Cite this: DOI: 10.1039/c9ra00972h

Received 5th February 2019
Accepted 5th March 2019
DOI: 10.1039/c9ra00972h
rsc.li/rsc-advances

Synthesis of a novel resorcin[4]arene-glucose conjugate and its catalysis of the CuAAC reaction for the synthesis of 1,4-disubstituted 1,2,3-triazoles in water \dagger

Ali A. Husain and Kirpal S. Bisht (D)

Abstract

The $\mathrm{Cu}(1)$-catalyzed azide-alkyne cycloaddition (CuAAC) in aqueous media using resorcin[4]arene glycoconjugate (RG) is reported. The eight β-D-glucopyranoside moieties constructed on the resorcin[4] arene upper rim provide a pseudo-saccharide cavity that offers a suitable host environment for waterinsoluble hydrophobic azido and/or alkyne substrates in water. The utility of RG was established as an efficient inverse phase transfer catalyst for the CuAAC in water as a green approach for the synthesis of 1,4 -disubstituted 1,2,3-triazole species. The catalytic utility of RG (1 mol\%) was demonstrated in a multicomponent one-pot CuAAC for various azido/alkyne substrates. The RG acts as a molecular host and a micro-reactor resulting in the 1,4-disubstituted 1,2,3-triazoles in excellent yield.

Introduction

The classical Huisgen ${ }^{1}$ cycloaddition reaction for the synthesis of 1,2,3-triazole involves thermal 1,3-dipolar cycloaddition of organic azides with alkynes, though in low yield and mixed regioselectivity. Sharpless ${ }^{\prime 2}$ and Meldal's ${ }^{3}$ research groups later independently developed the improved procedure involving the copper(I)-catalyzed Huisgen 1,3-dipolar cycloaddition reaction, which is the widely studied 'click' reaction (Scheme 1). The impact of the copper catalyzed azide-alkyne click reaction in various branches of science is increasing exponentially as evidenced from numerous recent reviews available in the literature since 2010. ${ }^{4}$

The three most common facile protocols for CuAAC include (i) use of copper(I) salts (mostly in organic solvents), (ii) the reduction of a copper(II to I), and (iii) oxidation of $\mathrm{Cu}(0$ to I). Of the three protocols described above, the method employing in situ reduction of copper(II) salts is known to be more practical

Scheme 1 Azide-alkyne cycloaddition (AAC) reaction under different reaction conditions.

[^0]and can be carried out in aqueous conditions. From review of literature, it is easy to conclude that water is an appropriate choice as a solvent for the $\mathrm{CuSO}_{4} /$ sodium ascorbate catalyzed click protocol, which results in the formation of the triazole in high yields and with excellent regioselectivity. However, despite the efficiency of the CuAAC reaction, there are limitations to using the procedure especially when the substrates are not water-soluble. The protocol in essence requires deoxygenated conditions in the presence of mixed aprotic organic solvents such as THF, $\mathrm{CH}_{3} \mathrm{CN}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$, toluene, etc. and due to the oxidative tendency of the copper (I), a higher catalyst concentration throughout the reaction is needed. To stabilize the catalyst, several phosphine-based complexes and amine-based (bound with different heterocyclic donors) ligands have been used for rate acceleration. ${ }^{5}$ Additionally, a number of heterogeneous Cu catalysts, ${ }^{6}$ including amberlyst resin-supported, ${ }^{7}$ polymer-supported, ${ }^{8}$ and zeolite-supported ${ }^{9}$ have been explored to catalyze the triazole formation. To speed up the azide-alkyne reaction, use of surfactants and phase transfer catalyst, ${ }^{10}$ the microwave ${ }^{11}$ and ultrasound irradiations ${ }^{12}$ have also been reported. ${ }^{13}$

Recently, our research group reported resorcin[4]arene cavitand glycoconjugates (RCGs) ${ }^{14}$ as inverse phase transfer catalysts with abilities to catalyze organic reactions in aqueous media. We also reported on the RCGs ability to catalyze the formation of 1,4 -disubstituted 1,2,3-triazoles in water without the addition of any co-organic solvents. ${ }^{14}$ It is noteworthy to mention that we were the first to establish the concept of the spatial directionality of β-d-glycopyranoside units on the resorcin[4]arene rigid structure "cavitand". The RCGs possesses a unique molecular host system "pseudo-saccharide bucket"

Fig. 1 Resorcin[4]arene glycoconjugate (RG \& RCGs ${ }^{14}$).
which can encapsulate organic substrates and catalyze chemical reactions in water. ${ }^{14}$

In this manuscript, we describe the synthesis of a resorcin[4] arene glycoconjugate (RG) (Fig. 1) and its application as a microreactor for the synthesis of 1,4-disubstituted 1,2,3-triazole species in aqueous media via the CuAAC reaction. RG structure consists of eight β-d-glucopyranoside moieties constructed on the phenolic parts on the resorcin[4]arene upper rim via multiple 1,4disubstituted 1,2,3-triazole linkages. The eight arm resorcin[4] arene glycoconjugate offers an enlarged flexible pseudosaccharide cavity that can act as a molecular vessel for waterinsoluble azido and/or alkyne substrates in aqueous environment.

Results and discussion

Synthesis of eight arm resorcin[4]arene glycoconjugate (RG)

For the synthesis of the novel RG, resorcin[4]arene $\mathbf{1}$ (ref. 14 and 15) was first synthesized upon the acid-catalyzed cyclocondensation reaction of methyl resorcinol with heptanal. Compound 1 was then treated with propargyl bromide in the presence of potassium carbonate in refluxing acetone to achieve the octa-propargyl resorcin[4]arene intermediate 2 (Scheme 2).

Resorcin[4]arene 2 was characterized conclusively from its NMR and spectral data. In its ${ }^{1} \mathrm{H}$-NMR spectrum, the benzylic protons $\left(-\mathrm{CH}_{3}, \mathbf{H}_{\mathbf{a}}\right)$ were found as a singlet at 2.25 ppm . The alkyne protons $\left(-\mathrm{C} \equiv \mathrm{CH}, \mathbf{H}_{\mathbf{f}}\right)$ were observed as a triplet at $2.50 \mathrm{ppm}(J=2.4 \mathrm{~Hz})$ and the propargyl methylene protons $\left(-\mathrm{OCH}_{2} \mathrm{C} \equiv, \mathbf{H}_{\mathbf{c}, \mathbf{c}^{\prime}}\right)$ showed as two set of double doublets with $J=$ 15.3 and 2.4 Hz at 4.20 and 4.36 ppm . Its ${ }^{13} \mathrm{C}-\mathrm{NMR}$ spectrum had resonances for the alkyne carbons $\mathbf{C}_{\mathbf{e}}$ and $\mathbf{C}_{\mathbf{f}}$ at 74.8 and 79.5 ppm , respectively, and the propargyl methylene carbons $\left(-\mathrm{OCH}_{2} \mathrm{C} \equiv, \mathbf{C}_{\mathbf{c}}\right)$ were at 60.3 ppm (Fig. 2). The molecular formula $\left(\mathrm{C}_{80} \mathrm{H}_{96} \mathrm{O}_{8}\right)$ of compound 2 was confirmed from its m / z

(i) heptaldehyde, HCl (37\%), ethanol, reflux, overnight; (ii) propargyl bromide, $\mathrm{K}_{2} \mathrm{CO}_{3}$, acetone, reflux

Scheme 2 Synthesis of octa-alkyne resorcin[4]arene 2.

