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Abstract

A de novo preparation of α-keto-imides via ynamide oxidation is described. With a number of alkyne
oxidation conditions screened, a highly efficient RuO2-NaIO4 mediated oxidation and a DMDO
oxidation have been identified to tolerate a wide range of ynamide types. In addition to accessing a
wide variety of α-keto-imides, the RuO2-NaIO4 protocol provides a novel entry to the vicinal
tricarbonyl motif via oxidation of push-pull ynamides, and imido acylsilanes from silyl-substituted
ynamides. Chemoselective oxidation of ynamides containing olefins can be achieved using DMDO,
while the RuO2-NaIO4 protocol is not effective. These studies provide further support for the
synthetic utility of ynamides.

Introduction
In our efforts to explore the reactivity of ynamides and to establish their utility as versatile
synthons, 1–4 we arrived at α-keto-imides5 [see 1a in Scheme 1], a hitherto underrepresented
chemical entity. Literature precedents on the engagement of α-keto-imides towards
diastereoselective outcomes,6 as well as a significant body of literature surrounding the
structurally related α-keto-amides [1b] and esters [1c],7–11 prompted us to pursue an optimized
entry to these molecules. Ynamide preparation via copper-mediated amidation of
bromoalkynes2c–i along with the recently reported amidations of terminal acetylenes2b have
tolerated a variety of amide types and alkyne functionality,2e,2g,3,12 providing access to a wide
variety of ynamides. Building on this versatile synthon, we pursued a highly efficient oxidative
protocol transforming a range of ynamide types to access a structurally diverse array of α-keto-
imides.

The limited literature involving α-keto-imides confirms their utility as synthons with the
potential of incorporating elements of stereocontrol. Some examples are successes in hetero-
Diels Alder reactions,6a an intriguing divergent diastereoselective allylation,6b
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diastereoselective cyanation,6c and Grignard additions.6d In these reports, preparations of α-
keto-imides were accomplished by amidation of α-keto-acids, or by ozonolytic or osmium
mediated oxidative cleavage of acrylimides. Although there is a compelling parallel between
α-keto-imides 1a and the related α-keto-amides [1b] and esters [1c], the latter has attracted
much more synthetic interest as evident from an array of elegant solutions to their construction,
8 including seminal work on oxidations of ynamines7a–d that is related to the efforts to be
described herein as well as advances in their applications as synthons,9 and a greater
understanding of their role as pharmacophores.10

The underlying reactivity of α-keto-amides [1b] and esters [1c] stems from the enhanced
electrophilicity of their respective keto carbonyl group. Transformations of these compounds
have involved the addition of nucleophiles9a with particular interest placed on attaining
stereochemical control through a chirality-inducing element substituted on the oxygen or
nitrogen atom. It is noteworthy that α-keto-amides 1b have also been engaged in pinacol-type
couplings9b as well as photocyclizations leading to β-lactams.9c In the biological setting, this
reactivity is implicated in the engagement of key cysteine and lysine residues important to
protease,10a–d lipase,10e and histone deacetylase activity.10f Facile hydrate formation of the α–
keto carbonyl, which serves as a transition state mimic of the tetrahedral intermediates
associated with amide and ester hydrolysis, has also been associated with enzyme inhibitory
activity.10b Given the close analogy between α-keto-imides 1a and α-keto-amides or esters
[1b or 1c], access to α-keto-imides should prove to be of significance in organic synthesis and
medicinal chemistry. We wish to report here highly efficient oxidative transformations of
ynamides to novel α-keto-imides.

Results and Discussion
Our first experiences with α–keto-imides arose from studies aimed at the preparation of
benzofurans via a Rh(I)-catalyzed demethylation-cyclization of o-anisole-substituted
ynamides such as 2 [Scheme 2].4c While not highly reproducible, α–keto-imide 35 could be
obtained in 45% yield by exposure of ynamide 2 to the action of Wilkinson’s catalyst and
AgBF4, and an X-ray structure of α–keto-imide 35 was also attained [see Supporting
Information]. Although we have not identified the stoichiometric oxidant involved, α–keto-
imide formation has been correlated with the use of contaminated/decomposed samples of
Wilkinson’s catalyst containing triphenylphosphine oxide.

