Synthesis of Alkylidene(gem-Difluorocyclopropanes) from Propargyl Glycolates by a One-Pot Difluorocyclopropenation/Ireland-Claisen Rearrangement Sequence.

- Source link

Guillaume Ernouf, Jean-Louis Brayer, Benoit Folleas, Jean-Pierre Demoute ...+2 more authors
Institutions: PSL Research University
Published on: 24 Mar 2017 - Journal of Organic Chemistry (American Chemical Society)
Topics: Ireland-Claisen rearrangement, Glycolates, Claisen rearrangement, Propargyl and Stereocenter

Related papers:

- Tandem Enyne Metathesis and Claisen Rearrangement: A Versatile Approach to Conjugated Dienes of Variable Substitution Patterns.
- Synthesis of vinylcyclopropanes by allylation/ring-closing metathesis/Claisen rearrangement
- Stereocontrolled Synthesis of Functionalized Spirocyclic Compounds Based on Claisen Rearrangement and its Application to the Synthesis of Spirocyclic Sesquiterpenes and Pyrrolidinoindoline Alkaloids
- Stereoselective synthesis of the a-ring of armatol a from a bromo-substituted chiral building block based on ireland-claisen rearrangement and ring-closing olefin metathesis
- An Efficient Stereoselective Synthesis of Substituted 1,3-Dienes

Synthesis of Alkylidene(gem -Difluorocyclopropanes) from Propargyl Glycolates by a One-Pot Difluorocyclopropenation/Ireland-Claisen Rearrangement Sequence
Guillaume Ernouf, Jean-Louis Brayer, Benoît Folléas, Jean-Pierre Demoute, Christophe Meyer, Janine Cossy

- To cite this version:

Guillaume Ernouf, Jean-Louis Brayer, Benoît Folléas, Jean-Pierre Demoute, Christophe Meyer, et al.. Synthesis of Alkylidene(gem -Difluorocyclopropanes) from Propargyl Glycolates by a One-Pot Difluorocyclopropenation/Ireland-Claisen Rearrangement Sequence. Journal of Organic Chemistry, American Chemical Society, 2017, 82 (7), pp.3965-3975. 10.1021/acs.joc.7b00197 . hal-03230699

HAL Id: hal-03230699

https://hal.archives-ouvertes.fr/hal-03230699

Submitted on 8 Jul 2021

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Synthesis of Alkylidene(gem-Difluorocyclopropanes) from Propargyl Glycolates by a

One-Pot Difluorocyclopropenation/Ireland-Claisen Rearrangement Sequence

Guillaume Ernouf, ${ }^{\dagger}$ Jean-Louis Brayer, ${ }^{\ddagger}$ Benoît Folléas, ${ }^{\ddagger}$ Jean-Pierre Demoute, ${ }^{\ddagger}$ Christophe Meyer, * † and Janine Cossy* ${ }^{\dagger}$
${ }^{\dagger}$ Laboratoire de Chimie Organique, Institute of Chemistry, Biology and Innovation (CBI), ESPCI Paris, CNRS (UMR8231), PSL Research University,

10 rue Vauquelin 75231 Paris Cedex 05, France
${ }^{\text {T}}$ Diverchim, 6 rue du Noyer, ZAC du Moulin, 95734 Roissy CDG, France
*E-mail: christophe.meyer@espci.fr, janine.cossy@espci.fr

- 40-76\% overall yield (12 examples)
- High diastereoselectivity (dr > 96:4), chirality transfer
- Access to gem-difluorocyclopropanes

ABSTRACT: A one-pot difluorocyclopropenation/Ireland-Claisen rearrangement sequence applied to readily available propargyl glycolates was developed as a route toward functionalized alkylidene(gem-difluorocyclopropanes). This strategy conveniently avoids the isolation of the unstable 3,3-difluorocyclopropenylcarbinyl glycolates arising from the difluorocyclopropenation. The Ireland-Claisen rearrangement proceeds with high diastereoselectivity and chirality transfer to afford alkylidene(gem-difluorocyclopropanes) incorporating a quaternary stereocenter and a protected glycolic acid moiety, which are useful building blocks for the preparation of functionalized gem-difluorocyclopropanes.

In the development of drug candidates, medicinal chemists have often relied on the beneficial effects of the incorporation of a cyclopropyl ring ${ }^{1}$ or fluorine atoms 2 in a molecule for conformational control as well as improvement of the potency, metabolic stability, membrane permeability and pharmacokinetic properties. Accordingly, the development of efficient and stereoselective methods for the preparation of functionalized monofluoro- or difluorocyclopropanes, which combine both of these latter relevant structural features, has elicited significant interest. ${ }^{3-5}$ Among the different classes of difluorocyclopropanes, the synthesis and reactivity of alkylidene(gem-difluorocyclopropanes) A which could serve as valuable precursors of a wide variety of gem-difluorocyclopropanes, has not been thoroughly investigated. ${ }^{3,5}$ The three-membered ring in compounds \mathbf{A} can be constructed by regioselective cyclopropanation of the more electron-rich bond of allenes with difluorocarbene, generated from various precursors (Scheme 1, route a). ${ }^{6}$ However, further reaction of alkylidene(gem-difluorocyclopropanes) A with difluorocarbene can occur and this strategy has seldom been applied to functionalized allenes besides examples of difluorocyclopropanation of one β-allenic ester ${ }^{6 e}$ and γ, γ-dialkylated allenyl sulfones. ${ }^{6 f}$ Alternatively, the exocyclic alkene in alkylidene(gem-difluorocyclopropanes) A can be created by an elimination step applied to selenoxydes B derived from gem-difluorocyclopropanemethanols (Scheme 1, route b), ${ }^{7,8}$ vicinal dihalides \mathbf{C} (Scheme 1, route c) ${ }^{8,9}$ or esters derived from (gem-difluoro- α-trimethylsilylcyclopropyl)carbinols (Scheme 1, route d). ${ }^{10}$ 3,3-Difluorocyclopropenes have occasionally been considered as precursors of alkylidene(gem-difluorocyclopropanes) A. One example of isomerization of an (arylmethyl)difluorocyclopropene \mathbf{E}, in the presence of a base (DBU), was disclosed but conjugation of the olefin with the aromatic ring provides the driving force of this transformation (Scheme 1, route e). ${ }^{11}$ In contrast to the non-fluorinated series, it is worth noting that methylene(gem-difluorocyclopropanes) are isomerized to the thermodynamically
favored 1-methyl(3,3-difluorocyclopropenes) under basic conditions. ${ }^{10}$ Whereas the strong electron-withdrawing effect of fluorine provides a partial aromatic cyclopropenium character to gem-difluorocyclopropenes, ${ }^{3,12}$ this property also paradoxically accounts for their chemical instability and ease of hydrolysis into cyclopropenones. ${ }^{3,13}$ Two examples of $\mathrm{S}_{\mathrm{N}} 2$, nucleophilic displacements of cyclopropenylcarbinyl esters and mesylates \mathbf{F} (with K-Selectride ${ }^{\circledR}$ and $\mathrm{Me}_{2} \mathrm{CuLi} \cdot \mathrm{LiCN}$, respectively) were also reported in the context of the synthesis of pyrethrinoids analogs (Scheme 1, route f). ${ }^{14}$

Scheme 1. Synthetic approaches toward alkylidene(gem-difluorocyclopropanes) A

Thus, the development of alternative routes toward alkylidene(gem-difluorocyclopropanes) A remains a challenging goal and in particular processes that would allow a stereoselective access to functionalized and highly substituted compounds. Recently, we reported that cyclopropenylcarbinyl glycolates \mathbf{G} undergo an efficient and highly diastereoselective Ireland-Claisen rearrangement leading to functionalized alkylidenecyclopropanes \mathbf{H} incorporating a glycolic acid moiety. ${ }^{15,16}$ Herein, we disclose our results on the expansion of the scope of the Ireland-Claisen rearrangement of cyclopropenylcarbinol derivatives to 3,3-difluorocyclopropenylcarbinyl glycolates I with the aim of synthesizing functionalized alkylidene(gem-difluorocyclopropanes) J (Scheme 2). One critical issue was whether the unstable 3,3-difluorocyclopropenes \mathbf{I}^{13} could withstand the conditions of the Ireland-Claisen rearrangement and how the fluorine atoms would affect the reactivity.

Scheme 2. Ireland-Claisen Rearrangement of Cyclopropenylcarbinyl Glycolates

2) HCl or $\mathrm{NH}_{4} \mathrm{Cl}, \mathrm{H}_{2} \mathrm{O}$
3) $\mathrm{TMSCH}=\mathrm{N}_{2}$
MeOH/toluene, rt
$54-96 \%$

R = Alkyl, Aryl, HetAryl; R' = H, Me
$\mathrm{R}^{\prime \prime}, \mathrm{R} "=\mathrm{H}, \mathrm{H} ; \mathrm{Me}, \mathrm{Me} ;\left(\mathrm{CH}_{2}\right)_{2} \mathrm{NTs}\left(\mathrm{CH}_{2}\right)_{2}$
This work