Fig. 2 Partial ${ }^{1} \mathrm{H}$-, ${ }^{13} \mathrm{C}$ - and DEPT NMR spectra (250 and 62.5 MHz , $\left.\mathrm{CDCl}_{3}\right)$ of 2.

(i) BF_{3} etherate 2-chloroethanol, DCM ; (ii) $\mathrm{NaN}_{3}, \mathrm{DMF}, 80^{\circ} \mathrm{C}$

Scheme 3 Synthesis of 3 .

(i) CuI, DIPEA, chloroform, reflux, 12 h ; (ii) $\mathrm{NaOMe}(0.1 \mathrm{M})$, r.t., 2 h .

Scheme 4 Synthesis of RG.
measurement using ESI-Q-TOF HRMS: observed 1207.7034 (M + $\mathrm{Na})^{+}$, calculated $1207.7003(\mathrm{M}+\mathrm{Na})^{+}$.

2-Azidoethyl β-d-glucopyranoside tetraacetate (3) was prepared following the typical procedures found in literature (Scheme 3) and unambiguously characterized. ${ }^{14,16}$

Octa-propargyl resorcin[4]arene 2 and azido glucopyranoside 3 were then coupled together via the CuAAC reaction. The reaction was carried out in refluxing chloroform in presence of CuI ($10 \mathrm{~mol} \%$) and DIPEA (6.0 equiv.) to yield the octaacetoxyRG (4) in excellent yield. Global deacetylation using NaOMe solution (0.1 M) resulted in RG in gram quantity (Scheme 4).

The structures of the RG and its octaacetoxy precursor $\mathbf{4}$ were established from the respective ${ }^{1} \mathrm{H}$ - and ${ }^{13} \mathrm{C}$-NMR data. Namely, the absence of the alkyne protons $\left(\mathbf{H}_{f}\right)$, the emergence of the triazole protons ($\mathbf{1 H}$, at 7.69 ppm) and the shift of the propargyl protons ($\mathbf{H}_{\mathbf{c}}$, from 4.11 ppm to 4.50 ppm) confirmed the structure of 4 (Fig. 3). In the ${ }^{1} \mathrm{H}$-NMR spectra of RG (Fig. 3b), the disappearance of the acetate protons $\left(-\mathrm{OCOCH}_{3}, \mathbf{O A c}\right)$ from the region of $1.70-2.10 \mathrm{ppm}$ was confirmatory of its structure. The molecular weight of the products \{for $4 \mathrm{~m} / \mathrm{z}$ (ESI-Q-TOF): observed $2283.8955(\mathrm{M}+2 \mathrm{Na})^{2+}$, calculated $2283.8984(\mathrm{M}+$

Fig. 3 Partial ${ }^{1} \mathrm{H}$-NMR spectra of (a) $4\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ and (b) RG ($500 \mathrm{MHz}, \mathrm{DMSO}-\mathrm{d}_{6}$).

Fig. 4 CuAAC of benzyl azide and phenyl acetylene at $80^{\circ} \mathrm{C} . \mathrm{RCG}$ catalyst structures in Fig. 1.
$2 \mathrm{Na})^{2+}$; for RG m / z (ESI-Q-TOF): observed $1611.7374(\mathrm{M}+2 \mathrm{Na})^{2+}$, calculated $\left.1611.7294(\mathrm{M}+2 \mathrm{Na})^{2+}\right\}$ confirmed the respective molecular formula.

Optimizing CuAAC in water catalyzed by RG

The CuAAC reactions was investigated to examine the catalytic activity in aqueous environment. For optimization, the CuAAC reaction of benzyl azide (1.0 mmol) with phenyl acetylene (1.05 equiv.) with/without the addition of a catalyst ($1 \mathrm{~mol} \%$) was carried out (Fig. 4). The reactions were performed in the presence of copper sulfate ($1 \mathrm{~mol} \%$) and sodium l -ascorbate ($3 \mathrm{~mol} \%$) in 10 mL of distilled deionized water at $80^{\circ} \mathrm{C}$ (Fig. 4). The chemical structures and synthetic procedure for RCG catalysts evaluated in Fig. 4 have been previously reported by our research group. ${ }^{14}$

The coupling reaction was much slower in absence of added RCG catalyst and in presence of compound 14 (Fig. 1), ${ }^{14}$ which lacks the spatial directionality of the RCGs. While the RCGs catalyzed the CuAAC reaction between benzyl azide and phenyl acetylene, there were significant differences in substrate conversion to suggest a dependence of catalytic activity on

Table 1 CuAAC of substituted benzyl azides 1a-4a and alkyne substrates $1 \mathrm{~b}-4 \mathrm{~b}$ in the presence of RG^{a}

1a-4a	$\begin{array}{r} \mathrm{N}_{3}+\mathrm{R}^{\prime}- \\ 1 \mathrm{~b}-4 \mathrm{~b} \end{array}$	CuAAC		
	 (3.18)	 (3.26)	 (3.71)	 (4.13)
	$\begin{gathered} \text { 12c } \\ (15 \text { minutes, } \\ 94 \%) \end{gathered}$	$\begin{gathered} \text { 4c } \\ (15 \text { minutes, } \\ 95 \%) \end{gathered}$	$\begin{gathered} \text { 8c } \\ (15 \text { minutes, } \\ 95 \%) \end{gathered}$	$\begin{gathered} 16 \mathbf{c} \\ (20 \text { minutes, } \\ 91 \%) \end{gathered}$
	10c $(25$ minutes, $94 \%)$	$\begin{gathered} \text { 2c } \\ (20 \text { minutes, } \\ 98 \%) \end{gathered}$	$\begin{array}{c\|} \mathbf{6 c} \\ (25 \text { minutes, } \\ 98 \%) \end{array}$	$\begin{gathered} \text { 14c } \\ (45 \text { minutes, } \\ 92 \%) \end{gathered}$
	$\begin{gathered} 9 \mathbf{c} \\ (20 \text { minutes, } \\ 98 \%) \end{gathered}$	$\begin{gathered} \text { 1c } \\ (20 \text { minutes, } \\ 98 \%) \end{gathered}$	$\begin{gathered} \text { 5c } \\ (25 \text { minutes, } \\ 99 \%) \end{gathered}$	$\begin{gathered} 13 \mathrm{c} \\ (30 \text { minutes, } \\ 99 \%) \end{gathered}$
	11c $(45$ minutes, $91 \%)$	$\begin{gathered} \text { 3c } \\ (45 \text { minutes, } \\ 99 \%) \end{gathered}$	$\begin{gathered} 7 \mathrm{c} \\ (45 \text { minutes, } \\ 92 \%) \end{gathered}$	$\begin{gathered} \text { 15c } \\ (65 \text { minutes, } \\ 94 \%) \end{gathered}$

[^1]chemical structure (Fig. 4). Remarkably, the CuAAC reaction was almost completed with more than 93% conversion only in 10 minutes when RG ($1 \mathrm{~mol} \%$) was added but only 26% conversion was observed in its absence (no catalyst). Obviously, the fast CuAAC in the presence of RG indicates that it provides a unique molecular environment that is capable of catalyzing the CuAAC reaction efficiently.

Scoping the CuAAC in water using RG

To scope the CuAAC reactions catalyzed by RG in aqueous media, we have investigated coupling of substituted benzyl azides 1a-4a with aromatic and aliphatic alkynes $\mathbf{1 b} \mathbf{- 4 b}$ (Table 1).

