networks corresponding to a prescribed
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driving point'impedance, and those which may be used when

the transfer admittance is prescribed. There are, however,

some points of resemblance and we shall have occasion to

refer to lLee's work.

11. The quéstion of equivalent networks is closely con-
nected with our problem. Such networks already appear in
the early work of Foster(12,13) and Gauer(14); in these
cases only networks without superfluous elements are mentioned,
It has been shown by Howitt® that an infinite group of
networks (including those with a superfluous number of elements)
can in general be found by the application of an afflne trans-
formation to the quadratic forms®** connected with this network:;
such.a'transformation results in a new set of quadratic forms
from which the structure of the equivalent network can be
de£ived.
~In this connection it is important to note that the
structure of the original network must be knownj in other
words, one network corresponding to the invariant Z(N) of the -
groupiié assumed to be given. It is the purpose of the

- present investigation to furnish at least one such network.

12, It may further be pointed out that in meny cases this
affine group of networks does not include all the equivalent
~ networks corresponding to a given Z(A). This means that the

totality of all equivalent networks may consist of a number '

uBibiiog. (17) see also Cauer, Bibliog. (16) p.64 and Bibliog.(23)

**These guadratic forms corresponds to the stored dielectric
energy, the stored magnetic energy, and the rate of dissipation
of energy 1n heat in the network at any moment.
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of.distinct gfoups not derlvable from each other by an
affine transformation, It would be very desirable to have
a method of finding at least one member of each group. We
do not propose to solve this problém in its entirety here.
Nevertheless the appearance of such distinct groups will:

be noted.

15} Lastly we wish to point out a connection of this pro-
blem, in which one pair of terminals only is considered, with
the more general prbblem when any number of pairs of terminals
are considered. For simplicity consider the case of two
iairs of terminals. It can readily be shown that to specify
the behavior of such a network under any given conditions at
its terminals, three functions are required#, Cauer(22) nasg
considered special cases of this where only two functions are
required, viz. the case of symmetry with respect to the two
pairs of terminals (network looks the same looking in from
either end) and the special unsymmetrical casé where, on
short-circuiting one pair of terminals, the driving point
impedance at the other palr is equal to the transfer imped-
ance connecting voltage at the open pair and current in the

short circuit. He has shown that such networks may always

*10 electrical engineers these are probably most familiar _
in the form of 4 "general circult constants™ in the equations
E1 = AEg + Blo :

' I = CEg + DIg
The four constants A4,B,C,D being connected by the relation
AD - BC = 1. They are constants for a fixed freguency but
in general are functions gg‘frequency.
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be represented by the structures shown in Figs. 3(a) and (b)

ia)‘Représentation of (b) Representation of
General Symmetrical Special Unsymmetrical
Four-Terminal Network Four-Terminal Network

Fig. 3. _
respectively. Here it is apparent that the networks are
completely determined by two two-terminal networks Zy and Zg,
and the problem is reducible to the one stated in section 5
above. It is also probable that when the natural method of
attack for the two-terminal problem has been found, it will
indicate the natural method of attack for the more general
case.

A solution of this problem is therefore highly desirable

a8 a part of the general problem of network synthesis.
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CHAPTER I. -

~ The Impédénce Function in Network Analysis.

14. It is a well known fact 1n electrie circuit theory
that the behavior of a passive network at a pair of termi-
nals is completely determined by a sczlar funection Z(A). This
funetion is known as the impedance function of the network:
more specifically, if we wish to distinguish it from other
functions which relate cﬁrrent and voltage in different parts
of the network, it is called the "driving-point" impedeance
functlon of the network. The impedence function Z(N) is to
be distinguished from the ordinafy complex alternating current
Ampedance, which is Z{(lw).

In this chapter we wish to emphasise certain steps in
the process of deriving fhe impedance function from‘the
electrical structure of the netwofk, 28 well as certain re-

sults in 1its applicatibn.to pecific problems,

(a) Geometrical Structure of Networks,

15. An underétanding of the geometrical properties of net-
works is valuable, since these properties play'an importaht
role in the mathematical formulation of the electrical pPro=
blem. These properties are embodied in the theory of
"linear graphsﬁ, & branch in the wider éubject of Analysis
Situs¥, The first step in ﬁhe theory of linear graphs was
in fact made by G. Kirchhoff(2> in connection with the
electrical problem. Very little that is of intérest in the

‘electrical problem is as yet to be found outside the results

¥See for example Bibliog. (28) and (29).
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of Kirehhoff!s paper, The fellowing is a summary of those

results.

16. A geometrical network, or linear graph, may be con-
sidered as made up of a number of branches connecting to-

gether a number of branch-peoints. Every branch lies between

two branch~points, and evéry branch-point is cormon to two

or mdre branches., A mesh is determined by é closed circuit
of branches, i.e. if by proceeding in a uniform direction
along these branches, 211 branches (and no more) will have

- been traversed once when the starting point is re-encountered,
these branches determine a mesh. The mesh may be regarded

as belonging to this group of branches in exécﬁly the same
way as a branch-point is said to belong to the branches which

meet in it,

il

‘Let Db the number of branches in the network

]

n the number of branch-points,

then if m

Rl

the smallést number of b?anches which must be
removed from the network so that no closed circuit (mesh)
remains, it can be. shown that
m=Db=-n+1 - (7)

Thelfigure'that remains affer these m branches have been
removed is called a iree.

| The number m can now be shown to represent the number
of independent meshes that can be chosen in the network;
(among'mathématicians_m is known as the "eyclomatie number"

of the linear graph).
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If equation (7) be written
m+n="5bo+1 C (7o)
a duality between branch=points and meshes is indicated by
the symmetry of this equation in m and n*. The number
‘n may also be defined as the least number of branches which
must be removed from the néfwork so that no two of the re-
maining branches have a point in common (i.e¢. no branch-point

remains). This is illustfated for a simple case in Fig. 4.

(a) Network (b) m branches (¢) n branches
removed (Tree) removed.

Fig., 4. Linear graph: m = 3, n = 4, b = 6.
It may be added that there are several ways of chocsing the

m or n branches.

(b) Electrical Laws in a Network,

.

17. ‘The two laws for the distribution of current and voltage |

in a netweork first stated by Kirchhoff{l) are the electrical

analogs of the laws of conservatlon of ehergy and of matter

applied to the netwérk. Theﬁ are

I. The sum of the potentiel drops encountefed in going around
a closed'circuit {(mesh) is zero.

II. The sum of the currents flowing towérds>a branch;point is

Z2T0,

*Gompare Fuler's theorem on the relation betweeh the number
of edges, faces and vertices of a polyhedron.
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Before we can apply these eguations we need in sddition
Ohm's Law which expresses voltage in terms of current or
vice versa. Consequently I and II give equatlons which may
be expressed either in branch currents or branch voltages.
The number given by Law II is (n - 1) since the equation at
the last branch-point can always be obtained as a linear
combination of all previous ones., The total number of in-
de?endent equations is thus m + n -1 = b, which is exactly

the number of unknowns.

18, It is usual to substitute for the b branch currents in
terms of m circulating mesh currents, which automatically
satisfy the n - 1 equations given by Law II. The dual pro=
cedure is also possible: 1instead of b branch voltages assume
n - 1 branch=point potentials (to any one of the branch
points the potential zero may be arbitrarily assigned; these
will automatically satisfy the m equations given by Law I.
The equations of Law II (expressed in terms of the branch-
point potentiasls) will give the necessary n - 1 equations to
solve for the potentials. '

If in the case of a two~terminal network we solve this
system of equation for the potential'difference between the
terminals in terms of the current entering a terminal we get
an admittance expressible in determinant form (cf. section 19
following). The interesting point, however, is that every
system of linear equations derived in one way {either in
terms of mesh currents or branch-point potentials) can be

interpreted .also in the dual way. A mesh is replaced by a
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branch point aﬁd vice versa; branches between meshes become
branches between branch points; impsdances becomekadmittances,
andvso ONe

While this duality is perfect in broad principles, one
dissymmetry in a matter of detail on the physical side should
be noted. The dual of an inductive reactance is a capacitive
susceptance (and vice versa) but there isbno complete physical
dual of mutual inductance. It is elways possible, however,
to state general results on the assumption that such a duality
exists and then to remove any physical incongrulties by sub=

stituting an equivalent which does not contain unrealizable

mutual capacities, (An example of this will be found in
Chapter IV, Sections 63, 64).

We shall not pursue this duality further here,_alﬁhough
it is a fascinating and frultful studj. An example of its
frultfulness was the possibility of predicting Lee's theorem®™

' from Th&venin's theorem(8),

A complete discussion of the prineciple of duality in

electrical networks with its applications has not yet been

given, but should result in a material broadening of our ideas.

(¢) The Impedance Function.

19, The derivation of the impedance funcﬁion from the
Kirehhof f equatibns_depends on a well known generalization
of Ohm's Law'in terms of operators. The usual resistances
in the Kirchhoff equations (or admltitances in the dual inter-

pretation) are then replaced by operators. In our case

*FSee'Bibliog. 24, page 55,
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where we are only interested in voltage and current at the
terminals of a passive network the m equations in terms of

the mesh currents then have the form™

E = 8.11 Il + 812 12 + aln In ¥
0= agy I + a8co Io + & 4 . . oy, in

. . . | . (8)

0=anl Il+an2 12 e & o o oannIn

where ang = ag,

Xil

Lpsp + Rpg + Dpgp~i

4 (8a)

and =

T = |

and the relation between current sand voltage at the terminals

is given by E =D = Z(p) (9)
Ti Miy . :

where D 1s the determinant of the coefficients in this
equation and Mqjy is the complementary minor of 817 in this

determinant,

20. It may be further noted that Z(p) need not necessarily
be calculated by means of determinants. It is formed frem.
the branch'impedance operators by the same laws of combinae
tion applieable for a pure resistance neﬁwork, e.g.,seriés
and parallel combinations, transformations from T to A
connections, and vice verssa, These laws may sometimes

be inadequate on account of the complication of the network;
- the determinant rule on the other hand is general, Other
laws for determining Z(p) without the aid of determinants
may be found in papers by Kirchhoff(z) &re Feussner(s) and
P. Franklin(4),

¥3ee for exemple Bibliog. (5).




-18- Ch. I - 21,22

21, It is of'interest to enquire into the degree possible
in the numerator and denominator of Z(p)‘(when written as g
quotient of polynomials). Let us multiply each equation in
(8) by p (see equations8a); then each element in the ﬁew
detenminant can at most be of the second degree while pZ(p)
wlll be the quotient of the new determinant divided by its
corresponding minor, The numerator of Z(p) is therefore
at most of degree 2m in p, while the denominator is at most
of dégree 2m-1 (with no constant term)., This places a lower
limit to the number of meshes necessary in a'netﬁork corres=
ponding to a given Z(p). It is not possible, however, to
place an upper limit on the number of meshes.

A similar discussion can be made for'branch-points; in
this case every junction point of two different kinds of
elements muét be considered as a branch point, for the n-l’
equations in terms of branch-point potentials will not have
coefficlents reducible to the second degree in p unless this
is done. Thus we have that in Y(p) (which is‘the reciprpcal
of Z(p) ) the degree of the numerator is at most of degree
2(n=1) while the denominator is at most of degree 2(n-2)+1.
This fixes a lower limit to the number éf branch pointé
possible in a network corresponding to any given admitfance

(or impedance) function.,

(d) Application of the Impedance Function.

22. The impedance function Z(p) as derived above is
essentially an operator. It can be interpfeted physically

only after it has operaﬁed on something., In reality it is
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merely a shorthand method of writing the differential
equation that results on the elimination of the "internal"
currents from the set of differential equations (8),

Now the solution of such a differential equation is‘
the sum of a "particular integral' and a "complementafy
function" which in the usual language of electrical
engineers are respectively "steady state" and "transient

state" currents®, Let us express this by writing

= E
1= 75

| = I+ It | (10)
where Is and Iy are respectively the steady state and
transient state currents. The transient.current contains
an arbitrary constant factor determined by the initisl con- ,
ditions. The transient current is independent of'the voltage
Impressed except for this constant factor, being a solution

of the equation 0 = Z(p)I.

23. By Heaviside's expension formula® for "unit" applied voltage
’ - 3% 4

& . S
Iy = = 73w (11)
t ‘ .4 dk(‘P P=d~|( : . .
the summation extending over all dlj,roots of Z(p) = 0.

From physical considerations, since transient currents
are independent of impressed voltage, they must ultimately

vanish unless a contradiction of the Law of Conservation of

Energy is to be obtained, Consequently . i

*See for example any one of the references: Bibliog. (7) to
(11).
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the equality éign applying only in the limit of a non-
dissipative network,

We note further that the denominator of Z(p) is the
determinant of a system of equations similar to (8) corres- ,
ponding to the same network but having the mesh in which E
occurs open‘circuited. Consequently we may write also for
the poles A, of Z(p)

Je B, =0 (2D)

24, If a voltage
4 E = Ep cos @€ (12)

be applied we may write

and Ig = By FaE

=B cos(t- @) where @ =argZ(iw) (12a)
12T )} : &
After a suff101ently long time the transient current will be
negligible in comparison with this "steady state" current
(exeept in a purely reactive network). From the faet that

the power taken by such a circuit must be positive we there=-

10
fore conclude that [@P[ =< S5 or

T Z(w) =0 (3)

25, "Pseudo-Steady State". Let us consider an applied

voltage | "y

E-e

 The "steady state" current may be written




($+ )t
fo RS
i__cos(wt—q’) where Q) =arq Z{§+iv)
[ Z @)l Agrd(132)

If',t is positive the transient term can, after g
sufficiently iong time, be neglected (even if the network
ié purely reac'tive). If, on the other hand, J is negative
the transient term may become more important than the steady
state term, A very simple example illustrating this is
given in Example 1 in the Appendizx.

Returning to the case of $~> 0, let us determine the
energy W taken by the network after the transient term hsas
become negligible, and consider the voltage at the beginning
of this time unity

E = &oswt

1= &ib'caanl‘—¢)
| Z. (3+ iw) |

T
W= i—z'—(m'f E.z”tco.s ot.cos(wl-p) dt

! T 2t .
= 2_[2(5+£w)-| L E ,[cas(2wl-~¢)+cas(p]°”

T
_ q { £ cosot -@-X) + Ez#cosq’}/
.ZIZ('&*‘.‘O)I 261*—‘01)%- 2.‘ L]

Where X = arg (1(“’ cw)
S G S
4 lgei] | Zegr )] cas (2oT—-@P-R) — cos(P+x)
+ M(EZ“-'_D (14)

cos 'K

It is evident that if the network had no enérgy initially

W can never be negative (i.e. the netwbrk can never return
r‘noré energy than 1t received). Consequently %?; 21 (the
equalityl bsign holding only for the non-dissipative case).
This requires besides R Z(A)20 when Ja =0 (15)

also _’arszo\)lsia'ﬂm when |arqN|< % (15a)
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————————

26, - In the'fbregoing we have noticed several properties
of en impedance function derived from a physicsal netwdrk.,
These properties may all be termed necesgsary conditions.
For reference we colleet the following inequalities.

First we mention the obvious but nevertheless impdrtaht
condition that thé coefficlents in the numerator and denomin-

ator of Z(M) (equation (1) section 3) must be real, i,e,

| Z(MN) real when N\ is real ' (1c)

From sec. 23 Jed, =0 ' (2a)

| Re @, = O (2b)
From sec. 24 . Jo Z(w)= 0 | (3)

From sec. 25 Je Z(M) =20
. when Je n 20 (15)
also : 'GT_Q-Z.O\)l = ,Q"37\'
" when _ largd| = X (lsaA)

In the following chapter we shall.discuss the inter-

relation of these conditions on a purely mathematical basis.
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CHAPTER II

Theorems on "Positive Real" Functions

(a) Relations between Necessary Conditions; Preliminary
Discussion.

27. It is clear that the conditions imposed on the zeros

ahd on the poles of Z(A) in equations (2a) (2b) section 26

are independent of each other; the former involves a set of
relations (inequalities) among the coefficients of the numer-~
ator of Z(A) while the latter involves s similar set of re-
lations among the coefficients of the denominator. These
conditions for a polynomial whose roots have non-positive real

vart, have been stated by Hurwipz(30) and are as follows:

8o * agN + aoh\™+ . . . .. + agh"

If Z(h) = bo T bl.h T bg'i\t + . e o e + bm?\m
the determinant |a; 23 &g .. .. anp together with
ao 3.2 a4 o . .
0 Q] 82 e+ o e
O aO az * e LN ] L]
its principal minors must be 0 (1s8a)
Similarly bz bs «¢ «. Dbg together with

b3
bo bg bg .. ..
0
0

its principal minors must be 0 (ieb)
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28, If, on the other hand, we write the condition for
K z(w)= 0 (3)

it willl be seen that it involves the coefficients of both
numeretor and denominator of Z(W). There is thus a péssi-
bility that conditions (2a), (2b) and (3) are not entirely
independent. It is readily seen that (3) is not a con~-
sequence of (2a)'and (2b). This is best illustrated by
the numeriesl case given in Example 2, Appendix.