Ireland-Claisen
Rearrangement

Our initial studies were conducted with propargyl glycolate 3a, readily prepared by condensation of alcohol 1a with carboxylic acid 2 in the presence of EDCI and DMAP ($20 \mathrm{~mol} \%)\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{rt}, 82 \%\right.$ yield). The difluorocyclopropenation of the triple bond in 3a was initially attempted using Ruppert-Prakash's reagent (TMSCF_{3}, 2 equiv) in the presence of NaI (2.2 equiv) in THF (sealed tube, $\left.80^{\circ} \mathrm{C}, 2 \mathrm{~h}\right)^{17}$ but the 3,3-difluorocyclopropene 4 a was isolated in modest yield (43\%) because unidentified side-products were formed. Much more satisfactory results were obtained by slow addition (via syringe pump within 2 h) of an excess of Dolbier's reagent (trimethylsilyl fluorosulfonyldifluoroacetate, TFDA) ${ }^{18}$ to a concentrated solution ($c=2 \mathrm{M}$) of propargyl glycolate 3a in diglyme at $120{ }^{\circ} \mathrm{C}$. The desired 3,3difluorocyclopropene $\mathbf{4 a}$ was isolated in 86% yield after purification by flash column chromatography on silica gel. However, as already mentioned for other 3,3-difluorocyclopropenes, ${ }^{13}$ compound 4a turned out to be unstable and underwent rapid decomposition into a complex mixture of products, despite the presence of a phenyl substituent on the double bond. To overcome the instability of 3,3-difluorocyclopropenylcarbinyl glycolates, we reasoned that isolation of compound 4a may not be required ${ }^{19}$ because gaseous $\left(\mathrm{CO}_{2}, \mathrm{SO}_{2}\right)$ or volatile (TMSF) by-products are generated
during the difluorocyclopropenation with TFDA and the ethereal solvent (diglyme) should be compatible with the conditions of the Ireland-Claisen rearrangement. Thus, once the difluorocyclopropenation of alkyne 3a was complete, the reaction mixture was diluted with THF and the residual gaseous/volatile by-products were removed by sparging with argon. Enolization of the 3,3-difluorocyclopropenylcarbinyl glycolate 4a was then triggered by successive addition of TMSCl (4 equiv) and KHMDS (4 equiv) at $-78{ }^{\circ} \mathrm{C}$, to generate the corresponding silylketene acetal 5a of (Z) configuration. ${ }^{15,20}$ Upon warming to rt, 5a underwent a [3,3]-sigmatropic rearrangement leading to trimethylsilyl ester 6a. After hydrolysis under slightly acidic conditions, the resulting crude carboxylic acid 7a was treated with trimethylsilyldiazomethane ${ }^{21}$ to afford methyl ester 8a, as a single detectable diastereomer by ${ }^{1} \mathrm{H}$ NMR spectroscopy ($\mathrm{dr}>96: 4$). After purification by flash column chromatography on silica gel, alkylidene(gem-difluoro-cyclopropane) 8a was isolated in a satisfying 73% overall yield (three steps from glycolate $\mathbf{3 a}$). The synthesis of $\mathbf{8 a}$ could be easily achieved at the gram scale (1.1 g) with no adverse effect on the overall yield (72\%). Cleavage of the PMB ether in compound 8a with DDQ afforded the secondary alcohol 9a (75%) which was subjected to an intramolecular iodoetherification ${ }^{22}$ that led to oxabicyclic compound 10a as a single detectable diastereomer ($\mathrm{dr}>96: 4$) in quantitative yield. The cis relationship between the protons adjacent to the oxygen atom and the phenyl group at the ring junction in 10a, which was assigned by NMR spectroscopy (NOESY), confirmed the relative configuration of two adjacent stereocenters as well as the (Z) configuration of the exocyclic alkene in alkylidene(gem-difluorocyclopropane) 8a. As observed with other cyclopropenylcarbinyl glycolates, ${ }^{15}$ the Ireland-Claisen rearrangement of 4a proceeds through a chairlike transition state $\mathbf{T 1}$ in which the 2-phenylethyl group preferentially occupies an equatorial position (Scheme 3). ${ }^{15,20}$

Scheme 3. One-pot difluorocyclopropenation of propargyl glycolate 3a and Ireland-

Claisen rearrangement of 3,3-difluorocyclopropenylmethyl glycolate 4a

The use of propargyl alcohols as precursors of 3,3-difluorocyclopropenylcarbinyl glycolates was an appealing feature of the method because these latter alcohols are readily accessible and possibly in an enantioenriched form. ${ }^{23}$ To determine the substrate scope of the one-pot difluorocyclopropenation/Ireland-Claisen rearrangement sequence, the reactivity of diversely substituted propargyl glycolates 3b-3n was investigated (Scheme 4). The behaviour of glycolates $\mathbf{3 b} \mathbf{- 3}$ g possessing an aromatic group at the acetylenic position was first explored. The one-pot difluorocyclopropenation/Ireland-Claisen rearrangement sequence was successfully implemented for $\mathbf{3 b}$, incorporating a p-methoxyphenyl substituent, as shown by the isolation of ethylidene(gem-difluoro-cyclopropane) $\mathbf{8 b}$ (76%, three steps from $\mathbf{3 b}$). Importantly, when enantioenriched (S)-3b $(e e=96 \%)$ was used as substrate, the corresponding optically active ethylidene-(gem-difluorocyclopropane) $\mathbf{8 b}$ was obtained (72\%,
ee $=95 \%$), thereby indicating that chirality transfer occurred in the Ireland-Claisen rearrangement of enantioenriched glycolate $\mathbf{4 b} .{ }^{24}$ The sequence also operated well in the case of 3c possessing a p-bromophenyl substituent and produced alkylidene (gem-difluorocyclopropane) 8c (75%, three steps from 3c). However, one limitation was identified with glycolate 3d substituted by p-nitrophenyl group. Although the difluorocyclopropenation of 3d proceeded efficiently, the Ireland-Claisen rearrangement of the resulting 3,3-difluorocyclopropenylcarbinyl glycolate 4d could not be achieved and led to a complex mixture of products. This result was explained by considering that the p-nitrophenyl group would significantly increase the acidity of the proton on the carbon adjacent to the difluorocyclopropene (at the α position of the oxygen atom). Competitive abstraction of this proton by the base would generate a carbanion adjacent to the difluorocyclopropene ring that may be responsible for the observed degradation of $\mathbf{4 d}$. Although ethylidene(gem-difluorocyclopropane) $8 \mathbf{e}$ was obtained in good yield (65%) from glycolate $\mathbf{3 e}$ possessing an electronwithdrawing acetyl group at the para position of the aromatic ring, the methyl ketone was presumably converted into a silyl enol ether under the conditions of the Ireland-Claisen rearrangement. The presence of an aromatic group substituted at the ortho position did not hamper the efficiency of the sigmatropic rearrangement as shown with the successful formation of ethylidene(gem-difluorocyclopropanes) $\mathbf{8 f}$ (67\%) and $\mathbf{8 g}$ (63\%), possessing a 2-chlorophenyl and a 1-naphthyl substituent at the quaternary stereocenter, respectively. Interestingly, the presence of atropodiastereomers was observed in the NMR spectra of compounds $\mathbf{8 f}$ and $\mathbf{8 g}$, because of restricted rotation around the aryl-C2 bond. Propargyl glycolates possessing a moderately electron-rich heteroaromatic group at the acetylenic position were compatible with the difluorocyclopropenation/Ireland-Claisen rearrangement sequence. Hence, the preparation of the alkylidene(gem-difluorocyclopropanes) $\mathbf{8 h}$ and $\mathbf{8 i}$,
possessing a N-Boc-indol-3-yl and a 3-thienyl group, respectively, was achieved in good overall yield (70\%) (Scheme 4).

Further exploration of the substrate scope was carried out with propargyl glycolates bearing an alkyl chain at the acetylenic position. ${ }^{25}$ For such substrates, the substituent at the propargylic position could not be a phenyl group. Indeed, whereas the difluorocyclopropenation of glycolate $\mathbf{3 j}$ could be achieved, the resulting difluorocyclopropene $\mathbf{4 j}$ decomposed under the conditions of the Ireland-Claisen rearrangement. This behaviour is in striking contrast with the reactivity of the related 3,3-dimethylcyclopropenylcarbinyl glycolates \mathbf{G} in the Ireland-Claisen rearrangement which accommodate an aromatic ring at the adjacent position (Scheme 2). ${ }^{15}$ The strong electronwithdrawing effect of the fluorine atoms on the cyclopropene probably enhances the acidity of the proton on the adjacent (benzylic) carbon. As previously observed with cyclopropene 4d, competitive abstraction of this latter proton by the base would account for the failure to achieve the Ireland-Claisen rearrangement of $\mathbf{4} \mathbf{j}$. Accordingly, the reactivity of glycolates $\mathbf{3 k}$ 3n, substituted at the propargylic position by aliphatic substituents (a 2-phenylethyl or a benzyloxymethyl group), was examined. The corresponding alkylidene(gem-difluorocyclopropanes) $\mathbf{8 k}$ (61%), $\mathbf{8 l}(48 \%), \mathbf{8 m}(43 \%)$ and $\mathbf{8 n}(40 \%)$ were isolated in good to moderate overall yields. Interestingly, protected hydroxymethyl and 2-hydroxyethyl substituents could be introduced on the quaternary stereocenter (C2) in gem-difluorocyclopropanes $\mathbf{8 1}$ and $\mathbf{8 n}$. The lower yields generally observed for alkylidene(gem-difluorocyclopropanes) $\mathbf{8 k}$ - $\mathbf{8 n}$, compared to those attained with $\mathbf{8 b}, \mathbf{8 c}, \mathbf{8 e - 8 i}$ possessing an aromatic group, is due to the lower stability of the alkyl-substituted gem-difluorocyclopropenes (Scheme 4). ${ }^{13}$

Scheme 4. Scope of propargyl glycolates

${ }^{\text {a }}$ Isolated yield of analytically pure material (three steps from the corresponding propargyl glycolates).
${ }^{\mathrm{b}}$ Obtained from optically active (S)-3b (ee $=96 \%$). ${ }^{\mathrm{c}}$ The corresponding gem-difluorocyclopropenes were formed but decomposed under the conditions of the Ireland-Claisen rearrangement

To illustrate that alkylidene(gem-difluorocyclopropanes) J enable access to other classes of substituted gem-difluorocyclopropanes, a few transformations of these latter compounds were carried out. To our knowledge, no examples of hydrogenation of alkylidene(gem-difluorocyclopropanes) have been disclosed to date, so the feasilibity of this transformation which would create an additional stereocenter was worth studying. Because the presence of a quaternary stereocenter at $\mathbf{C} 2$ in the alkylidenecyclopropanes \mathbf{J} would not allow for a satisfactory discrimination of the diastereofaces of the exocyclic alkene, ${ }^{16 \mathrm{~b}}$ a substratedirected hydrogenation was investigated. ${ }^{15}$ Thus, the α-hydroxy ester $9 \mathbf{a}$, obtained from 8a by cleavage of the PMB ether, underwent a highly diastereoselective hydrogenation in the presence of Crabtree's catalyst [Ir]-I $(6 \mathrm{~mol} \%)^{26}$ which afforded gem-difluorocyclopropane 11 in 91% yield with high diastereoselectivity ($\mathrm{dr}>96: 4$). It is worth noting that no ringopening occurred under these conditions. In the case of compound 81, cleavage of the silyl
ether afforded the primary alcohol 12 (55\%) which underwent a highly diastereoselective directed hydrogenation leading to gem-difluorocyclopropane $\mathbf{1 3}$ (92\%) (Scheme 5). ${ }^{27}$

Scheme 5. Diastereoselective hydrogenation of alkylidene-(gem-difluorocyclopropanes)

The glycolic acid moiety can be converted into a valuable aldehyde functional group. Thus, reduction of the methyl ester $\mathbf{1 1}$ with LiAlH_{4}, followed by oxidative cleavage of the resulting 1,2-diol with NaIO_{4} adsorbed on silica gel, ${ }^{28}$ delivered aldehyde $\mathbf{1 4}$ (72%, two steps from 11) possessing an adjacent quaternary stereocenter on the difluorinated cyclopropane (Scheme 6). ${ }^{29}$

Scheme 6. Synthesis of aldehyde 14

In conclusion, we have developed a one-pot sequence involving the difluorocyclopropenation of propargyl glycolates followed by the Ireland-Claisen rearrangement of the resulting 3,3-difluorocyclopropenyl glycolates as a route toward of alkylidene(gem-difluorocyclopropanes) incorporating a quaternary stereocenter and a glycolic acid moiety. The substrates are readily available from propargylic alcohols and the Ireland-Claisen
rearrangement of 3,3-difluorocyclopropenylcarbinyl glycolates proceeds with high diastereoselectivity and chirality transfer. This sequence provides an interesting entry to a variety of gem-difluorocyclopropanes that would not be readily obtained by other routes.

