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Activated carbon (AC) was successfully prepared from low-cost

forestry fir bark (FB) waste using KOH activation method.

Morphology and texture properties of ACFB were studied

by scanning and high-resolution transmission electron

microscopies (SEM and HRTEM), respectively. The resulting fir

bark-based activated carbon (ACFB) demonstrated high surface

area (1552 m2 g−1) and pore volume (0.84 cm3 g−1), both of

which reflect excellent potential adsorption properties of ACFB

towards methylene blue (MB). The effect of various factors,

such as pH, initial concentration, adsorbent content as well as

adsorption duration, was studied individually. Adsorption

isotherms of MB were fitted using all three nonlinear models

(Freundlich, Langmuir and Tempkin). The best fitting of MB

adsorption results was obtained using Freundlich and Temkin.

Experimental results showed that kinetics of MB adsorption by

our ACFB adsorbent followed pseudo-second-order model. The

maximum adsorption capacity obtained was 330 mg g−1, which

indicated that FB is an excellent raw material for low-cost

production of AC suitable for cationic dye removal.

1. Introduction
As urbanization and industrialization advance, the environmental

problem has become increasingly prominent, especially the

pollution of water resources, which seriously affects water quality

[1]. Among the pollutants, synthetic dyes (i.e. methylene blue

(MB)) have drawn much attention because of their wide

application in dyeing, textiles, printing, leather as well as in the

coating industries, which causes water contamination [2,3].

Meanwhile, coloured dye wastewater is complex in nature, most of

which is toxic, mutagenic and carcinogenic to aquatic organisms,

causing some health problems [4,5]. MB is a very commonly used
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synthetic dye (in wood, silk, leather and cotton processing) and, as a result, is often found in industrial

wastewater. It belongs to the group of cationic dyes. The ingestion of water with MB into the human

body can lead to health problems such as shock, diarrhoea, jaundice, etc. [5,6].

Based on the problems, several technologies, including flotation [7], aerobic and anaerobic treatment [8],

micro-and ultra-filtration [9], ion exchange [10], microbial electrochemical technologies [11], oxidation

[12,13] and adsorption, have been employed for wastewater treatment [14–18]. Among these methods,

adsorption has received extensive attention since it is easier, cheaper, more efficient and economical than

others. Thus, different adsorbents have been developed and applied to neutralize dyes and other organics

in wastewater. Nguyyen & Juang [19] prepared graphene oxide/titanate nanotube compound and when

applied for adsorption of MB, the adsorption capacity was low, only 26 mg g−1. Yang et al. [20]

synthesized the graphite oxide using a kitchen microwave oven and the adsorption capacity of MB was

170 mg g−1. Dehghani et al. [21] used a new composite made up of shrimp waste chitosan and zeolite as

adsorbent to remove MB, and the adsorption capacity was 24.5 mg g−1. Fu et al. [22] synthesized

polydopamine (PDA) microspheres by oxidative polymerization method and used them as an adsorbent

for the removal of MB, with the adsorption capacity reaching 90.7 mg g−1. Auta & Hameed [23] reported

that Chitosan–clay composite was prepared and applied to remove MB, and the adsorption capacity was

142 mg g−1. Therefore, it is necessary to develop an efficient and environmentally-friendly adsorbent.

Activated carbon (AC) is one of the best adsorbentswhich iswidely used because of its large surface area,

excellentporosity, lowdensityaswell ashighadsorptioncapacity towardsvariousorganic compounds [1,24–

26]. ACs can be obtained from various agricultural waste- and by-products, which have received significant

attention as they are low-cost, renewable and environmentally friendly [25,27]. Recently, several types ofACs

were obtained using bamboo [28], palm shells [29], coconut shell [30,31], rich husk [32], sawdust [33], apricot

stones [34], seeds [27], etc. as rawmaterials. The fir tree is one of the fastest-growing trees tobeplanted in large

numbers throughout the world. As a common forestry waste, the tree bark is a low added value product,

which is often burned as a fuel or treated as waste material [33]. In the course of fir tree use, a large

amount of fir bark (FB) is produced, which causes gaseous pollution during burning.