Furthermore, condition (3) can be satisfied without
(22) and (2b) belng satisfied, for by a mere substitution

N=-N the poles and zeros can be shifted from the negative

half-plgne to the positive half-plane without affectiﬁg values
on the axis of imaginaries. | )

It cen, however, be shown that if Je 72({w) = 0 (together
with a condition for poles or zeros 23 the axis of imaginaries)
then poles and zeros must lie on the same side ef the imaginary
axis. A special case of this was proved by Cauer(51), and
his method of proof, which is very interesting and instructive,
can be extended to a more general case. The pfoof which
will be found in Theorem V (section 36) below is, however, té

be preferred from the peint of view of elegance,

29, We come now to the condition

| Je Z(N) = 0 when JeAZ0 | (1)
Clearly this implies the condition (3) and something more.
We shall begin from this condition and show that all other
conditions (except (lc) which is: Z(A) real on the real A

axis) are a cénéequence of this one condition. Condition
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15(a) presents a similar possibility but is less natural
from the usual view=-point. For the sakke of brevity we adopt
the following definition:

Definition: 4 "positive" function Z(A) is a function whose

real part is positive when the real part of A isvpositive;
the feal part of Z(h) may be positive or zero when the real
part of N is zero. If in addition Z(N) is real for real
values of A it will be called a "positive real" function,
(The quotes will be retained as a reminder of the special
sense in which these terms are‘being used).

In general the ndtation Z(h)rwill imply that this
funetion falls under the above definition. If a function
does not, or is not known to, fall under this definition
an asterisk will be added (e.g. Z#(N) ) or another notation
employed,

The proof that every "positive real" function with a
finite number of poles and zeros mey be regarded as the
1mpedénce function of a finite physieal network is reserved
for a later chapter, In the meantime we shall frequently
anticipaté this fact in Interpreting mathematical properties

of "positive real" functions:

Definition: If a function 1s the impedance function of a
physical network the function will be éaid to have a "network
representation”. ' The process of finding such & network will
be called "finding a network representation“ of the function,
The discussions which follow are mostly discussions of
well known properties of functions of a complex #ariable, but

their application to thls particular problem is new.
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(b) Theorems on "positive Real" Functions.

30. The idea of a "positive" function can be interpréted
very conveniently in terms of the transformation of one
complex plane into another. By the equation Z = Z(A)

every point in thq?plane determines uniquely & pcint in

the 2 pléne; (Z is called a uniform function of A ; on the
other hand A is in general a multiform function of Z uﬁless
the numerator aﬁd'denominatof of Z(\) are linear inA). The
property of "positiveness" as defined by (15a) means that if
N is chosen in the right half plane Z will fall in the

right half piane; but not necessariiy conversely., COn-.
sequently if Z(N) is a "positive" function; the transformation
Z = Z(N) will transform the right half of the A plane into
a‘part of the right half of the Z plane (except in épecial
cases where the right half h plane goes into<thé whole right
half Z plane). A simple example of this is shown in Fig. 5

- where z = 8 T a17\
, Bo ¥ B1A

We thus have
Thecrem I: If  Z = Z(A)

and Z' = W(Z)

Z and W both being "positive

funetions" then

w [z()]

will be a "positive" funection D Fig. 5.
of N.

Thié theorem can obviously be applied in two ways
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illustrated by the two corollaries:-

: . 1l
Theor.I Coroll. 1 If Z(A) is & "positive" function,Y(W) = Z[RT

will be a "positive" function.

Theor.I Coroll. 2 If Z(N) is a "positive" function Z1(n) = z&k)

will be a "positive" function.

3le The physical interpretation of Corolla:jl is: to every
network corresponds a "reciprocal" network whose admittance
characteristic is the impedance characteristic of the first
network. In certain cases the second network is derivable
from the first by a dual construction in the sense of Chapter
I, section 18, This will not always be possible because of
the difficulty met in the physical representation of "mutual
capacities”, but a physical network not dual in structure
will nevertheless be possible.‘

On the other hand Coroll. 2 means that to every ne twork
corresponds another whose impedance characteristic is that
of the first netWOrk but with the reciprocal frequency
SCale (eeg. frequency is replaced by wave?length).

Taken more generally Theorem I states that if in Z(N),
the impedance function of a given network N, N be replaced
by the impedance function z(W) of another network n, the
impedance function of a third network N' will result. In
certain Caées N' can be derived from N by replacing in-
ductances by networks proportional to n, and capacities by
networks proportiona1>to the network G%), reciprocal teo n.

In general, however, the network N!' cannot be constructed

— e 1 e eee—— " i e ——— e e
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directly from N in this fashion because of the difficulty

of replacing mutual inductances in an analogous fashion.

- 32. We next come to a discussion of the poles and zeros

of a "positive" function. We prove first of all the
Lemma 1l: A zero of multipliecity n is surrounded by 2n
sectors of equal angles (Fig. &)
in which the real part of the
function is alternately positive
and negative, For at such a
point N= ¢ the Taylor's series
for the function becomes

d" Z) \n , termsof
Z(N) = {d'_:hu"n*l' h:c(—hdd + higher degree

In the immediate neighbourhood of the point A = ¢ the
first term predominates.

o ( . d" Zo) _ p k, (
Placing (A-o)=fpe*® FECRErY ]h=¢_ ke Cc,:nq:r::is)

we have ) ZO\ = Z(f,e)&# kPHEL(hG + @)

R Z)y = kPN cos(n8+ @) (17)

whencé the truth of the lemmsa is evident,

A zero ﬁithin the right-half plane would therefore
obviously violate the condition of "positiveness". More-
over on the boundary of this region (i.e. on the imaginary
axis) only two séctors are possible; the real part of the
funetion must be positive on the one side of the boundary,
negativé on the other, This means that zeros on the
imaginary axis must be simple and that @ in equation (17)

must be zero, i.e. |% Z0A) is & real positive constant.
| dn ool .
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Cofrespénding conditions for the poles are immediately
evident from Theorem I, Coroll.l. For a pole, however, the
condition ,(‘%“%@))hﬁ‘r: a real positive constant, can be
expressed ﬁore simply by saying that the residue of the
function at A =(6¢ must be real and positive, All these
facts are summarized in

Theorem II. If Z(®) 1s a "positive" function then

(i) its zeros and poles must lie in the left half
plane or on the boundary;

(1i) zeros and poles on the imaginary N axis must
' be simple;

(1ii) at a zero on the imaginary N axis 92 15 g pesl
positive (non-zero) constant while at a pole on

the boundary the residue is a real positive.
constant, :

33, This theorem is very important for a clear understand-
| ing of the properties of positive functions. It is interest-
ing to note that pafts (ii)vand (iii) contain more than is
immediately evident physically, but are nevertheless con-
sequences of necessary physical conditions.,

Of especial inﬁerest are the:zeros and poles at M= 0
and AN= o0, These points lie on.the boundary; consequently
at them only simple poles and zeros can exist.

If "= 0 is a simple zero or a pole, A will be a factor
in the numerator or denominator respectively. If N= o
is a simple pole or zero, the degree of the numerator or
denominator will be greater by one than the degree of the
denaminator‘or numerator respectively. This consequencé

of Theorem II (ii) can therefore be summarized as
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Theorem II Coroll, 1. .The degree in N\ or in:%-of numerator

and denominator of Z(W) cannct differ by more than 1.

34. We interpose here a well known theorem in function
theory, which finds special application in the theory of

. potentials. This theorem states that a functién R(x,y)
which 1s regular within a certain region attains its4maximum
and minimum value on the boundary of that region¥®, Applying
thié to our case we have ‘

Theorem IITI. If Z(M) is a "positive" function the real

part of Z(MN) in the right half plane attains its minimum
value on the axis of imaginaries,

Theorem III. Coroll, 1 If Ry is equal to or less than the

minimum value of the real part of Z(d&d) then
z' () = Z2(N) - Ry

'is a "positive" function.

35. We shall apply this theorem immediately to the
separation of poles on the axis of imaginaries.
Consider first a pole at N = 00.  The numerator is

of degree bne higher than the denominator, i.e,

g = Qna N e @+ - - - raN+a,
o buh% ~- - +bn+b,
By ordinary division of numerator into denominator
Z(n) = L+ SuNr oo = rouned,
' b.,\'+ - - - + b+ b,

where | = %mev | gl =qa, -Lbk,,

n

Note that the real part of L™\ on the axis of imaginaries

¥See for example Bibllog. (33), Vol. II.
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is zero, consequently Jle Z' (i.uq) =R Z(wa) 2= 0 (where Z@) =ch)—L7\)
Since J& Z'(N) is regular in the right half plane however |
(i.e. has no poles there) it is everywhers within this
region greater than the minimum value on the boundary,
l.e. > 03 hence Z'(N) is a "positive" funetion.

The case when N= 0 1s a pole follows from the‘above

by making the substitution 'h'==% everywhere,

T ) = QAo+ ON + A, AT+ - - - — — +a, n"
en - b.“ + b,_?\'"'*' - - + bm“hﬂ-
. D a, + G A+ - - - - + a, D"
I by + b, N+ — - —- &+ b, ™!
D ' |
= = 4
~ T LM

and Z'(A) is a "positive real® function.

If Z(A) has a pole on the boundary at N=LT (say) the
conditionbof reality on the real axis necessitates the
presence of the conjugate polé. These poles can always be
lfemoved in thevfollowing way, which 1s merely an application

of partial fractions.

4 | _ Ny . £y
Let 20 = 3T GrreDam)
‘Then _2(7‘) = RNeie T T-ia ¢ q,(n)

(k being the real positive residue of Z(A) at N= ria)
K ’ :
Z(\) = ‘-,\—{"L"t"' Z ™) K=2x (18)
< ]

The important difference between equation (18) and the
ordinary partial fraction development 1s that the numerator
of the first partial fraction would erdinarily have been
oO(kN + ha ); here however, because the residue at A= Lo
is real, h = O. This fact enables us to eonclude that

the real part of the first partial fraction in equation (18)
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is zero on the axis of imaginaries whence 1t follows as

before that Z'(\) is a "positive" function. Summing up

we have

Theorem IV, If Z(N) 1s a "positive real" function

which has poles (residue = _I‘L._-) at N=tl0 (=1, a pole

residue K, at R =0, and o (:nole. residve. L ,at A= o So= o
Then Z(N) = L+ 2-:;5—-—— « 2N (19)

where each term 1s a "positive real’ function and

Fe Ziwd) = Fa ZLid) .

Theorem IV, Coroll. 1. If Z(N) is a "positive real”

function which has zeros at A =0,%* (G Hd, . oo then

- Kv i
2(7\\ Ca+ Z%:o A+ G N 2y (19a)

where each term is a "positive real" function and
JO
Re S = Z (@)

Theorem IV. Coroll. 2., If Z(A) is a "positive real™

fﬁnétion all of whose poles lie on the imaginary axié theﬁ
Z'(N) in (19) is a "real positive" constant, A similar
. statement holds when all the zeros lie on the axis of
imaginaries by applying Corollary 1.
The interpretation of each tefm corresponding to a
pole or zeroc on the axis of imaginariés in equations (19)

(19a) as part of a network is evident.

36. Corresponding to Theorem III above is the well known
fact that a function R(x,y) which is regular within a
certain regiori is completely specified within that region

by the values which it takes on the boundary*., The full

¥Bibliog. 33, Vol. II, pp. 67 et seq.
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implications of this will be discussed at greater length in
a later chapter (Ch. VI). At present we wish to note only
~the connection between this fact and the possibility of
stating the necessary and sufficient coﬁditions in terms of
conditions on the boundary. o

We note first of ell that the condition of regularity
in the right-half plane excludes the possibility'of poles
wifhin this region, i.e. is synonymous with equation (Zb)
section 26. We have seen further that poies on the‘iﬁaginary
axls are independent of the real part of Z{(w) (Theerem IV)e
Consequently the condition to be satisfied by poles on the
boundary must be stated separately. If in addition to this
we state that the real part of Z(iw) is positive, all con-
ditions for a "positive" function are fulfilled. We thus have

Theorem V., If Z(A) is a function such that

(1) No poles lie in the right half plane
. (Fimite)
(ii) Poles on the boundary have positive real ,residues
(111) Re z2(iw) = 0 | |
then Z(N) is a "positive" function. In particular the

zeros A =d, will satisfy’the condition 2(a).

By Theorem I, Coroll. 1 we have also

Theorem V., Coroll, 1. If Z(MN) satisfies the conditions

(1) No zeros lie within the right half plane

dz

- (1i) At zeros on the boundary O

constant,
(111) R z(w) Z 0
then Z(A) is a "positive" function.

In particular the poles ﬂ=13f will satisfy the condition (2Db).

= a positive real (non-zerg)
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It 1s always possible to reduce a given function to
one in which the second restriction in Theorem V is not

necessary by the procedure of Theorem IV,

37. So far we have dealt entirely in reétangular co-
ordinates in the N and Z planes. In Chapter I, section 25
tﬁe question of an inequality between ).and»z(h)<in polar
coordinates was ralsed. This is essentially a question
of conforﬂélity, and like most questions of this nature
can be made to depend on the following fundamental lemma:=-

Sehwarzian Lemma:* If W is a function of which is regular
: . regular

in the interior of the unit cirele (I¢gl < [ ), and which
haslVVi< | when |4l < |, and W(o) = 0, then it aléo satis-
fies IV%/_I(I for |-“< | . (except when W = ge“" e

In geometrical language this means that if a trans=-
formation ch) transforms the interior of the unit cirgle
into = part of itself, andileaves the origin fixed, then
the diStaﬁees from the origin of 8ll points within the unit
ciréie are shortened by this transformation.

By.the application of a homographic_transformétion to’
3 ahd W the Schwarzian lemma has been generalized to the

following:

Theorem due to Pick:(se) If the function W of 4 has no

essentisl singularities for values of Y within the circle

Ky

another circle Ky, then all non-euclidean distances,

, and takes on values which lie only in the interior of

elements of arcs and arcs are shortened in the conformal

¥H.A.Schwarz 1660. See also Biblilog. (38) & (33) Vol.II,p.i14
I am indebted to Dr. Cauer for these references, =
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mapping by W(é). If one such measure remains unchanged,
all remain unchanged and W is a linear function of ¥ -
| In this theorem a non-euclidean distance between two
points {,,4. is defined by the ngarithm‘of a croes-ratio
in the usual manner of projective measurement® as féllows:-
Through the points %.;ﬂz construct o circle orthogoﬁal té
the cirecle Kt and cutting it in the points h and k;}the
non-euclidean distance is then
P Gitd = log ﬁ:—-}% _ii}{— (20)
This theorem of Pick alsc holds for the limiting case
when the interior of the circle K, or K, becomes a half-plane.

Now W will be a "positive" function of % if K and X

4
become the right half of the 4 and W planes respectively.
The further restriction that W be real for real values of

4 makes the correspondence between W and + on the one hand
and & "positive real" function Z(*) and * on the other hand
complete, | | |

vAli that remains is to interpret the non-euclidesn
disténces. We shall do this only for the more intéresting
caseé:- »

(1) Two conjugate points A, N will transform into two-
other conjugate points Z,Z becsuse of the condition of
"reality". In Fig.7 let Py (M), Po(D) be & pair of con-
Jugate points and let |

N=vV+ea ,IM=7°p
The cirele through'h,7§ orthognal to,thelboundary of'the;

right half plane will cut this boundary in the points

¥See for example Bibliog. (34).
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Q1(0 +(P) and Qo(0 -ip)

=\ L (e TTP) (v-iFp)
POM =lo O eigip) (F - iGFp)

= log Vt+é;:%§;
9,

s d)(']\l-’h‘) decreases towards zero

(in absclute magnitude since sign

does not enter into the idea of

< PiQ1 .

distance) the ratio L must
P1Q2

approach unity. A ratio of

Flg. 7. - lengths will involve only angles
Q1
and in Fig. 7 an approach of the ratio 1 to unity is
25 i
readily seen to mean a decrease in the angle P30Po towards

zero, i.e., latgNl decreases

(11) Consider two points NN on the real axis, The

orthogonal circle in this case is the real axis itself.