EXPERIMENTAL SECTION

General information. All reactions were carried out under anhydrous conditions, using flame-dried glassware and under an argon atmosphere. THF was distilled from Na /benzophenone. $\mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{Et}_{3} \mathrm{~N}$, $i \mathrm{Pr}_{2} \mathrm{NEt}$ and diglyme were distilled from CaH_{2}. Other reagents were obtained from commercial suppliers and used as received. Flash chromatography was performed on silica gel (230-400 mesh). Optical rotations were measured using a polarimeter with a 1 dm path length at 589 nm . IR spectra were recorded with attenuated total reflectance (ATR) sampling technique. ${ }^{1} \mathrm{H} N \mathrm{NR},{ }^{13} \mathrm{C}$ NMR and ${ }^{19}$ F NMR spectra were recorded at $400 \mathrm{MHz}, 100 \mathrm{MHz}$ and 282 MHz , respectively. The chemical shifts (δ) are reported in parts per million (ppm) and were referenced to the residual isotopomer solvent signals $\left(\mathrm{CHCl}_{3}: \delta=7.26 \mathrm{ppm}, \mathrm{C}_{6} \mathrm{D}_{5} \mathrm{H}: \delta=7.16 \mathrm{ppm}, \mathrm{CD}_{3} \mathrm{~S}(=\mathrm{O}) \mathrm{CHD}_{2}\right.$: $\delta=2.50 \mathrm{ppm})$ for ${ }^{1} \mathrm{H}$ NMR spectra, the solvent signal $\left(\mathrm{CDCl}_{3}: \delta=77.16 \mathrm{ppm}, \mathrm{C}_{6} \mathrm{D}_{6}: \delta=\right.$ 128.06 ppm , DMSO- $d_{6}: \delta=39.52 \mathrm{ppm}$) for ${ }^{13} \mathrm{C}$ NMR spectra or to external $\mathrm{CFCl}_{3}(\delta=$ $0 \mathrm{ppm})$ for ${ }^{19} \mathrm{~F}$ spectra. Coupling constants are given in Hertz (Hz) and multiplicities are indicated using the conventional abbreviations $(\mathrm{s}=$ singlet, $\mathrm{d}=$ doublet, $\mathrm{t}=$ triplet, $\mathrm{q}=$ quartet, $\mathrm{m}=$ multiplet or overlap of non-equivalent resonances, $\mathrm{br}=$ board, app $=$ apparent). All ${ }^{13} \mathrm{C}$ spectra were broadband ${ }^{1} \mathrm{H}$-decoupled and the carbon environment $\left(\mathrm{C}, \mathrm{CH}, \mathrm{CH}_{2}\right.$ or CH_{3}) was deduced from DEPT experiments. High resolution mass spectra (HRMS) were performed with an orbitrap mass analyzer by electrospray ionization. Enantiomeric purities of optically active compounds were determined by supercritical fluid chromatography (SFC) analysis, after calibration with the racemic sample, using a mixture of supercritical $\mathrm{CO}_{2}\left(\mathrm{scCO}_{2}\right)$ and

MeOH as eluent and a chiral stationary phase. The known propargylic alcohols $\mathbf{1 a},{ }^{30} \mathbf{1 j},{ }^{31}$ $\mathbf{1 k},{ }^{32} \mathbf{1} \mathbf{m}^{33}$ and $\mathbf{1 n}^{34}$ were prepared by reaction of the corresponding lithium alkynylide to the appropriate aldehyde. Alcohol $\mathbf{1 i}$ was prepared in the same manner but was directly converted into glycolate 3i. The known propargylic alcohols $\mathbf{1 b},{ }^{35} \mathbf{1 c},{ }^{36} \mathbf{1 d},{ }^{37} \mathbf{1},{ }^{38} \mathbf{1 g},{ }^{39}$ were prepared by Sonogashira cross-coupling reactions between the corresponding (hetero)aromatic iodide and propargyl alcohol possessing a terminal alkyne. Enantioenriched (S)-1b was prepared in a similar manner as racemic $\mathbf{1 b}$, by Sonogashira cross-coupling between commercially available (S)-3-butyn-2-ol and 4-iodoanisole. ${ }^{35}$
(S)-4-(4-Methoxyphenyl)but-3-yn-2-ol ((S)-1b). To a degassed mixture (argon sparging, $10 \mathrm{~min})$ of $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{Cl}_{2}(25.6 \mathrm{mg}, 0.036 \mathrm{mmol}, 2 \mathrm{~mol} \%)$, $\mathrm{CuI}(17.4 \mathrm{mg}, 0.091 \mathrm{mmol}$, $5 \mathrm{~mol} \%$) and 4 -iodoanisole ($426 \mathrm{mg}, 1.82 \mathrm{mmol}$) in THF (7 mL) at $0^{\circ} \mathrm{C}$, were added successively (S)-3-butyn-2-ol ($214 \mu \mathrm{~L}, 2.73 \mathrm{mmol}, 1.5$ equiv) and $\mathrm{Et}_{3} \mathrm{~N}(760 \mu \mathrm{~L}, 13.7 \mathrm{mmol}$, 3 equiv). After 16 h stirring at rt , the reaction mixture was filtered through Celite (EtOAc). The filtrate was successively washed with a saturated aqueous solution of $\mathrm{NH}_{4} \mathrm{Cl}$, brine, dried over MgSO_{4}, filtered and concentrated under reduced pressure. The residue was purified by flash chromatography (petroleum ether/EtOAc $=80: 20$) to afford $279 \mathrm{mg}(87 \%)$ of $(S)-\mathbf{1 b}$ as a yellow oil; IR: v 3357, 2228, 1607, 1509, 1290, 1248, 1174, 1104, 1029, $832 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.36(\operatorname{app~d}, J=8.9 \mathrm{~Hz}, 2 \mathrm{H}), 6.82(\operatorname{app~d}, J=8.9 \mathrm{~Hz}, 2 \mathrm{H}), 4.74(\mathrm{~m}, 1 \mathrm{H})$, $3.80(\mathrm{~s}, 3 \mathrm{H}), 2.11(\mathrm{~d}, J=5.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{OH}), 1.54(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 159.7(\mathrm{C}), 133.2(2 \mathrm{CH}), 114.8(\mathrm{C}), 114.0(2 \mathrm{CH}), 89.7(\mathrm{C}), 84.0(\mathrm{C}), 59.0(\mathrm{CH}), 55.4$ $\left(\mathrm{CH}_{3}\right), 24.6\left(\mathrm{CH}_{3}\right)$. Spectral data matched those previously reported for this compound. ${ }^{35}$ $[\alpha]_{\mathrm{D}}{ }^{20}-21.4\left(c 0.252, \mathrm{CHCl}_{3}\right)\left\{[\alpha]_{\mathrm{D}}{ }^{26}{ }_{\text {litt }}-29.6\left(c 1.44, \mathrm{CHCl}_{3}\right)\right\} .{ }^{40}$ The enantiomeric excess of $(S) \mathbf{- 1 b}$ was determined by supercritical fluid chromatography using a chiral stationary phase (AD-H column, 100 bar, $3 \mathrm{~mL} / \mathrm{min}, \mathrm{scCO}_{2} / \mathrm{MeOH}=96: 4$): minor (R)-enantiomer: $\mathrm{t}_{\mathrm{R}}=$ 10.9 min ; major (S)-enantiomer: $\mathrm{t}_{\mathrm{R}}=11.9 \mathrm{~min} . \mathrm{ee}=96 \%$.

4-(2-Chlorophenyl)but-3-yn-2-ol (1f). Prepared by Sonogashira cross-coupling between 1-chloro-2-iodobenzene and 3-butyn-2-ol. After purification by flash chromatography (petroleum ether/EtOAc $=80: 20$), $\mathbf{1 f}$ was isolated as an orange oil $(958 \mathrm{mg}, 97 \%)$; IR: v 3320, $1473,1105,1061,1031,935,855,751 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.43(\mathrm{dd}, J=7.6$, $1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.35(\mathrm{dd}, J=7.8,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.20(\operatorname{app} \mathrm{td}, J=7.7,1.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.15(\operatorname{app} \mathrm{td}$, $J=7.5,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.81(\mathrm{q}, J=6.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.94(\mathrm{~s}, 1 \mathrm{H}, \mathrm{OH}), 1.57(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 135.9$ (C), 133.4 (CH), 129.4 (CH), 129.2 (CH), 126.4 (CH), $122.6(\mathrm{C}), 96.4(\mathrm{C}), 80.7(\mathrm{C}), 58.8(\mathrm{CH}), 24.3\left(\mathrm{CH}_{3}\right)$; HRMS (ESI) m / z calcd for $\mathrm{C}_{10} \mathrm{H}_{9} \mathrm{ClONa}$ $\left[\mathrm{M}\left({ }^{35} \mathrm{Cl}\right)+\mathrm{Na}\right]^{+}$and $\left[\mathrm{M}\left({ }^{37} \mathrm{Cl}\right)+\mathrm{Na}\right]^{+}: 203.0234$ and 205.0205, found: 203.0237 and 205.0206.