As recorded in Table 1, the RG catalyzed CuAAC reactions of a variety of substituted benzyl azides in water and all reactions led to the desired 1,4-disubstituted 1,2,3-triazole products (2c16 c) in high yields ($>90 \%$ isolated). Not surprisingly, it was determined that the reaction took longer to reach completion as the hydrophobicity of the substrate pair increased, as evidenced by their clog P values (Table 1). For example, the coupling between the 4 -bromo benzyl azide ($4 \mathrm{a}, \operatorname{cog} P=4.13$) and 1hexyne ($\mathbf{4 b}, \operatorname{clog} P=2.51$) took nearly 65 minutes to completion while the reactions between propargyl alcohol (1b, clog $P=$ -0.34) and 3-methoxy benzyl azide (1a, clog $P=3.18$) was completed in 15 minutes.

To further evaluate the effectiveness of the RG as a catalyst in CuAAC of hydrophobic substrates, we carried out the coupling of phenyl acetylene ($\mathbf{3 b}$) with alkylated ortho-azido phenols (5a9a) of increasing steric bulk and clog P values from 2.55-4.95. A

Table 2 CuAAC of o-azido phenol derivatives (5a-9a) with phenyl acetylene 1b with/without RG ${ }^{a}$
Entry \quad Azide $(\mathrm{clog} P$ value)
${ }^{a}$ Reaction condition: azidophenol derivative (1 mmol) and phenyl acetylene $\mathbf{1 b}$ (1.05 mmol), $\mathrm{Cu}(\mathrm{II})(1 \mathrm{~mol} \%)$, Na-L-ascorbate ($3 \mathrm{~mol} \%$), cat. ($1 \mathrm{~mol} \%$), water $(10 \mathrm{~mL}), 80^{\circ} \mathrm{C} .{ }^{b}$ Isolated yield.
comparative study of the CuAAC reaction in absence and presence of the RG is shown in Table 2.

As expected, the coupling of o-azido phenols (5a, $\operatorname{cog} P=$ 2.44) with phenyl acetylene $\mathbf{1 b}$ catalyzed by RG resulted in triazole 17 c in 96% yield and even without added catalyst the yield was 64% due to its higher hydrophilicity (entry 1). However, replacing the hydroxyl functionality with alkoxy groups, i.e. $-\mathrm{OMe},-\mathrm{OEt},-\mathrm{OBu},-\mathrm{OPh}$ of progressively higher bulk, hydrophobicity, and clog P value led to much slower reactions in absence of the $\mathbf{R G}$. The reactions catalyzed by the $\mathbf{R G}$ resulted in near quantitative conversion in about 30 minutes irrespective of the bulk or hydrophobicity of the azide substrates, attesting to its effectiveness as a catalyst in the CuAAC reactions in water even for the much bulkier and hydrophobic substrates.

Di-CuAAC reactions in water using RG

Simultaneous multiple CuAAC reactions have found interest in synthesis of the polymers and dendrimers and the need for efficient catalyst that can catalyze reactions in water has never been greater. ${ }^{17}$ We have therefore investigated RG for catalyzing the di-CuAAC reactions in water of di-propargyl benzene derivatives $\mathbf{5 b}-7 \mathbf{b}$ with substituted benzyl azides 1a-4a (Table 3). Interestingly, the di-CuAAC reaction were completed within 45 min resulting in the desired bis-1,2,3-triazole products 22 c 33 c in gram quantities.

Multicomponent one-pot CuAAC reactions in water

Organic azides are not always considered safe for handling because of their toxic and shock sensitive nature and there have

Table 3 Di-CuAAC of di-alkynes 5b-7b with benzyl azide derivatives $1 \mathrm{a}-4 \mathrm{a}$ in water in the presence of RG ${ }^{a, b}$

${ }^{a}$ Reaction condition: di-alkyne derivative (1 mmol) and azides (2.1 mmol), $\mathrm{Cu}($ II) ($1 \mathrm{~mol} \%$), $\mathrm{Na}-\mathrm{L}-$ ascorbate ($3 \mathrm{~mol} \%$), RG ($1 \mathrm{~mol} \%$), water $(10 \mathrm{~mL}), 45 \mathrm{~min}, 80^{\circ} \mathrm{C} .{ }^{b}$ Isolated yields.
been alternative methods employed for their in situ synthesis. The azides can be prepared from their corresponding halides upon the addition of sodium azide. Hence, a multicomponent one-pot CuAAC reaction between in situ generated azide from its corresponding precursor and alkyne is highly desirable. ${ }^{18}$

We have investigated the multicomponent one-pot CuAAC reactions of phenyl acetylene $\mathbf{3 b}$ with the aryl bromides and sodium azide catalyzed by the RG. Complete conversion were accomplished within $25-55$ minutes even for a bulkier aryl system (naphthyl) to achieve the 1,2,3-triazoles in excellent isolated yield (90-96\%) (Table 4, entries 1-5). In addition, reaction with α-bromo acetophenones (entries 6 and 7), α-bromoesters (entry 8) and ally bromide (entry 9) led to quantitative conversion within $25-30 \mathrm{~min}$ to the desired triazoles $\mathbf{3 5 c}-37 \mathrm{c}$ in $91-95 \%$ isolated yield. However, the multi component CuAAC failed when saturated aliphatic bromides were used as substrates, i.e., butyl, heptyl and dodecyl bromides (entries 1012). We suspect the $\pi-\pi$ interactions play an important role in the encapsulation, in water, of the substrates molecule in the hydrophobic cavity of the RG and the lack of these interactions in the aliphatic alkyl bromide does not allow their encapsulation in the RG cavity and hence no observed reaction.

Inclusion complex of RG with benzyl azide (2a) and phenyl acetylene (3b) in $\mathrm{D}_{2} \mathrm{O}$

We set out to probe the encapsulation of the substrates by the RG. Specifically, we have studied the encapsulation of benzyl azide and phenyl acetylene by RG using NMR. The ${ }^{1} \mathrm{H}$-NMR spectra of the guest ($\mathbf{2} \mathbf{a} \& \mathbf{3 b}$) were recorded in the presence of the host (RG) in a 1:1 molar ratio for 2 mM concentrated solution in $\mathrm{D}_{2} \mathrm{O}$ at $25{ }^{\circ} \mathrm{C}$ (Fig. 5). In the ${ }^{1} \mathrm{H}$-NMR, the aromatic protons $\left(\mathbf{H}_{2}, \mathbf{H}_{3}, \mathbf{H}_{4}\right)$ in 2a were shifted up field from 7.35 ppm to 6.90 ppm upon addition of the RG (Fig. 5a). Similarly, the aromatic protons (\mathbf{H}_{6}, $\mathbf{H}_{\mathbf{7}}, \mathbf{H}_{\mathbf{8}}$) in $\mathbf{3 b}$ were shifted upfield from 7.35 and 7.45 ppm to 6.98

Table 4 Multicomponent one-pot CuAAC of phenyl acetylene, aryl/ alkyl bromides and sodium azides in the presence of RG ${ }^{a}$
Entry
${ }^{a}$ Reaction condition: phenyl acetylene (1 mmol), bromide derivative $(1.05 \mathrm{mmol})$ and sodium azide (1.1 mmol), RG (1 mol\%), water (10 $\mathrm{mL}), 80{ }^{\circ} \mathrm{C} .{ }^{b}$ Isolated yields, $\mathrm{N} / \mathrm{A}=$ not isolated.
and 7.15 ppm , respectively upon addition of RG (Fig. 5b). The shielding of the guest ${ }^{1} \mathrm{H}$ NMR resonances upon addition of RG indicated their encapsulation in the $\mathbf{R G}$ cavity. The encapsulation of the substrates in the RG cavity may explain the catalytic activity of the RG. In addition, the observation that the CuAAC reactions of the aromatic and π bond containing azides were accelerated in the presence of RG (Table 4), the encapsulation of the guest most likely involves $\pi-\pi$ host-guest interactions.