The non-euclidean distance,' obtained by"considering a vlimit,

beéomes N o N
G‘DC?\.T(\‘J = A, (22)

Fronri this we see fhat if for one value of N\ on the pesitive

_real axis we have N, = z(7,) = Z; this will be the only

point for whieh such a relation holds unless A= Z(7\). For

1T there be another point where N,= Z(N,) = Zs we shall have

PO = log B = {og == (2, Z.)
which by the theorem of Pick is possible only if this is true
for all values of A. The same 1is obviously true i:f‘ we

substitute LA for?\(L a real positive constant)

FrTR— e
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Hence we have

Theorem VI (i) If Z(A) is a "positive real" function

fargZ(ml < largl for ~a]_'L values of A satisfying
()d:la%g?ﬂ.f-%g-_ The equality signs can only hold simul-
taneously, unless they hold identically., | _
| (11) On the positive‘real axis (where afgl==0)
the equation LA= Z(N) cannot be satisfied at more than one
internal point (L a real positive constant).

Theor, VI, Coroll.l. The function (Z(M) - L), (which is

not necessarily a positive function) cannot have more than
one zerc within the fight-half plane,

Theorem VI may be interpreted in the light of the
physical interpretation given to Theorem I. Thus if A be
replaced by a "positive" function of ‘A the resulting network
will have a power factor closer to unity than the original

network, for corresponding frequencies.

38. . It 1s now apparent that if Z(A) satisfies the conditions

Z(R) real when 7\is'real (1lc)

and T ZINY Z O (15)

it will satisfy a2ll the necessary conditions listed in
section 26; for conditions2(a) and 2(b) follow from Theorem
II; condition (3) is merely (15) when #&A= 0; and condition
(15a) is fulfilled by Theorem VI.

Theorem V gives two sets of conditions equivalent to
(15); which are easier to handle numerically and more readily

interpreted electrically.



’-58- Cho II - 38.

It is further evident that i1f Z(N) satisfies conditions
15(a), it mﬁst satisfy condition (15) as well a= condition
‘(lc). Hence 15(a) is a necessary and sufficient condition
for Z(A) which may reblace (lc) and (15).

It is possible to add to the necessary conditions‘
liSted in section 26 by the application of special sets of
physical conditions. A1l further necessary conditions
would at once be disposed of if we can show that every
"positive real" function has a network representation and
must therefore satisfy every physical condition that can be
imposed on the network.,

For this purpose the Theorems just discussed will prove

particularly useful.
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CHAPTER III.

Punctions with not more than Two Poles (or Zeros) in the
Interior of the Left Half Plane.

39, With the more thorough understanding of the propertiés
of "positive" functions obtained in the preceding chapter
we‘proceed to consider some of the simpler cases of positive
functions, These have been treated in part by Foster, Cauer
and Fry, but fhe greater power of the methods now at our dis-
posal will be abundantly clear even for these céses.

'Fdr ccnvehience in calculation we use the conditliens for
a "positive real" function as stated in Theorem V (previous
chapter). We may restrict ourselves to functions which have
no poles or zeros on the axis of imaginaries for if such poles
‘or zeros are present they may be removed in the manner démonf
strated in Theorem IV; they ccrrespond to pure reactanée
elements in series or parallel with each other and with the

circuit,

(a) Functions wifh One Pole (or Zero)

40, Consider the function¥®

Qo+ A (és)

ey _ Qob, ¥ a,b,® ' . '
&E_ Z(“D) = bot + b?&)t ) . (dsa)

We may arbitrarily assume agy positive without imbosing
any restrictions on Z(N). For JeZ(u) = O we must have r.~
‘and 21by3= 0. The condition for the pole requires b1= 0

hence also alE:C. ~ (In this particular case the condition

*TRTS TUNCTion Was also discussed Dy Fry, BibIiog. (15)
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for poles and zeros includes the condition for a "positive"
. function). »

Let us now ploﬁ f&.z’(‘éw)' as a function of n=m1(Negative
values of o' are included in the figure for the sake of

completeness although they do not enter into the present

discussion). The curve is a hyperbola which takes one of

Flg. 8
two forms depending on whether %‘:4 or> %' (see Fig, 8).
In the case %f < %} (Fig. 8a) the smallest value of
(-] [} .

Ja Z(id) in the right half plane occurs at the origin, This
value may be subtracted from Z(h) and still leave a "positive"

funetion (Theorem III, Coroll. 1). Then
Q, (aybo" a-obl)h

A e N WY |
= Ry + Z'(n) | | (23b)

Z' (A) may be immediately recognized as the impedance function
of a network, or we may proceed by noting that it has a zero

at the origin. Hence applying Theorem IV

i bt . bob,
ZM) (cibe— @b (A bo— agh,)
The cqrresponding network is shown in Fig. 9a (next page).

(23c)
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41, An exactly similar procedure is possible when

(see Fig. 8b).
O.. <Q°bl—al‘=ﬂ)
Then Z(?\) = T"‘- b.b, + b,l-l\
---and so on,
(The results are obtainable from those of section 40 by
the substitution MN'= = or by an interchange of the sub-

scripte O and 1). The corresponding network is shown in

o Figo gbo

'ﬁ2  The network
b, ‘T*, ‘ ! | representation
o '@b§ of 23 ?hus con=-

talns resistance

and inductance

or resistance

wiésyu,

and capacitance

accbrding'as
Q ,
= <a> P (23d)
d'ﬂ a‘l ‘ * - — qg (o3
When 2= —, Z(N) obviously reduces to R = = = Zu
. b, b, b, -
42, A corresponding discussion which is dual to the above

in the sense of Theorem I, Coroll. 1 can be carried through

1 .
with FRT giving rise to the circults in Fig. 9(c)(d). The

networks. of Figs. 9(c) and (d) are equivalent to the net-
works of Figs. 9(a) and (b) respectively.

It is interesting to note that a complete set of
equivalent circuits ié obtained by combining the processes

leading to Figs. 9(a) and 9(c) in different ways. For
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a o _ a
; £ 0 2o
For example if b,< ID',r.m}r value less than oo

can be separated as a serles resistance (Fig., 9a) and

thereafter the remaining network constructed as in Fig.9c.

43, 'The above discussion disposes immediately of such

forms as

\ _ GataN+an” - ran:a.p
(1) z(n) = Y (1i1) zZ(A) = = Bh T e

Qs + G\ . ’ AN+ a At (23¢)
bo + bareoas | (3V) 2N = g o

i

!

]

(11) z(n)

for which the corresponding networks are shown in Fig.10.

The coefficients in these functions may not be arbitbary

Yab-ab>0 | (i) ab-ab >0

e e - T ’

(e)aaib‘,“ - dsgh, a, bz<.{3

47

(F}’q'; aab*’abz}ﬁ‘.

(W) 5.'3{4 rhal,(j

7

() b’sq:”" b’;’b‘iqg"}' biaf-;(;{j _ (3) b;“‘-—l }a }:’ 4 *b o < G
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positive constants as in (23) the additional conditions
which they mugt‘fulfill being shown in the Figure for
each case. These conditions are readily obtained by apply-
ing the conditions for (23) to the reduced functions which
result on separating the poie (or zero) on the imaginary
axis from the forms (23¢). The poles and zeros on the
imaginary axis in the forms (23t) are situated at A= 0
or;h_= o0, but they may obviously lie at any point on this
axis. The removal of such poles by Theorem IV supplemented
by the procedure of sections 40 and 41 will always lead %o a
network representation if only one pole and one zero lies in
the interior of the left-half plane.

It is interesting to note the dualities in Fig. 10.
The forms (ii) and (iv) are derivable from (1) and (iii)

respectively by the substitution Z' == while (iii) and (iv)

A
Z
are derivable from (1) and (ii) respectively by the sub-
stitution h'==#'(compare Theor.I Coroll, 1 and 2). A dis-
cussion of any one of them is therefore readily adaptable
to all the others.

Equivalents to the networks in Fig. 10 similar» to those

in Fig. 9 are also possible.

(b) Two Poles and Two Zeros not on the Boundary.

44, Consider next the case

Q.+ G /A + 0.7_7\7'

b, + bA + b, N ,

\ELZ(’E@ '_ Qoby + (—aok, +ab, —a,b,)w*+ ab,w?
bs* + (b,*~ 2bgb,)w™ + bztwq‘

zZ(n) =

f
=
I'P .
o
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The condition for the poles to have negative real part is
gilven by bg, b3, bz/ﬁ 0 (24b)

In (24a) the denominator cannot be begative for real
values.of . (This is best seen by expressing it as the
sum of squares). Hence the numerator must always be

positive, i.e. 1t must have no real positive roots when

A

considered as a function of W . Hence we must have
Qo> O and either
a,> o, oo, ~ak, +a,b, < O (24¢)
or | (ool - ab, raik) ~4aahbb <0 (24d)

The coefficients are thus restricted in their range'
of values over and above the Hurwitz requirements (16a
and 16b, section 28) by‘the equations (24c¢) or (24@), These
restrictions can be giveﬁ a more tangible geometrical mean-
ing in the following manner¥, |
Consider the ratios ag:aj:iag to bevfixed, the only re-
striétion being that they be positive; thereafter the ratlos
bo:bj tbo are restricted to lie within certain limits by the
inequalities (24¢) or (24d). The latter may be chosén’as
coordinates of a point in a plane. The inequalities (24c)
then state that the point (%ﬁ,’%i) may'lié'on one éide ofba
certain straight line, while the inequality (24d4) states
that it may lie within a certain parabola. To make this
more clear let us write
'-)c.=—%'; »ﬁ=%}
R S

¥Compare Fig. 2 Introduction, section 8.

(25)
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Then (24c) and (24d) become
—dx +B3 =0 (240! )
Cg —dkac+B) "~ 4ﬁ&-_§ g (24a1)
The straight line 1s a diameter of the parabola, The loca~
tion of these curves is shown in Fig. 11 and permissible
values of (x = %%, y = {E) for the given values of 052, %f)
lie within the shaded region (here the inequalities (24Db)
havé also been conside;ed). The curves themseives are com=-
 pletely determined by the
two parameters (oL, /Y which
have a simple geometrical
meaning as coordinates of
the two tangent polnts Tq,
Ts. (An exactly similar

~figure is of coﬁrse péssible

for restricting the a's when

the b's are fixed).

45, Assuming that the coefficients satisfy the conditions
(24b,c,d) we return to a discussion of the possible manners
of variation of & Z(ed) sccording to equation (24a). Let

us write

&Z(&m) =R = 2z (28)

' 2
A.+ Aa+rhA.n where fl= o

» B+t B O+B QY
The discussion of such functions is an elementary

problem in algebra, and is usually carried through in the
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folleowing way; From equation (26)
(RBo - Ao) + (RB1 - A1)Q+ (RBs - 45)0%= 0 (26a)
For real values of L2 we must have
(RBy -Al)z- 4(RBy - Ao)(RBg - Ag) 2 0

1.e. R*(By - 4ByBs) - 2R(A1B] - 240Bp + AgBy) + |
(A1 - 4A0A0)=> 0 (27)

This means that R can or cannot (for real values of ) take
on.values/lying between the roots of the expression (27)
according as the sign of (By - 4BpBg) is negative or posi-
tive. (Note that this is identical with the sign of

by - 4bgbs, i.e. is determined by the.poles of Z(N) being

real or complex).

e g . e oA it

o {8y
R AR
. ?;
A
P
T
4 \wf/'““ |
r 5
i !
i
{3 |
. g A e ,_;

’Lj; I 3 boh R
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énly in the case where the roots of this expression
are equal or pure lmaginary can R take on all values.
Typical curves for R are shown in Fig. 12. In these
figuréthhe axes can be shifted parallel to themselves
and reverse direction in any manner provided only R re-
mains positive for posifive values of L,

We shall show first that one network can always be
cdnstructed to correspond to an impedance function of thé ‘

given form (24), if this condition is fulfilled.

46, As in sections 40, 41 the procedure depends on the
frequency at which the least value of 'resistance! ocecurs.
For this purpose we need éonsider only positive falues of
£ in Fig. 12 since these élone correspond to points on the
boundary of the right-half A plane (or to real frequencies).

If this least value occurs for f2= 0 or oo, as for
exemple in Figs. 12(a) and (b) the procedure is essentially
the same as that déscribed in sections 41, 42, To illustrate,

let the minimum value of R oeccur for 2= 0, i.e.

20 £ Ri) forn>0 | (28)
EO

_ Qe+ G,AN+azNh*

Then  z(A) = $27 T

Qg (a,b, — a.,b.)?\ + (dtbc‘ aokz)“"

n

b, bs( b, + b, + k,2%) |
Qo .

in which the function Z'(n) is a "positive" function under
the assumption (28) by Theorem III, Coroll. 1. Furthermore
this form of Z'(MN) has already been discussed (Fig. 10 (iv),

page 42), Consequently Z(A) can be represented by such a
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network together with a series resistance, as shown in
Fig. 13(i). |

The case when R{®) pi1n §ccurs for @ = oo needs no
fufther'discussion, the corresponding networks being

shown in Fig, 13(ii)

47, There remains the case when R(®).,. occurs for some
finite value of W= Q. Proceeding by analogy, let this
value Ry be separated out. It will be a solution of (27)

- {with the equality sign). Let us write
A+ QA + 't
b, + b, A + bjA*
The function Z'(A) now does not have a zero on the axes of

Z(n) = R, +

= R+ Z'(A) (29)

‘imaginaries, as in Equation (28a), but will be characterized
by the fact that for some value of frequency (A= o) 2 (M)
will be pure imaginary. Physiéally this means that the
corresponding network behaves like a pure reactance at this

frequency. This can only mean that thaf part of the
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network which contains resistance is short circuited by
(i.e. 1s in parallel with) a reactive branch which is in
resonance for this frequency; in series with this:?éra pure
reactanée which may be either positive or negative, since
the pure imaginary part may have either sign. The only
type of element which can meet this requireﬁent is induc-
tance, and in fact mutual inductanée. Accordingly Fig. 15
(page 50) is a possible representation of Z'(N). Leﬁ us

first consider this kind of connection in greater detall,

A8, FEqulvalent Representation of e Mutual Inductance. It
is a well known fact that two mutually coupled inductance

coils (La,Lb,Mab)'connected

% M | " at one peint have an equiva-
f = e ™
}-'-’/Zj , [ I S
a Lﬂ 2 6?X7 o lent representation in terms
@ ey '

of three inductances
Li,Lp,Lz connected in T
as shown in Fig. 14. The

necessary relations are

-Lg = Mgp
In*Lg = Lg (30)
Lztlg = Ly
To the condition  Lglp - Mgp =0 (30a)

corresponds (by substitution) LjLe+ Lelz+ Lzli = O {30Db)
(In this relation a positive sign for Mgp means that the
coils are connected with fluxes aiding). It thus appears

that Ly, Lo, Lz must satisfy the inequality (30b) to be




e
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physically realisable by two mutually coupled inductances.
It is further necessary that at least two of them be pesitive
1f & positive Lg, Lb ere to result from them. This is

also sufficient, for if the positive values be denoted by

L1,L3,and Lz 1s negative and equal to Lo, (1) can be written

! i
722 = T
i‘.e. . L_; <, e”’her LI or L3 (500)

It alsé appears that it is immaterial which of 17 ,Lo,Lx

be chosen equal to Mgp in (30).

49, A Useful Four Terminal Network. Consider now the type

of network shown in Fig. 15 which was suggested by its

property of.being purely reactive at a given frequency 63;ﬂ%%;

' (Laa*+ DY (LA +% )
Z(n) = L +
= LLibarbabab LiLa YW+ (Lrbd3 N+ (L +LYDA +Dy (31)
(Lt LN+ TN+ D
It now becomes evident that

if this network is to represent

Z'(M) in the case under dis=~

| (29) :
cussionﬁwe must have

L1Lo+LoLlz+Llzly = O ‘ (31a)
Fig.15 and z a pure resistance.(= r)
‘Relaticn (31e) states that Ly,Le,Lz are equivalent to
two perfectly coupled inductances (Lglp ~ May = 0)¥.