4-(Naphthalen-1-yl)but-3-yn-2-ol (1g). Prepared by Sonogashira cross-coupling between 1-iodonaphthalene and 3-butyn-2-ol. After purification by flash chromatography (petroleum ether/EtOAc $=80: 20), \mathbf{1 g}$ was isolated as a yellow oil ($1.06 \mathrm{~g}, 99 \%$); IR: v 3316, 3058, 2221, 1587, 1507, 1395, 1327, 1118, 1079, 799, $772 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.33$ (br d, $J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.86-7.81(\mathrm{~m}, 2 \mathrm{H}), 7.67(\mathrm{dd}, J=7.1,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.61-7.49(\mathrm{~m}, 2 \mathrm{H}), 7.41$ $(\mathrm{m}, 1 \mathrm{H}), 4.93(\mathrm{~m}, 1 \mathrm{H}), 2.43(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{OH}), 1.68(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 133.3(\mathrm{C}), 133.2(\mathrm{C}), 130.6(\mathrm{CH}), 129.0(\mathrm{CH}), 128.4(\mathrm{CH}), 126.9(\mathrm{CH}), 126.5(\mathrm{CH})$, $126.1(\mathrm{CH}), 125.2(\mathrm{CH}), 120.3(\mathrm{C}), 96.1(\mathrm{C}), 82.2(\mathrm{C}), 59.2(\mathrm{CH}), 24.7\left(\mathrm{CH}_{3}\right)$; HRMS (ESI) m / z calcd for $\mathrm{C}_{14} \mathrm{H}_{12} \mathrm{ONa}[\mathrm{M}+\mathrm{Na}]^{+}: 219.0780$, found: 219.0782.
tert-Butyl 3-(3-hydroxybut-1-yn-1-yl)-1H-indole-1-carboxylate (1h). Prepared by Sonogashira cross-coupling between tert-butyl 3-iodo-1 H -indole-1-carboxylate ${ }^{41}$ and 3-butyn-2-ol. After purification by flash chromatography (petroleum ether/EtOAc $=80: 20$), $\mathbf{1 h}$ was isolated as an
orange solid (1.26 g, 97\%); Mp 104-106 ${ }^{\circ} \mathrm{C}$; IR: v 3376, 2230, 1738, 1452, 1369, 1232, 1155, 1088, $747 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.12(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.74(\mathrm{~s}, 1 \mathrm{H}), 7.64$ (app br d, $J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.38-7.24(\mathrm{~m}, 2 \mathrm{H}), 4.83(\mathrm{~m}, 1 \mathrm{H}), 2.16(\mathrm{~d}, J=5.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{OH})$, $1.66(\mathrm{~s}, 9 \mathrm{H}), 1.60(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 149.2(\mathrm{C}), 134.7(\mathrm{C})$, $130.5(\mathrm{C}), 129.1(\mathrm{CH}), 125.3(\mathrm{CH}), 123.3(\mathrm{CH}), 120.1(\mathrm{CH}), 115.3(\mathrm{CH}), 102.8(\mathrm{C}), 94.7(\mathrm{C})$, $84.5(\mathrm{C}), 76.1(\mathrm{C}), 59.1(\mathrm{CH}), 28.2\left(3 \mathrm{CH}_{3}\right), 24.7\left(\mathrm{CH}_{3}\right)$; HRMS (ESI) m / z calcd for $\mathrm{C}_{17} \mathrm{H}_{19} \mathrm{NO}_{3} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}: 308.1257$, found: 308.1259.

6-[(tert-Butyldiphenylsilyl)oxy]-1-phenylhex-4-yn-3-ol (1l). To a solution of tert-butyl-diphenyl(2-propynyloxy)silane ${ }^{42}\left(1.20 \mathrm{~g}, 4.06 \mathrm{mmol}, 1.5\right.$ equiv) in THF (14 mL) at $-78^{\circ} \mathrm{C}$, was added dropwise a solution of $n-\mathrm{BuLi}(1.52 \mathrm{~mL}, 2.5 \mathrm{M}$ in hexanes, $3.79 \mathrm{mmol}, 1.4$ equiv). After 0.5 h stirring at $-78{ }^{\circ} \mathrm{C}$, 3-phenylpropanal ($400 \mu \mathrm{~L}, 2.71 \mathrm{mmol}$) was added dropwise. The reaction mixture was allowed to warm to rt , stirred for 0.5 h and then poured into a saturated aqueous solution of $\mathrm{NH}_{4} \mathrm{Cl}$. The resulting mixture was extracted with $\mathrm{Et}_{2} \mathrm{O}$ and the combined organic layers were washed with brine, dried over MgSO_{4}, filtered and concentrated under reduced pressure. The residue was purified by flash chromatography (petroleum ether/ $\mathrm{Et}_{2} \mathrm{O}=90: 10$ to $70: 30$) to afford $1.10 \mathrm{~g}(94 \%)$ of $\mathbf{1 1}$ as a colorless oil; IR: $v 3370,1428,1372,1260,1129,1111,1070,1029,998 ; 823,739,698,613 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.74-7.70(\mathrm{~m}, 4 \mathrm{H}), 7.46-7.35(\mathrm{~m}, 6 \mathrm{H}), 7.31-7.25(\mathrm{~m}, 2 \mathrm{H}), 7.22-7.14$ $(\mathrm{m}, 3 \mathrm{H}), 4.39(\mathrm{~d}, J=1.6 \mathrm{~Hz}, 2 \mathrm{H}), 4.28(\mathrm{~m}, 1 \mathrm{H}), 2.72(\mathrm{t}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 1.97-1.86(\mathrm{~m}, 2 \mathrm{H})$, $1.61(\mathrm{~d}, J=5.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{OH}), 1.06(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 141.4(\mathrm{C}), 135.7$ (4CH), 133.2 (2C), 129.9 (2CH), 128.5 (2CH), 128.4 (2CH), 127.7 (4CH), $126.0(\mathrm{CH}), 86.0$ (C), $83.7(\mathrm{C}), 61.7(\mathrm{CH}), 52.7\left(\mathrm{CH}_{2}\right), 39.0\left(\mathrm{CH}_{2}\right), 31.3\left(\mathrm{CH}_{2}\right), 26.7\left(3 \mathrm{CH}_{3}\right), 19.2(\mathrm{C})$; HRMS (ESI) m / z calcd for $\mathrm{C}_{28} \mathrm{H}_{32} \mathrm{O}_{2} \mathrm{SiNa}[\mathrm{M}+\mathrm{Na}]^{+}: 451.2064$, found: 451.2054.

Representative procedure for the preparation of propargyl glycolates: To a solution of propargyl alcohol $\mathbf{1 a}\left(1.06 \mathrm{~g}, 4.48 \mathrm{mmol}, 1.0\right.$ equiv) and (4-methoxybenzyloxy) acetic acid $\mathbf{2}^{43}$ ($1.32 \mathrm{~g}, 6.72 \mathrm{mmol}$, 1.5 equiv) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$, were added EDCI (1.29 g , $6.72 \mathrm{mmol}, 1.5$ equiv) and DMAP ($109 \mathrm{mg}, 0.896 \mathrm{mmol}, 20 \mathrm{~mol} \%$). After stirring overnight at rt , the reaction mixture was hydrolyzed with a saturated aqueous solution of $\mathrm{NH}_{4} \mathrm{Cl}$ and diluted with EtOAc. The layers were separated and the aqueous phase was extracted with EtOAc. The combined organic extracts were successively washed with a saturated aqueous solution of NaHCO_{3} and brine, then dried over MgSO_{4}, filtered and concentrated under reduced pressure. The residue was purified by flash chromatography on silica gel (petroleum ether/EtOAc $=80: 20)$ to afford $1.33 \mathrm{~g}(72 \%)$ of glycolate $\mathbf{3 a}$ as a colorless oil.

1,5-Diphenylpent-1-yn-3-yl 2-[(4-methoxyphenyl)methoxy]acetate (3a). IR: v 2231, 1757, $1612,1513,1248,1118,1033,821,757,692 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.49-7.44$ $(\mathrm{m}, 2 \mathrm{H}), 7.36-7.28(\mathrm{~m}, 7 \mathrm{H}), 7.24-7.20(\mathrm{~m}, 3 \mathrm{H}), 6.89(\mathrm{app} \mathrm{d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 5.72(\mathrm{t}, J=$ $6.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.60(\mathrm{~s}, 2 \mathrm{H}), 4.14\left(\mathrm{~d}_{\mathrm{ABsys}}, J=16.5 \mathrm{~Hz}, 1 \mathrm{H}\right), 4.07\left(\mathrm{~d}_{\mathrm{ABsys}}, J=16.5 \mathrm{~Hz}, 1 \mathrm{H}\right), 3.80$ $(\mathrm{s}, 3 \mathrm{H}), 2.85(\mathrm{t}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 2.27-2.18(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 169.6$ (C), 159.6 (C), 140.7 (C), 132.0 (2CH), 130.0 (2CH), 129.2 (C), 128.9 (CH), 128.7 (2CH), 128.5 (2CH), $128.4(2 \mathrm{CH}), 126.3$ (CH), 122.2 (C), 114.0 (2CH), 86.3 (C), 85.8 (C), 73.1 $\left(\mathrm{CH}_{2}\right), 66.9\left(\mathrm{CH}_{2}\right), 64.7(\mathrm{CH}), 55.4\left(\mathrm{CH}_{3}\right), 36.5\left(\mathrm{CH}_{2}\right), 31.5\left(\mathrm{CH}_{2}\right)$; HRMS (ESI) m / z calcd for $\mathrm{C}_{27} \mathrm{H}_{26} \mathrm{O}_{4} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}: 437.1723$, found: 437.1722.

4-(4-Methoxyphenyl)but-3-yn-2-yl 2-[(4-methoxyphenyl)methoxy]acetate (3b). After purification by flash chromatography (petroleum ether/EtOAc $=90: 10$ to $80: 20$), 3b was isolated as a yellow oil ($788 \mathrm{mg}, 98 \%$) ; IR: v 2229, 1754, 1607, 1510, 1291, 1246, 1174, 1106, 1083, 1025, 946, 831, 796, $732 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.37$ (app d, $J=$ $8.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.31(\operatorname{app~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.88(\operatorname{app~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 6.82(\operatorname{app~d}, J=$
$8.9 \mathrm{~Hz}, 2 \mathrm{H}), 5.78(\mathrm{q}, J=6.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.58(\mathrm{~s}, 2 \mathrm{H}), 4.13\left(\mathrm{~d}_{\text {ABsyst}}, J=16.5 \mathrm{~Hz}, 1 \mathrm{H}\right), 4.08$ $\left(\mathrm{d}_{\mathrm{ABsyst}}, J=16.5 \mathrm{~Hz}, 1 \mathrm{H}\right), 3.793(\mathrm{~s}, 3 \mathrm{H}), 3.792(\mathrm{~s}, 3 \mathrm{H}), 1.60(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 169.6(\mathrm{C}), 160.0(\mathrm{C}), 159.6(\mathrm{C}), 133.5(2 \mathrm{CH}), 130.0(2 \mathrm{CH}), 129.2(\mathrm{C})$, $114.3(\mathrm{C}), 114.01(2 \mathrm{CH}), 114.00(2 \mathrm{CH}), 85.7(\mathrm{C}), 85.1(\mathrm{C}), 73.1\left(\mathrm{CH}_{2}\right), 67.0\left(\mathrm{CH}_{2}\right), 61.7$ $(\mathrm{CH}), 55.4\left(2 \mathrm{CH}_{3}\right), 21.8\left(\mathrm{CH}_{3}\right)$; HRMS (ESI) m / z calcd for $\mathrm{C}_{21} \mathrm{H}_{22} \mathrm{O}_{5} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}: 377.1359$, found: 377.1361.
(S)-4-(4-Methoxyphenyl)but-3-yn-2-yl 2-[(4-methoxyphenyl)methoxy]acetate ((S)-3b). After purification by flash chromatography (petroleum ether/EtOAc $=90: 10$ to $80: 20),(S)$-3b was isolated as a yellow oil $(389 \mathrm{mg}, 92 \%) ;[\alpha]_{\mathrm{D}}{ }^{20}-56.5\left(c 0.154, \mathrm{CHCl}_{3}\right)(\mathrm{ee}=96 \%)$.

