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Organic chemists have striven to realize a wide variety of 
structural features on the molecular scale in nanocarbons. 
For example, nanocarbons with spherical, sheet-like, cylin-

drical or other exotic structures are usually obtained as mixtures 
on applying a high energy to the appropriate carbon sources1–4. In 
this context, molecular nanocarbon science, with which such sub-
structures are created in a precisely controlled fashion, has attracted 
substantial attention, given that this approach is fundamentally able 
to circumvent the problem of the formation of such nanocarbon 
mixtures5,6.

The history of the development of molecular nanocarbon science 
can be classified in terms of topology. Cycloparaphenylene, which 
was first proposed in the 1930s, is a ring-shaped molecular nano-
carbon that represents a partial structure of carbon nanotubes7–10. 
Although cycloparaphenylenes were initially difficult to synthesize 
due to their high intrinsic strain energies, several synthetic meth-
ods, such as those reported since 2008 by Jasti, Itami and Yamago 
and their co-workers11–13, have enabled the creation of molecular 
nanocarbons that exhibit non-trivial topologies, such as cages14–17, 
catenanes and knots18,19. The next breakthrough in this research 
field was the synthesis of a carbon nanobelt (CNB) achieved by our 
group in 201720. The fully fused, belt-shaped topology of CNBs cre-
ates two non-convertible faces, that is, the inner and outer faces. 
Since then, the synthetic chemistry of CNBs and related belt-shaped 
arenes has been intensively investigated worldwide in the context of 
the bottom-up construction of carbon nanotube substructures21,22 
as well as in the creation of new functional molecular nanocarbon 
materials.

The CNB structural feature of irreducible inner and outer faces 
can be extended to aromatic molecules with the topology of a 
Möbius strip, which is the simplest example of a non-orientable sur-
face (Fig. 1a). Möbius-type molecules are found in nature23 and have 
been of interest in synthetic organic chemistry, as demonstrated by 
the successful preparation of a non-conjugated Möbius-type double-
stranded molecule by Walba et al. in 1982 (Fig. 1b, left)24. Aromatic 
single-stranded molecules with Möbius aromaticity were realized 
by Herges and co-workers in 200325, and Möbius aromaticity was 

further investigated by Grażyński and co-workers26 and Osuka and 
co-workers27,28. Despite several examples of single-stranded Möbius 
molecules29–33, double-stranded aromatic molecules with a Möbius 
topology still remain limited due to the difficulties associated with 
their synthesis. As shown in Fig. 1b, saturated linkers (–CH2O–) 
or chalcogen atom linkers (–S–) are necessary to reduce the strain 
caused by the Möbius topology (Fig. 1b, centre and right)34,35. Even 
though Möbius-type CNBs have been theoretically proposed since 
the 1990s36–38, a synthetic methodology to introduce Möbius topol-
ogy to fully fused and fully conjugated all-sp2 carbon structures still 
remains to be developed in molecular nanocarbon science.

Results and discussion
Here we report the synthesis, isolation and optical analysis of a 
Möbius carbon nanobelt (MCNB), that is, a fully fused CNB with a 
twist. The key to the synthesis of such MCNBs is a modification of 
our previously reported synthetic strategy for CNBs19,39. As shown in 
Fig. 1c, (n,n)CNBs (n = 6, 8 and 12, where (n,n) is the chiral index of 
the corresponding carbon nanotubes) were synthesized via a reduc-
tive homocoupling reaction using cyclic molecules that consisted 
of dibromoparaphenylene and cis-ethenylene precursors19,39. The 
important feature of this method is that a CNB can be generated 
when the number of repeat units is even, whereas an MCNB can 
be obtained when the number is odd. This is a simple but powerful 
method for the synthesis of a complex Möbius topology from highly 
symmetric precursors.