Proposed mechanism for the CuAAC using RG

Based upon the reaction catalysed and the encapsulation observed, the proposed mechanism for the CuAAC reaction catalyzed by RG may proceed via step shown in Fig. 6. Starting with inclusion of the alkyne and azide substrates in the pseudo- β-Dglucopyranoside cavity of RG. The closed proximity of the alkyne and azide in the presence of $\mathrm{Cu}(\mathrm{I})$ catalyst accelerate the cycloaddition process resulting in the copper-triazole complex followed by protonation and dissociation of the desired 1,4-di substituted 1,2,3triazole (Fig. 6). ${ }^{19}$ The binding of the $\mathrm{Cu}(\mathrm{I})$ to the multiple triazoles in the $\mathbf{R G}$ may also facilitate the coupling reaction inside the $\mathbf{R G}$ cavity.

Fig. 5 Partial ${ }^{1} \mathrm{H}$-NMR spectra ($250 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}, 2 \mathrm{mM}$) at $25^{\circ} \mathrm{C}$ of (a) benzyl azide and benzyl azide + RG (1:1); (b) phenylacetylene and phenylacetylene $+\mathrm{RG}(1: 1)$.

Fig. 6 Proposed mechanism for the CuAAC in aqueous media catalyzed by RG

Conclusion

In conclusion, a new resorcinarene sugar conjugate (RG) is reported. It was determined that RG is an efficient catalyst for the CuAAC reaction in water at only $1 \mathrm{~mol} \%$. Based upon the reaction catalysis and the encapsulation observed, RG catalytic mechanism, we believe, begins with inclusion of the alkyne and azide substrates resulting in the copper-triazole complex followed by protonation and dissociation to the desired 1,4-di substituted $1,2,3$-triazole. RG was found to catalyze the coupling of the alkyne/azide pair and also of the multicomponent alkyl bromide/ sodium azide/alkyne to the 1,4-disubstituted 1,2,3-triazole products in excellent yield within short period of time in water.

Experimental section

General

${ }^{1} \mathrm{H}$ - and ${ }^{13} \mathrm{C}$-NMR spectra were recorded on a Bruker DRX-250, a Inova-400 and a DD-500 spectrometers. Sample concentrations were about $10 \%(\mathrm{w} / \mathrm{v})$ in CDCl_{3} or $\mathrm{DMSO}-\mathrm{d}_{6}$ and the J values are given in Hz. The mass spectral analyses were performed on an Aligent Technologies 6540 UHD Accurate-Mass QTOF LC/MS. The clog P values were calculated using ChemDraw Professional, Version 15.1.0.144.

Materials and reagents

All reagents were used with no further purification unless otherwise specified. 2-Methyl resorcinol (98%) was purchased from Acros Organics Chemical Company. Octa-hydroxy resorcin [4]arene (1) and 2-azidoethyl β-D-glucopyranoside tetraacetate (3) were synthesized following synthetic procedures reported previously. ${ }^{14-16}$

Octa-propargyl resorcin[4]arene (2). Compound 1 ($5 \mathrm{~g}, 5.7$ mmol) was dissolved in 110 mL acetone. Potassium carbonate ($6.26 \mathrm{~g}, 45 \mathrm{mmol}$) was added into the solution and allowed to stir for 10 min at room temperature. Propargyl bromide (8.1 mL , 90 mmol) was then added and the reaction mixture was refluxed overnight. After completion, the reaction mixture was cooled at room temperature and the salt was filtered out followed by the concentration of acetone. The product was purified by column chromatography as a pale yellow solid using $10 \% \mathrm{EA} /$ hexane yielding $6.04 \mathrm{~g}(90 \%)$ yield. ${ }^{1} \mathrm{H}$ NMR ($250 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=$ $0.85(\mathrm{t}, J=6.5 \mathrm{~Hz}, 12 \mathrm{H}), 1.25-1.36(\mathrm{~m}, 16 \mathrm{H}), 1.36(\mathrm{~m}, 16 \mathrm{H}), 1.82-$ $1.94(\mathrm{~m}, 8 \mathrm{H}), 2.25(\mathrm{~s}, 12 \mathrm{H}), 2.50(\mathrm{t}, J=2.4 \mathrm{~Hz}, 4 \mathrm{H}), 4.11(\mathrm{~d}, J=$ $15.3 \mathrm{~Hz}, 8 \mathrm{H}), 4.25(\mathrm{~d}, J=15.3 \mathrm{~Hz}, 8 \mathrm{H}), 4.45(\mathrm{t}, J=7.1 \mathrm{~Hz}, 4 \mathrm{H})$, $6.39(\mathrm{~s}, 4 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($62.5 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=11.1,14.0,22.7$, 28.5, 29.5, 31.9, 34.9, 38.3, 60.3, 74.8, 79.5, 124.3, 124.3, 133.9, 154.0; HRMS $[\mathrm{M}+\mathrm{Na}]^{+}$calcd for $\mathrm{C}_{80} \mathrm{H}_{96} \mathrm{O}_{8} \mathrm{Na} 1207.7003$, found 1207.7034.

Octa-sugar acetate resorcin[4]arene (6). Compound $2(1 \mathrm{~g}$, 0.84 mmol) was dissolved in 30 mL chloroform. CuI (32 mg , $0.17 \mathrm{mmol})$ and DIPEA ($0.88 \mathrm{~mL}, 5 \mathrm{mmol}$) were then added to the solution. Sugar azide $3(5.6 \mathrm{~g}, 13.5 \mathrm{mmol})$ was then added to the solution. The reaction mixture was then refluxed overnight. After completion, the reaction was worked up using ammonium hydroxide solution and the organic phase was extracted and dried using $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Chloroform was evaporated and the product was purified by column chromatography using $5 \% \mathrm{MeOH} / \mathrm{DCM}$ in order to separate the product from the excess sugar azide. The product was collected as yellow oil that solidified slowly to pale yellow solid in $3.48 \mathrm{~g}(91 \%)$ yield. ${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=0.80(\mathrm{t}, J=6.6 \mathrm{~Hz}, 12 \mathrm{H}), 1.15-$ $1.35(\mathrm{~m}, 32 \mathrm{H}), 1.78-1.85(\mathrm{bs}, 12 \mathrm{H}), 1.88(\mathrm{~s}, 12 \mathrm{H}), 1.93(\mathrm{~s}, 12 \mathrm{H})$, $1.98(\mathrm{~s}, 24 \mathrm{H}), 2.04(\mathrm{~s}, 12 \mathrm{H}), 2.04(\mathrm{~s}, 12 \mathrm{H}), 2.07-2.16(\mathrm{bs}, 12 \mathrm{H})$, 2.37 (bm, 8H), 3.71-3.77 (m, 8H), 3.91-4.00 (m, 8H), 4.06-4.14 $(\mathrm{m}, 8 \mathrm{H}), 4.22(\mathrm{t}, J=2.9 \mathrm{~Hz}, 8 \mathrm{H}), 4.25(\mathrm{dd}, J=2.9,4.4 \mathrm{~Hz}, 4 \mathrm{H})$, 4.49 (bs, 16H), $4.55(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 8 \mathrm{H}), 4.58(\mathrm{t}, J=8.1 \mathrm{~Hz}, 4 \mathrm{H})$, $4.93(\mathrm{t}, J=7.7 \mathrm{~Hz}, 8 \mathrm{H}), 5.03$ (ddd, $J=3.3,9.5,13.2 \mathrm{~Hz}, 8 \mathrm{H}), 5.13$ ($\mathrm{q}, J=9.9,19.1 \mathrm{~Hz}, 8 \mathrm{H}$), $7.69(\mathrm{~s}, 8 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR (125 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta=10.7,14.0,20.3,20.4,20.4,20.6,22.7,28.6,29.6$, $31.8,35.2,38.0,49.5,61.6,65.9,67.5,68.1,70.7,71.7,72.4$, $100.4,123.7,124.1,124.2,144.3,144.5,169.3,170.0$, 170.5 ; HRMS $[\mathrm{M}+2 \mathrm{Na}]^{2+}$ calcd for $\mathrm{C}_{208} \mathrm{H}_{280} \mathrm{~N}_{24} \mathrm{O}_{88} \mathrm{Na}_{2}$ 2283.8984, found 2283.8955 .