4-(4-Bromophenyl)but-3-yn-2-yl 2-[(4-methoxyphenyl)methoxy]acetate (3c). After purification by flash chromatography (petroleum ether/EtOAc $=90: 10$ to $80: 20$), 3c was isolated as a white solid ($443 \mathrm{mg}, 82 \%$); Mp $72-74^{\circ} \mathrm{C}$; IR: v $1756,1613,1586,1513,1248$, $1188,1109,1070,1030,1011,823 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.44($ app d, $J=$ $8.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.33-7.27(\mathrm{~m}, 4 \mathrm{H}), 6.88(\mathrm{app} \mathrm{d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 5.75(\mathrm{q}, J=6.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.59$ $(\mathrm{s}, 2 \mathrm{H}), 4.13\left(\mathrm{~d}_{\mathrm{ABsys}}, J=16.5 \mathrm{~Hz}, 1 \mathrm{H}\right), 4.08\left(\mathrm{~d}_{\mathrm{ABsyst}}, J=16.5 \mathrm{~Hz}, 1 \mathrm{H}\right), 3.80(\mathrm{~s}, 3 \mathrm{H}), 1.60(\mathrm{~d}$, $J=6.7 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 169.6(\mathrm{C}), 159.7(\mathrm{C}), 133.4(2 \mathrm{CH}), 131.7$ (2CH), 130.0 (2CH), 129.1 (C), 123.2 (C), 121.2 (C), 114.0 (2CH), 88.2 (C), 84.1 (C), 73.2 $\left(\mathrm{CH}_{2}\right), 66.9\left(\mathrm{CH}_{2}\right), 61.4(\mathrm{CH}), 55.4\left(\mathrm{CH}_{3}\right), 21.5\left(\mathrm{CH}_{3}\right) ;$ HRMS (ESI) m / z calcd for $\mathrm{C}_{20} \mathrm{H}_{19} \mathrm{BrO}_{4} \mathrm{Na} \quad\left[\mathrm{M}\left({ }^{79} \mathrm{Br}\right)+\mathrm{Na}\right]^{+}$and $\left[\mathrm{M}\left({ }^{81} \mathrm{Br}\right)+\mathrm{Na}^{+}: 425.0359\right.$ and 427.0338, found: 425.0360 and 427.0337.

4-(4-Nitrophenyl)but-3-yn-2-yl 2-[(4-methoxyphenyl)methoxy]acetate (3d). After purification by flash chromatography (petroleum ether/EtOAc $=95: 5$ to $90: 10$), 3d was isolated as a yellow oil (770 mg, 99\%); IR: v 1756, 1612, 1595, 1514, 1342, 1247, 1186, 1107, 1084,

1028, $855,750,688 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.13(\mathrm{app} \mathrm{d}, J=9.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.54$ (app d, $J=9.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.28(\operatorname{app~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.85(\operatorname{app~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 5.76(\mathrm{q}$, $J=6.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.57(\mathrm{~s}, 2 \mathrm{H}), 4.13\left(\mathrm{~d}_{\mathrm{ABsyst}}, J=16.5 \mathrm{~Hz}, 1 \mathrm{H}\right), 4.09\left(\mathrm{~d}_{\mathrm{ABsyst}}, J=16.5 \mathrm{~Hz}, 1 \mathrm{H}\right)$, $3.76(\mathrm{~s}, 3 \mathrm{H}), 1.61(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 169.3(\mathrm{C}), 159.5(\mathrm{C})$, 147.3 (C), $132.6(2 \mathrm{CH}), 129.8(2 \mathrm{CH}), 128.95(\mathrm{C}), 128.88(\mathrm{C}), 123.5(2 \mathrm{CH}), 113.8(2 \mathrm{CH})$, $92.1(\mathrm{C}), 83.0(\mathrm{C}), 73.0\left(\mathrm{CH}_{2}\right), 66.7\left(\mathrm{CH}_{2}\right), 60.9(\mathrm{CH}), 55.2\left(\mathrm{CH}_{3}\right), 21.1\left(\mathrm{CH}_{3}\right)$; HRMS (ESI): calcd for $\mathrm{C}_{20} \mathrm{H}_{19} \mathrm{NO}_{6} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}: 392.1105$, found: 392.1103.

4-(4-Acetylphenyl)but-3-yn-2-yl 2-[(4-methoxyphenyl)methoxy]acetate (3e). After purification by flash chromatography (petroleum ether/EtOAc $=90: 10$ to $80: 20$), 3 e was isolated as a yellow solid ($788 \mathrm{mg}, 98 \%$); Mp $76-78{ }^{\circ} \mathrm{C}$; IR: v 1756, 1683, 1602, 1514, 1249, 1182, 1108, 1086, 1029, $955,833 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.90($ app d, $J=8.6 \mathrm{~Hz}, 2 \mathrm{H}$), 7.51 (app d, $J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.31(\operatorname{app~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 6.88(\operatorname{app~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 5.78(\mathrm{q}$, $J=6.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.59(\mathrm{~s}, 2 \mathrm{H}), 4.14\left(\mathrm{~d}_{\text {ABsyst}}, J=16.5 \mathrm{~Hz}, 1 \mathrm{H}\right), 4.09\left(\mathrm{~d}_{\text {ABsyst }}, J=16.5 \mathrm{~Hz}, 1 \mathrm{H}\right)$, $3.80(\mathrm{~s}, 3 \mathrm{H}), 2.60(\mathrm{~s}, 3 \mathrm{H}), 1.62(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H}),{ }^{13} \mathrm{C} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 197.4(\mathrm{C})$, 169.5 (C), 159.6 (C), 136.7 (C), 132.1 (2CH), 130.0 (2CH), 129.1 (C), $128.3(2 \mathrm{CH}), 127.0$ $(\mathrm{C}), 114.0(2 \mathrm{CH}), 90.2(\mathrm{C}), 84.3(\mathrm{C}), 73.1\left(\mathrm{CH}_{2}\right), 66.9\left(\mathrm{CH}_{2}\right), 61.3(\mathrm{CH}), 55.4\left(\mathrm{CH}_{3}\right), 26.7$ $\left(\mathrm{CH}_{3}\right)$, $21.4\left(\mathrm{CH}_{3}\right)$; HRMS (ESI) m / z calcd for $\mathrm{C}_{22} \mathrm{H}_{22} \mathrm{O}_{5} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}: 389.1359$, found: 389.1361.

4-(2-Chlorophenyl)but-3-yn-2-yl 2-[(4-methoxyphenyl)methoxy]acetate (3f). After purification by flash chromatography (petroleum ether/EtOAc $=90: 10$ to $80: 20$), 3f was isolated as an orange oil ($572 \mathrm{mg}, 96 \%$); IR: v 1756, 1612, 1513, 1247, 1187, 1107, 1087, $1060,1026,948,820,755 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.46(\mathrm{dd}, J=7.4,2.0 \mathrm{~Hz}, 1 \mathrm{H})$, $7.38(\mathrm{dd}, J=7.9,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.31(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.25(\mathrm{app} \mathrm{td}, J=7.5,1.8 \mathrm{~Hz}, 1 \mathrm{H})$,
7.19 (app td, $J=7.6,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.88(\operatorname{app~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 5.82(\mathrm{q}, J=6.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.59$ $(\mathrm{s}, 2 \mathrm{H}), 4.14\left(\mathrm{~d}_{\mathrm{ABsyst}}, J=16.5 \mathrm{~Hz}, 1 \mathrm{H},\right), 4.09\left(\mathrm{~d}_{\mathrm{ABsyst}}, J=16.5 \mathrm{~Hz}, 1 \mathrm{H}\right), 3.79(\mathrm{~s}, 3 \mathrm{H}), 1.64(\mathrm{~d}$, $J=6.7 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 169.5(\mathrm{C}), 159.6(\mathrm{C}), 136.2(\mathrm{C}), 133.6(\mathrm{CH})$, $130.0(2 \mathrm{CH}), 129.8(\mathrm{CH}), 129.3(\mathrm{CH}), 129.1(\mathrm{C}), 126.5(\mathrm{CH}), 122.1(\mathrm{C}), 114.0(2 \mathrm{CH}), 92.2$ (C), $81.8(\mathrm{C}), 73.1\left(\mathrm{CH}_{2}\right), 66.9\left(\mathrm{CH}_{2}\right), 61.4(\mathrm{CH}), 55.3\left(\mathrm{CH}_{3}\right), 21.5\left(\mathrm{CH}_{3}\right) ;$ HRMS (ESI) m / z calcd for $\mathrm{C}_{20} \mathrm{H}_{19} \mathrm{ClO}_{4} \mathrm{Na}\left[\mathrm{M}\left({ }^{35} \mathrm{Cl}\right)+\mathrm{Na}\right]^{+}$and $\left[\mathrm{M}\left({ }^{37} \mathrm{Cl}\right)+\mathrm{Na}\right]^{+}: 381.0864$ and 383.0835 , found: 381.0864 and 383.0834 .