*Note: This is not a limitation of the method of represen-
tation but of the gilven form of impedance function
Just as Lhis an ideal inductance without resistance),
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50. We are now in a position to construct a network corres-
pondingvto Z(M) when the minimum value R _of J z(e@) occurs

for a finite freqﬁency w =0

Qo+ O, N+ a\"
boe + b\ =+ b?’_—l\-"

= Ry + Z0) (32)
where eﬂZ‘ ('L(,D) = O has a double root at w =X o’

. A'+ A, "+ A
iees if Fe. 7V ((ewd) = I: — 2" Q1+1;@
© ' 2. )

we have . o = n:l"l{-noﬂz (32a)

We have’ Z(n) =

4 (cf. eqn.26)

12 ¥ 4 : R
a a + & h + Qe
Further let Z' (A) = x L ' -R b
( ) ‘ —-"'L [ .—7‘ ; ' o ( 0'1’ aT T v‘)

(L+L)r A"+ (La+L)DN + Dr (32b)
L+l DAY + YA -+ D
whence by a comparison of the ratic of coefflcients

‘ 1
L — o . — a - a W
=3 5 D= (= bxg5)
!
’ - O
L+L, = ,
- O,
L)_"‘Ls b-z,x b b, ‘ } (32 ) ,
L_ + L_ = _&1'_ c)
[ 3 be 'b 'b 'b
p Sy — a +a,b,+a
qving L,= ‘ 2o 02 ‘25.&):, z Do
L { adb.—a/b, +a.b,
2 2 b,bo
/ 7
= Qo bﬂ_ +a,'b,—a2 b,
L 2 b b, y

with the condition _
| 0=L,L,+LLa+Lsl, |
te O = (a. bl- a.:hl-l- a;.bo)(a;lo_l+ o..' bl’— Q; b.)
| , ' -+ 2a b-albra/b+ab)
=4 aga,b.b, —(a b,~alk, +alb)*>

= AR, A, =A™ [cFf eqns.RQADand €4)] (324)
which is satiasfied by equation (32a). |

6o + QN + 0—;_7\1
be + b + b\

I w
51, A positive function Z(N) = can thus
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always be represented by one of the networks of Fig. 13 or

the network of Fig. 16.
All these networks have

the minimum number of indepen-

dent elements in the sense

HFig.wié | that this number is equal té'
the number of independent coefflclents in Z(h). This

number is 5. In Fig. 16 we have apparently six elements
but three of them (Lly,Ls,Lz) are related by equation (30Db),
in fact they correspond to only two inductance ccils wound

in a special ideal way.

52. Negative Values of £ (Eguivalent two-mesh networks).

The foregoing discussionrwas confined entirely to the con-
sideration of positive values ofli(=05). Negative values
of £ do not correspond to real frequencies, so that thelr
physical significance is not so evident. A complete
physicel interpretation is, however, not easential to the
process of constructing a network, the mathematical con-
dition of "positiveness" being a sufficient guide. |

In identifying the expressions in (32b) a first con-
dition to be satisfied is (3la) which is accomplished by
having a double zero in the numerator of N WAROS)
(equation 322a). This will happen if either of the roots
of (27) be subtradted from.Z(h), '~ In this there is no
reference to the Valué ole.for which the double zero of
J& 7! (ted) occurs, and it may be negative;‘ A second con-

dition, however, is A (t;aD) > 0 when {22 0.
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Consequently a root R, of equation (27) can only be subtracted
provided N ~
- R,=H Z(i{w) for all positive values
of 2 (=w™) | (33)

It is readily seen by referring to Figs. 12 and con-
sidering different positions of the axes that in many cases
this can be satisfied for an R, which occurs for negative L
Fig. 12(d) is such a case, while a translation of the axes

to the left in Fig. 12(c) would alsc give it., This there-

fore presents a possibility of obtaining equivalent networks.

(e¢) Equivalences between 2,3 and 4 Mesh Networks having no
Superfluous Elements, -

53, Whether it be possible to construct one or more of the
networks of Pigs. 13 and 16 to represent a given impedance
function is determined by the nature of the variation of

J. Z(id) as exemplified in Fig. 12. The nature of this
variation is determined by the relation between the co-
efficients of Z(A) and this relation in turn is most readily

interpreted in terms of Fig. 11, page 45.

54, Two-Mesh Representation of Z(N) in Eguation (24). In

order that a two-mesh network may be constructed to re-
present Z(A) it is necessary that at least one of the
eritical values R, of R(2) (maximum or minimum) be
positive and < R(D) for positive values of Q2. Thue,
for example, a curve of the type Fig. 12(a) can never
correspond to a two-mesh ecircuit while curves of the type

Fig. 12(b) and (¢) may or may not, depending on the
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location and directionvof the axes, A rough plot of R(n)
will readily show if this be possible.

The cdnditions may, however, also be expressed as in-
equalitles in terms of the coefficients 802122, boblpg.
Thls has been done by Foster and Cauer - without reference
to the variation of R(@) withQ however, the reasoning being
entirely algebraic, and the critericn of realizability being
the positiveness of the resulting network elements. Cauer(14)
has also interpreted these inequalities in terms of a diagram
like Fige. 11 (cf., Fig. 2(a) page 6), the only difference
between Cauer's diagfam and Fig. 11 being that it refers to
the impedance function of a general two-meéh. It may
immediately be reduced to our case by making the two
additional zeros in the numerator occur at O and oo respec-
tively; Two cases are to be distinguished according as the
remaining zeros are real or complex. The corresponding
regions for which two-mesh networks can be constructed are
shown in Flg. 17(e) and (f), the létter being the case of

real zeros.(page 59).

56+ Three-Mesh Representations of Z(A) in Equation (24).

In order ﬁhat a. three-mesh network of Fig. 13 may be
realizable it is necessary that either Z(A) - R(0) or

Z(N) - R(oo) Dbe "positive" functions. The conditions
for this are readily obtainable from the diseussion in
Section 43.

Thus for the two networks Figs. 13(i) we have

Z{(N) = ' + (a, o — Q"bl)?\ + (Gabo— Qobz)?\-t

bo bo (ke + BN + b, M%) (54)
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The conditions for the second term to be a "positive"
function are (see section 43)

a2bg - agbg 2 0 - (34a)

and ' (a,bo—- b, %)lo,l — b, b, (a,b,— a,—b,,_) >0
ilee.  —agk™ + agbsk.t a,b,b, —a,h,” 20 (34Db)
' : _ by bo
With the notation x —'53, Yy = bg (25)
a1 as

ao—d’ao_{z
these inequalities may be written

J
J

ﬁ& V (34a')

%t toe +fb

v A

(34b1)
In terms of Fig. 17 the inequality (34a') confines the
point ( %,y ) on the lower side of the straight line y = [3
while the inequality (34b') confines the point to the
interior of a parabola. The corresponding region is shown
in Pigs, 17(a) and (Db). Note that tﬁe parabola (34b) passes
through thé points (0,@3) and (&,ﬁ). The latter point lies
inside or outside the main parebola (24d) according as
dr<or >4p, 1.e. a,"‘?— 4o,a, £ or>0, i.e. according
as Z(N) has complex or real zeros. Note zlso that when the
zeros are real, the point (dqﬂ) is the point of intersection
of the real tangents in Fig. 17(f).
The conditions for the networks of Fig. 13(ii) are
derivable from the above by a simple interchange of the
. subscripts 0 and 2 in (34a2) and (34b) giving o
' apbo- asbe 0 (34¢)
énd . —-a,b>+ QA bolo, + a,b,b.,_—a.ob:' 20 (344)
‘Using the notation (25) these become , .
oy =p (340")
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Pa? —doxy +yT_ By = 0 (34d")

(344! ) represents the interior‘of an ellipse or hyperbola
éccording 88 A'< or > Qﬁ, The cor‘responding region is in=-
dicated in Figs. 17(c) and (d).

We can proceed further in our analysis and distinguish
between the networks A and B or C and D of Fig. 13 in each
of the above cases., The criteria for these networks are
deducible from those given in Section 43, Fig. 10. They
are nothing more fhan condition (23d) applied at the corres-
pending stage in the construction of the three-mesh netwérk.
Thus the criterion for Fig. 13 A results from comparison of
the form (34) with the form (iv) in (23e), section 43. Re-
ferring to Fig. lo(g) it is ‘

(a,ba—a,b,)?h, — (a,b, —vo..,lo,)(azbo- a,b,) b, + (ﬂz.b.,“a,lo;)l‘hoé o

which, with a little manipulation, may be rewritten

a,(a, b —a k) —a (96, —a kXa, ,_l'ao)-:-a,_(a,lo -a lq,)4o @42)

Subsultuting in terms of tae notation of equation (25)
(Y= @) — oL (o - )y-R) + R~ 0 (34e')

lThe point must lie in a palr of alternate angles be-
tween the pair of straighfllines (34e'). Tt is readily
shown that these two straight lines are the tangents through
the point Gi43) to the parabola (24d). The reglon is shown
by the cross~hatched area in Fig. 17(b), 6ne of the alter-
nate angies being excluded by (34a). (The lines are
imaginary in Fig. 17(a), i.e. in this case network A is not
possible)

An exactly similar discu531on holds for the networks

"C and D, the condition being derivable from the above by a
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change of suffixes O and 2. The condition (34e) is in
fact symmetrical with respect to sqch a change of suffixes,
sc that we»merely get the other of the alternate anglés
given by (34e') and (34c¢'). This is shown by the cross-
hatched area in Fig. 17(d).

We note that condition (34e) is exactly the conditioﬁ
for the mutual separation of poles and zeros, which was
given by Cauer(14) in determinant form for networks with
only two kinds of elements. We note also that for this
speéial»case inductance-resistance and capacitance-resistance
networks are distinguished by the criterion agbs - asby L or
> O respectively., This is equivalent to specifying whether
the poles - (5, and zeros —ol, 1lie in the order (?:,<oi,<[$_)_<c(?_or
A'4P,'< X, < (31 respectively.

Another set of three-mesh networks which may be used
for fepresenting Z(N) in (24) under certain conditions arises
When'we consider En%haas an admittance function and consider
its real part in a manner similar to that of section 46.

The resulﬁing three-mesh networks are shown in Fig. 17 F,G,H,I
(compare Fig. 10 (i) and (iii) ); they have the reciproecal
structure of the networks in Fig. 13 (or 17) A,B,C,D respec~-
tively. The corresponding conditioné giVihg the reglon in
Fig. 17 (g) and (h) are derivable immediately from 34 (a) (b)
(¢) (d) above by an interchange of asand Us. We shall
therefore simpl§‘write them down together with'their equiva-
lents in the notatlon (25)

For Fig. 17 F and G
Qol")v_—o'zl"o =0 N

v

e (34r)

T
~aJ+ a,ab,+a,a,b—atb, 2 Yy £ hoc+(d-d (34g)
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For Fig. 17 H and I

a,b, —a,b, 2 0

| 1 YA (34h)
~a’b, +aa,b, + a,a;b,— alb, S0 F& (Jtﬁ)jé-dﬁx.—ﬁ"(54k)
Thé corresponding regions appeér in Figs. 17 (g) and (h).
The cross-hatched areas for networks F and I follow from
34(e) which is again unchanged.1 It appears that the regions
given by 34 f,g,h,k have simpler boundaries than those given
by 34 a,b,c,d. This suggests that a figure in which the

poles (or%%-,%?) are considered fixed and the zeros (or2,%2)
S -]

a,’ Qo
as free would be more natural for discussing the complets

covering of the permissible area (evidently accompliéhed by

networks A,B,C,D,E, but not by networks E,F,G,H,I). We have,

however, adhered to the system used by Cauer for a more ready

'comparison of results.

An examination of Fig,.,l7 now makes it very easy to see
the equivalenées which exist between the two and three-mesh

networks discussed in this chapter. It also brings out very

conveniently the difference between the results of Foster(13)

and Cauer(14) and those of this chapter. The inequalities re-

presented geometrically in Fig,17 are collected below for more

ready reference.

P o= (y — oo +f)* — 4y <

a (244r)
D= N —doe+ 3 <0 (24c1) |
L= y-03 £0 (34a,0,f,h)
Cp= §y -2 +odoe -3 z 0 (34b)
Cp= N —ctoey + [Bac™ - By <2 g (344')
T o= (YR AGe-d)y @)+ Bx-4)" < 0 (34e1)
S, = y—koe— @ +d” <o (34g)
. S, = CS IR —.;L(Z\oc4- f.’)l‘ = 0O (54-11) ,
where '-)C:-%L ,j:%id\:%‘t)ﬁ:% (25)
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56. TFour-Mesh Representations of Z(A) in (24). The question

of using a structure reciprocal to the two-mesh networks 1s
suggested by the foregoing discussion. We note first that
in order to use reciprocals for equivalent networks tne
reciproeal function must be of the same form, l.e. the degree
of numerator and denominator must be the same in N and in.%;
Furthermore a reciprocal structure is not realizable if nega-
tive mutual inductances are involved. This rules out the
procedure for two-mesh clrcuits in sections 50 and 52 for
use in a dual sense¥®,

Foster has shown, however, that in certain regions of
nFig. 11 (or 17) a network representation of (24) having the
structure shown in Fig. 18(a) is possible®*, TWow such a
structure hés the realizable reciproeal structure shown in

Fig. 18(Db).

need thus only
interchange a's

and b'g in

M(b} : - Foster's con-
Fig. 18 _" ditionvto ob~
tain a region in which a four-mesh representatipn of (24)
with the minimum number of elements will be possible, These

conditions are rather complicated and will not be given here,

%*It 1Is, however, possible to remove a minimum conductance
occurring for a frequency « =0 and then to proceed with the
reciprocal of the remaining function as an impedance function
in the usual manner; this is possible because the condition
(32d) is svmmetrical in a and b and therefore holds elso for.
the reclprocal. The resulting network is a three-mesh (see
Ex. 8 at end of chapter).

%%Foster's networksBibliog. 13, Circuits 16,17,18,19 reduce to
the network in Fig. 20(a) when the general two mesh impedance
function takes the form (24).
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(A numerical example ié given in Ex. 9 in the Appendix).
We note, however, that the four-mesh network of Fig. 18(b) will
always be equivalent to either a two-mesh or a three-mesh
network. N

The subject of equivalént cireuits will be taken up
again in Chapter V. | The very interesting fact is eiident,
however, that the number of meshes is not necessarily in-
variant for a network representation of a given impedance

function, even if this network has the minimum number of

elements,
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CHAPTER IV.

Network Representation of a General "Positive
Real" Function with a Finite Number of Poles
' ' and Zeros.

57. The methods exemplified in sections 46-50 of the last
chapter for constructing a network representation of a
"positive real" function with two poles and two zeros in
the interior of the left-half plane, can be applied with
very little mbdification to the general "positive real
functién with a finite number of poles and zeros.

In this chapter we shall content ourselves with demon-
strating a procedure which will lead uniquely to one net-
work for any given "positive real" function. We do this
for the sake of simplicity and not because this érocedure
is the only one possible, On the subject of equivalent
networks more will be said in the next chapter. The present
discussion suffices, however, to establish a complete equi-
valence between "positive real” functions with a finite
number of poles and zeros and finite passive electrical

networks with constant eircuit parameters.

(2) General Procedure.

58. The general procedure by which it is possiblé to find

a network corresponding to every given "positive real"
function is a step by.step process; at each step the function
is decomposed into a part whiech can immediétely be represen-

ted by an element of the network, and another part which is




-B3- Ch. IV - 59

Vagain‘a "positive real" functioh. The new function should '
be simpler than the previoﬁs.function if any progress is to
be made towards complete representatgon; this will show
itéelf'in a decrease in the nnmber of poles and zeros (the

number of poles being always equal to the number of zeros).

59. Let the given function be Z(A). Poles and zeros on
the axlis of imaginaries can immediately be removed by
Theorem IV and corresponding network elements constructed.
When this has been repeated often enough we are left with

a "positive real" function which is either a constant or
has all its poles and zeros in the interior of the left-half
plane.  Let this function be Z3j(M).

Next examine the real part of Z1(N) on the axis of
imaginaries.

o We remark in passing that_‘EZ(icb) 1s an even function
~of @ while anZ(&D) is odd; in other words we may slways write
| Z (o) = R( ') + wd N(e) (35)
{cf., sguation (43) section 74).

Since F& Z(&0) cannot be negative it must haVe s lower
limitvE: 0. Let this minimum value be Ry and occur when
=9 (T real). Then clearly Zg(n) = Z1(N) - Ry will have
its real part = O on the boundary and regular in the
right-half plane, i.e. Z5(N) will be a "positive real®
function. Moreover Zs(ig) will be pure imaginary. Let

| Z,(ta) = ¢ X (36)
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©cat A= op @ respective
1y, We coulg therefore write
[ - D {
Z,(n) N ZL0) (36a)
' - ‘ '
——— h
T Ze < e Z,@)
respeotiVely;

Considep next the Case whep T is not Zero o

Simply derivable from Zo(7n) by g step corresponding to the
rk

realization of an ¢

lement in the netwo
. Note that ir

representation.