Therefore, this work is focused on the preparation of AC from FB (ACFB) using the KOH activation

method. As mentioned, fir tree bark is a cost-effective and high-quantity by-product, which makes it a

very promising raw material for preparing low-cost activated biocarbons. To evaluate the properties of

this ACFB, we used its dye adsorption capacity towards MB as a performance criterion. When not used

as a fuel or treated as waste material, the value-added applications of fir tree bark have important

implications for both society and the environment. The morphology texture and pore structure of ACFB

were characterized using SEM and BET analyses, respectively. MB was selected to study the adsorption

capacity. The effect of contact time, adsorbent dosage, initial concentration and pH on adsorption

characteristics of ACFB was studied. The fitting of adsorption isotherms and kinetics were also

investigated. The results suggest the as-prepared porous carbon material from fir tree bark has great

potential forMB adsorption, which is comparable or better than the samples reported in the open literature.

2. Material and methods

2.1. Reagents and materials
Chinese fir (Cunninghamia lanceolata) bark as raw material was sourced from a commercial plantation in

Fujian province (China). KOH pellets and HCl solution (approx. 36.5%), used as received, were of

analytical grade and acquired from Tianjin Fuchen Chemical Reagents Factory (Tianjin, China). We

used deionized water with 18.25 MΩ cm resistance.

2.2. Activated carbon synthesis
For the synthesis of activated carbon (ACFB), Chinese fir was washed several times with tap water until

the waste water became clear. It was dried at 103°C for 24 h, after which the bark was milled and sieved

through a 10 mesh sieve to obtain powder around approximately 2 mm in size.

The synthesis procedure of AC was adapted from our earlier work as follows [35]: first, crushed FBwas

carbonized at 450°C (from room temperature at 5°C min−1 rate) under constant N2 flow of 500 ml min−1.

After 1 h held at 450°, the samples were slowly cooled at room temperature. The resulting product was a

carbonaceous precursor, which was then mixed with KOH pellets. The mixture was placed into a nickel

crucible and then into a tube furnace, which was slowly heated (at 3°C min−1) to 700°C under a constant
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N2 flow (500 ml min−1). After 2 h at 700°C, the samples were allowed to cool down inside the tube furnace

still under nitrogen flow. The resulting AC samples were rinsed with 1 M HCl and then washed with hot

water in Soxhlet for 48 h until the pH of water was stable, after which the products were dried for 24 h at

103°C. The resulting product was very pure AC. Because it was prepared from FB, it was named ACFB

(figure 1).

2.3. Characterization methods
Specific surface area as well as pore volume and sizes of ACFB were obtained by Micromeritics ASAP

2020 automatic apparatus using nitrogen adsorption/desorption isotherms at −196°C. ACFB was

degassed at 250°C under vacuum overnight. The average micropore diameters (L0) and pore size

distributions (PSD) were calculated using density functional theory (DFT). The surface morphology

and pore texture of ACFB were characterized using scanning transmission electron microscopy (STEM;

FEG SEM Hitachi S3400, Chiyoda-ku, Tokyo, Japan) as well as high-resolution transmission electronic

microscopy (HRTEM; JEM-2100, JEOL, Tokyo, Japan) at 200 kV accelerating voltage.

2.4. Adsorption of dyes on methylene blue
Adsorption experiments were performed using the batch adsorption method to determine the influence

of pH (in the 3–11 range), initial adsorbent content (in the 20–80 mg l−1 range), ACFB dose (1–50 mg) and

adsorption duration (5–180 min) on the adsorption result. For each experiment, a certain amount of

ACFB was placed into a 250 ml conical flask containing 100 ml of MB of a specific concentration and

at certain pH. The mixture was stirred in an orbital shaker at 30°C at 150 rpm over a specific time.

Remaining MB content was measured by UV–vis UV-6300, MAPADA spectrophotometer at 664 nm

maximum wavelength.

The percentage of MB adsorbed was determined based on the following formula:

Removal (%) ¼
C0 � Ce

C0
� 100: ð2:1Þ

The maximum MB uptake qe (in mg g−1) was calculated as shown below

qe ¼
C0 � Ce

W
� V, ð2:2Þ

methylene blue removal

ACFB

(KOH)

(fir bark)

Figure 1. Schematic procedure of the complete synthesis route of the porous carbons from FB for MB removal.
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where C0 and Ce are initial and final MB concentrations in mg l−1, respectively; W is the amount of ACFB

(in g) and V is the volume of MB solution (in l).

3. Results and discussion

3.1. Characterization of carbon material
N2 nitrogen adsorption/desorption isotherms at −196°C as well as PSDs of ACFB are shown in figure 2.

