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ABSTRACT 

A practical procedure for synthesizing distributed, lumped active 
(DLA) networks is developed by determining a set of equivalent rational 
pole positions ccrresponding to the amplitude response of three specific 
DLA networks which together allow the realization of filters with left 
half-plane poles and j w  axis zeros. An example of the synthesis of a 
?-pole, 4 j w  axis zero elliptic function low-pass filter is given. 

INTROIXJCTION 

The increasing importance of linear integrated circuits makes it 
vitally necessary that a practical, economical means be found to realize 
transfer functions that normally require inductive components without the 
use of inductors, since it is not practical in most cases to integrate 
inductors (ref. 1, pg. 36). Additionally, the size and weight of inductive 
components is a severe disadvantage for many other applications (satellites 
and space probes, for example). 

Many approaches to active RC synthesis have been used, each with a 
particular advantage in specific cases. 
networks using a voltage-controlled voltage source (VCVS) , as introduced 
by Sallen and Key (ref. 2), use a relatively large nuniber of passive ele- 
ments whereas the active element is relatively simple. Further, those 
realizations using fewer passive elements tend to require a more complex 
active system (e.g., gyrator realization (ref. 3, pg. 140)). As will be 
shown, the use of distributed, lumped, .active (U) systems in which the 
active element is a VCVS can greatly reduce the number of passive com- 
ponents while using a simple active element, and in addition, in many cases 
allow the use of a very simple VCVS. 

The lumped element active RC 

A practical computationalprocedure has been developed for analyzing 
DLA networks, and from this a general synthesis method was evolved whereby 
the amplitude response corresponding to any conibination of left half-plane 
(LHP) poles and j w  axis zeros can be realized by cascading a few simple 
DLA RC networks (ref. 4). 
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If we now consider the synthesis problem i n  general, a l inear  system 
rat ional  t ransfer  function can be factored into a product of complex root 
quadratics and first-degree terms ( f o r  prac t ica l  reasons, m 5 n is  assumed) as 

Each quadratic factor  needed can then be realized by passive RC e le-  
ments combined with a VCVS. The VCVS i s  chosen fo r  simplicity and avai l -  
a b i l i t y  i n  prac t ica l  and integrated form, and t o  allow the overall  t ransfer  
function t o  be obtained by simple cascading of the individual quadratic 
factor  network real izat ions (ref.  3 ) .  
first-degree term ( o r  terms) i s  then added i n  cascade. I n  t h i s  way, no 
additional act ive elements a re  needed. 
therefore only be applied t o  the quadratic terms, which, i n  the most general 
case, w i l l  be of the form shown in  Eq. (1). However, we w i l l  consider only 
those cases i n  which the zeros l i e  on the  j w  axis  (a1 = a3 = crs . . . = 0) 
since these a re  generally t h e  mos t  useful. The networks developed here are,  
however, eas i ly  modified t o  produce complex zeros anywhere i n  the p plane 
(ref.  6 ) .  

A Wssive RC real izat ion of the 

Active synthesis procedures need 

Figure l ( a )  shows a lumped active RC network previously used by the 
author t o  rea l ize  two complex poles and two j w  Fig- 
ure l ( b )  shows a DLA network of the type t o  be discussed i n  t h i s  paper 
which produces essent ia l ly  the same amplitude response as the network of 
Fig. 1( a) ,  but is  considerably simpler and requires a VCVS gain about half 
as large ( i. e., A 1  r 1/2 K1) .  
containing dis t r ibuted elements t h a t  do not have a ra t iona l  t ransfer  
f'unction, the amplitude response produced by these networks is  adequately 
represented by the amplitude response of  a ra t iona l  t ransfer  f'unction. 

axis  zeros ( r e f .  7). 

Although we w i l l  be considering networks 

EQUIVALENT POLE. I?OSITIONS 

Since we a r e  concerned w i t h  obtaining an amplitude response equivalent 
t o  that of e i ther  a 2-pole 2-zero, or a 2-pole function, we w i l l  consider 
equivalent pole positions f o r  the DLA networks. It is  t h i s  concept of an 
equivalent set of pole positions which allows the  development of a simple 
and prac t ica l  synthesis procedure f o r  DLA networks. This is  similar t o  
the  effective dominant pole idea fo r  passive, distributed RC networks 
proposed by G h a u s i  and Kelly ( ref .  8) . 

The first DLA network t o  be considered (Fig. 2) produces an amplitude 
response similar t o  that of the network of Fig. l ( a ) ,  which has two complex 
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poles and two j w  axis zeros. 
axis  zeros a t  
( r e f .  6) f o r  a uniform l ine .  
f o r  various values of gain, A l ,  and capacity, C, t o  t ha t  of a ra t iona l  
2-pole, 2 j w  
a len t  pole positions of the DLA network can be plotted as a f’unction of the  
DLA network parameters A l ,  and C; t h i s  allows synthesis d i rec t ly  from a 
given ra t iona l  voltage t ransfer  f’unction. 
greater  distance from the origin than the poles since, for  the DLA network 
of Fig. 2, €1 must be less t h a n  1. 