Resorcin[4]arene glycoconjugate (RG). Acetylated sugar resorcin[4]arene $6(1 \mathrm{~g})$ was dissolved in (0.1 M) sodium methoxide solution. The reaction mixture was allowed to stir at room temperature for 4 h . After completion, the reaction mixture was neutralized using Dowex 50W-X8. This was followed by filtration and concentration of methanol with no further purification to afford $\mathbf{R G}$ as a pale yellow solid in 92%;
${ }^{1} \mathrm{H}$ NMR (250 MHz, DMSO-d ${ }_{6}$) $\delta=0.79(\mathrm{t}, J=6.6 \mathrm{~Hz}, 12 \mathrm{H})$, $1.14-1.36(\mathrm{~m}, 32 \mathrm{H}), 2.27(\mathrm{bm}, 8 \mathrm{H}), 2.27(\mathrm{bs}, 12 \mathrm{H}), 2.98(\mathrm{t}, J=$ $8.1 \mathrm{~Hz}, 8 \mathrm{H}), 3.05$ (ddd, $J=3.3,9.2,18.3 \mathrm{~Hz}, 8 \mathrm{H}), 3.11-3.19(\mathrm{~m}$, $16 \mathrm{H}), 3.41-3.47(\mathrm{~m}, 8 \mathrm{H}), 3.67(\mathrm{~d}, J=10.6 \mathrm{~Hz}, 8 \mathrm{H}), 3.89(\mathrm{bs}, 8 \mathrm{H})$, 4.07 (bs, 8 H$), 4.24(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 8 \mathrm{H}), 4.53(\mathrm{bs}, 24 \mathrm{H}), 4.63$ (bs, 16 H), 7.93-8.39 (bs, 12H); ${ }^{13} \mathrm{C}$ NMR (62.5 MHz, DMSO-d $_{6}$) $\delta=$ 11.1, 14.0, 22.2, 28.1, 29.1, 31.4, 34.8, 37.8, 49.6, 61.1, 65.4, 67.3, 70.0, 73.3, 76.6, 77.0, 102.9, 123.8, 124.3, 124.7, 142.9, 143.1; HRMS $[\mathrm{M}+2 \mathrm{Na}]^{2+}$ calcd for $\mathrm{C}_{144} \mathrm{H}_{216} \mathrm{~N}_{24} \mathrm{O}_{56} \mathrm{Na}_{2}$ 1611.7294, found 1611.7374.

Typical procedure for screening and scoping the CuAAC in water catalyzed by RG

Aryl azide (1 mmol) and aryl/alkyl alkyne (1.05 equiv.) were added to a solution of copper(II) sulfate pentahydrates, Naascorbate and RG (1:3:1 mol\%) in 10 mL de-ionized distilled water. The reaction mixture was then heated to $80^{\circ} \mathrm{C}$ for $15-65 \mathrm{~min}$. After completion, the solid reaction product was filtered off, dried, and weighed to calculate the isolated yield. When the product was not solid (10c and 11c), the reaction mixture was extracted with DCM $(2 \times 5 \mathrm{~mL})$. The combined organic layer was collected and dried over MgSO_{4}. DCM was then removed using a rotary evaporator and ${ }^{1} \mathrm{H}-\mathrm{NMR}$ was taken in CDCl_{3} or $\mathrm{DMSO}-\mathrm{d}_{6}$.

Typical procedure for three component one-pot CuAAC catalyzed by RG

Phenyl acetylene 1b (1 mmol) and aryl/alkyl bromides (1.05 equiv.) with sodium azide (1.1 equiv) were added to a solution of copper(II) sulfate pentahydrates, Na-ascorbate and RG ($1: 3: 1 \mathrm{~mol} \%$) in 10 mL de-ionized distilled water. The reaction mixture was then heated to $80{ }^{\circ} \mathrm{C}$ for $20-55 \mathrm{~min}$. After completion, the solid reaction product was filtered off, dried, and weighed to calculate the isolated yield. When the conversion was low (entries 10-12, Table 4), the reaction mixture was extracted with DCM $(2 \times 5 \mathrm{~mL})$. The combined organic layer was collected and dried over MgSO_{4}. The solvent was then removed using a rotary evaporator and ${ }^{1} \mathrm{H}-\mathrm{NMR}$ was taken in CDCl_{3}.

4-((Benzyloxy)methyl)-1-(2-methylbenzyl)-1H-1,2,3-triazole (6c). White solid (98\%); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 2.25$ (s, $3 \mathrm{H}), 4.55(\mathrm{~s}, 2 \mathrm{H}), 4.62(\mathrm{~s}, 2 \mathrm{H}), 5.48(\mathrm{~s}, 2 \mathrm{H}), 7.11-7.13(\mathrm{~m}, 1 \mathrm{H})$, $7.15-7.21(\mathrm{~m}, 2 \mathrm{H}), 7.24(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.29(\mathrm{~m}, 4 \mathrm{H}), 7.33(\mathrm{~s}$, $1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 18.9,52.2,63.6,72.4,126.5$, 127.7, 127.8, 128.3, 129.0, 129.4, 130.9, 132.3, 136.8, 137.6.

4-Butyl-1-(2-methylbenzyl)-1H-1,2,3-triazole (7c). White solid (90%); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 0.87(\mathrm{t}, J=7 \mathrm{~Hz}, 3 \mathrm{H}), 1.27-$ $1.36(\mathrm{~m}, 2 \mathrm{H}), 1.54-1.61(\mathrm{~m}, 2 \mathrm{H}), 2.23(\mathrm{~s}, 3 \mathrm{H}), 2.64(\mathrm{t}, J=7.8 \mathrm{~Hz}$, $2 \mathrm{H}), 5.45(\mathrm{~s}, 2 \mathrm{H}), 7.15-7.18(\mathrm{~m}, 2 \mathrm{H}) 7.22-7.26(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 13.7,18.9,22.2,25.3,31.4,51.0,120.2$, 126.5, 128.8, 129.1, 130.8, 132.7, 136.8.