The nitrogen adsorption amount increased obviously at P/P0 below 0.05, which indicated the mainly

microporosity of ACFB [35,36]. ACFB isotherms in the 0.4–0.99 P/P0 range belong to type I isotherm

with H4 hysteresis according to the IUPAC classification. Such isotherms are typical for materials with

a wide pore distribution, including mesopores, which were present in our ACFB [35,37]. PSD obtained

using DFT calculations also showed a wide range: from 0.5 to 4 nm (figure 2 (inset)), which confirmed

the results above. BET analysis showed that the surface area of ACFB was as high as 1552 m2 g−1, and

its micro- and mesopore volumes were 0.56 and 0.28, respectively. It was found that the proportion of

microporosity to total porosity, VDR/V0.99, is 0.68, demonstrating that ACFB is mainly microporous

with a small portion of mesopores.

The SEM and TEM images of the ACFB sample in figure 3a,b reveal a great number of the pores

(micrometre and nanometre in size), which were formed during the carbonization and activation

processes. Pore system and excellent pore morphology observed by SEM and TEM agree with those

obtained from BET analysis. Such porosity should definitely provide ACFB with high adsorption

capacity towards MB.

The TGA, FTIR, XPS spectra and elemental analysis were carried out to investigate the

thermostability and surface properties of ACFB in our previous work [24,35]. Upon heating to high

temperature, pyrolysis of organic substances produces volatile products, which means that most of the

non-carbon elements, hydrogen, nitrogen and oxygen are removed in gaseous form by pyrolytic

decomposition, and leave a solid residue enriched in carbon [35]. The results of XPS spectra and

elemental analysis also respond to the conclusion that the obtained AC is pure [24].

3.2. Effect of adsorption process parameters on the removal of MB

3.2.1. Effect of adsorption duration and contact time between MB and ACFB

The contact time is a non-negligible parameter for the MB adsorption process. An appropriate contact

time cannot only improve the treatment efficiency but also provide the most cost-effective route. Thus,

the effect of contact time of MB adsorption on to ACFB was tested at 30°C with 10 mg of ACFB,

100 ml of 20 mg l−1 as initial MB concentration and at pH = 7. Adsorption was allowed to proceed for

180 min to determine the optimum adsorption time (see figure 4 for the results). The results revealed

that MB adsorption rate increased rapidly. MB removal continued almost linearly during the initial
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Figure 2. Nitrogen sorption (filled symbols)/desorption (empty symbols) isotherms and PSD (inset) for ACFB.
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contact period, and then gradually slowed down until equilibrium was established at around 20–40 min.

Such behaviour was observed because of the higher availability of more active sites on the ACFB surface

as well as the weak internal diffusion resistance during early adsorption stages. After the early stages, a

plateau formed, during which only an insignificant increase could be seen, mostly because MB content in

the solution was significant as active sites were already saturated and diffusion into the ACFB surface

pores slowed down [34,38,39].

3.2.2. Effect of activated carbon dosage

The initial amount of an adsorbent is of high significance for adsorption processes. The dosage of the

adsorbent at the beginning of the adsorption process affects the total amount of available pores,

which will affect the overall adsorption rate and total MB amount adsorbed by ACFB [1,5]. Thus, as

initial amounts we used 1, 2.5, 5, 10, 20 and 50 mg of ACFB. All other adsorption parameters were

the same: 100 ml of 20 mg l−1 MB solution, 30°C, pH = 7 and 180 min equilibration time. Results

showing MB removal rates as a function of the initial ACFB content are shown in figure 5. The

percentage of removed MB increased dramatically as the weight of the initial ACFB increased: MB

removal efficiencies increased from 3.11% at a dosage of 1 mg to 99.78% at a dosage of 10 mg. This

can be attributed to the large available surface area as well as abundant active sites for MB molecules

to adsorb [40,41].

3.2.3. Effect of the initial concentration of MB on its adsorption

Eight different concentrations (20, 25, 30, 35, 40, 50, 60 and 80 mg l−1) of MB were chosen to study how

initial dye MB content affected its adsorption on ACFB. All other experimental adsorption parameters

5 mm 5 nm

(a) (b)

Figure 3. SEM (a) and TEM (b) images of ACFB.
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Figure 4. Effect of the contact time on the removal of MB (C0 = 20 mg l−1, m = 10 mg, T = 30°C, pH = 7, v = 100 ml).
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were the same: including 100 ml of MB, pH = 7, 10 mg of ACFB, 30°C and 150 rpm agitation speed. As

can be seen from figure 6a, adsorption curves display two stages of dye uptake as initial MB

concentration increases from 20 to 40 mg l−1: the first one demonstrates constantly increasing, and the

second one shows decreasing adsorption capacities [42,43]. At a relatively lower dye concentration,

higher dye content concentration will increase the effective contact area between dye molecules and