Strain energy calculation. The target size of the MCNB was deter-
mined using density functional theory (DFT) calculations. We 
found that MCNBs have a higher strain energy than CNBs of the 
same size (for details, see Supplementary Fig. 1), and that the strain 
of the MCNBs is mainly induced during the final bond-formation 
step. Figure 2a,b shows the hypothetical homodesmotic reactions 
using (n,n)MCNBs, (n,n)CNBs and their corresponding precursors 
(pre(n,n)MCNBs and pre(n,n)CNBs), based on which the strain 
induced in the final bond-formation step (ΔHFBF (kcal mol–1)) was 
estimated. Cis-stilbene and phenanthrene were used as reference 
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molecules. For belts of a similar size, the ΔHFBF of the MCNB 
was much higher than that of the CNB (for example, (6,6)CNB, 
ΔHFBF = 40.2 kcal mol–1; (7,7)MCNB, ΔHFBF = 121.1 kcal mol–1). As 
(6,6)CNB was successfully synthesized using a nickel-mediated 
homocoupling reaction, the strain energy allowed by this synthetic 
method was estimated to be approximately 40 kcal mol–1. Based on 
these considerations, the synthetic pathway and the symmetry of 
the product, (15,15)MCNB (ΔHFBF = 51.1 kcal mol–1) and (25,25)
MCNB (ΔHFBF = 29.6 kcal mol–1) were selected as the targets. The 
strain energies of the molecules were overall 85.7 and 49.4 kcal mol–1,  
respectively, which indicates that the strain decreases with increas-
ing size of the MCNB (for details, see Supplementary Fig. 1).

Synthesis. Our synthetic route to the MCNBs is shown in Figs. 3 
and 4. To improve the solubility of the intermediates and products, 

n-butoxy groups were introduced to the starting material 2. Thus, 
(25,25)MCNB with 20 butoxy groups (1) was targeted and synthe-
sized from simple precursors 2 and 5 over 14 steps. First, the unsym-
metric functionalization of phenanthrene 2 was investigated to 
ensure a Z-selective Wittig reaction sequence. During the screening 
of the Lewis-acid-catalysed formylation of 2, we found that mono-
formylated 3 was obtained selectively using TiCl4 and MeOCHCl2 
in a high yield (75%), and that a subsequent chloromethylation with 
ZrCl4 and MeOCH2Cl smoothly afforded the bifunctional phenan-
threne 4a with formyl and chloromethyl groups in an 84% yield. The 
formyl and chloromethyl groups of 4a were then converted into ace-
tal and phosphonium groups, respectively, to yield 4b. The sequen-
tial Wittig reaction of 5 with 4a followed by 4b produced the key 
intermediate 7c (Fig. 3a). Starting from 7c as the monomer, its dimer 
(8c), trimer (9c) and pentamer (10c) were synthesized via Wittig 
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Fig. 1 | Representative Möbius-strip molecules. a, The models of belt- and Möbius-type strips. b, Previously reported belt-shaped double-stranded 
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reactions (Fig. 3b). In these reactions, the formyl and phosphonium 
groups reacted selectively, as the chloromethyl and dimethylacetal 
groups were inert under the reaction conditions. The macrocycli-
zation was performed with 10d, which was derived from 10c and 
bore formyl and phosphonium groups to yield 11 in a 67% yield. The 
reductive coupling of 11 with Ni(cod)2 (cod, 1,8-cyclooctadiene) and 
4,4′-methoxycarbonyl-2,2′-bipyridyl gave (BuO)20(25,25)MCNB 
(1) in a 20% yield (Fig. 4a). In contrast, only a trace mass peak cor-
responding to (BuO)12(15,15)MCNB for the macrocycle 12 was 
observed under similar conditions (Fig. 4b; see Supplementary Fig. 2  
for details). According to DFT calculations, the failure to generate 
the (15,15)MCNB structure might be due to the huge strain required 
for the formation of the final bond (ΔHFBF = 51.1 kcal mol–1).

The thus obtained Möbius belt 1 was characterized using 
high-resolution mass spectrometry and NMR spectroscopy. The  