The values have been chosen t o  produce j w  
W = f1.0 rps, that  is, Rf/Ro = 17.786 and ROCo = 11.192 

If we match the DLA network amplitude response 

axis  zero function i n  a suff ic ient  number of cases, the equiv- 

The zeros must be located a t  a 

Figure 3 compares the response of 2-pole 2-zero functions and the 
calculated response of the DLA network of Fig. 2 f o r  two different  values 
of A 1  and C. 
band, and is  i n  a direction t o  improve the performance of the f i l t e r .  

The only significant deviation occurs w e l l  in to  the s top 

The r e su l t  of matching th i s  amplitude response i n  many cases is  
shown as a pole position ( a  + j u )  i n  Fig. 4 f o r  values of A 1  
t o  1.7 and of C from 0 t o  0.5 fd. 
course, located a t  

from 0.5 
The zeros of t h i s  network are, of 

w = 1.0 r p s  for  a l l  values of A 1  and C. 

The DLA network suited t o  the production of an equivalent s e t  of two 
axis zeros with poles that l i e  above and t o  the complex poles and two j w  

l e f t  of the region given by the curve 
This network is  normalized t o  unit feedback resistance and the l i n e  ele- 
ments a re  chosen t o  give zeros on the j w  
ered RC l i n e  is used as before. The only adjustable mrameters a re  then A 2  
and R.  
various values of A 2  and R allowed a m t c h  t o  be made t o  a 2-pole, 2-zero 
function. Typical comparisons are shown i n  Fig. 6 fo r  two values of A2 
and R. The deviations shown are  typical  of the  type t o  be expected. The 
positions of the equivalent poles ( f o r  u + j w )  are shown i n  Fig. 7 fo r  
values of A 2  from 0.6 t o  1.35 and of R from 10 R t o  w. The zeros 
are located a t  W = f1.0 rps.  
desired pole position on Fig. 7 and read off the values o f  A 2  and R 
required i n  the network of Fig. 5 t o  produce tha t  equivalent pole position. 

C = 0 i n  Fig. 4 is shown i n  Fig. 5 .  

axis  a t  w = f l . O  rps when an untap- 

The calculation of the amplitude response of t h i s  DLA network f o r  

The synthesis procedure is  thus t o  locate the 

The last DLA network has a n  amplitude response equivalent t o  that of 
a single-pole pair .  
been used t o  produce a 2-pole function using a VCVS as the act ive element 
(ref. 2) 
function is the DLA network shown i n  Fig. 8(b). I n  t h i s  case, the ampli- 
f i e r  gain required ( A s )  i s  always l e s s  than O.9206! A typical comparison 
of the amplitude response of t h i s  network and a 2-pole function is  shown 
i n  Fig. 9. The result ing equivalent pole positions f o r  t h i s  network a r e  
shown i n  Fig. 10 fo r  various values of l i n e  capacity Co and amplifier 
gain A3, for  & = 1 R .  Note that variations of CO ( o r  Ro) do not 
chawe the system Q, only the frequency is  affected; Q is  changed only 
by variations i n  the amplifier gain. 

In the past, the act ive RC network (Fig. 8(a)) has 

A very simple network producing approximately a 2-pole t ransfer  

This c i rcu i t  i s  particularly usef i l  as an osc i l la tor  since only a 
The frequency of s ingle  RC l i n e  and an emitter follower a re  required. 



oscillation can be determined from Fig. 10 for various values of capacity 
co f o r  R, = 1 R by noting the intersection of the Co curves with the 
j w  axis. 

DLA NITWORK SYNTHESIS ExAMpI;E 

A s  an example of the application of the procedures developed here, 
axis zero, low-pss filter was synthesized. a ?-pole, 4 jw 

function was obtained from Skwirzynski (ref. 9, pp. 439-500) 
a convenient source of transfer f’unctions in factored form which are 
directly applicable to synthesis with DLA RC networks. 

The transfer 
This is 

The function chosen, Eq. (2), has an equal ripple pass band with a 
tolerance of 0.5 dB and an equal ripple stop band with a minimum 
attenuation of 40 dB: 

( 2 )  
0.168( 0. 35pp2+1) ( 0. 738p2+1 

T(p) = (p2+0.488w0.501) (p2+0.114pr0.808~(pf-o.416) 

This fbnction has a cut-off frequency (-0.5 dB) of 
down at 

w = 0.886 and is 40 dB 
w = 1.13 (ref.’ 9 ) .  