ACFB. It will also provide the necessary driving force to overcome MB mass transfer resistance on the

interface, which drives adsorption to higher capacity values [16,40]. At MB concentrations above

40 mg l−1, a majority of the active sites are consumed. Therefore, MB adsorption slows down, and a

lot of MB in the second phase remains in the solution, which was seen during the second of our

adsorption tests [34,44]. Figure 6b displays decreased removal constant as initial MB concentration

increases. Lower consumption of MB at its higher concentrations was because of high MB/active sites

ratio. The ACFB surface quickly becomes saturated with MB at high concentrations, implying the

dependence of adsorption on MB initial concentration [42].

3.2.4. pH effect

pH is also considered as one of most essential factors affecting adsorption processes, mostly because it

affects adsorbent surface charge. To test how pH affects MB adsorption processes on ACFB, we

performed adsorption experiments in the wide pH range and at 20 mg l−1 initial MB concentration,

10 mg ACFB dose, at 30°C and 60 min equilibration time. MB removal percentage increased slightly as

pH values increased from 3 to 11 (figure 7). At low pH, abundant H+ compete with MB cations

for the active sites. Thus, MB adsorption on ACFB becomes inhibited at low pH vales. Therefore,
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Figure 5. Effect of the AC doses on the removal of MB (C0 = 20 mg l−1, t = 180 min, T = 30°C, pH = 7, v = 100 ml).
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as mid-level pH values, there are less competitive protons in the solution, which is beneficial for MB

adsorption on the ACFB surface [45]. However, our results showed over 98% removal percentage

values of MB in both acidic and neutral pH values. This is due to the fact that at low pH, MB

remains at cationic and molecular form and can enter into the pores of the adsorbent surface very

easily. With increasing pH, the surface of the adsorbent becomes more negative, making it favourable

for the cationic dye adsorption [40]. Thus, MB adsorption on ACFB is governed not only by

electrostatic interactions but also by van der Waals attraction, π- and other chemical interactions

between MB and ACFB surface [38]. In order to get a deep insight in the surface chemical properties

of ACFB, the FTIR spectra and XPS analysis were conducted in the previous work [35]. The existence

of functional groups such as –COOH, –OH and –NH, on the surface of ACFB, suggests that the

carbon material is CxOH, where Cx = carbon. It is necessary to note that the hydroxylated surface

groups vary at different pH values because of the protonation/deprotonation processes (i.e. CxOH +

H+
↔CxOH2

+ at low pH, and CxOH↔CxO−+H+ at high pH) [45].

3.3. Adsorption isotherms
Adsorption isotherms obtained in this work were fitted using the Langmuir, Freundlich and Tempkin

models. Their correlation with our adsorption processes was judged by the values of correlation

coefficient (R2) and errors.

The Langmuir model assumes monolayer adsorption on a homogeneous surface with all active sites

being equivalent and with the same energy. The Langmuir model also assumes dynamic equilibrium and

no interaction between adsorbates [43]. It is typically described by the following formula [46]:

Ce

qe
¼

Ce

qmax
þ

1

qmaxKL
, ð3:1Þ

where qe is the amount of adsorbed dye at the equilibrium (in mg g−1), qmax correlates with the maximum

monolayer adsorption capacity (in mg g−1), KL is an adsorption constant describing affinity between MB

and ACFB (in l mg−1) and Ce is the MB equilibrium concentration.

The Freundlich model is described by a formula assuming heterogeneous multilayer adsorption on

heterogeneous surfaces. The Freundlich model also assumes interactions between the adsorbates and

that adsorption capacity increases with the analyte concentration. The formula describing the

Freundlich model is shown below [47]

log qe ¼
1

nF
log Ce þ log KF, ð3:2Þ

where KF is the reaction constant reflecting adsorption capacity (in l mg−1), and 1/nF indicates the

dimensionless exponent of the Freundlich model to show adsorption intensity (it is calculated from

the slope and an intercept of log qe versus log Ce plot).

The Temkin adsorption assumes a decrease in adsorption heat because of the adsorbent/adsorbate

interaction as coverage with molecular layers increases. Mathematically, it can be expressed as [40,48]

qe ¼ B lnKT þ B lnCe, ð3:3Þ
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Figure 7. Effect of the pH on the removal of MB (C0 = 20 mg l−1, m = 10 mg, t = 60 min, T = 30°C, v = 100 ml).

royalsocietypublishing.org/journal/rsos
R.
Soc.

open
sci.