A more consistent entry to α–keto-imides from ynamides became apparent during our
exploration of the dimethyldioxirane (DMDO) oxidation of ynamides 4 [Scheme 3].5 We were
interested in probing the possibility of arriving at push-pull carbenes 5 derived from the
oxidation of 1 through the rearrangement of presumed oxirenes A. This event was confirmed
by the isolation of push-pull carbene-derived cyclopropanes 6. The formation of α–keto-imides
7 was often a competing outcome of these reactions, presumably resulting from a second
oxidation of the carbenes 5, although oxidation of oxirenes A to 1,3-dioxabicyclobutanes 8
followed by rearrangement to α–keto-imides 7 cannot be ruled out.

Persuing the purposeful preparation of α-keto-imides, we examining a number of alkyne
oxidation conditions of ynamide 9 [Table 1]. In addition to DMDO oxidation,5,13 α–keto-imide
10 formation could be achieved by the action of ozone,7b–d m-CPBA,14 and RuO4 generated
in situ from either RuO2 or RuCl3.7a,15 We also examined the action of I2 in DMSO,16 as well
as CuCl2 in DMSO17 at elevated temperatures (150 °C), however, no evidence of α–keto-imide
10 was found, with complete consumption of the starting ynamide 9 [entries 6 and 7]. Oxidation
by DMDO18 provided the α–keto-imide in 86% isolated yield [entry 1] with ~5% yield of what
appears to be the corresponding α–keto-carboxylic acid accompanied by the free Evans’
oxazolidinone auxiliary. The stability of α–keto-imides in wet acetone suggests that the
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formation of α–keto-carboxylic acid does not occur by a simple event of hydrolyzing the
respective imide motif.5 We are currently still investigating this mechanistic issue. m-CPBA
oxidation provided only trace amounts of 10 [entry 3].19 The RuO4 mediated oxidation quickly
became the method of choice, yielding 10 in quantitative yields [entries 4 and 5].

We proceeded to examine the scope of RuO2-NaIO4 mediated oxidation varying ynamide
electronic properties [Table 2]. The ynamides examined varied in the nature of the electron
withdrawing group on nitrogen, as well as the electron withdrawing or donating ability of the
alkyne substituent [entries 4–6]. All oxidations proceeded in moderate to high yield, and the
resulting α-keto-imides tolerated routine laboratory handling such as purification and storage.
In addition to facile preparation of a variety of α-keto-imides, this method provides ready access
to the vicinal tricarbonyl motif as in 20 and 21 [entries 4 and 5] with long standing chemical
and biological intrigue,20 and these preparations also showcase the synthetic utility of so called
push-pull ynamides 14 and 15. Imido acylsilanes such as 22 [entry 6] should be poised for
umpolung chemistry elegantly demonstrated by Johnson’s tandem alkylation-aldolizations of
silylglyoxylates.11

We then examined the preparation of α-keto-imides from ynamides with varied alkyne
substitution and compared DMDO and RuO2-NaIO4 conditions [Table 3]. Throughout this
series, the RuO2-NaIO4 mediated oxidation provided higher yields of the doubly oxidized
products. Increasing steric bulk surrounding the alkyne [from entries 1–4] was well tolerated
by both methods, and is accompanied by increased yields under DMDO oxidation conditions
(remainder of the material is hydrolyzed). Both the TBS-silyl ether and THP acetal protecting
groups, as well as the N-tosyl group are tolerated under reaction conditions [see 27→37 and
28→38 in respective entries 5 and 6]. The yield of α-keto-imide 38 suffers from elimination
of the O-THP group [entry 6].21 High yields of triethylsilyl imido acylsilanes 39 and 40 were
obtained employing the RuO2-NaIO4 conditions [entries 7 and 8]. The preparation of these
less hindered silanes [relative to tri-isopropylsilane 22 in Table 2] was pursued due to their
added susceptibility towards engagement of the acylsilane.11 In contrast, the DMDO oxidation
of silylated ynamides 29 and 30 did not provide any trace of imido acylsilanes 39 and 40.22

DMDO oxidation of both N-sulfonyl-substituted ynamides 31 and 32 also did not yield the
respective α-ketoimides 4123 and 42.22