4-((Benzyloxy)methyl)-1-(3-methoxybenzyl)-1H-1,2,3-triazole (10c). Brown oil (94\%); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 3.71$ (s, 2H), $4.54(\mathrm{~s}, 2 \mathrm{H}), 4.62(\mathrm{~s}, 2 \mathrm{H}), 5.40(\mathrm{~s}, 2 \mathrm{H}), 6.77(\mathrm{~s}, 1 \mathrm{H}), 6.79-6.85(\mathrm{~m}$, $2 \mathrm{H}), 7.20-7.26(\mathrm{~m}, 2 \mathrm{H}), 7.28-7.30(\mathrm{~m}, 3 \mathrm{H}), 7.47(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 53.6,54.9,63.3,72.1,113.4,113.7,119.9$, 122.3, 127.4, 127.5, 128.0, 135.8, 137.5, 145.1, 159.7.

4-Butyl-1-(3-methoxybenzyl)-1H-1,2,3-triazole (11c). Brown oil (91\%) yield; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 0.78(\mathrm{t}, J=7.3 \mathrm{~Hz}$, $3 \mathrm{H}), 1.19-1.28(\mathrm{~m}, 2 \mathrm{H}), 1.46-1.54(\mathrm{~m}, 2 \mathrm{H}), 2.56(\mathrm{t}, J=7.7 \mathrm{~Hz}$, $2 \mathrm{H}), 3.61(\mathrm{~s}, 3 \mathrm{H}), 5.31(\mathrm{~s}, 2 \mathrm{H}), 6.66(\mathrm{~s}, 1 \mathrm{H}), 6.71(\mathrm{t}, J=9.0 \mathrm{~Hz}$, $2 \mathrm{H}), 7.12(\mathrm{t}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.19(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 13.3,21.8,24.9,31.0,53.2,54.7,113.0,113.4,119.6$, $120.3,129.5,136.2,148.2,159.5$.

1-(2-Ethoxyphenyl)-4-phenyl-1H-1,2,3-triazole (19c). White solid (98\%); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 1.37(\mathrm{t}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H})$, $4.08(\mathrm{q}, J=6.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.04(\mathrm{~m}, 2 \mathrm{H}), 7.34(\mathrm{~m}, 2 \mathrm{H}), 7.43(\mathrm{t}, J=$ $7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.81(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.89(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 8.38$ $(\mathrm{s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 14.5,64.6,113.2,121.0$, $121.6,125.0,125.6,126.3,127.9,128.7,129.8,130.7,147.0$, 150.1.

1-(2-Butoxyphenyl)-4-phenyl-1H-1,2,3-triazole (20c). White solid (98\%); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 0.93(\mathrm{t}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H})$, $1.40-1.47(\mathrm{~m}, 2 \mathrm{H}), 1.72-1.78(\mathrm{~m}, 2 \mathrm{H}), 4.05(\mathrm{t}, J=6.3 \mathrm{~Hz}, 2 \mathrm{H})$, $7.08(\mathrm{t}, J=8.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.32-7.39(\mathrm{~m}, 2 \mathrm{H}), 7.44(\mathrm{t}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H})$, $7.83(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}) 7.88(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 8.36(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}) $\delta 13.7,19.2,31.0,68.7,113.2,121.0$, $121.7,125.2,125.7,126.4,128.0,128.8,129.9,130.7,147.0$, 150.4.

1,2-Bis((1-benzyl-1H-1,2,3-triazol-4-yl)methoxy) benzene (22c). White solid (95\%); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 5.15$ (s, $4 \mathrm{H}), 5.44(\mathrm{~s}, 4 \mathrm{H}), 6.85-6.90(\mathrm{~m}, 2 \mathrm{H}), 6.95-7.00(\mathrm{~m}, 2 \mathrm{H}), 7.19(\mathrm{~d}, J$ $=1.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.20(\mathrm{~d}, J=3.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.30(\mathrm{~d}, J=1.9 \mathrm{~Hz}, 3 \mathrm{H})$, $7.31(\mathrm{~d}, J=1.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.58(\mathrm{~s}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}) $\delta 54.1,63.5,115.7,122.2,128.0,128.7,129.0,134.5,148.4$.

1,2-Bis((1-(2-methylbenzyl)-1H-1,2,3-triazol-4-yl)methoxy) benzene (23c). White solid (94\%); ${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta 2.21(\mathrm{~s}, 6 \mathrm{H}), 5.12(\mathrm{~s}, 4 \mathrm{H}), 5.43(\mathrm{~s}, 4 \mathrm{H}), 6.83-6.87(\mathrm{~m}, 2 \mathrm{H}), 6.93-$ $6.98(\mathrm{~m}, 2 \mathrm{H}), 7.03(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.11-7.16(\mathrm{~m}, 4 \mathrm{H}), 7.20-$ $7.24(\mathrm{~m}, 2 \mathrm{H}), 7.47(\mathrm{bs}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 18.8$, $63.4,115.6,122.0,126.4,128.9,129.1,130.8,132.4,136.6,148.3$.

1,2-Bis((1-(3-methoxybenzyl)-1H-1,2,3-triazol-4-yl)methoxy)
benzene (24c). White solid (94\%); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 3.72(\mathrm{~s}, 6 \mathrm{H}), 5.12(\mathrm{~s}, 4 \mathrm{H}), 5.41(\mathrm{~s}, 4 \mathrm{H}), 6.74(\mathrm{~s}, 2 \mathrm{H}), 6.78(\mathrm{~m}, 4 \mathrm{H})$, $6.88(\mathrm{bs}, 2 \mathrm{H}), 6.98(\mathrm{bs}, 4 \mathrm{H}), 7.22(\mathrm{t}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.71(\mathrm{bs}, 2 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 54.3,55.1,63.5,113.5,113.9$, 115.4, 120.1, 121.9, 129.9, 135.7, 148.2, 159.7.

1,2-Bis((1-(4-bromobenzyl)-1H-1,2,3-triazol-4-yl)methoxy) benzene (25c). Yellow solid (96\%); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 5.16(\mathrm{~s}, 4 \mathrm{H}), 5.45(\mathrm{~s}, 4 \mathrm{H}), 6.90-6.93(\mathrm{~m}, 2 \mathrm{H}), 6.99-7.02(\mathrm{~m}, 2 \mathrm{H})$, $7.09(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 4 \mathrm{H}), 7.44(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 4 \mathrm{H}), 7.70(\mathrm{bs}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}) δ 53.5, 115.6, 122.2, 122.7, 129.6, 132.1, 133.5, 148.4.

1,3-Bis((1-benzyl-1H-1,2,3-triazol-4-yl)methoxy) benzene (26c). Yellow solid (94\%) yield; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 5.11$ $(\mathrm{s}, 4 \mathrm{H}), 5.61(\mathrm{~s}, 4 \mathrm{H}), 6.61(\mathrm{~d}, J=2.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.63(\mathrm{~d}, J=2.2 \mathrm{~Hz}$, $1 \mathrm{H}), 6.71(\mathrm{t}, J=2.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.18(\mathrm{t}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.30-7.40(\mathrm{~m}$, $10 \mathrm{H}), 8.28(\mathrm{~s}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 52.8,61.1,101.6$, 107.3, 124.6, 127.9, 128.1, 128.7, 135.9, 159.2.

1,3-Bis((1-(2-methylbenzyl)-1H-1,2,3-triazol-4-yl)methoxy) benzene (27c). White solid (92\%); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 2.24(\mathrm{~s}, 6 \mathrm{H}), 5.08(\mathrm{~s}, 4 \mathrm{H}), 5.49(4 \mathrm{H}), 6.52-6.55(\mathrm{~m}, 3 \mathrm{H}), 7.09-$ $7.13(\mathrm{~m}, 3 \mathrm{H}), 7.16-7.20(\mathrm{~m}, 4 \mathrm{H}), 7.23-7.27(\mathrm{~m}, 2 \mathrm{H}), 7.40(\mathrm{~s}, 2 \mathrm{H})$;
${ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}) δ 18.9, 52.3, 62.0, 102.1, 107.5, 126.6, 129.1, 129.4, 129.9, 130.9, 132.3, 136.8, 159.3.