We will now split this function into three parts (neglecting the con- 
stant multiplier) and realize each one separately with DLA networks. 
multiplier of 0.416 is assumed f o r  the third factor, Tc(p), to make it 
realizable with a passive RC network. 
acceptable, either attenuation or additional gain can, of course, be added: 

A 

If the overall gain realized is not 

0.738~~ + 1 
= p2 + 0.114~ + 0.808 

0.416 
Tc(p) = p + 0.416 

If we now substitute s2 = 0.359~~. in Ta(P), Eq. (3),  to Place 
the zeros at w = fl we obtain the normalized equation 

s“ + 1 
= 2.785~2 + 0.814s + 0.501 

This must be done in all cases since the design charts have their zeros 
at w = fl. The poles of TA( s) are located at s = -0.146 f j0.398. 
Since the zeros are beyond the poles, this f’unction can be realized by the 
DLA network of Fig. 2. From Fig. 4 we find that a gain A 1  = 1.11 and a 
capacity 
Fig. 11. Since we made the substitution s2 = 0 . 3 5 9 ~ ~  ( p  = 1.67s), the 
transformation to the p plane is accomplished by dividing all 
capacitances of Fig. 11 by 1.67 to obtain the 1st section of the network 
of Fig. 13, which approximates 

C = 0.14 fd are required. The resulting network is shown in 

T,(p) 



The next factor t o  be realized, Tb(p), Eq. ( 4 )  i s  normalized by 
substi tuting s2 = 0. 738p2 which gives Eq. (7 ) .  

s2 + 1 Ti(s) = 1 . 3 5 5 ~ ~  + 0.133s + 0.808' 

s )  a re  located a t  s = -0.049 f j0.77 (zeros beyond the 
poles as before 3' , and we find from Fig. 4 that a gain A 1  = 1.03 and a 
The poles of 

capacity C = 0.023 fd a r e  necessary. The network approximating TI;(s) 
is  shown i n  Fig. 12. From the relat ion s2 = 0 . 7 3 8 ~ ~  ( p  = 1.164s), we 
transform the network of Fig. 12 t o  the p plane by dividing a l l  capac- 
itances by 1.164 t o  obtain the  2nd section of  the network shown in  Fig. 13, 
which approximates Q(p). The real izat ion of Tc(p), Eq. ( 5 ) ,  i s  shown 
as the 3rd section of the network i n  Fig. 13 and as indicated i n  Fig. 13 
the  cascade connection of the individual sections real iz ing 
and Tc(p) completes the design. 
together, each section can be independently impedance-scaled (a l te rna te  
values are shown i n  parentheses i n  Fig. 13). 

Ta(p) , %(p) , 
To bring the capacitor levels closer 

The deviation of the DLA network responses from the theoret ical  
amplitude responses a re  shown i n  Fig. 1 4  where the response of Ta(p) is  
compred with that of DLA1, Q(p)  with DLA2, and the overall  amplitude 
response The resul tant  f i l t e r  
performance i s  unchanged from the theoret ical  equal r ipple response in  
both the p s s  and stop bands, but has a greater attenuation following the 
second stop band peak. For c l a r i t y  i n  Fig. 14, the individual D.C. gains 
a r e  not sham; that is, a l l  functions are plotted normalized t o  a D.C. 
value of 0 dB. 

T(p) with the DLA network response, DLA. 

CONCLUSIONS 

In a l l  of the DLA networks considered, the nuniber of capacitors 
required i s  equal t o  or less  than the minimum number of capacitors required 
by a lumped active RC realization, i f  we count the c a p c i t y  of a dis t r ibuted 
RC l i n e  as a single capacitor. This minimum number of capacitors is  equal 
t o  the degree of the denominator of the t ransfer  function fo r  the lumped 
ac t ive  RC network, although pract ical  networks generally use more than the  
minimum number. 

The DLA networks used have been chosen f o r  t h e i r  p rac t ica l i ty  and 
simplicity. 
resistances and capacitances, and the  element s izes  required are s i m i l a r  
t o  those required by other active RC techniques. 
a r e  generally determined by the amplifier used and the gain s t a b i l i t y  
required i n  the overall  c i rcui t .  A t  Q values from 10 t o  20, the amplifier 
m u s t  be 20 t o  40 t i m e s  as stable i n  gain as  the  required system s t ab i l i t y .  
If the system i s  t o  be stabil ized t o  1 or  2$, then t h i s  Q value is  about 
as high as is  practical .  

The element spread i s  generally no more than 20 t o  1 f o r  the  

The frequency l imitations 

The synthesis procedure developed fo r  DLA networks has been concerned 
only with the amplitude response. No attempt has been =de t o  obtain a 



part icular  phase or t ransient  response; however, two maximally f la t ,  low- 
pass fi l ters (3-pole, 2-zero) with a cut-off frequency of 5.4 KHz and an 
in f in i t e  re ject ion frequency of 10.8 KHz were compared experimentally. 
The first was an act ive RC c i rcui t  containing only lumped elements and the 
second used DLA RC networks. 
time, r i s e  time, or  overshoot t o  a s tep  input. 

There was no measurable difference i n  delay 
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Fig. 6.- Amplitude responses for two choices of Wrameters of the 
distributed-lumped-active network of Fig. 5 and a 2-pole, 
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Fig. 13. - DLA network approximating Eq. (2) .  
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Fig. 14.- 5-pole, 4 j w  axis zero low-pass e l l i p t i c  f'unction f i l t e r  
response. 