Zo(io) = X
{ S
then - T Tl
Two conditiong may arige. é? = N@Y (equation 35) may pe
elther bositive gnp negafive.

bilities separately

62¢ (i) Let %(.— = N@Y = L, ve Negative,
Then we can write

Z2(N) = *W(n) o (37a)
where Win) 15 4 ”positiVe real™ function 8nd has zepgg at
A=tig For —La jq 8 "positive real” function and

W) = Z22(A) = L1\ 1g thus the

"positive"
funotions; also Wiea) = zg(io)

(Note. W(A) has
& pole g¢ infinity)}

Com—— T

e s,
T——
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1 = Kn 1
W) Meat T WD)
where W'(h) is a "positive real" function which, like W(A),

(370)

has a pole at infinlty.
Let _ W'(n) = LzN+ Zz(n) (37¢)
If we further write |
Lo =g, D= % (37d)
the relation between Zo(W) and Zz(N) in terms of a network
representation is shown in Fig. 19. Comparing this with
S , Fig; It o formiis
(31), section 49, and

remembering that Zo(Mn)

has no pole at N= oo

we have as the algebraic

- Fig.l9

(L.+Lq)3}2;(3)*'(L3*1-0153*‘ID:LzCD)
Lo+ L)YA + DNZ.(n) + D

Also Lp Lizare positive by 37b, ¢ and d, hence (see section

relation

Zo(n) = (37e)

48) the network is realizable.

63. (11) Let X = N&°) be positive.

= R R S
Then we may consider Y,(n) 7 where Y, (i) = —¢ X LG,.G-'LN(G_-,_)
i

is negative jand proceed in an exactly

end G NG
" analogous manner as with
fﬂji ' the preceding case. Trans- .
[G—L ';r = " . .
Yoy C, - Y, ~ lating the results into net-
¢ l,ﬂirﬁt,:  ?%__M; work elements, however, the

network will be reciprocal

to that in Fig. 19. $kise
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This is shown in Fig. 20, L; being replaced by Ci, Lo by
C2, D by K and Lz by Cz. The relation between Yo(n)
and Yz(N) will be

Ya(n) = (Ot CON Yo + (CarCH KA + KYalm)
@)™ V) +~ K

(37f)
64. The network elements in Fig. 20 are not directly
realizable since they contain the negative capacity Cj.

Equation (37f) may, however, be rewritten

o + < ! l
Zo(n) = LEarCad Z.(x) + N+ K Z.()

(37g)
(Ci+ CIN + CCatCIYKNZIM + K Cwhere Z1 =~7L)]
which is of exactly the same form as (37e). Let us 0

-

write down the necessary relations between the coefficients

of (27e) and (37g) in order that Zz and Z'z may be identical.,

' o
They are : D = v, (38a)
. _o C-,_!-'C.-_.,' 7]
Ll+- L’— - l( C3f“ C..,
L.+, = U
TR } (38b)
L, L= L. G +Ce
K C3,+C J
we have also (analogous to (37d) & (3la) )
and C,C.+C, CsrC;\C qa :
FromkSSa L = 0 C,
! 2% C3+C,
L =1 C=
Ko Car e (384)
L-s K Carc,
with the relations from (38c)
. D _ K =q*
L, .C,

CaC+Cali* CiCn _ 1 (38e)
IK*(Ca+C)*
It follows that the fictitlous network of Fig., 20 can

LL+ Lob, +L L=
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be made equivalent to the phyéically realizable network of
Fig. 19 by means of the equaﬁions (38a) and (38d). Note
that the signs of L1 Lz and Cy Cz are interchanged. Hence
in this case Ly and Lo are positive.

Furthermore, since we now know the strﬁcture of the
network it is evident that Zs(ie) - tLjo must be zero.
Consequently L1_= N(g'), and the procedure of Case (1) may
be followed irrespective bf the sign of N(<*). (At one
stage & non-"positive" function will be encountered but the

final Z3(A) will be a "positive" function).

5. Examining the reduction of poles and gzeros by this
process, we noté that the first step (equation 37a) inereases
the number by 1. The next step (eguation 37b) decreases
the number by 2; while the last step (equetion 37c¢) effects
a further reduction of 1., In all, thus, if R; occurs for
N=%lT #F0or@ , Zz(N) will have two poles and two zeros less
than Z3 ().
€6, Thlis procedure can now be applied to all éases and re-
peated until the final function has no poles snd no zeros,
i.e. is a positive constant corresponding to a pure resist-
ence. It leads uniquely to a network representation of the
original "positive real" function.

The celculation of the network is made entirely in
terms of the values of successive impedance functions 6nvthe
axis of imaginaries, Each reduction of the function is

effected by the removal of a zero (or pole) of the function

on the axis of imaginaries. If a function does not have
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such a zero on the imaginary axis it is shown always to
be possible to derive from it a function which will have
such a gzero; the removal of this zero together with the
related steps also corresponds to the calculation of
realizable elements of the network.

For more ready reference we summarize the different
steps with'the\corresponding network interpretations in

' page 69 .
Table I, and state the conclusion as

Theorem VIIT. To every "positive real” function with a

finite number of poles and zeros corresponds a finite
physically realizable network. .- Hence the terms

"positive resl" function with a finite number of poles

and zeros and impedance function of a finite network are

synonymous,

(b) Discussion of Networks‘Obtained.

67. A discussion of the general type and ﬁroPerties of

‘the network obtained by the process summarized in Table I,

as well as of certain special cases, is of interest,

It will be noticed first of all that the netwérk al-
ways has a ladder structure. The ladder structure is
thus capable of realizing the most general form of drivihg
point impedance.

In general mutual inductances wiil be involved but
this mutual inductence if preseﬁt occurs always between

self-inductances in adjacent meshes; in certain cases
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TABLE I. . General Procedure for
Representation of any
Fanction.

constructing a Network
given "Positive Real"

(a) Remove all poles on the axis
of imaginaries:-

Z(N) = Loh+Jx oot + Z()

(Theor.IV)

| . -
Redemittances

o ome W o

R vt
e i
L

|

ex Y5
| L

Zn

(b) Remove 2ll zeros on the axis
of imaginaries:-

impodances. Kol

!
- it A - Zm
'() C7\+Z Z('I\) @ﬁ“"“‘ﬂi—}’“’ “%«o c
(Theor.Iv R Z(y -
Cor. 1)

Repeat (a) and (b) until no p
on the axis of imaginarles.

bles or zeros of Z;(h) lie

(c) Stuci:;ir R{w?*) in
Z1(lw) = R(w?) + ioN(w?)

Let Ry be the least value of
R(w*) for positive values of ™
and let

R1 = R( <%
zZ1(n) = Ry + Z2 (n)

!'m Eel eq{ﬁ N es
i |
O.Wﬁ,ﬁw,w-—gz 2L ;ii j—«-@
at

(d) Write Iy = N(o-) (@ found
in (e¢))

CZo(n) = L™ + W(R)

W(n). hag a zero at N=%({C
and hence
1 A 1
LIS Ign> ¥ D+ Ign + Zz ()

As special cases when O = O
or oo, this reduces to L; = O,
Lz =0

1 - 1 ¥ _kl
Zo(N) L2 3(n)
1 Dg 1

/mF,e v &5
oy T
T L % ba
'T* .

£

g

by

g

D

- Z,h
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mutual inductance may be entirely absent, viz. when pro-

cedure ¢ Table I p.69 involves only minimum values Ry
at N= 0 or oo throughoﬁt.

The procedure is carried ogt in such a way that mutual
inductances, when they occur, do so with a coefficient of
coupling unity; this apparently involves an i1deal physical
condition not generally inherent in the gilven impedance
function. If, however, the function Z(A) has a pole at
N = o the necessity for perfect éoupling is only apparent

since a pole at N = co corres-

& Fil\i?&i:z u

‘mgwﬁgx{>ﬁﬁ?L*rfﬂéi_____ ponds to a sgelf-inductance Lg

i

Lo ba | Ly

Fig. 21 ~ 21. But this separation of

in series with the perfectly

coupled inductance Lg in Fig.

Lo and Ly is quite arbitrary, the only limitation being that
Lo is the largest inductance which can be so separated and
still leave the remaining network physicélly realizable,

If Ly (or any part of it) be combined with Lg into an
inductance L'g, coupled with the inductance Ly then obvious=
ly Lg', Ly > Mgp® and the coupling will be "loose", This
condition of "loosening" will simultaneously‘extend through-
out the remaining network. Only in such cases where the
condition of "perfect" coupling is indeed inherent in the
given impedance function because of the absence of a pole at
N = oo will this condition be forced on the corresponding
network (cf. footnote to Section 49),

In fact a network structure like that indicated in

Fig, 21 would under certain conditions be eminently sultable
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for practicalAéonstruction. The series resistances are
in the proper position to be combined with the inductances,
while in the parallel branches only capécities, whose
series resistance is negligible, occur.

The whole question of practical usability, however,
depends on the special conditions to be met in the particular
application. Its full discussion would of necessity in-
volve the consideration of equivalent networks.

In this connection it may also be pointed out that the
dual eircuit met with In Fig. 20 p. 55 could sometimes be
used, ﬁamely in such cases where the negative capacitj occurs
in parallel with a larger positive capacity (corresponding
to a zero at N = o ) so that the combination will be

positive,

68. It appears very definitely that the number of méshes

in a network is not predetefmined by the form of the'imped-
ance function, The fact that the number of meshes in an
_elecfrical network corresponds to the number of degrees of
freedom in a mechanicél system has given rise to the ides |
that this number is contained also in the impedance function®
It 1s evident that the impedance function determines the'
 behavior of the network only at its terminals and that its
internal behavior is still, to a certain extent, free. The

true relation between "degrees of freedom" internally and

response externally is as yet imperfectly understood.

*This is possibly one reason why no advance beyond genersl
two-mesh networks has previously been made in the present
problem, : '
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69. At each stage in the process described in sectionsv54-
66 the determination of a given number of independent ele-
ments in the network 1s accompanied by a corresponding re-
ductlion In the number of independent constants in the
function whieh remains. The resulting network therefore
does not contain any superfluous elements. Let us con-
sider this property of the network 1n greater detail.

| By an independent networklelement is meant one whose
value does not depend on the Vélues of other elements;
thiis in Fig. 19 the group of elements L] Lo L3z are not
independent since their vélﬁes are connected by tﬁe
relation |

InLg + LoLz + L1Lyz = O

Similarly by the number of independent constants in the
function is meant the number of such constanﬁs necessary
to détermine the function.

A function is completely determined by prescribing its
poles, 1ts zeros, and an arbitrary factor . Poles and
zeros in the interior of the left-half plane are either
real or occur in conjugate complex pairs. Hence to each
such pole or zero in the interior of the left-half plane
corresponds one Ilndependent constant. A pair of poles (or

zeros) on the imaginary axis involves only one constant,

vwhile poles or zeros at the origin or infinity introduce no

new constants, The number of independent constants in the
function is thus egual to

=(n+m+h+1) f (38.1)

T —— - - - e e he g o e————— e mm 5
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whare

]

number of poles in the interior of left-half plane

= n n H 1 1 i f f i}

m = - - zeros

h = number of pairs of poles and zerocs on the imaginary
axis (eXcluding O and oo )

We have stated this result in this way because a mere
count of the number of coefficients in numerator and de-
nominatér is not always sufficient. To every complex pair
of poles or zeros on the imaginary axis corresponds in
generalia relation among the coefficients, In the extreme
case where all zeros (or poles) lie on the imaginary axis,
these rélatibns are simply expréssed by stating that the
eoefficienté of elther the even or odd powers of hvin the
numerator (or denominator) are zeroc. In intermediate cases
the felations are not so‘easily seen* and therefore likely to
be missed unless a detailed examination of the poles and zeros
is made.

With these facts in mind it is easy to trace the reduc~
tion of the independént'constants in the function brought
about by the removal of the various groups of elements in
Table I, page 69, from the network.

In speclal cases additional relations besides those
mentioned above may exist among the coefficients, making
possible a still further reduction in the number of elements
in thé circuit, The possibility of making this reduction

will not always be evident from the process of Sectlons 59-63,

A simple 1llustration of this is given in Example 10 in the

* See for example section VS,Vequation (41).
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Appendix. This, hoWever, takes us into the consideration
of egulvalent networks, a complete discussion of which will

not be attempted in this thesis,

70. TFoster's "Reactance Theorem"(12) ig readily seen to be

a particular case of the application of Theorem IV in our
proecess; 1t occurs when all the poles and zefos lie.on the
axis‘of imaginaries and the impedance function is complete=
1y représented (for example) by the terms representing the
poles in Table I (a). It is also evident that every
function which is purely imaginary on the imaginary axils
muet be of this form.

Thé property of mutual sepsration of poles and zeros
follows as a consequence of the partial fraétioﬁ develop-
ment* but it can also be shown in a very interesting geo-
metrical manner in terms ¢f the complex plane and our
Lemma 1 (section 32). By this lemma and Theorem IV (ii)
each simple zero on the imaginary axis corresponds to a
point around which real and imaginary parts change sign as
shown in Fig. 22(&)T$?7€ﬁach gsimple pole on the other
hand has the direcfion of rotation reversed (corresponding
to the fact that (W2 + a2) appears in the denominator)

and real and imaginary parts consequently change sign

as shown in Pig. 22(b). If we superimpose a number of

¥ gee also Bibliog. (18).
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such regions correspon-
ding to the various poles
(as in Table I (a) when
Z'(A) = 0) it iz evident
that a reassonable seguence
in the chenge of sign of
the imaginary part cannot
be obtained unless an
intermedlate region cor-
responding to a zero occurs
betwsen esch pair of

poles as shown in Fig.22
(c)e

necessity of either a

This ineludes the

pole or a zero at
A= 0 and N= oo as is
also obvious algebraical~

ly.

71. The extension of Foster's Reactance theorem by Cauer

to all cases when two kinds of elements only are present

follows at once by a suitable transformation of Z(N).

This transformation corresponds to a substitution of

resistance for either inductance or capacitance in the

purely reactive network, é.g., if pZ(p) = Z;( p*) then Zi(h)
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has a network representation of indubances and resistances

only. On the other hand if Z(PP) = Zg(p"), then Zo(N) has

8 network representation of resistances and capacitances
ocnly.,

The condition of mutual separation of poles and zeros
is however not a general condition for cases where all
poles and zeros lie on the real axis; it ceases to be
necessary as soon as three kinds of elements (resistance,
inductance and capacitance) are permitted (ef. example 3,
Appendix). The difference lles in the fact that there is
no genefal theorem like Theorem IV for poles con the real
axis.,  Physically it is also obvious that the impedance
function of a nefwork with three kinds of elements can have
all its‘poies and zeros on the real axis which must then

have a different law of distribution from that which»is

necessary and sufficient for a network with only two kinds

of elementse.

(c) Formulas and Artifices to simplify Calculation.

72. We mention first a very simple method of determining

poles and zeros on the imaginary axis

Consider . Z(N) = -g—g:—)y , ‘ (1)

If we write the numerator (say) as
£) = U(=D") +AV(-) (39)
where U and V represent the‘even and odd parts of f£(n)
respebtively it is evident that any factor (N + @) of £(n)

must be a factor of both U and V. Consequently the H.C.F.
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of U and V will contain 8ll such factors. Furthermore, if

f(K) is the numerator of a "positive" function all the roots

of this H.C.F. (considered as a function of N*) must be

real and negative (i,e. Gilpositive) for otherwise one of

thé corresponding zeros would fall within the right-half

plane. Having found all these roots by'ahy one of the known
- methods¥, 211 the zeros on the axis of iméginariés will be

known., The same can be done for the poles.

73. We next proceed to discuss a method of determining the

residue gt a pole on the axis of imaginaries. In general

if N=f@ is a simple pole of Z(A) the residue %%(cf. section

35 equation (18))at this pole is given by
K =[-mZ™]), 0

Now take 3 =¢@ and let us write

I (O
z{n) = M+ o) hn
Then (A-iad) Z(n) =(7\:z?) e
g o K _ 1 fao
an 2~ 200 hao)

If now we write simllsrly to (39)

@) = PERY) = QERY) (39a)
we shall have |
U(a) + La Viag?)

K =
P(a?) + Lo Q)

*See for example Bibliog. (35) snd (36)
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It has been shown, however, (Theorem IV (iii) ) that

K must be a "positive real" quantity. Consequently

- U - V(&
L @ Q@ (a1)

and these equatioﬁs as well as the fact that K must be

positive are a check on whether we are lndeed dealing with
a "positive real" function. The simplification introduced
in calculating the residue % by (41) as compared with (40)
is obvious, The additional equation in (41)‘ at the same
time furnishes s check on the necessary condition which the
pole at N =*(€must fulfill in order that Z(f\) may be a

"positive" function.