1,3-Bis((1-(3-methoxybenzyl)-1H-1,2,3-triazol-4-yl)methoxy) benzene (28c). White solid (91%); ${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta 3.73(\mathrm{~s}, 6 \mathrm{H}), 5.11(\mathrm{~s}, 4 \mathrm{H}), 5.46(\mathrm{~s}, 4 \mathrm{H}), 6.54(\mathrm{~m}, 3 \mathrm{H}), 6.76(\mathrm{~s}, 2 \mathrm{H})$, $6.83(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.25(\mathrm{~m}, 2 \mathrm{H}) 7.58(\mathrm{bs}, 2 \mathrm{H}){ }^{13} \mathrm{C}$ NMR (100 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 54.1,55.2,61.8,101.9,107.5,113.6,114.1,120.1$, 129.9, 130.1, 135.8, 159.3, 159.9.

1,3-Bis((1-(4-bromobenzyl)-1H-1,2,3-triazol-4-yl)methoxy) benzene (29c). Yellow solid (96\%); ${ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO$\left.\mathrm{d}_{6}\right) \delta 5.07(\mathrm{~s}, 4 \mathrm{H}), 5.56(\mathrm{~s}, 4 \mathrm{H}), 6.57(\mathrm{~d}, J=2.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.59(\mathrm{~d}, J=$ $2.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.67(\mathrm{t}, J=2.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.14(\mathrm{t}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.22-$ $7.26(\mathrm{~m}, 4 \mathrm{H}), 7.51-7.55(\mathrm{~m}, 4 \mathrm{H}), 8.28(\mathrm{~s}, 2 \mathrm{H}){ }^{13} \mathrm{C}$ NMR $(100 \mathrm{MHz}$, DMSO-d ${ }_{6}$) δ 52.5, 61.5, 102.1, 107.8, 121.9, 125.2, 130.6, 132.1, 135.8, 143.5, 159.7.

1,4-Bis((1-benzyl-1H-1,2,3-triazol-4-yl)methoxy) benzene (30c). Yellow solid (92\%); ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 5.06$ (s, $4 \mathrm{H}), 5.60(\mathrm{~s}, 4 \mathrm{H}), 6.95(\mathrm{~s}, 4 \mathrm{H}), 7.30(\mathrm{~m}, 2 \mathrm{H}), 7.32-7.33(\mathrm{~m}, 3 \mathrm{H})$, $7.34(\mathrm{~d}, J=1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.35-7.36(\mathrm{~m}, 2 \mathrm{H}), 7.37-7.40(\mathrm{~m}, 2 \mathrm{H})$, $8.25(\mathrm{~s}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 52.8, 61.6, 115.6, 124.5, 127.9, 128.1, 128.73, 135.9, 143.2, 152.3.

1,4-Bis((1-(2-methylbenzyl)-1H-1,2,3-triazol-4-yl)methoxy) benzene (31c). White solid (93%); ${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta 2.24(\mathrm{~s}, 6 \mathrm{H}), 5.06(\mathrm{~s}, 4 \mathrm{H}), 5.49(\mathrm{~s}, 4 \mathrm{H}), 6.83(\mathrm{~s}, 4 \mathrm{H}), 7.10-7.11$ $(\mathrm{m}, 2 \mathrm{H}), 7.16-7.19(\mathrm{~m}, 4 \mathrm{H}), 7.23-7.27(\mathrm{~m}, 2 \mathrm{H}), 7.41(\mathrm{bs}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 18.9,52.4,62.6,115.8,126.6,129.1$, 129.3, 130.9, 132.3, 136.8, 152.7.

1,4-Bis((1-(3-methoxybenzyl)-1H-1,2,3-triazol-4-yl)methoxy)
benzene (32c). White solid (92%); ${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta 3.74(\mathrm{~s}, 6 \mathrm{H}), 5.09(\mathrm{bs}, 4 \mathrm{H}), 5.46(\mathrm{~s}, 4 \mathrm{H}), 6.75(\mathrm{~s}, 2 \mathrm{H}), 6.81-6.86$ $(\mathrm{m}, 8 \mathrm{H}), 7.24(\mathrm{~m}, 2 \mathrm{H}), 7.67(\mathrm{bs}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 54.3,55.2,62.4,113.6,114.1,115.7,120.1,130.0,135.7,152.6$, 159.9.

1,4-Bis((1-(4-bromobenzyl)-1H-1,2,3-triazol-4-yl)methoxy)
benzene (33c). Yellow solid (92\%); ${ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO$\left.\mathrm{d}_{6}\right) \delta 5.07(\mathrm{~s}, 4 \mathrm{H}), 5.60(\mathrm{~s}, 4 \mathrm{H}), 6.95(\mathrm{~s}, 4 \mathrm{H}), 7.26(\mathrm{~d}, J=8.6 \mathrm{~Hz}$, $4 \mathrm{H}), 7.57(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 4 \mathrm{H}), 8.26(\mathrm{~s}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $(100 \mathrm{MHz}$, DMSO_{6}) δ 52.1, 61.5, 115.6, 121.4, 124.6, 130.2, 131.7, 135.4, 143.3, 152.3.

1-Phenyl-2-(4-phenyl-1H-1,2,3-triazol-1-yl)ethan-1-one (35c). Pale yellow solid (92\%) yield; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}-\mathrm{d}_{6}$) $\delta 6.26(\mathrm{~s}, 2 \mathrm{H}), 7.35(\mathrm{~m}, 1 \mathrm{H}), 7.47(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.63(\mathrm{t}, J=$ $7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.75(\mathrm{~m}, 1 \mathrm{H}), 7.87(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 8.09(\mathrm{~d}, J=$ $7.8 \mathrm{~Hz}, 2 \mathrm{H}), 8.52(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{DMSO}_{6}$) $\delta 56.0$, $123.0,125.2,128.2,127.9,128.2,128.9,130.7,134.3,146.3$, 192.2.

1-(4-Methoxyphenyl)-2-(4-phenyl-1H-1,2,3-triazol-1-yl)ethan-1-one (36c). Pale yellow solid (95\%) yield; ${ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 3.84(\mathrm{~s}, 3 \mathrm{H}), 5.77(\mathrm{~s}, 2 \mathrm{H}), 6.93(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.28(\mathrm{t}$, $J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.37(\mathrm{t}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.90(\mathrm{~s}, 1 \mathrm{H}), 7.92(\mathrm{~d}, J=$ $7.8 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 55.2,114.4,125.8$, 126.9, 128.8, 130.6, 164.6, 188.6.

Conflicts of interest

There are no conflicts to declare.

Acknowledgements

We are grateful to the Department of Chemistry and the Department of Sponsored research at the University of South Florida. The authors acknowledge the support of the Department of Chemistry NMR and Peptide core facilities directors, Dr Edwin Rivera and Dr Mohanraja Kumar, in acquisition of the NMR and HRMS spectral data.