4-(Naphthalen-1-yl)but-3-yn-2-yl 2-[(4-methoxyphenyl)methoxy]acetate (3g). After purification by flash chromatography (petroleum ether/EtOAc $=90: 10$ to $80: 20$), $\mathbf{3 g}$ was isolated a yellow oil ($558 \mathrm{mg}, 97 \%$); IR: v 2225, 1755, 1612, 1586, 1513, 1247, 1191, 1175, 1117, 1073, 1046, 1034, 801, $774 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.29$ (app d, $J=$ $8.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.84(\operatorname{appd}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.69(\mathrm{dd}, J=7.2,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.57(\operatorname{app} \mathrm{ddd}, J=$ $8.3,6.9,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.52(\operatorname{app} \operatorname{ddd}, J=8.1,6.9,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.42(\mathrm{dd}, J=8.3,7.2 \mathrm{~Hz}, 1 \mathrm{H})$, $7.32(\operatorname{app} \mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 6.88(\operatorname{app~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 5.94(\mathrm{q}, J=6.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.62(\mathrm{~s}$, $2 \mathrm{H}), 4.18\left(\mathrm{~d}_{\mathrm{ABsys}}, J=16.5 \mathrm{~Hz}, 1 \mathrm{H}\right), 4.13\left(\mathrm{~d}_{\text {ABsyst }}, J=16.5 \mathrm{~Hz}, 1 \mathrm{H}\right), 3.79(\mathrm{~s}, 3 \mathrm{H}), 1.73(\mathrm{~d}, J=$ $6.7 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 169.7(\mathrm{C}), 159.6(\mathrm{C}), 133.4(\mathrm{C}), 133.2(\mathrm{C}), 131.0$ $(\mathrm{CH}), 130.0(2 \mathrm{CH}), 129.4(\mathrm{CH}), 129.2(\mathrm{C}), 128.4(\mathrm{CH}), 127.1(\mathrm{CH}), 126.6(\mathrm{CH}), 126.1(\mathrm{CH})$, $125.2(\mathrm{CH}), 119.8(\mathrm{C}), 114.0(2 \mathrm{CH}), 91.9(\mathrm{C}), 83.3(\mathrm{C}), 73.1\left(\mathrm{CH}_{2}\right), 67.0\left(\mathrm{CH}_{2}\right), 61.7(\mathrm{CH})$, $55.4\left(\mathrm{CH}_{3}\right)$, $21.8\left(\mathrm{CH}_{3}\right)$; HRMS (ESI) m / z calcd for $\mathrm{C}_{24} \mathrm{H}_{22} \mathrm{O}_{4} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}: 397.1410$, found: 397.1411.
tert-Butyl 3-[3-(\{2-[(4-methoxyphenyl)methoxy]acetyl\}oxy)but-1-yn-1-yl]-1H-indole-1-carboxylate (3h). After purification by flash chromatography (petroleum ether/EtOAc $=$ 90:10 to $80: 20$), 3h was isolated as an orange oil ($567 \mathrm{mg}, 93 \%$); IR: v 2237, 1739, 1613,
$1514,1453,1371,1251,1233,1155,1077,1034,821,760,749 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 8.16(\mathrm{br} \mathrm{d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.80(\mathrm{~s}, 1 \mathrm{H}), 7.67(\mathrm{br} \mathrm{d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.41-7.27(\mathrm{~m}$, $4 \mathrm{H}), 6.89(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 5.87(\mathrm{q}, J=6.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.62(\mathrm{~s}, 2 \mathrm{H}), 4.17\left(\mathrm{~d}_{\mathrm{ABsyst}}, J=16.5 \mathrm{~Hz}\right.$, $1 \mathrm{H}), 4.13\left(\mathrm{~d}_{\text {ABsyst }}, J=16.5 \mathrm{~Hz}, 1 \mathrm{H}\right), 3.80(\mathrm{~s}, 3 \mathrm{H}), 1.68(\mathrm{~s}, 9 \mathrm{H}), 1.68(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 169.6$ (C), 159.6 (C), 149.0 (C), 134.7 (C), 130.4 (C), 130.0 $(2 \mathrm{CH}), 129.7(\mathrm{CH}), 129.2(\mathrm{C}), 125.3(\mathrm{CH}), 123.4(\mathrm{CH}), 120.1(\mathrm{CH}), 115.3(\mathrm{CH}), 114.0$ (2CH), $102.3(\mathrm{C}), 90.6(\mathrm{C}), 84.5(\mathrm{C}), 77.3(\mathrm{C}), 73.1\left(\mathrm{CH}_{2}\right), 66.9\left(\mathrm{CH}_{2}\right), 61.7(\mathrm{CH}), 55.3$ $\left(\mathrm{CH}_{3}\right), 28.2\left(3 \mathrm{CH}_{3}\right), 21.7\left(\mathrm{CH}_{3}\right)$; HRMS (ESI) m / z calcd for $\mathrm{C}_{27} \mathrm{H}_{29} \mathrm{NO}_{6} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}$: 486.1887, found: 486.1887.

5-Phenyl-1-(thiophen-3-yl)pent-1-yn-3-yl 2-[(4-methoxyphenyl)methoxy]acetate (3i). To a solution of 3-ethynylthiophene ($209 \mathrm{mg}, 1.86 \mathrm{mmol}, 1.5$ equiv) in THF (4 mL) at $-78^{\circ} \mathrm{C}$, was added dropwise $n-\operatorname{BuLi}(0.69 \mathrm{~mL}, 2.5 \mathrm{M}$ solution in hexanes, $1.73 \mathrm{mmol}, 1.4$ equiv). After 0.5 h stirring at $-78^{\circ} \mathrm{C}$, 3-phenylpropanal ($183 \mu \mathrm{~L}, 1.24 \mathrm{mmol}$, 1 equiv) was added dropwise. The reaction mixture was warmed to rt , stirred for a further 0.5 h and then poured into a saturated aqueous solution of $\mathrm{NH}_{4} \mathrm{Cl}$. After dilution with ether, the layers were separated and the aqueous phase was extracted with ether. The combined extracts were washed with brine, dried over MgSO_{4}, filtered and concentrated under reduced pressure. The resulting crude propargyl alcohol $1 \mathbf{i}$ was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(7 \mathrm{~mL})$ and to the resulting solution were successively added carboxylic acid $2(364 \mathrm{mg}, 1.86 \mathrm{mmol})$, EDCI ($356 \mathrm{mg}, 1.86 \mathrm{mmol}$) and DMAP ($30.3 \mathrm{mg}, 0.248 \mathrm{mmol}$). After stirring overnight at rt , the reaction mixture was hydrolyzed with a saturated aqueous solution of $\mathrm{NH}_{4} \mathrm{Cl}$ and diluted with EtOAc. The layers were separated and the aqueous phase was extracted with EtOAc. The combined organic extracts were successively washed with a saturated aqueous solution of NaHCO_{3} and brine, then dried over MgSO_{4}, filtered and concentrated under reduced pressure. The residue was
purified by flash chromatography (petroleum ether/EtOAc $=90: 10$ to $80: 20$) to afford 432 mg (83%) of glycolate $\mathbf{3 i}$ as a yellow oil; IR: v $2234,1756,1612,1513,1248,1179,1117,1033$, $820,785,700,627 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.48(\mathrm{dd}, J=3.0,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.33-$ 7.27 (m, 4H), 7.26 (dd, $J=5.0,3.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.23-7.18(\mathrm{~m}, 3 \mathrm{H}), 7.12(\mathrm{dd}, J=5.0,1.2 \mathrm{~Hz}$, $1 \mathrm{H}), 6.88(\operatorname{app~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 5.68(\mathrm{t}, J=6.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.59(\mathrm{~s}, 2 \mathrm{H}), 4.12\left(\mathrm{~d}_{\mathrm{ABsys}}, J=\right.$ $16.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.06\left(\mathrm{~d}_{\mathrm{ABsys}}, J=16.5 \mathrm{~Hz}, 1 \mathrm{H}\right), 3.80(\mathrm{~s}, 3 \mathrm{H}), 2.83(\mathrm{t}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 2.27-2.14$ (m, 2H); ${ }^{13} \mathrm{C}$ NMR (100 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 169.7(\mathrm{C}), 159.7(\mathrm{C}), 140.7(\mathrm{C}), 130.1(\mathrm{CH}), 130.0$ $(2 \mathrm{CH}), 129.9(\mathrm{CH}), 129.2(\mathrm{C}), 128.7(2 \mathrm{CH}), 128.5(2 \mathrm{CH}), 126.3(\mathrm{CH}), 125.5(\mathrm{CH}), 121.2(\mathrm{C})$, $114.0(2 \mathrm{CH}), 85.5(\mathrm{C}), 81.5(\mathrm{C}), 73.1\left(\mathrm{CH}_{2}\right), 66.9\left(\mathrm{CH}_{2}\right), 64.7(\mathrm{CH}), 55.4\left(\mathrm{CH}_{3}\right), 36.4\left(\mathrm{CH}_{2}\right)$, $31.5\left(\mathrm{CH}_{2}\right)$; HRMS (ESI) m / z calcd for $\mathrm{C}_{25} \mathrm{H}_{24} \mathrm{O}_{4} \mathrm{SNa}[\mathrm{M}+\mathrm{Na}]^{+}: 443.1287$, found: 443.1289.

1-Phenylbut-2-yn-1-yl 2-[(4-methoxyphenyl)methoxy]acetate (3j). After purification by flash chromatography (petroleum ether/EtOAc $=95: 5$ to $90: 10$), $\mathbf{3 j}$ was isolated as a colorless oil (292 mg, 90\%); IR: v $1755,1613,1514,1249,1185,1120,1034,821,759,699 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.54-7.49(\mathrm{~m}, 2 \mathrm{H}), 7.40-7.31(\mathrm{~m}, 3 \mathrm{H}), 7.26(\operatorname{app} \mathrm{~d}, J=8.7 \mathrm{~Hz}$, $2 \mathrm{H}), 6.86(\operatorname{app~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 6.52(\mathrm{q}, J=2.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.55(\mathrm{~s}, 2 \mathrm{H}), 4.12\left(\mathrm{~d}_{\mathrm{ABsyst}}, J=\right.$ $16.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.05\left(\mathrm{~d}_{\mathrm{ABsys}}, J=16.6 \mathrm{~Hz}, 1 \mathrm{H}\right), 3.79(\mathrm{~s}, 3 \mathrm{H}), 1.90(\mathrm{~d}, J=2.2 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 169.5$ (C), 159.6 (C), $137.2(\mathrm{C}), 130.0(2 \mathrm{CH}), 129.2(\mathrm{C}), 129.0(\mathrm{CH})$, $128.7(2 \mathrm{CH}), 127.8(2 \mathrm{CH}), 113.9(2 \mathrm{CH}), 84.5(\mathrm{C}), 75.6(\mathrm{C}), 73.0\left(\mathrm{CH}_{2}\right), 66.9\left(\mathrm{CH}_{2}\right), 66.6$ (CH), $55.4\left(\mathrm{CH}_{3}\right), 3.9\left(\mathrm{CH}_{3}\right)$; HRMS (ESI) m / z calcd for $\mathrm{C}_{20} \mathrm{H}_{20} \mathrm{O}_{4} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}: 347.1254$, found: 347.1255.

1-Phenylhex-4-yn-3-yl 2-[(4-methoxyphenyl)methoxy]acetate (3k).After purification by flash chromatography (petroleum ether/EtOAc $=95: 5$ to $90: 10$), $\mathbf{3 k}$ was isolated as a colorless oil (484 mg, 98\%); IR: v 2247, 1757, 1613, 1514, 1249, 1192, 1192, 1121, 1034, 821, 752,
$701 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.33-7.26(\mathrm{~m}, 4 \mathrm{H}), 7.22-7.16(\mathrm{~m}, 3 \mathrm{H}), 6.89(\mathrm{app} \mathrm{d}$, $J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 5.44(\mathrm{tq}, J=6.5,2.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.57(\mathrm{~s}, 2 \mathrm{H}), 4.09\left(\mathrm{~d}_{\mathrm{ABsys}}, J=16.5 \mathrm{~Hz}, 1 \mathrm{H}\right)$, $4.03\left(\mathrm{~d}_{\text {ABsyst}}, J=16.5 \mathrm{~Hz}, 1 \mathrm{H}\right), 3.81(\mathrm{~s}, 3 \mathrm{H}), 2.76(\mathrm{t}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 2.15-2.03(\mathrm{~m}, 2 \mathrm{H}), 1.87$ $(\mathrm{d}, J=2.1 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 169.7$ (C), 159.6 (C), 140.9 (C), 130.0 $(2 \mathrm{CH}), 129.3(\mathrm{C}), 128.6(2 \mathrm{CH}), 128.5(2 \mathrm{CH}), 126.2(\mathrm{CH}), 114.0(2 \mathrm{CH}), 82.9(\mathrm{C}), 76.2(\mathrm{C})$, $73.1\left(\mathrm{CH}_{2}\right), 66.9\left(\mathrm{CH}_{2}\right), 64.8\left(\mathrm{CH}_{2}\right), 55.4\left(\mathrm{CH}_{3}\right), 36.6\left(\mathrm{CH}_{2}\right), 31.4\left(\mathrm{CH}_{2}\right), 3.8\left(\mathrm{CH}_{3}\right)$; HRMS (ESI) m / z calcd for $\mathrm{C}_{22} \mathrm{H}_{24} \mathrm{O}_{4} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}: 375.1567$, found: 375.1567.