high-resolution mass spectrum showed an isotope pattern with its 
highest peak at 3,944.9449, which is in good agreement with the 
simulated pattern and mass number (m/z = 3,944.9423) expected 
for C280H260O20 (for details, see Supplementary Fig. 3). The DFT-
optimized structure of 1 shows a C2-symmetry with a long (~38 Å) 
and a short (~30 Å) axis (Fig. 5a). The broadened aromatic signals 
in the 1H NMR spectrum observed at 25 °C converged at 140 °C into 
seven singlet signals, which can be assigned to a–h (shown in Fig. 5b)  
as supported by DFT calculations (see Supplementary Fig. 7 for 
details). These results indicate that the twist moiety of the Möbius 
belt moves quickly around the belt at a high temperature, as pre-
dicted for Möbius cyclacenes40. As shown in Fig. 5c, the molecu-
lar motion was simulated using a density functional tight binding 
with molecular dynamics (DFTB-MD) calculation (for details, see 
Materials and methods in the Supplementary Information).
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Photophysical properties. The photophysical properties of Möbius 
CNB 1 were also investigated. As shown in Fig. 6a, absorption max-
ima at 389 and 409 nm as well as a small absorption peak at 477 nm 
were observed, and greenish-blue fluorescence with maxima at 480,  
513 and 551 nm were observed on excitation at 380 nm. Based on the  
fluorescence quantum yield (10%) and half-life (14.1 ns), the radia-
tive and non-radiative decay rate constants (kr and knr) were esti-
mated to be 7.1 × 106 and 6.4 × 107 s–1, respectively. Time-dependent 
DFT calculations of 1 suggested that, unlike in the D3h-symmetric 
(6,6)CNB, the S0 → S1 transition (assignable to the small band at 
477 nm) is symmetry allowed (f = 0.6239), which reflects the lowered 
symmetry caused by the Möbius topology (Supplementary Fig. 4).  
The topological chirality of 1 was also examined experimentally. 

Chiral separation of 1 was successfully achieved using chiral HPLC, 
and the circular dichroism (CD) spectrum of each fraction was 
collected (Fig. 6b and Supplementary Figs. 5 and 6). Based on the 
CD spectra simulated using time-dependent DFT calculations (for 
details, see Supplementary Fig. 6), the first and second fractions were 
tentatively assigned to M and P chirality, respectively.

Conclusion
In conclusion, we successfully synthesized a MCNB, that is, a topo-
logical molecular nanocarbon with a twist on armchair CNBs. The 
strategy of using a variant of the previously used CNB precursor, 
cyclo(dibromoparaphenylene-Z-ethenylene) with an odd number 
of units led to the discovery of a rational synthetic route to such 
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MCNBs. DFT calculations of the intrinsic strain energies suggested 
that the synthesis of MCNBs with large sizes would be most prom-
ising, and therefore, (25,25)MCNB was selected as the target. The 
synthesis was carried out via Z-selective Wittig and intramolecular 
homocoupling reactions with nickel complexes to yield decabu-
toxylated (25,25)MCNB (1) over 14 steps. NMR spectroscopy and 
DFTB-MD calculations revealed that the Möbius twist structure 
moved quickly around the molecule in solution. Photophysical 
measurements revealed that the synthesized MCNB exhibited a 
greenish-blue fluorescence with a symmetry-allowed S0 → S1 transi-
tion caused by the lowered symmetry. Experimentally, chiral HPLC 
separation and CD spectroscopy revealed that the chirality origi-
nates from the Möbius topology. The combination of strain calcula-
tions with a rational synthetic strategy can be expected to create a 
variety of topological molecular nanocarbons, which will promote 
the progress of materials science in this area.

Methods
For the synthesis of (BuO)20(25,25)MCNB (1), to a 50 ml flask filled with argon 
gas were added Ni(cod)2 (130 mg, 0.473 mmol, 30 equiv.), 4,4‘-methoxycarbonyl-
2,2′-bipyridyl (129 mg, 0.473 mmol, 30 equiv.) and NMP (9.6 ml). After the 
mixture was stirred at 70 °C for 1 h, the NMP (6.2 ml) solution of 11 (100 mg, 
0.0157 mmol) was added and the resulting mixture was stirred at 70 °C for 
20 min. The mixture was cooled to 0 °C and aqueous NH4Cl (12 ml) was added. 
The organic layer was extracted with chloroform, washed with brine, dried over 
Na2SO4 and then evaporated in vacuo. The crude product was purified by column 
chromatography (chloroform) and preparative thin-layer chromatography 
(hexane:chloroform:ethanol, 15:85:0.5) to afford (BuO)20(25,25)MCNB (1) 
(12.7 mg, 20%).

Data availability
Source data are provided with this paper. The experimental data and the 
characterization data for all of the compounds prepared in the course of these 
studies are provided in the Supplementary Information.
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