Notes and references

1 R. Huisgen, G. Szeimies and L. Mobius, Chem. Ber., 1967, 100, 2494-2507.
2 V. V. Rostovtsev, L. G. Green, V. V. Folkin and K. B. Sharpless, Angew. Chem., Int. Ed., 2002, 41, 2596-2599.
3 C. W. TornØe, C. Christensen and M. Meldal, J. Org. Chem., 2002, 67, 3057-3064.
4 Selected reviews: C. J. Pickens, S. N. Johnson, M. M. Pressnall, M. A. Leon and C. J. Berkland, Bioconjugate Chem., 2018, 29, 686-701; A. D. Pehere, X. Zhang and A. D. Abell, Aust. J. Chem., 2017, 70, 138151; V. K. Tiwari, B. B. Mishra, K. B. Mishra, N. Mishra, A. S. Singh and X. Chen, Chem. Rev., 2016, 116, 30863240; C. Wang, D. Ikhlef, S. Kahlal, J.-Y. Saillard and D. Astruc, Coord. Chem. Rev., 2016, 316, 1; X. Wang, B. Huang, X. Liu and P. Zhan, Drug Discovery Today, 2016, 21, 118; M. S. Singh, S. Chowdhury and S. Koley, Tetrahedron, 2016, 72, 5257-5283; M. Arseneault, C. Wafer and J. F. Morin, Molecules, 2015, 20, 9263-9294; P. Thirumurugan, D. Matosiuk and K. Jozwiak, Chem. Rev., 2013, 113, 4905-4979; M. V. Walter and M. Malkoch, Chem. Soc. Rev., 2012, 41, 4593; L. Liang and D. Astruc, Coord. Chem. Rev., 2011, 255, 2933; G. Franc and A. K. Kakkar, Chem. Soc. Rev., 2010, 39, 1536; K. D. Hanni and D. A. Leigh, Chem. Soc. Rev., 2010, 39, 1240; A. H. ElSagheer and T. Brown, Chem. Soc. Rev., 2010, 39, 13881405; J. M. Holub and K. Kirshenbaum, Chem. Soc. Rev., 2010, 39, 1325-1337.
5 N. Touj, A. Chakchouk-Mtibaa, L. Mansour, A. H. Harrath, J. H. Al-Tamimi, I. Ozdemir, L. Mellouli, S. Yasar and N. Hamdi, J. Organomet. Chem., 2017, 853, 49; A. Keivanloo, M. Bakherad and M. Lotfi, Tetrahedron, 2017, 73, 58725882; A. A. Ali, M. Chetia, P. J. Saikiab and D. Sarma, RSC Adv., 2014, 4, 64388; H. A. Michaels and L. Zhu, Chem.Asian J., 2011, 6, 2825; S. I. Presolski, V. Hong, S. H. Cho and M. Finn, J. Am. Chem. Soc., 2010, 132, 14570; G. C. Kuang, H. A. Michaels, J. T. Simmons, R. J. Clark and L. Zhu, J. Org. Chem., 2010, 75, 6540; P. S. Donnelly, S. D. Zanatta, S. C. Zammit, J. M. White and S. J. Williams, Chem. Commun., 2008, 2459; V. O. Rodionov, S. I. Presolski, S. Gardinier, Y. H. Lim and M. G. Finn, J. Am. Chem. Soc.,

2007, 129, 12696-12704; V. O. Rodionov, S. I. Presolski, D. D. Diaz, V. V. Fokin and M. G. Finn, J. Am. Chem. Soc., 2007, 129, 12705; Q. Wang, T. R. Chan, R. Hilgraf, V. V. Fokin, K. B. Sharpless and M. G. Finn, J. Am. Chem. Soc., 2003, 125, 3192-3193.
6 N. Sun, Z. Yu, H. Yi, X. Zhu, L. Jin, B. Hu, Z. Shen and X. Hu, New J. Chem., 2018, 42, 1612; S. Chassaing, V. Beneteau and P. Pale, Catal. Sci. Technol., 2016, 6, 923-957; J. Albadi and M. Keshavarz, Synth. Commun., 2013, 43, 2019-2030.

7 C. Girard, E. Onen, M. Aufort, S. Beauviere, E. Samson and J. Herscovici, Org. Lett., 2006, 8, 1689-1693.

8 U. Sirion, Y. J. Bae, B. S. Lee and D. Y. Chi, Synlett, 2008, 15, 2326-2330.
9 C. Spiteri and J. E. Moses, Angew. Chem., Int. Ed., 2010, 49, 31-33; S. Chassaing, M. Kumarraja, A. S. S. Sido, P. Pale and J. Sommer, Org. Lett., 2007, 9, 883-886.
10 E. Tasca, G. La Sorella, L. Sperni, G. Strukul and A. Scarso, Green Chem., 2015, 17, 1414; J.-A. Shin, Y.-G. Lim and K.-H. Lee, J. Org. Chem., 2012, 77, 4117; J.-A. Shin, S.-J. Oh, H.-Y. Lee and Y.-G. Lim, Catal. Sci. Technol., 2017, 7, 2450.
11 A. D. Moorhouse and J. E. Moses, Synlett, 2008, 14, 20892092; P. Appukkuttan, W. Dehaen, V. V. Fokin and E. Van der Eycken, Org. Lett., 2004, 6, 4223-4225.
12 G. Cravotto, V. V. Fokin, D. Garella, A. Binello, L. Boffa and A. Barge, J. Comb. Chem., 2010, 12, 13-15; P. Cintas, K. Martina, B. Robaldo, D. Garella, L. Boffa and G. Cravotto, Collect. Czech. Chem. Commun., 2007, 72, 1014-1024.
13 A. Barge, S. Tagliapietra, A. Binello and G. Cravotto, Curr. Org. Chem., 2011, 15, 189-203.
14 A. A. Husain, A. Maknenko and K. S. Bisht, Chem.-Eur. J., 2016, 22, 6223.
15 S. N. Parulekar, K. Muppalla, F. R. Fronczek and K. S. Bisht, Chem. Commun., 2007, 4901; S. N. Parulekar, K. Muppalla, A. A. Husain and K. S. Bisht, RSC Adv., 2015, 5, 25477; E. E. Dueno and K. S. Bisht, Tetrahedron, 2004, 60, 10859; E. E. Dueno and K. S. Bisht, Chem. Commun., 2004, 954; R. Wu, T. F. Al-Azemi and K. S. Bisht, Chem. Commun., 2009, 1822; R. Wu, T. F. Al-Azemi and K. S. Bisht, RSC Adv., 2014, 4, 16864.
16 R. Singh and A. Varma, Green Chem., 2012, 14, 348-356; P. Chong and P. Petillo, Org. Lett., 2000, 2, 1093-1096.

17 J. Garcia-Alvarez, J. Gimeno and A. J. L. Pombeiro, Adv. Organomet. Chem. Catal., 2014, 199-206.
18 S. Hassana and T. J. Muller, Adv. Synth. Catal., 2015, 357, 617-666.
19 B. T. Worrell, J. A. Malik and V. V. Fokin, Science, 2013, 340, 457-460.

[^0]: Department of Chemistry, University of South Florida, 4202 East Fowler Avenue, CHE 205, Tampa, FL 33620, USA. E-mail: kbisht@usf.edu
 \dagger Electronic supplementary information (ESI) available: NMR spectra for new compounds are included. See DOI: 10.1039/c9ra00972h

[^1]: ${ }^{a}$ Reaction condition: benzyl azide derivative (1 mmol) and alkyne substrates (1.05 mmol), Cu(II) ($1 \mathrm{~mol} \%$), Na-L-ascorbate ($3 \mathrm{~mol} \%$), RG ($1 \mathrm{~mol} \%$), water $(10 \mathrm{~mL}), 80^{\circ} \mathrm{C} .{ }^{b}$ Isolated yield.