6-[(tert-Butyldiphenylsilyl)oxy]-1-phenylhex-4-yn-3-yl 2-[(4-methoxyphenyl)methoxy]acetate (3l). After purification by flash chromatography (petroleum ether/EtOAc $=90: 10$ to $80: 20$), 31 was isolated as a colorless oil ($412 \mathrm{mg}, 93 \%$); IR: v 1759, 1613, 1514, 1249, 1176, 1111, 1086, 1035, 823, 741, $701 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.74-7.69(\mathrm{~m}, 4 \mathrm{H}), 7.45-7.35$ $(\mathrm{m}, 6 \mathrm{H}), 7.33-7.26(\mathrm{~m}, 4 \mathrm{H}), 7.23-7.14(\mathrm{~m}, 3 \mathrm{H}), 6.89(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 5.46(\mathrm{~m}, 1 \mathrm{H}), 4.57$ $(\mathrm{s}, 2 \mathrm{H}), 4.38(\operatorname{app} \operatorname{br~s}, 2 \mathrm{H}), 4.07\left(\mathrm{~d}_{\mathrm{ABsyst}}, J=16.5 \mathrm{~Hz}, 1 \mathrm{H}\right), 4.02\left(\mathrm{~d}_{\mathrm{ABsyst}}, J=16.5 \mathrm{~Hz}, 1 \mathrm{H}\right)$, $3.80(\mathrm{~s}, 3 \mathrm{H}), 2.72(\mathrm{t}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 2.12-1.97(\mathrm{~m}, 2 \mathrm{H}), 1.07(\mathrm{~s}, 9 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR (100 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 169.5$ (C), 159.6 (C), 140.7 (C), 135.7 (4CH), 133.13 (C), 133.11 (C), 129.97 $(2 \mathrm{CH}), 129.95(2 \mathrm{CH}), 129.2(\mathrm{C}), 128.5(2 \mathrm{CH}), 128.5(2 \mathrm{CH}), 127.9(4 \mathrm{CH}), 126.3(\mathrm{CH}), 114.0$ $(2 \mathrm{CH}), 84.9(\mathrm{C}), 81.9(\mathrm{C}), 73.1\left(\mathrm{CH}_{2}\right), 66.8\left(\mathrm{CH}_{2}\right), 64.2(\mathrm{CH}), 55.4\left(\mathrm{CH}_{3}\right), 52.8\left(\mathrm{CH}_{2}\right), 36.2$ $\left(\mathrm{CH}_{2}\right), 31.3\left(\mathrm{CH}_{2}\right), 26.8\left(3 \mathrm{CH}_{3}\right), 19.3(\mathrm{C})$; HRMS (ESI) m / z calcd for $\mathrm{C}_{38} \mathrm{H}_{42} \mathrm{O}_{5} \mathrm{SiNa}$ $[\mathrm{M}+\mathrm{Na}]^{+}: 629.2694$, found: 629.2689.

1-(Benzyloxy)pent-3-yn-2-yl 2-[(4-methoxyphenyl)methoxy]acetate (3m). After purification by flash chromatography (petroleum ether/EtOAc $=95: 5$ to $90: 10$), $\mathbf{3 m}$ was isolated as a colorless oil (479 mg, 99\%); IR: v 2246, 1758, 1613, 1513, 1247, 1189, 1109, 1031, 820, $739,699 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.36-7.25(\mathrm{~m}, 7 \mathrm{H}), 6.87(\operatorname{app~d}, J=8.3 \mathrm{~Hz}$,
$2 \mathrm{H}), 5.68(\mathrm{~m}, 1 \mathrm{H}), 4.60\left(\mathrm{~d}_{\mathrm{ABsyst}}, J=12.1 \mathrm{~Hz}, 1 \mathrm{H}\right), 4.56(\mathrm{~s}, 2 \mathrm{H}), 4.55\left(\mathrm{~d}_{\mathrm{ABsyst}}, J=12.1 \mathrm{~Hz}, 1 \mathrm{H}\right)$, $4.13\left(\mathrm{~d}_{\mathrm{ABsyst}}, J=16.6 \mathrm{~Hz}, 1 \mathrm{H}\right), 4.08\left(\mathrm{~d}_{\mathrm{ABsyst}}, J=16.6 \mathrm{~Hz}, 1 \mathrm{H}\right), 3.79(\mathrm{~s}, 3 \mathrm{H}), 3.71-3.63(\mathrm{~m}$, $2 \mathrm{H}), 1.83(\mathrm{~d}, \mathrm{~J}=2.2 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 169.7$ (C), 159.6 (C), 137.7 (C), $130.0(2 \mathrm{CH}), 129.3(\mathrm{C}), 128.6(2 \mathrm{CH}), 127.9(\mathrm{CH}), 127.8(2 \mathrm{CH}), 114.0(2 \mathrm{CH}), 83.6(\mathrm{C}), 73.7$ (C), $73.3\left(\mathrm{CH}_{2}\right), 73.0\left(\mathrm{CH}_{2}\right), 71.4\left(\mathrm{CH}_{2}\right), 66.8\left(\mathrm{CH}_{2}\right), 63.8(\mathrm{CH}), 55.4\left(\mathrm{CH}_{3}\right), 3.8\left(\mathrm{CH}_{3}\right)$; HRMS (ESI) m / z calcd for $\mathrm{C}_{22} \mathrm{H}_{24} \mathrm{O}_{5} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}: 391.1516$, found: 391.1512 .

1-(Benzyloxy)-6-[(tert-butyldiphenylsilyl)oxy]hex-3-yn-2-yl 2-[(4-methoxyphenyl)methoxy] acetate ($\mathbf{3 n}$). After purification by flash chromatography (petroleum ether/EtOAc $=95: 5$ to 90:10), 3n was isolated as a pale yellow oil ($540 \mathrm{mg}, 97 \%$); IR: v 1758, 1612, 1513, 1248, 1175, 1108, 1084, 1033, 822, 739, $700 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.68-7.63(\mathrm{~m}$, $4 \mathrm{H}), 7.44-7.34(\mathrm{~m}, 6 \mathrm{H}), 7.32-7.23(\mathrm{~m}, 7 \mathrm{H}), 6.85(\operatorname{app~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 5.71(\mathrm{~m}, 1 \mathrm{H}), 4.57$ $\left(\mathrm{d}_{\text {ABsyst }}, J=12.1 \mathrm{~Hz}, 1 \mathrm{H}\right), 4.54(\mathrm{~s}, 2 \mathrm{H}), 4.51\left(\mathrm{~d}_{\mathrm{ABsyst}}, J=12.1 \mathrm{~Hz}, 1 \mathrm{H}\right), 4.08(\mathrm{~s}, 2 \mathrm{H}), 3.79(\mathrm{~s}$, $3 \mathrm{H}), 3.74(\mathrm{t}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.66(\mathrm{dd}, J=11.0,7.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.62(\mathrm{dd}, J=11.0,4.2 \mathrm{~Hz}, 1 \mathrm{H})$, 2.47 (td, $J=7.0,2.0 \mathrm{~Hz}, 2 \mathrm{H}), 1.03(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 169.7(\mathrm{C}), 159.6$ (C), 137.7 (C), 135.7 (4CH), 133.6 (2C), 130.0 (2CH), 129.8 (2CH), 129.3 (C), 128.6 (2CH), $127.9(\mathrm{CH}), 127.84(4 \mathrm{CH}), 127.82(2 \mathrm{CH}), 114.0(2 \mathrm{CH}), 85.0(\mathrm{C}), 75.6(\mathrm{C}), 73.2\left(\mathrm{CH}_{2}\right), 73.0$ $\left(\mathrm{CH}_{2}\right), 71.5\left(\mathrm{CH}_{2}\right), 66.8\left(\mathrm{CH}_{2}\right), 63.6(\mathrm{CH}), 62.1\left(\mathrm{CH}_{2}\right), 55.4\left(\mathrm{CH}_{3}\right), 26.9\left(3 \mathrm{CH}_{3}\right), 23.0\left(\mathrm{CH}_{2}\right)$, 19.3 (C); HRMS (ESI) m / z calcd for $\mathrm{C}_{39} \mathrm{H}_{44} \mathrm{O}_{6} \mathrm{SiNa}[\mathrm{M}+\mathrm{Na}]^{+}: 659.2799$, found: 659.2802.

Difluorocyclopropenation of 3a: An oven-dried (resealable) vial was successively charged with NaF ($1.7 \mathrm{mg}, 0.040 \mathrm{mmol}, 10 \mathrm{~mol} \%$), alkyne 3 a ($166 \mathrm{mg}, 0.400 \mathrm{mmol}, 1$ equiv) and diglyme ($200 \mu \mathrm{~L}$). The vial was closed with a Teflon coated rubber cap, flushed with argon and immersed in a pre-heated oil bath at $120^{\circ} \mathrm{C}$. To the resulting mixture (under argon atmosphere) was slowly added TFDA ($300 \mu \mathrm{~L}, 1.20 \mathrm{mmol}, 3.0$ equiv) via syringe pump over