6:
190523

7



where B =RT/b, b is the Temkin constant related to the adsorption heat (in J mol−1), KT (l mg−1) is

the equilibrium adsorption constant, R is the gas constant equal to 8.314 J K mol−1 and T (K) is the

absolute temperature.

Figure 8 displays the Langmuir, Temkin and Freundlich isotherms for our adsorption experiments. The

calculated parameters for all these isotherms along with R2 values are shown in table 1. The correlation

coefficient (R2) for the linear portion of the Temkin model is the closest to 1.0. Thus, the Temkin model

describes MB adsorption on ACFB the best. Meanwhile, it reveals this adsorption is not a monolayer

adsorption process. The correlation coefficient R2 for the Freundlich model was above R2 obtained by

fitting the Langmuir model to our data, which very likely indicates that MB adsorption on ACFB does

not occur in a monolayer fashion on a homogeneous surface but rather on a heterogeneous one [3].

The value of 1/n equal to 0.758 is less than 1, which indicates favourable adsorption conditions [5,6,49].

3.4. Kinetics studies
Adsorption kinetics studies the relationship between adsorption capacity and reaction time. Thus,

its main concern is adsorption speed, dynamic equilibrium, mass transfer and diffusion rates. Analysis

of these parameters helps to understand adsorption process rates as well as adsorption mechanism.

For adsorption kinetics study, in this work, we used 0.01 g of adsorbent and 100 ml of 20 mg l−1 MB

solution, and then placed them into a 250 ml beaker at 30°C. We examined the adsorption rate and MB
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Figure 8. Plots of Langmuir (a), Freundlich (b) and Temkin (c) isotherm models for the adsorption of MB into ACFB.

Table 1. Adsorption isotherm parameters for MB on ACFB.

model

Langmuir constants Freundlich constants Temkin constants

qmax KL R2 1/n KF R2 B KT R2

1044.404 0.01216 0.778 0.758 21.086 0.964 199.006 0.138 0.975
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removal mechanism by ACFB using different equilibrium times (5–180 min) to understand and develop a

solid/liquid-phase equilibrium kinetic model.

Our experimental data were fit using the pseudo-first and -second-order reaction models as well as an

intraparticle diffusion model with the goal of establishing adsorption rates.

The pseudo-first-order model is mathematically described as shown below [50]

log (qe � qt) ¼ log qe � K1t, ð3:4Þ

where k1 is the pseudo-first-order kinetic constant (in 1/min−1) and t is the time (in min).

The pseudo-second-order kinetic model can be expressed by the following equation [50,51]:

t

qt
¼

1

K2q2e
þ

t

qe
, ð3:5Þ

where k2 is the pseudo-second-order kinetic constant (in g (mg min)−1), qt correlates with adsorption

capacity at time t in minutes (in mg g−1).

Our experimental data were also treated using the intraparticle diffusion model to understand the

diffusion process of MB on ACFB particles. It is defined as [50]

qt ¼ Kpt
1=2 þ C, ð3:6Þ

where Kp is the intraparticle diffusion constant (in mg g−1min0.5) and C is the thickness of the boundary

layer. At C = 0, intraparticle diffusion is the only controlling step. Thus, adsorption occurs inside the

adsorbent. The larger the C, the greater the boundary layer effect on the adsorption, or in other

words, the greater the effect of membrane diffusion on the adsorption process.

Figure 9 shows the three models’ fitting results. Meanwhile, the detailed parameters calculated from

the three kinetic models along with R2 values are shown in table 2. The correlation coefficient (R2) of the

pseudo-second-order model was higher than the correlation coefficients obtained from other models.

Compared to qe values obtained by fitting our experimental data using the pseudo-first-order and

intraparticle diffusion models, the calculated qe values from the pseudo-second order show better

agreement with the experimental values. Thus, taking into account all experimental data mentioned
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above, we determined that the pseudo-second-order kinetic model agrees the best with MB adsorption

on ACFB than other kinetic models.