The last class of ynamides examined were those containing a tethered olefin [Table 4]. Ynamide
oxidation employing RuO2-NaIO4 led to the formation of a large number of higher polarity
products [SiO2 TLC analysis], attributed to alkene dihydroxylation and further cleavage
reactions,24 as well as the potential for ketal and hemi-ketalization of the resulting dihydroxy-
keto-imides. In these cases, DMDO oxidation proceeded with chemoselective oxidation of the
ynamide moeity. All the olefinic motifs in these substrates were stable to DMDO oxidation
except for the relatively more electron rich styryl group in 45 [entry 3], which suffered from
competitive epoxidation. In addition, for entries 1–4 and 6, we observed a noticeable amount
of the free oxazolidinone auxiliary, thereyby suggesting the formation of the corresponding α–
keto-carboxylic acid.5 Intramolecular cyclopropanation through intermediate push-pull
carbenes 55 [Scheme 3] was not oberved in any of these reactions.

CONCLUSION
We have described here efficient preparations of α-keto-imides through oxidations of
ynamides. Both RuO2-NaIO4 and DMDO oxidations tolerate a wide range of ynamide types
and substituents. In addition to facile preparation of a variety of α-keto-imides, the RuO2-
NaIO4 mediated oxidation provides ready access to the vicinal tricarbonyl motif via the
oxidation of push-pull ynamides as well as imido acylsilanes via the oxidation of silylated
ynamides. The RuO2-NaIO4 protocol does however lead to complex mixtures during the
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oxidation of olefin containing ynamides. In these cases, the chemoselective oxidation of such
ynamides can be achieved employing DMDO. We believe these protocols provide practical
access to a class of building blocks that will be significant in synthesis.

EXPERIMENTAL SECTION
General Procedure For RuO2-NaIO4 Mediated Oxidation of Ynamides

To a solution of ynamide 29 (377.0 mg, 1.670 mmol, 1 equiv) in CH2Cl2 (5 mL) and CH3CN
(5 mL) was added NaIO4 (1.07 g, 5.02 mmol, 3 equiv) in H2O (7.5 mL), and then RuO2•H2O
(11.2 mg, 0.0840 mmol, 5 mol%). The reaction mixture was stirred vigorously at rt, and the
reaction progress was followed by thin layer chromatography. The sides of the reaction flask
were rinsed with CH3CN (~1 mL) at 2 h, and the reaction stirred for another 2 h. The reaction
mixture was then filtered through a plug of SiO2 rinsing with CH2Cl2. Further purification was
accomplished by silica gel flash column chromatography [gradient elution: 17–50% EtOAc in
hexanes] to afford α–keto-imide 39 as a bright yellow oil (386.0 mg, 90% yield). Rf = 0.41
[50% EtOAc in hexanes]; 1H NMR (500 MHz, CDCl3) δ 0.83 (q, 6H, J = 8.0 Hz), 1.03 (t, 9H,
J = 8.0 Hz), 4.02 (m, 2H), and 4.59 (m, 2H); 13C NMR (125 MHz, CDCl3) δ 2.3, 7.1, 41.1,
64.7, 154.2, 171.5, and 232.8; IR (neat) cm−1 2958w, 2914w, 2879w, 1780s, 1681s, 1642m,
1478w, 1390s, 1361m, 1335m, 1226s, 1117m, 1028m, and 967m; mass spectrum (APCI): m/
e (% relative intensity) 258 (10) (M+1)+, 202 (90), 172 (100), and 128 (25); HRMS (ESI) m/
e calcd for C11H20NO4Si+ (M+H+) 258.1156, found 258.1146.