74, We twrn next to the calculation of real and imaginary

parts of Z(n). For this purpose let us consider

z(n) = L2 (1)
For reference write also f(’?\) = Uf—-?il)"’-'\\l(t-?\i) (39)

g@®) = SEN) +nTER) (39D)
~ and fesolve Z(N) into even and odd functions of N as

follows :

£(n) g(-n)
gn) g(-n) _

The expression g(h). g(-N) will contain only even powers

Z(n) =

(42)

2 k3
of N since it may be written (equation 3%b) S ¢-AY) A TE
The numerator will contain both even and odd powers; ‘let

us separate these and write

20 = Gy ey 48

If A= i@, we have =N = and the first and second terms
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on the right-hand side of equation (42a2) become the real
and imaginary'parts of Z(ww) reSpectively} Let us write
-7\1;= 0" =0 and _ A

6(2) = Bo+ B.a+rBa* - _ _ __ +B.a™  (43a)

H) = C,+ C,h. + C, 0+ .+ Cpﬂp_ (430)
I(n) = Do+ DO+ D, 0% _ . ____ + Dg 0 (43c)

and for subsequent reference
F(Q) = A,+RAL+ A0+ _ _ _ _ - + A,n" (434d)
where  £(A) £(-n) = F(-N) = FP(Q)

~Then it can readily be shown that
' ' I

BO = bal e

By = b'— 2b.b, } f .

By = by —2b,by + 2b,k, B=2 bu b 07 (242)
B, = b ‘

with similér relations between the A's and a's.

Further
. N
CO = O‘obo 300
. 3
Cl = a, bl, —(agkz+ Clzba) } Cr= SZ a-r+5'3«:...5(:‘5.) (4-'4:b)
) ‘ ) 2~
CP = anP

-

(i.0. the C's are the polar forms of the A's or B's)

and S
Do = 7 b, + @, bo +50 St
Dl = %ba b G.’ b1+ azbl— Qaba } Dr‘: S:Z—‘ma.-r...s br j+](—l) (4.40 )
D.3 = —Qulog +Gby —a b, +aab,

: - a“ibv"'a.sloaj/

75 Minimum Value of 'R(.Q.). - For the purposes of the

general procedure summarized in Table I, page 69, it is

necessary only to calculate the coefficients of G(Q) and




-80- Cho IV -

H(Q); we have given the formulas c¢f the other coefficients,
however, for the sake of completeness.

It now becomes necessary to find the minimum value of

Rrin) = 22 (45)

Co+C,a+Caq’+- - +C,Q"
B, +Ba+Ba+__ +B,a"

This is a perfectly straightforward problem in differenﬁial
calculus, but actually it involves the most trouklesome
numerical computation of the whole procedure since 1t re-
quires the solution of an algebralc equation of high degree.
The following appears to be the best method of attack:

'fﬂ?

(i) Calculate the numerator o ; it is

da ?
(BL-BC) +2(BL,-BLYa+ [(B,C,-BC) *5CBaCa‘33Q)}~Q1
+{a(B,c.~B,C) + 4 (BC "B, Yy 2+ - .

_-+{is'&i§ct%}ff"t_ - (46)

s =gn

(ii) Make a rough plot of R(a) calculatihg the numerator

and denominator for different values of L by Horner's process.
(i1i) Select the value of fL which appears to give'the

minimum value of R(a) and substitute in expression (46); this
should give a value not greatly different from zeroc. By a
- method of successive linear interpolation find accurately the
root of (46) giﬁing the minimum R(f2) and from it calculate
accurately Ry (Table I (c)).

(iv) If, by some mischance, the value R, thus found were
not the actual minimum but merely a minimum value (j‘}z—i‘-‘ a)
thié:will'very soon meke 1tself evident in the subsequent

work.  An Ilmmediate check could, however, be made as follows:
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Calculate the numerator of R(Q) - Ry and apply Sturm's

theorem™ to determine the number of resl roots between

0 and co. This should be just one double root.

76. To determine the imaginary part of Z(ig) when

or Ly = N(o?) in Table I (d) p. 69, note that

z(ie) = U + (T V()
5(0‘1) + LG‘T-(Q"‘)

(ef. equations (39) and (39b) section 74),

Sinece Z(c¢o) is pure imaginery we have

) = U(O'l)= ‘-TV(TI)
i.ﬂ’(rr‘)' S

AR

(condition for vectors in numerator and denominstor to be

at right angles),

Zo) - U@y - Vg
Lo 0T S(o-‘)

We therefore have to calculate

i.e.

SN i MV

S 12 B Y=
= Qo Qa7 Tx O e o) - PR s
- - b,g? + baa"' - - - (")hbih—la
G Qs Tt A GTH = C0"aa,, G
= bo . bﬁ¢¢1+ b"g'"‘l R — (-'I)hbj_n‘Q—ZM

(47)

which is a comparatively simple calculation andbat once -

affords a check on itself, and on the corfectness of the

determination of R@Y and o in the previous step.

7. After determining I the next step correspords to a

separation of the pole in the reciprocal of the new im-
kpedance function W(N) (see Table I, p. 69). The

caleculation of the residue at such a pole has beenb

*See for example Blbliog. (35) Part I, pp. 198-204,
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discussed 1in section 73, Knowing this residue the sepa~
ration of the pole is mno more complicated than simple

algebraic division, for let

—|_.._ = _s_(m_, = K“ + 9:.6\)
W sy N+ Fa ()

where f1(A) = (N+g") fo(N), and %% is the residue of the
pole at N=%uw, calculated by equation (41) section 75;

then  goM) = g(A) - K £oM) / (N'+ o) (47.1)
This eliminates the neéessity for solving a System of linear

equations as in thé ordinary partial fraction method.

78. There remains only the separation of the pole at
infinity to complete process (d) in Table I, pagee69; this
presents no difficulty whatever, being a simple process of
division, The numerical case in Ex. 11 Appendix illus=
trates all the methods discussed above. It should be noted,
however, that in many cases the process can be carried

through entirely in terms of values of Z(M) at 0 and oo.
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CHAPTER V.

Extension of Method to the Determination of
Certain Equivalent Networks.

(a) Change in the Order of Procedure.

79. lVery slight consideration will show that the order of
the steps (a), (b), (e¢) and (d) specified in Table I, p. &9
is not essmential. Thus; for example, in the simpla case
where all the poleé end zeros lie on the axis of imaginaries
any pole or any zero‘may be removed first and thereafter
again any pole or any zero. The networks shown in Fig. 1
(page 4) are special cases when a definite order is adopted;
Fig. 1(a) results when all poles of Z(MN) are removed in
succession, i.e. the network given by Table I; (b):;zggiall
zeros are removed in succession; (¢) results when we remove
first the pole at infinity, then the zero at infinity and so
on alternately; and (d) when poles and zeroé are removed
élternately ét the origin. The order may, however, be en-

~ tirely haphazerd. In fact only "part of a pole" ) i,e. a term
representing a pole at the same point but with residue which
is a positive proper fraction of the corresponding residue of
Z(W), may be separated; the remaining positive function can
thereafter be represented in any of the ways shown in Fig. 1
(b) (e) or (d); this would give a network with superfluous

elements,

80. When we are dealing with o more general type of function,
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the order of removing poles and zeros on the imaginary
axis 1s still arbitrary until thé procedure of Table I(c)
becomes necessary. | Oﬁviously if there are any zeros on
the axis of imaginaries these will also be points at'which
Je. Z(eed) is zero; consequently step (d) becomes equivalent
to (b) until all zeros on the axis of imaginaries have
been removed. The presence of a pole in Z3(N) on the
imaginary axis however will not alter the value of Ry in
step (c). In the next step (d) therefore Zo(A) will be a
"positive" function and nothing will be altered in the
argument concerning the validity of the procedure (d). 1In
the event of a pole at infinity having been left in Zo(n)
we shall obtain L1.Lg + Lo.Lg + Lz.Ly > 0 instead of = 0,
which obviously still fulfills the physiesl requirements.
In fact in this case Ij is éxactly equal to(Lo + Lj)Table
I (a) and (d). Poles on the imaginary axis can therefore
be left in the function or separated at will at any stage

in the procedure (see Example 12 Appendix).

-1 ) )
8l. Another alternative is to treat Z{ny @s an admittance;
step (c¢) will correspond to the separation of a parallel
conductance from Z(N); in this case zeros of Z(h) do not

necessarily have to be first removed.

(b) Consideration of Negative Values of L

82, It was seen in Chapter III section 52 that for the

simpie case of two poles and zeros in the interlior of the
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left-half plane, a stétionary value of R(Q) occurring at a
negative value ole-céuld be used for obtaining a physicall&
realizable network, provided 1t satisfied the condition
Ry= R(2) when £ is positive (48)
It will now be shown that this is true for the general

case,

83. Negative values of (2 correspond to imaginary values of
(J which in turn means real values of A, If therefore we
write v |
Z(A) = R(W +2aN(-pY) - (49)

(ef. equation (43) section 74) the interpretation in terms
of real values of W\ can be carried over Trom the discussion
for pure imaginary values (sections 61 to 64) without any
difficulty. N

Let a stationary value of R(- N satisfying (48) occur
when 7\1=Y1, and let R, = R{-V¥?) |
Then if Z3(N\) = Ry + Zo(RA) (50)
1t 1s clear that Zo(A) will be a "positive real® function
in virtue of (48). |
Now if  Zp() = {R(-1%) - B} +MN(-TY)

we know that Zo(V) = VY N(-VY?)

n

Let us write Iy = N(-Y?Y)

1l

and Zo(N) = L3N + W(n) | - (51)
Then it follows from equations 50 and 51 that |
W(n) = {R(—?\‘)—Rv}+7\{N(-w),—,L.} (51a)

© and L., = _AL_ZY ) ~ (51b)

i

i.0. W(V)
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It is further clear that equations (51b) hold for N=%Y
Hence W(A) will not be a "positive" function, since it
has the zero A=V in the right-hslf plane. By Theorem
VI, Cordll. 1 (section 37) however we know that this is
the only zero of W(N) within the right-half plane. Note
further that
R W(isd) = 0 - (5lc)
in virtue of (48).
If therefore we separate the zeros at N=*%V from
W(A) by a partial fraction expansion of W%iT’ the re-
maining function may be a 'positive real” function.
For this purpose we examine the residues of the poles
of Wlﬁ\) at N =*tvy, We may rewrite (51a)
WOR) = RY (=A%) + AN (- WY
which, in virtﬁe of (51b) and the fact that R, is & station-
ary éalue of R(-N), can again be written
WR) = (A=Y2)2p (-R) + DA =YHn(-1?)

Hence the residue at N=VY 1is

7\_\(] = ! = .._li ' =
[W(?h 7‘:‘( o2y* H(—-YZ) 2 ( 38y ) ( 51d )
The residue at WN=-Y obviously has the same values

Conseguently we may write

1 - K -K 1
win NV D=V Wi (ny
KX 1
=St O (s1e)

*Phis property is the exact analogy to the property that
for a "positive real" function the residue at a pole on
the imaginary axis is a positive real gquantity.

——
b — e 3 .
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Since.ﬁismn%SSZ O and the first term of the right-hand

side of (5le) 1s pure imaginary for N =i, it follows

fr 2) that Je —-—> o,
om (5le) that Wi > © But W1 (M) has no zeros
in the right-half plane and no zeros on the imaginary axis.
Consequently by Theorem V, Coroll. 1, Wi(n) is a "positive

real” function, The process is completed by writing

W (A) = LgN + Zz(n) - (51f)
_ 1 _ Y?*
Also let | Ly =-5,D= 7 (51e)

It is now only necessary to show that the reduction
of Zg(N) to Zz(N) corresponds to the calculation of elements
in a phjsically realizable circuit.
| Referring to eguation (51b), we have
Z2(¥)

where, if ¥ is positive (and real), Z(Y) will be positive
and real, since Zo(A) is a "positive real function. Con-
sequently Ly is positive, |
Furthermore Lz, ecquation (51f), is positive since Zz is a
"positive real” function with a pole at infinity; and the

relation
IiLs + LgLg + Lgly = O (61g)

can be shown to hold in exactly the same manner as in
Section 62; conseguently Lo is negative and D is positive.
(K could also be proved to be positive by adapting
equation (41), sec. 73).

The process therefore corresponds to a determination of
the elements Ll;Lg,L3; D, of a realizable network connected

in the manner of Fig. 19 (section 62).
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(c) Relation to Affine Transformation of Quadratic Forms,

84. The application of an affine transformation to the
quadratlc forms connected with a network mentloned in

section 11 is equivalent to the following matrix multipli-

cation (17) '
Al = C' LALC. (52)

whére A 1s the matrix Il A, l of the coefficients of a
system of equations corresponding to a given network similar
to (8) section 19, A' is a similsr matrixz ffOTsﬂ[corres-A
ponding to an equivalent network; C is the matrix of the
affine transformation. The matrix C may be written il crsll
where

Ce=1, cs=0 (s+1) (52a)
the elements‘ Crs are real constants,and ¢' = |l . ff |
If we denote thé determinant of A by D, the determinant of

A' by D', and the determinant of ¢ by A we have

D! = ATD (53a)

and in virtue of (52a) the first minor
A 2D’ 22D : :
2a =2 Sa,  (53p)

It is on account of this property that the impedance

funcetion is invariant since

7

D D
2' (p) = 2> - o = Z(p) (53¢)
2, 2a,, )

This property is however equally true of the deter~-
minants -(st! IT?fsl II)fs$
and thelr first minors with respect to Lll’ Ryi, D13

respectlvely where
s = L‘l"S '0 + P-rs ',_D'r‘s P (8&)
(cf. section 19).
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85. Turning now to the networks obtained by the procedure
outlined in sections 61-64 and 83 we note that disregarding

the purely reactive part resulting from poles and zeros on

Fig. 23

the imaginary axis they always have a ladder structure with

no resistance in the parallel branches (see Fig. 23) con-

sequently
|Rrs| = |R;-0 © . 0 (54a)
: 0 R,0... .0
0O 0O Ry...0
G- - Rn
and the first minor
-2-1Rrs| = |Rg G .... 0 , (54p)
’B-Rll ) 1o Rs_._. fe)
6. - - R

The quotient of (54a) and (54b) is simply Ry and this

P | ' . quotlent is in-
variant under the
trensformation (52).

Thus i1f according to

section 83 several
values of Ry are

possible (e.g.Rlﬂgﬁs
3 )

b]

in Fig. 24) the cor-
Fig, 24 responding networks

cannét‘be deri#able,from each other by a transformation41ike
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(52), Such networks are therefore representetives of
separate groups in the sense of the affine transformation
52 (cf. section 12).  This is true also when % usgble
velues of R(Q) occurs for N= 0 or c0. In such a case a

network with a greater number of meshes results,

Bé. The following considerations seem to indicate that

ali equivalent networks are not exhauSted by the separate
groups pointed out in section 85 and the affine transfor-
matien within each group: It is possible in a three-mesh

| *{gtxym4%m network to‘assign 18 ab-
solutely arbitrary values to

18 independent elements in

. the network (see Fig, 25)
j ' 55"» V{#‘ These are represented by

»wwﬂgﬁi. ﬁﬁv f% - six elements in each of
Fig. 25 the matrices aL'rs“, “Rvsu, “Dfsﬂ .

Thevaffine fransformation matrix C corresponding to this
case has six independent constants; presumably these may be
SO chosen that in the matrix A' six of the eighteen ine
dependent elements in A will have dlsappeared leaving a
.toteal of twelve. Now the impedance function of the

general three-mesh network is
Q.+ AN 4—0.,) + a37\3+ a, N+ a,7| a 7\‘
b+ b,n*+ ba-ha + b47\4+ 715
and has at most four poles and six zeros in the 1nterior of

z(’r\) =

the left-half plane. - By equation (38.1) section 89 the
minimum number of elements (given by the precedure‘of Table I) is

(6+4+1) = 11, The affine transformation (52) therefore
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does not appear to give a means of proceeding from the
general circuit in Fig., 25 to the cirecult with the minimum

number of elements in Fig. 23 (closing at Rz) or vice versé.

87. In this connection Ex. 13 in the Appendix is alsc of
interest. Here we have gone out from a three-mesh network
like that shown in Fig. 25; the value of

l Rrsl/fg%“' |Res| (534)

for this network does not, howévef, appear as a stationary

value of e Z((d) for this network; in other words this
method apparently does not give representatives of all
groups. The mathematical proof depends on whether or not

i1t can be shown that expression (53d) is necessarily a mini-
‘mum of the real p#rt of Z(eR), .Suoh an investigation would
probably also diselose the true relation betwéen (534) and
R 7(2) .