Figure 9c displays our experimental results fitted using the intraparticle diffusion model. The C-value

was not zero. All corresponding curves are multilinear, and three main adsorption stages can be clearly

distinguished. The initial stage with slope Kp1 (19.24) shows that the dye molecules are adsorbed from the

liquid phase to the external adsorbent surfaces. The second stage had Kp2 equal to 3.88, which reveals

that dye molecules enter ACFB internal pores from its surface. Such a phenomenon is called

intraparticle diffusion. The third stage with the Kp3 equal to 0.11 represents MB adsorption on the

ACFB sites. During these stages, as MB concentration in the solution decreased, mass transfer

resistance of the adsorbate increased. As a result, the diffusion process gradually slowed down, and

the slope became less steep [2,14,40,52].

Table 3 shows the adsorption capacities of ACs prepared from other agricultural by-products, polymers

andcarboncompositematerials. It is clear fromthesedata thatAC isoneof the lowest cost andoneof themost

effective adsorbents forMB and other organics removal.What ismore, asmentioned, FB is a sort of common

forestry waste, which means that the cost of FB is lower than the normal biomass, polymers or GO for AC

production, such as bamboo, wood, rice husk, coconut shell, graphene and so on. All these merits, along

with the zero-cost andwide availability of FB,make this type of sorbent highly promising in dye adsorption.

3.5. Regeneration of adsorbent
According to the above analysis, MB can be easily adsorbed into ACFB undermoderate conditions. In order

to get further into the practical application, the regeneration property was investigated using ethanol as the

eluent. As shown in figure 10, the removal capacity of MB retained 69.41% after four cycles, indicating the

ACFB material possesses good regenerability and reusability when using ethanol solution [61–63].

3.6. Adsorption mechanism
The MB can be better removed by AC under both acid and basic conditions, indicating that the

electrostatic interaction played an important role in the adsorption process [63]. At lower pH, the

Table 2. Kinetic model parameters for MB on ACFB.

kinetic models and parameters MB

pseudo-first-order kinetics qe 198.67

K1 0.058

R2 0.6445

pseudo-second-order kinetics qe 199.55

K2 0.0071

R2 0.9999

intraparticle diffusion qe 199.55

Kp 2.99

C 169.19

R21 0.4478

linear fitting intraparticle diffusion Kp1 19.24

C1 109.63

R21 0.9474

Kp2 3.88

C2 171.71

R22 0.8634

Kp3 0.11

C3 197.93

R23 0.8488
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various functional groups and reactive atom of dyes and adsorbent protonated and both get positive

charge [40]. At higher pH, the carboxylic groups are deprotonated, and negatively charged

carboxylate ligands (COO−) bind to the positively charged MB molecules. This finding confirms that

the sorption of MB by FBAC is an ion exchange mechanism between the negatively and the positively

charged groups [41,64]. Therefore, due to the strong repulsive force between dye and adsorbent the

removal percentage decreased. The results of equilibrium and kinetic studies showed that the

adsorption of MB onto FBAC was predominantly a chemisorption process [45]. Therefore, electrostatic

interaction along with chemical binding between adsorbate and adsorbent mainly controlled the MB/

FBAC adsorption process.

4. Conclusion
ACFB was prepared. It demonstrated substantial adsorption relative to MB because of its very high

surface area (approx. 1552 m2 g−1) and large pore volume (approx. 0.84 cm3 g−1). The maximum MB
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Figure 10. Regeneration of ACFB and MB desorption.

Table 3. Comparison of adsorption capacity of various adsorbents for MB.

adsorbent qe (mg g
−1) ref.

fir bark activated carbon 330 this work

banana trunk activated carbon 166 [53]

Acacia mangium wood activated carbon 158 [51]

cork powder waste activated carbon 350 [52]

date pits activated carbon 259 [6]

Filtrasorb 400,

Norit and

Picacarb granular activated carbon

255

222

160

[54]

cotton stalk 147 [55]

CuS nanoparticle loaded on activated carbon 208 [56]

Ephedra strobilacea saw dust char 31 [57]

GO 302 [58]

graphene oxide/cellulose 375 [59]

graphene oxide/titanate nanotube 26 [19]

chitosan 385 [60]

graphite oxide 170 [20]
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adsorption capacity of ACFB was 330 mg g−1. In general, the adsorption capacity of ACFB relative to MB

increased with longer equilibrium times, higher adsorbent dosage and higher initial MB concentrations.

Adsorption data can be fit with a good correlation coefficient using the Freundlich and Temkin models.

Adsorption kinetics followed the pseudo-second-order model. Overall, ACFB demonstrated outstanding

adsorption properties relative to MB and cationic dyes in general. Thus, ACFB is very promising for use

in wastewater treatment to mitigate dye pollution.
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