General Procedure For DMDO Oxidation of Ynamides
To a solution of ynamide 49 (45.4 mg, 0.167 mmol) in acetone (12 mL) was added DMDO
(6.0 mL, 0.11 M in acetone, 4 equiv)18,25 at rt. The resulting reaction mixture was stirred for
2.5 h before it was filtered through Celite™ rinsing with CH2Cl2 and concentrated in vacuo.
The crude residue was purification by silica gel flash column chromatography [gradient elution:
17–67% EtOAc in hexanes] to provide α–keto-imide 56 as a yellow crystalline solid (44.6 mg,
88% yield). Rf = 0.33 [67% EtOAc in hexanes]; mp = 152.0 – 153.0 °C; 1H NMR (500 MHz,
CDCl3) δ 2.17 (m, 2H), 2.52 (br s, 2H), 3.83 (t, 2H, J = 7.5 Hz), 3.85 (s, 3H), 4.49 (ddd, 2H,
J = 6.0, 1.0, 1.0 Hz), 5.33 (ddt, 1H, J = 10.5, 1.0, 1.0 Hz), 5.39 (ddt, 1H, J = 17.5, 1.5, 1.5 Hz),
5.96 (ddt, 1H, J = 17.5, 10.5, 6.0 Hz), 6.39 (d, 1H, J = 2.0 Hz), 6.63 (dd, 1H, J = 9.0, 2.5 Hz),
and 8.04 (d, 1H, J = 9.0 Hz); 13C NMR (125 MHz, CDCl3) δ 18.5, 32.1, 43.6, 55.9, 70.1, 99.2,
107.1, 116.4, 119.7, 132.3, 132.8, 161.1, 166.5, 168.1, 175.7, and 186.1; IR (film) cm−1 3079w,
2938w, 2899w, 2852w, 1738m, 1673m, 1656m, 1595s, 1575m, 1504m, 1447m, 1421m, 1363s,
1286m, 1251s, 1231s, 1204s, 1175m, 1115m, 993s, 909m, and 837m; mass spectrum (APCI):
m/e (% relative intensity) 304 (65) (M+1)+, and 191 (100); HRMS (MALDI) m/e calcd for
C16H17NO5Na+ (M+Na+) 326.0999, found 326.0998.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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(conc = 0.2 M), comparing the integration values corresponding to the proton peaks belonging to the
remaining thioanisole and the resulting methyl phenyl sulfoxide.

Al-Rashid et al. Page 6

J Org Chem. Author manuscript; available in PMC 2009 August 3.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Scheme 1.
Ynamide-Derived α-Keto-Imides.
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Scheme 2.
α-Keto-Imide Formation RhCl(PPh3)3-AgBF4.
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Scheme 3.
DMDO Oxidation of Ynamides.
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Table 1
Conditions for α-Keto-Imide Formation.

entry conditions yield [%]a

1 DMDO, acetone, rt, 2.5 h 86%

2 1) O3, CH2Cl2, −78 °C to rt, 2 h; 2) DMS 70%

3 m-CPBA, CH2Cl2, rt, 2.5 h trace

4 RuO2•H2O, NaIO4 CH2Cl2, CH3CN, H2O, rt, 4 h 96%

5 RuCl3•H2O, NaIO4, CH2Cl2, CH3CN, H2O, rt, 4
h

99%

6 I2, DMSO, 150°C, 1 h ndb

7 CuCl2, DMSO, 150°C, 24 h nd

a
Isolated yields.

b
Not detected.
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Table 2
RuO2-NaIO4 Mediated Oxidation.

entry ynamides α-keto-imidesa yield [%]b

1

11

17

91

2

12
18

77
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entry ynamides α-keto-imidesa yield [%]b

3

13

19

95
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entry ynamides α-keto-imidesa yield [%]b

4

14

20

71

5

15

21

79
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entry ynamides α-keto-imidesa yield [%]b

6

16 22

99

a
5 mol% RuO2•H2O, 3 equiv NaIO4, CH2Cl2/CH3CN/H2O, rt, 4 h.

b
Isolated yields.
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Table 4
Chemoselectivity in Oxidatively Sensitive Ynamides.

entry ynamides α-keto-imidesa yield [%]b

1

43

50

46
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entry ynamides α-keto-imidesa yield [%]b

2

44

51

35
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entry ynamides α-keto-imidesa yield [%]b

3

45 52

15c

4

46

53

40
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entry ynamides α-keto-imidesa yield [%]b

5

47

54

65
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entry ynamides α-keto-imidesa yield [%]b

6

48

55

39
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entry ynamides α-keto-imidesa yield [%]b

7

49

56

88

a
4 equiv DMDO, acetone, it, 2.5 h.

b
Isolated yields.

c
Also isolated~33% yield of the epoxidized α-keto-imide.
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