88. In the methods developed thus far we were able to
separate poles and zeros only if they occur on the axis of
imagiﬂaries; in ceffain special cases this could also be
dbne when they'occur on the real axis. It is evident that
“under éuitablé conditions a zero (for example) in the
interior of the left=half plane can be separated,ahd :
corresponds Lo é branéh Withf?g?istance, capacitance and

inductance, in parallel with the network representation of

the remaining function. Such conditions can readily be
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found®; 1t is then only necessary to manipulate a given

funetion in suck a mammer that a remaining "positive real"

function satisfies these conditions, to obtain further
equivalent networks*¥,

The consideration of structures other than those of
a ladder type may alsc lead to interesting results.

From these remarks and those of the preceding section
1t 1s evident that a considerable gap stlill remains to be
bridged in the theory of equivalent networks. On the
other hand the results of bridging this gap should be of
interest from Fhe mathematical as well as the physical point

of view,

#IF N=-VEiT are poles and the corresponding residues
are =(ktih) the conditions sre kv+ho = 0, k positive.
It is interesting to note that this expresses the fact
that the vectors V+id and k + (h are at right angles, and
that poles on the imaginary axis with positive real
residue are a particular case of the general condition,
“¥Compare for example Foster Bibliog. (13) circuits 1,8,12,

353
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CHAPTER VI.

Derivation of the Impedance Function from
Prescribed Characteristics.

89. In the foregoing discussions we have assumed that the
characteristics of a required network were preséribed by
giving its impedanee function. This is only one way in
which these characteristics may be prescribed, and, for
our methods, it is the best adapted. When the character=-
istics are given in a different manner the problem of de-
riving the impédance function from the given characteristics
afises. |

N In the theory of network analysis it is shown that the
complete characteristics can be determined by two methods
of measurement®,

(i) Apply "unit" voltage (i;e. a voltage which is zero
when t <0 and unity when t > 0) and measure the corfes-
ponding current, This current is usually denoted by A(t)
and called the indicial admittance.,

(11i) Apply a steady alternating voltage and measure
the corresponding steady alternating current in magnitude
and phase for all frequencies. The measured current csan

bbe denoted by Y(wn)*%, (In the dual interpretation the

applied quantity would be current and the measured cguantity

$See’for example Bibliog. 9 p. 78 and pp. 176-181.

“*There 1s a superfluity of data in YKLGﬂ which will be
discussed later,
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voltage).
Both forms of measurement are ideal in that (i) re=

quires an infinite time and (ii) requires an infinite range

of frequencies.

90. If A(t) is given, then by a well known theorem®
oo

1 -at _
oz < [ eTRGA (55)
If A(t) is given as an.analytical function which actually
does dorfespond to a finite network, performance of the
1ntegration will lead to an algebraic function satisfying
the condition of "positiveness'".
Assuming, however, that A(t) is given as a curve and

that the infinite integration can be performed mechanically,

fié%F;) will be given as s curve. It will now be necessary
‘to fit a quotient of polynomials to this curve in suéh a
manner that Z(A) will be a "pbsitive” function. It ﬁill
probably be simpler to apply the condition of "positiveneés"
directly to the real part PGD) = R 2%25 which nmust be |

positive for real @ ; P(D) can be celculated from

E_(Z‘_Ja?_)_ = LH(_Q om0 dt ~ (55a)

This equation results from (55) by placing N= «@ and

separating real and imaginary parts.

We do not propose to enter into the details of calculating
Z(n) or P(®) as a rational function to fit the given Cufvé.
. This problem is complicated somewhat by the fact that the
function must not only approximate certain points in a

v - . o alze
finite range of the variable but must else satisfy.certain
¥See for example Bibliog.(8) p.19 or Bibliog.(9) p. 78. o
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conditions of ﬁositiveness for an infinite range of values

of the variable;

91, Consider next the case where Z(i®) is given. Again
- we shall waive the question of deriving suitable’glgebraic
functions from given curves, with no intention of minimizing
its practical lmportance however.

| Now Z(<wd) contains essentially two quantities, e.g. a
real and imaginary part, or alternatively a modulus and an:
argument (corresponding to amplitude and phase). It is é
well known fact that the specification of any one of these
détermines the others (except perhaps for some arbitrary
terms or factors). This is related to the Riemann conditions
for the real and imaginery part of an analytic function and
also to the Poisson integrai*connecting the value of harmonic
functions-in a closed region with the value éf one of them on
the boundary. Lee(24) has discussed the problem from the
standpoint of electrical mnetworks énd has givén the results
in terms of Hilbert’transformé. These invélve integrals aﬁd
-are perfectly general, but for even'cdmparatively simple
cases, present computations quite formidable in detailvthough'

~ simple in prineciple.

92, We wish to point out here an algebraie procedure which

is appiicable when the given functions are rational. This

¥*3ee for example Bibliog. 33 Vol. 1l p. 67 et seq.
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procedure may in éuch‘cases be preferable to the evaluation
of integréls, But the algebraic procedure is pérticularly
interesting in that it brings out the inherent simplicitj
of‘the'relations, at the same time making clear why the
results are not always unique,

The relations given in section 74 are taken as the
starting point; these relations express the coefficlents
of R{n), N(a), etec. in terms of the coefficients of Z(N)
while‘in the present discuséion‘we wish to proceed in the.
opposite direction. These equations, however, also point
the way for this opposite procedure.

Having obtained Z(n) from such a characterlstlc, the
question arises if it will be a "positive" function. It
would be very desirable to be able to predict this from the
given characteristic without first going through;the‘pro-
cedure of finding Z(M). If the characteristic given be
R{wY (the real part of'the'impedance) this presents no
difficulty since the conditions for "positiveness" of Z(A)
have already been stated in terms of R(«J), Theorem V. In
some of the other cases, however, iti s not so easy to
determine beforehand whether Z(MN) will be a "positive"
function. An extension of the properties discussed in
Theorem VI may be of value for this purpose, . For the

present it is not essential to do this, sinece it is enough

to be able to derive a Z% (A) which will generate the

given characteristic and then decide whether Z#(\) is

"positive" or not.
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93. Real Part of Impedance given. Let

_H@®) _ Ce+Cn+C,0%+__ _+C,a"
R(Q) = 5(@T = Bor B0+ B, Qs ___+ B.a" (45)

be giﬁep.‘

We note that iva(nJ is to be the real part of the
driving point impedance of a two-terminai network, R(L)
must be posifive for real positive values of L1 ; further
it can have no poles on the positive real Q axis (Theorem
Iv).

Now referring to equations (43), (44a), (44b) in
section 74 which we rewrite here

£(N) g(-N) _ H(N) - T(-)

2(0) = g ety < T ”‘—F‘T\‘T (43)
By =S=_Gbr+sbr—s(")s : (443)
Cr = 52.' an-sbr—s(“)s ’(44b) |

we'nobice first of all that we may write

a(-N) = g(n).g(-n)
in other words, the roots of G() are the negative squares
of.the roots of g(M). If the roots of G(Q) arevdétermined*
and éne denoted by 74, then the roots f&_of-g(ﬁ) wiil
immgdiately be given by |

v = —'JTZT | ' (56_)

éy’ - where the negative sign before the rdotfsign means that the

squafe'root which lies in the left-half plane must be taken;‘

real
Since positive,values of 4~ are not permltted because of the

*A method of finding these roots, which has an interesting
connection with the present problem, is that of raising them
to the 2Tth power. A detailed discussion of this method will
be found for example in Bibliog. (10) Ch. XXVIII or Bibliog.
(36) pp. 106-118, _
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exclusion of poles of R(L) for positive Q the question of

sgquare roots falling on the boundary does not arise., Note

that complex roots can be handled in conjugate pairs as

follows: ILet a pair of conjugate complex roots of G{Q)

be represeﬁted by the factor

. : Aéfl? + A'Q + A’O

then the corresponding pair in g(A) will be represented by
+Ia, W+ Ja'+2 R\ + JR! (562.)

The roots of g(MA) beihg known, g(A) itself is deter-
mined but for an arbitrary constant;‘but tﬁis is fixed by
a comparison of the coefficients ofwthe highest (or lowest)
power in G(Q) and g(N), in eguation (44a).

Wow all the coefficients byp of g(A) are known. Equétioh
(44b) thus becomes a linear system of equations with known
coefficients for detérmining the an.

We thus have a definite method of finding a Z(n) which
will generate the given R(f)., Reference to Theorem IV
however will showbthat thls is not the only Z(A) which will
generate thils R(Q) since an arbitrary number of terms ré—
preseﬁting poles with arbitrary positive real residueé can
be added fo thls Z(N) without affecting R{@). If we wish
~to fix Z(ﬁ) we must Spécify besides its feal»part on the
axis of 1maginaries; also its poles on this éxis and the
residue %& these poles,
| It is not>difficult to check thils in equation (44b) by
:éubstituting, €eZe ar.= a'y + L Dpr-1 and noting that a'y

satisfies exactly the same equations as ap (see Ex.14 Appendix).



-99- ‘ Che VI - 94

94. Imaginary Part of Impedance given. The procedure

here 1s very similar to that described in the preceding

section. The relevant equations are, besides (43) (44a)

(45)
— Do*DiQ+ D Q% - —+D,a"
N(-Q.) Bc0>+g§|l:-n-+— B;Q:L _ _4_-& an (4:58.)
. oo
Dr =2 argb,,,, N (44¢)

==-go

We note that & necessary condition for N(a) is that
poles on the positive real N axis shall be simple and have
negative residue (poles at infinity are excluded). These
poles may be removed if desired as

“{1> —Z- _n_‘._q’l.

the terms corresponding to poles under the summation being

+ Np(a) (57a)

immediately'fecognizable as belonging to the imaginary part

L _Kn
N+O

numerator of N(Q) can be made lower by unity than the

of when N\ =, Moreover the degree of the

degree of the denominator by a simple process ofﬁdivision

: D'+D'-Q+ = N "’Dn--ﬂ“-l
N =1 + 2 ! :
‘ tn) PBo+rBa+r- - - - +B.Q7

(57Db)

‘where we recognize the first term as belonging to the
imaginéry part‘of LN when N =; L must be positive., We
may thus reduce the problem to that of dealing with s
fundfion NGlJ which has no poles on the réal positive 0
axis, and whose numerator is of degree one lower than that
of the denominator, | |

. The coefficients by ¢f the denominator of tgé corres-
ponding Zi (h) may be found from the denominator of NLQ)
as in ‘the precedlng schion.

- In examining the linear equations (44c¢c) for the arf'
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it is at once evident that the number of equations is one

less than the number of unknowns. But thls system of

equations has the property that if one set of values ap

satisfies them, any other set
ap' = a, * Rbp _ (58)

will also satisfy them, for this merely results in adding

~R Z |°r+s|°rr—s4;|(—')s =0

S=-o

to the left-hand member of each eguation (44c). We may
therefore arbitrarily place ay (say) = O and solve for the
remaining ap, thus determining a Z#(M). The equation (58),
however, corresponds to adding an arbitrary coénstant R to
Z%(A)e The value of R can obviously be chosen so that

| Z(N) = z#(\) + B | (59)
will be a "positive" function provided R= Rp, where Ry is
the least value which will make J& Z¥#(wd) + Rp= 0. BEn is
finite because of the restrictions imposed on the poles of
IQQ); » Theée restriétions are thus sufficient in order thaﬁ
a "positive" funection Z(N) may be found to generate thé
given 1(Q).  The function Z(A) contains a semi-arbitrary

additive constant (see Ex. 15 Appendix).

95, Modulus of Impedance given. If we write

Zﬁw)=:£%gg

thén obviously

Jze) 2 = e fig (60)

or writing M(Q) for |z(w)l 2

F(2) _ Ae*ARFANY--+A,a"

(802)
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where F(-N) = f(h).f(Jh) and the Ay are deflned by

equations similar to (44a) section 74.

It is now readily seen that g(n) is obtained ffom G ()
as in the two preceding sections, while f(A) is found from
FP(Q) by an exactly similar process; the two calcﬁlations
are quite independent of each other.

Note that Z#(N) 1s completely determined by MGJJ; there
being no arbitrary terms or factors. The fuhction M(Q) may
have either poles or zeros on the positive real QL axis, but
examination of equatidn (60) in the light of Theorem II
sh?ws that_such poles or zeros must be double, sincé a single
pair of conjugate poles N=2%i¢ gives rise to two poles 0= ¢1
similarly for zZeros. .M(QJ is thus always positive for

positive values of Q , This is not yet sufficient however

- for Z#(A) to be a positive function, for while the poles and

zeros are properly located there is nothing to indicate that
the condition Je Z(wo)= 0 will be satisfied. This must
tﬁerefore be tested in the resulting Z#(7) beforevany con-
clusion can be drawn regarding the posslbility of a network

having'this characteristic,

96, Argument of Impedance given. From the équation
Z(i) = 'G'%)T + (@ clﬂ%‘_%‘ (61)

we readily‘deduce

tan(arg Z(@)) _ I(@) _ ~ '
R = iay = T (say) (62)

.
3
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But comparing with

Z(p) = E(N).(=N) _{r(a T (K
ARG G=n. K

we have K £ (M. g(-A) = H(<R) +NI(=)
It is tﬁerefore only necessary to find the roots of
the equation |

H(-N) +NI(-N) =0 (63)
and assign them among f(h) and g(-N). 'If the resultihg '
function

Z%#{M) = K (64)

Tl
P

is to have its poles and zeros in the ieft-half plane, those
roots of (63) which have negative real part must be assigned
to £(\) while those which have positive real part must be
assigned to g(N)e. Tt is evident that pure imaginary roots
neéd not be considered at this stage since a factor (7?+0})
of f(hj;g(JR) must be a factor of both H(=N) and T(-N); in
presqribing the funption J() = %%g%-, it can therefore be
cancelled.

It is clear, however, that such factors can be intro-

duced without affecting the prescribed J(). This is just

what we need if Z#(A) in (64) is not a "positive" function.

For let - J& Z#(wo) = R¥(QL) = 0
when £. has values in the intervals
0<4 SSL=4-
* -6.‘_4&3___{2‘4,‘
e | S (64a)
‘\\ fﬁﬂ\\ /f\ T T (ee Fig.26)
5 L \\ "l
FgNJﬁﬁ N A (Note: a change of sign in
¥ 32 I By s the whole range is accom-
: plished by merely changing

the sign of K in (64))
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If we now write
 R@ = re@ Tl (ao,-m:“"

. ~ T=1 (64b)
where ®, =*| and §n 1s Fhe greatest roat of R
we shall have made R(£1)2= 0 when Q20 for R#(Q) and the
preduct‘jit&ﬁdl) have the same sign for positive values
of 9, (irrespective of the sign chosen for &, in (64b)).

Moreovér the relation between R*(L) and R(Q) expressed
iﬁ (64b) is given exactly by

z(n) = ze(n) L enteay B
6, = + =t (64c)

and J 2= RP , a'= 4,

Z{A) in (64c) will now satisfy the conditions: (i) No
poles within the right-half plane; (iii) R z(wd)>= 0tor
Theorem V. It must still bé made to satisfy the condition:
(:‘Li) Poles on the boﬁndary must have positive real residues;
For this purpose we have at our disposal the »sign of 2:,
(64c): If any particular _5,, be given the vélue -1, N=2w
becomes a pole. The choice of the magnitude of < (Fig. 27)
ensures that the residue at this pole will be real (cf.
section 73). If the sign of the residue be negative B=ti¢,
is nof permissible as a pole, and consequently b, must be
assigned the value +1.. ~ If on the other hand the sign of the
reéidue is positive, b, must be assigned the value -1%,

In this way a "positive real function may be obtained®¥

*It ecan readily be checked in section 73 that if Z1(7\) "’"%(‘_n%a‘)
and 7, (M) - ) (nte ) R

EI) , then the residues at N=*(a for
71 and—— are opposite in sign. :

‘*Note the very drastic restriction on amplitude in (640)
which may be necessary to accomplish this.
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to generate the given 'phase'! function J(). Z(M) still
containg in it the arbitrary positive factor K in (64),
this-arbitrariness being obvicus also from physical con-

siderations.

97. It would be very interesting to make a closer com-
parison between the above algebralc procedures and Lee's
Hilbert transform methods., Lee did not impose the re-
striction of "positive" functions since, in his problem, a
proper location of poles and zeros was sufficient, It would
.be possible to do the same in the foregoing dlscussion, |
A further possibility which is of practical importance
is that of prescribing network characteristics over a finite
frequency range, instead of the infinlte range of frequencies
as has been done above, InAsuch cases it may be possible to
prescribe both real and imaginary parts within certain }imits*.
It is evident that some improvement and amplification
" in our present methods of deriving an impedance function from

prescribed characteristics is still desirable.

%Taking this point of view Dr. Csuer has already made some
progress. Publication of this work in the "Gdttinger
Nachrichten" is planned in the near future.
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APPENDIX.
Example 1.
_ -2t
Let Z(N\) =n+l , E= &
' : -2t
: _ & _ -2t
Then Is == -¢
Iy =ce €
If I = 0O when
N L v t=0,C=1
Lo} \ - -2t
N I ‘ end I = £ °— &
I S - ' The corresponding
AT ts togeth
S ) I currents together
I R 7 ‘Wftw |
e with the totsal
/N.I;
/ current are shown
-10(’ Figz7 in the diagrem.
Example 2, v
. . _ 2+3nt N zeros are =-1,-2
Gonsider z#(n) = TF n+4n> poles are =-étif%;

ot = 2mBaTHaD*
ez (@) = ToraTIest

This satisfies conditions (2a) and (2b) but is negative.

for values of af’between-é—and 1.
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Exemple 3,

Consider the function
. 2

+ 3N + 27
Z(N) = T

: ) + 70 + o> :
- We find Je Z(()=R(Q) = 1 +2211 +124gxz (whereﬁlzuf)
Whence  (R-1) + (25R-7)Q + (144R-24)0% = 0

For realf (25R-7)% - 4(R-1)(144R-24) 2 0

3 Eb g ] 1,e. 49R2 -

R = , 0= - &

The genersal variation of R with Q

is shown in Fig. 28. From this
Fig.28. it is evident that R(od=gcen be

taken out. Proceeding in this manner

1+ 7Aa+ 12Ar
2 £
=&+ 1/(7 + 54

E-Nura 1
+ 5“

=2 (B + 5 + Y 2T))

The corresponding network is shown in Fig. 29 (ef. also

Fig. 174).
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Exaniple 4,

Consider next

Z(N)

[

+ 3n+ 2N
TF n T 2n>

; 3 - 50+ 407%
«EZ(UD)':R(-Q) I T i I X . o

whence (9R-3) - (11R-5)2+ (4R-4)0"= 0
For real 2 (11R~5)2 = 4(9R-3)(4R-2)> 0O
i.e. =23R2 + 82R-23 > 0

or «3069<R = 3,268

R = 3.258, 2= 1,71

The variation of R(9)1is

shown in Fig, 30

Fig30.

The largest value of R that can be removed is .3069

Then L0793 + 2.693N + 1.386A"
Z(N) = 2069 + 3T N F 8 AT '

Using equations (32c¢) (page 51)

r = ,0264 D= ,0793
L1 +Lz = .898 Lz = .218

Check: To = 0.294

when R = 0.3069,0= 0,294

= Q. when R(Q) = ,307

The network representation is

shown in Fig, 31. 1L, Lo, L3z

represent two inductances Iﬂ% =
r= -

1 - %T-—":—zgma ' perfectly coupled with fluxes
‘ ; | Figal opposing.

C— — e PR . — g v ewe e e g
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Example 5.

| 6N +15N +4
54 N2 +2610 +32
BI0% T5850 164

S Z(iu0)=R (2)
Treating this in exactly the same way es Examples 3 and

4 we find

R(Q) = 0 whenQ = = ,12 or = 4,70
R(Q) = o0 when Q. = =,175 or = 4,57

R{)< .669 or ,716 = R(9Q)

R(£) = ,669 when 2= 7.3; R(f)=.716 when Q = -1.85

The variation of R(Q)

1‘1 f e * T +_. appears in Fig. 32.
Vo o/ o S gy =L+ D:SREL.EN
N . . * 2 BFC3A TONnE
=~ T L Eew
-5 o SL = =—!—+'— L ———J—%
) i ! 4 2%t L 3i.on
Lo & PR : ’
, L, 4 1 1 L
F:j 32, 2 'LI67\+ —6’—+ _l%h*_ 7’%’_

The network representation is shown in Fig. 33.
Red Rek

cw—-’\/\,-—g-«, : %‘:ﬂ;ﬁ—] |
= ‘&j i D=
. 176 Tf’g% ’

Fig33
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Example 6.

It is evident from Fig. 28 that the function

). N2\
Z) = TR IIE™

has an équivalent two-mesh representation (cf. also Fig.l7f)
since RCQ) =‘% is a stationary value and < R(f) for positive 2

Accordingly

1 6+ 14N + 2N*
2N = 7 + 7 Zon FBaa2

Using equstions (32¢) page 51.

6 6
r = D= Zg
Iythg = 2—9 | I = %3‘
Lotls = 1= Ly = -35
i Lz = 2% Ly = 2‘%

D 1 . 1
Check: To =°5 3 RE3) = 7

In Fig. 34 the group of in="

Re=d ‘ductances Lj, Lo, Lz isg shown
= as two ceils Lg, Ly perfectly

coupled with fluxes aiding.

NS

;  Example 7,

H The function Z(A) of Examples 2 and 5 permits of a
further equivalent representation in terms of Fig, 17G as

1* will be seen by locating the point (7,12) in Fig. 17(h)

or by examining the graph of ‘ﬁ272%53

The procedure for such a representation is
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2(d) = TrmTIERT

@\%J:—'
o=~

The corresponding network is shown in Fig. 35,

Example 8,

Let us consider the function Z(A) of Ex. 4 in the

“reciprocal :
1 _ 3tatent
Z(n) IFERTENZE

‘E 1 = S-SQ- +4:.Q.z
Z () _].:F5.S)_.:F4.Q_”

i.e. (R=3) + B(R+1)Q + 4(R-1)Q* = 0
For resl.Q 25(R+1)2 - 1'6(3-1)(1%-5)2 0
1.0, 9 RZ + 114R - 23 = 0
iees R< = 12,9 or 0.1980=< R

when R = =12.9, 2 = =,535,

when R 01980, D = 0,935,
This variation is shown in

Fige 56.

: 1
Now 'Z_](-ﬂ = ,1980 + VARGY)

_ 1,1
T 5.05 z' (n)
1 T T _ 1+3A+20*
| . s o ~ where 2'(A)= 5.B00T . 406N T1.604R2

Appiying equation 32¢ page 51
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' 1 1
T = B.B0% T 8963 D= Tugg = 24465
L1+L2 = 4.93 Ll =. 2,29 La=L1+L2 = 4.93
LotLz = 1.410 Lg = 2,64  Lp=Lz+Llo = 1.41
Ly +Lz = 1,07 Lz = «1.23

: D _
Check: To = e 9358
R(.935)=.1980.

1

The network is shown in Fig. 37.

Example 9.

Consider the network in Fig. 38. The impedance

function of this network is

1 1
z(») =
e
1 3Wi8AT 4
= IF¥ BnTIontZ

_ B6N*+15n + 4
‘ - R T ONTEEN F 8

K+
This function has been discussed in Ex. €& and found

to have the network representation shown in Fig. 33. The

four-mesh network of Fig. 38 is therefore egquivalent to

‘the three-mesh network of Fig. 33.
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Example 10,

The network shown in Fig. 39 has the impedance function
- 1
2l ) = s, T
I¥n  TIF2n

1+33+ 2)*
= FW_ 2-. “" -1

‘This network 1s thus equivalent to the

A PO
networks discussed in Ex. 3, 6.and 7. -

We note, however, that it has only four elements while the
networks previously discussed had (apparently) five in-
dependent elements. This is a special case where, in virtue
of a "hiddenf relation among the coefficients the general
pfoeess does not give the absolute minimum number of elements
whieh will realize the impedance function.

The "hidden" relstion in this case is

R = (a1by - acbg - agbo)/b1%

ivhere R is a usable stationary value of R(Q) <= 37'-).

It may further be poihted out that the circult of Fig.
39 is derivable from that of Fig. 34 by an affine transfor=-

mation of the quadratic forms (section 84)
. 1

'
For 6 6
P |

_./L 1
6 lle 7

‘Rrs| /{?—R“l Rrs‘ =
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Example 11,

To illustrate the general methods deseribed in Chapter

IV let us consider

Z(n) = BTN +74.4K° 279, 2N +369,56N° +570436N" +390,4h+254
S6N T30.BAFT108. 36 W F7L . DN FTOR |

After separating the poles at A= 0 and N= ® we have

302152

Z(A) = 1,4231a + + Z,(A)

where

_ 17.7615N +41, 400N +136.003X" +109.539A+151 .853
Z1(N) = =g TET. oA TI08 . 3eN L. ATTT

Using formulae (44a) and (44b) section 74 we have

3 . 2.
Cn _ +4618007-3,81300°+12.6566.0 =19.06510+11 . 9948
Je z(i0) = R(R) = gt <0507 ¥0, 04360711 . 61505755
and from formula (46) % = 0 when

0 =0°-11.21370°+50.82700" =122.7961.0° +165. 46100113, 9550,
| +28.7315

A rough plot of R(2) for various values of 2 is shown in
Fige. 40

Ll ey

Ppg 4.0 v

The minimum value of R(f2) is indicated Between_().=4 and
0= 5, | By successive»épproximation in the equation for |
Er i 0, the point is loecated at

L= 4,097; R(Q) = ,37930
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. Z3(N) = 23793 * Zo(N)

w_hé re
Zo(N) = 7.8997N‘+26.5045X’+94.89927f+81.5948h+121.8681
2 SEW T30.80 FL0B 36N T7442ATT79

Next from equations (47) we find
Iy = Zg(w) | - (¢*=4.097)

_ 7.89970°%-94,89920° +121.8681 - _ =g905
: =30.80%F T4.2 *

_ =26,30430 +81.3948
S6qI~108+360°F 70

il

-e36902

I

Zo(N) - +26904N + W(N)

where

WOV = 0.5050N +22.5875A +66.2934N +122,2820N +110.5489N+121,86810
| DEW T30, OA 108 ¢ 36R T 742N 79

1 _ 26N +39.,8% +108.36N" +744.20+79
FCT = TNFL.007)(0.5050n° F22.5075N 726, 984nT29.T46)

Using equations (41) the residue % at Z=Tw is given by

4 2
60t=-108,260 +79
K = 5E5s0e7=56.050e> = 1+415
- -29.,862+’74.2 _
T TPT.58756: 1204746 ‘,1°4l5
1 1,415n 12,4220 +7.83690+19,284
Lo TRT ~ WF4,097 TTEU50N 700+ 50 75N T264 UB4NT20. 746
' __l.4l5 1
= WFL.097 T Wn)
where

& . 1-}- + o
W (N) = 7724\ + 16‘53§7t 1?.089: 29.746

= JT724N + Zz(N) :
Again Ju 23(&0) =

AR , £ 0539.0"=5, 9362057362
W‘M:{J — _—’-‘.:.\\‘._1 1 - i e i —m
il R ’ TE | The variatlon of this
4 263 I .
' la ) _Ls may be discussed as in
i e -t -V

Exs. 2, 3 etc; the plot
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is shewn in Fig. 41.

il

1.263 + Za(N)

_ WBABENT+2,19220+5.3930
Z4(N) = ToZooRT 7. 82608 FI0 084

z23(N)

Using equations 32c pe 51
Rz = 42797 Db = ,688

Ly + Ig = ,1080 Ly = = (.222) = =,111
Lz + Lo = .444 Lo = «219

The network representation of the complete function

is accordingly shown in Fig., 42

D2 Re L= L= Lyt R L= s
3.2i82 2793 1423 —3690 1724 1263 —.dll

1y

L,= 7067

== B 2.8951

F@.4QM4

Ne.Be In this particular case the network may be fealiégﬁ
ﬁithout mutual induétahce since the positive and
negative inductahces.which appear in series in Fig, 42

may be combined into positive inductances,

Example 12

Consider the function

v _ (1N (143N +4NT)
Z(N) = Ty T

~ This has both a pole and a zero on the axis of
imaginaries,

(1) 1r accofding to Table I we separate the pole first
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we get ,
' A

Z(N) =

(i1) We may, however, separate the zerc first,

2(3+ N
3

1+A+20>
TFons Y EERE AT

and the network representation
whieh results when equations
(32¢c) are abplied is shown in
Fig. 43 (we know that J& Z(wd)
is zero when®@ = 1),

Then

+30 7))
ne)

and the network.representation
of Fig. 44 results on applying
equations 32¢ to the reciprocal
of the second term. (We know
that its real part.= 0 when

).

Thie is & very simple

4

- K3
A=ed gnd O =L

exemple of the equivalent representations pointed out in

section 80.

Example 1l3.

Bl R U (0w
e} ~ [ O.Z ’3

O QG 3
A z4
2

)\ 'u‘,._:...,,,.,.,...im ’5,,.«
A plpt il
PPN frrers

J oz 4

fr - R Sm——

The network of Flg. 45 has
the im@edance function dis-
cussed in Ex. 11. (In fact
this function was originally
derived from the network of
Fig. 44).

The matrix of the resist-

ances in this network



is 6 -4 -2 and
-2 -0.8 360
6 -4 =2 +J s) -0.8‘ _ ba36
-4 B =08l |-0.8 3 = 17,36 =~ 3733
2 "008 3'0

Tn Ex. 11 the minimum of &e Z(/@) was found to be = 3793
Moréovervthis is the only stationary value of R{ ) occur-
ring for real . besides the maximum shown in Fig. 40.

. Although the difference between these values 1s com-
paratively small, it is considerably greater than the limits
of error. An attempt to use the former value for the pro-
cedure outlined in this thesis readily discloses the unsult-

ability of this value for the procedure.

Example 14,

Let the real part of an a.c. impedance be specified as

a rational function of the square of the frequency by

_ (@+2)(n'+20+3)
RAQ) = {aF1)(ar-anra)

_o*4ai+70+6
= m=saratd

The former of these forms makes it clear that R(2)is
positive for positive values of b and consequently a gener-
ating Z(A) can be found which will be a fpositive” function.

We have immediately by equations (56) and (56a)

e(MN) = (1) (N HAr2)
= W+ on + 3N+ 2

Hence eguations (44b) become
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1= ag az = 1
4 = -3agz *2ag -a 7 = 2ay -ay ag = 4
7= ~2ap *+3a; -2a, 13 =-~2a, +3a3 a; = 10
6 = 2ag, ag = 3

Hence a generating function is

oW+ 17N + 20N+ 6
Z1(N) = v TRrF 3R T T)

If in addition we Spécify: a pole at N= oo residue 1j

a pole at A= 0, residue 3+; and a pole at A= T¢ residue 5

we have
_ 1 2R 2N +17A +20N+6
Z0N) = N * SR+ ST SRR ¥2)
uniquely determined.

Example 15.

Let the imaginary part of an a.c. impedance be given as
i v - B+ 4w+ ®
TR T of

5.+ 40+ 0%

4 - 390+ 0%

1+ 0
4 - SJL+,If1

f,0.N(Q) =

= 1 +

Considering the second term only, we havev
gh)=_g+}+3l

and equations (44c¢) become

f

N M-

1= -ag + 2ay RE Assume a5 = O then a;
1= - aj t as ag =

We thus have
LAt 3N
2+ N +pr

L
2
- 1. =50+ 307%

Z# (W) =
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SRS o The variation of this function
is shown in Fig. 46. Evident-

1y a constant of minimum value

iz must be added to Z#(A) to

bl

n

give a "positive" function.

Hence, incluc_ling the constant

term in N(&)
. D 2
Z(7\)=r+f'2j+7\+ m’...‘s-'%r
~ I+ 3N+ BAT 4

=r *+ 2+ N T AR

where r is any positive constant.

Example 16
| ~ Let the phaée angle @ of an a.c. impedance be prescribed
by
; 5 + {2
tan @ = @z g F 407

. Forming the equation (63) section 94

H(-A%) = 2+ én + 4a%
I{(-W) = 5 =n?

H(-7*) +NI(-A*) = 2 + 5A + 6N = A + 4n*

(1 + 3n+ 4N)(2 =N+ ) =0
Distributing the roots of this equation between f(h) and
g(-n) according as their real parts are positive or negative

respectively we obtain
‘ . £
ze(h) = ¢ S
_ 1+ 3N+
= C o R+ Az

[_Qver
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) 2 - 80+ 490%
Further_ﬂz*(uo) = R%(0) = 04 .T%%_-l. k™

It is readily seen that

R#%(Q) is positive except when 1= Q=3

S + + 2
Lot Z(N) = 0 g (W 1) (2nr+ )b

- Using equation 41 section 73 to calculate residues

if ,S'= -1, Ky = 1—:;‘1) x(-1)= -3 | (not permissible)
1f 6:.2 -1 Ko _—_(_._l_'f) x(ri,) = 1 (permissible)
FA
| _ (1t 3Rt 4R (1 + A
Hence 2N = C m =R T W) (1 2N

(cfe Example 12).
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