2 h . Once the addition was complete, the reaction mixture was stirred for further 15 min at $120{ }^{\circ} \mathrm{C}$, cooled to rt and then directly subjected to purification by flash chromatography on silica gel (petroleum ether/ $\mathrm{Et}_{2} \mathrm{O}=80: 20$) to afford $160 \mathrm{mg}(86 \%)$ of $\mathbf{4 a}$ as a colorless oil. This compound could be characterized but rapidly turned brown and underwent decomposition upon storage even in a freezer at $-23^{\circ} \mathrm{C}$. $766,692 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right) \delta 7.67-7.62(\mathrm{~m}, 2 \mathrm{H}), 7.30(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H})$, $7.28-7.05(\mathrm{~m}, 8 \mathrm{H}), 6.86(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 5.98(\mathrm{~m}, 1 \mathrm{H}), 4.54\left(\mathrm{~d}_{\mathrm{ABsyst}}, J=11.4 \mathrm{~Hz}, 1 \mathrm{H}\right)$, $4.47\left(\mathrm{~d}_{\mathrm{ABsys}}, J=11.4 \mathrm{~Hz}, 1 \mathrm{H}\right), 3.99(\mathrm{~s}, 2 \mathrm{H}), 3.39(\mathrm{~s}, 3 \mathrm{H}), 2.78-2.64(\mathrm{~m}, 2 \mathrm{H}), 2.21-2.05(\mathrm{~m}$, $2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz, $\left.\mathrm{C}_{6} \mathrm{D}_{6}\right) \delta 169.4(\mathrm{C}), 160.0(\mathrm{C}), 140.6(\mathrm{C}), 131.4(\mathrm{CH}), 130.9(\mathrm{CH})$, $129.9(2 \mathrm{CH}), 129.7(\mathrm{C}), 129.3(2 \mathrm{CH}), 128.9(2 \mathrm{CH}), 128.7(2 \mathrm{CH}), 126.6(2 \mathrm{CH}), 125.2(\mathrm{C}, \mathrm{t}$, $\left.{ }^{2} J_{C-F}=11.6 \mathrm{~Hz}\right), 123.5(\mathrm{C}), 114.2(2 \mathrm{CH}), 102.7\left(\mathrm{C}, \mathrm{t},{ }^{l} J_{C-F}=272.4 \mathrm{~Hz}\right), 73.1\left(\mathrm{CH}_{2}\right), 68.4$ $(\mathrm{CH}), 66.9\left(\mathrm{CH}_{2}\right), 54.8\left(\mathrm{CH}_{3}\right), 34.7\left(\mathrm{CH}_{2}\right), 31.3\left(\mathrm{CH}_{2}\right)$ (The signal corresponding to one quaternary cyclopropene carbon was not visible presumably because of overlap with the solvent signal); ${ }^{19} \mathrm{~F}$ NMR ($282 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$) $\delta-106.1\left(\mathrm{~d}_{\mathrm{ABsys}},{ }^{1} J_{F-F}=126.8 \mathrm{~Hz}, 1 \mathrm{~F}\right),-107.4$ ($\mathrm{d}_{\text {ABsyst, }}{ }^{1} J_{F-F}=126.8 \mathrm{~Hz}, 1 \mathrm{~F}$); HRMS (ESI) m / z calcd for calcd for $\mathrm{C}_{28} \mathrm{H}_{26} \mathrm{~F}_{2} \mathrm{O}_{4} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}$: 487.1691, found: 487.1688.

Representative procedure for the difluorocyclopropenation/Ireland-Claisen rearrangement:

An oven-dried (resealable) vial was successively charged with NaF ($13.5 \mathrm{mg}, 0.322 \mathrm{mmol}$, $10 \mathrm{~mol} \%$), alkyne 3 a ($1.33 \mathrm{~g}, 3.22 \mathrm{mmol}$, 1.0 equiv) and diglyme (1.9 mL). The vial was closed with a Teflon coated rubber cap, flushed with argon and immersed in a pre-heated oil bath at $120^{\circ} \mathrm{C}$. To the resulting mixture (under argon atmosphere) was slowly added TFDA
($1.90 \mathrm{~mL}, 9.65 \mathrm{mmol}, 3.0$ equiv) via syringe pump over 2 h . Once the addition was complete, the reaction mixture was stirred for further 15 min at $120^{\circ} \mathrm{C}$, cooled to rt and then diluted with THF (56 mL). The resulting solution was sparged with argon for 15 min and then cooled to $-78{ }^{\circ} \mathrm{C}$. TMSCl ($1.64 \mathrm{~mL}, 12.9 \mathrm{mmol}, 4$ equiv) and KHMDS ($25.7 \mathrm{~mL}, 0.5 \mathrm{M}$ solution in toluene, 12.9 mmol , 4 equiv) were successively added dropwise. After 1 h at $-78^{\circ} \mathrm{C}$, the reaction mixture was warmed to rt , stirred for further 3 h and then poured into a saturated aqueous solution of $\mathrm{NH}_{4} \mathrm{Cl}(100 \mathrm{~mL})$. The layers were separated and the aqueous phase was extracted with EtOAc. The combined organic extracts were dried over MgSO_{4}, filtered and concentrated under reduced pressure. The residue was dissolved in a $\mathrm{MeOH} /$ toluene mixture $(1: 1,20 \mathrm{~mL})$ and trimethylsilyldiazomethane $\left(3.2 \mathrm{~mL}, 2 \mathrm{M}\right.$ solution in $\mathrm{Et}_{2} \mathrm{O}, 6.4 \mathrm{mmol}$, 2 equiv) was slowly added to the resulting solution. The reaction mixture was concentrated under reduced pressure and subsequent analysis of the residue by ${ }^{1} \mathrm{H}$ NMR spectroscopy indicated the formation of $\mathbf{8 a}$ as a single detectable diastereomer ($\mathrm{dr}>96: 4$). The crude material was purified by flash chromatography on silica gel (petroleum ether/EtOAc $=90: 10$ to $80: 20$) to afford $1.10 \mathrm{~g}(72 \%)$ of $\mathbf{8 a}$ as a pale yellow oil. On smaller scale, $\mathbf{8 a}$ was obtained in similar yield ($134 \mathrm{mg}, 73 \%$).

Methyl $\left(2 S^{*}\right)$-2-[(lR*,3Z)-2,2-difluoro-1-phenyl-3-(3-phenylpropylidene)cyclopropyl]-2-[(4methoxyphenyl)methoxy]acetate (8a). IR: v 1757, 1735, 1613, 1514, 1389, 1249, 1145, 1127, $1032,1008,823,750,721,699 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.37-7.23(\mathrm{~m}, 9 \mathrm{H}), 7.23-$ $7.15(\mathrm{~m}, 3 \mathrm{H}), 6.90(\mathrm{~m}, 2 \mathrm{H}), 6.64(\mathrm{~m}, 1 \mathrm{H}), 4.72\left(\mathrm{~d}_{\text {ABsyst }}, J=11.4 \mathrm{~Hz}, 1 \mathrm{H}\right), 4.59\left(\mathrm{~d}_{\text {ABsyst }}, J=\right.$ $11.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.05(\mathrm{~d}, J=2.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.82(\mathrm{~s}, 3 \mathrm{H}), 3.62(\mathrm{~s}, 3 \mathrm{H}), 2.92-2.82(\mathrm{~m}, 2 \mathrm{H}), 2.69-$ $2.60(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 170.4\left(\mathrm{C}, \mathrm{d},{ }^{4} J_{C-F}=1.9 \mathrm{~Hz}\right), 159.5(\mathrm{C}), 141.0$ (C), $132.7(\mathrm{CH}), 131.4\left(\mathrm{C}, \mathrm{d},{ }^{3} J_{C-F}=3.6 \mathrm{~Hz}\right), 130.5(2 \mathrm{CH}), 129.8(2 \mathrm{CH}), 129.5(\mathrm{C}), 128.58$ $(2 \mathrm{CH}), 128.56(2 \mathrm{CH}), 128.3(\mathrm{CH}), 128.2(2 \mathrm{CH}), 126.3(\mathrm{CH}), 122.9\left(\mathrm{C}, \mathrm{t},{ }^{2} J_{C-F}=6.4 \mathrm{~Hz}\right)$,
$113.9(2 \mathrm{CH}), 107.6\left(\mathrm{C}, \mathrm{t},{ }^{1} J_{C-F}=295.3 \mathrm{~Hz}\right), 78.4\left(\mathrm{CH}, \mathrm{d},{ }^{3} J_{C-F}=3.9 \mathrm{~Hz}\right), 72.4\left(\mathrm{CH}_{2}\right), 55.4$ $\left(\mathrm{CH}_{3}\right), 52.1\left(\mathrm{CH}_{3}\right), 41.7\left(\mathrm{C}, \mathrm{t},{ }^{2} J_{C-F}=12.5 \mathrm{~Hz}\right), 34.4\left(\mathrm{CH}_{2}\right), 34.1\left(\mathrm{CH}_{2}\right) ;{ }^{19} \mathrm{~F}$ NMR $(282 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta-128.90\left(\mathrm{~d}_{\mathrm{ABsyst}},{ }^{l} J_{F-F}=168.2 \mathrm{~Hz}, 1 \mathrm{~F}\right),-130.65\left(\mathrm{~d}_{\mathrm{ABsyst}},{ }^{1} J_{F-F}=168.2 \mathrm{~Hz}, 1 \mathrm{~F}\right) ;$ HRMS (ESI) m / z calcd for $\mathrm{C}_{29} \mathrm{H}_{28} \mathrm{~F}_{2} \mathrm{O}_{4} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}: 501.1848$, found: 501.1842.

Methyl $\left(2 S^{*}\right)$-2-[(1R*,3Z)-3-ethylidene-2,2-difluoro-1-(4-methoxyphenyl)cyclopropyl]-2-[(4methoxyphenyl)methoxy]acetate ($8 \boldsymbol{b}$). After purification by flash chromatography (petroleum ether/EtOAc $=95: 5$ to $90: 10), \mathbf{8 b}$ was isolated as a pale yellow oil ($165 \mathrm{mg}, 76 \%$); IR: $v 1755,1611,1511,1246,1176,1139,1112,1031,1006,818 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 7.25(\operatorname{app~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.18(\operatorname{app~d}, J=8.9 \mathrm{~Hz}, 2 \mathrm{H}), 6.81(\operatorname{app~d}, J=8.8 \mathrm{~Hz}$, $2 \mathrm{H}), 6.73(\operatorname{app~d}, J=8.9 \mathrm{~Hz}, 2 \mathrm{H}), 6.46(\mathrm{~m} 1 \mathrm{H}), 4.65\left(\mathrm{~d}_{\text {ABsyst}}, J=11.4 \mathrm{~Hz}, 1 \mathrm{H}\right), 4.51\left(\mathrm{~d}_{\text {ABsyst }}\right.$, $J=11.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.99(\mathrm{~d}, J=2.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.73(\mathrm{~s}, 3 \mathrm{H}), 3.68(\mathrm{~s}, 3 \mathrm{H}), 3.56(\mathrm{~s}, 3 \mathrm{H}), 1.93(\mathrm{~d}, J=$ $6.9 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 170.5\left(\mathrm{C}, \mathrm{d},{ }^{4} J_{C-F}=1.9 \mathrm{~Hz}\right), 159.6(\mathrm{C}), 159.5$ (C), $131.6\left(2 \mathrm{CH},{ }^{5} J_{C-F}=1.7 \mathrm{~Hz}\right), 129.8(2 \mathrm{CH}), 129.5(\mathrm{C}), 128.2(\mathrm{CH}), 123.6\left(\mathrm{C}, \mathrm{t},{ }^{2} J_{C-F}=\right.$ $5.7 \mathrm{~Hz}), 123.4\left(\mathrm{C}, \mathrm{d},{ }^{3} J_{C-F}=3.7 \mathrm{~Hz}\right), 113.8(2 \mathrm{CH}), 113.7(2 \mathrm{CH}), 107.8\left(\mathrm{C}, \mathrm{t},{ }^{1} J_{C-F}=\right.$ $294.9 \mathrm{~Hz}), 78.4\left(\mathrm{CH}, \mathrm{d},{ }^{3} J_{C-F}=3.1 \mathrm{~Hz}\right), 72.3\left(\mathrm{CH}_{2}\right), 55.4\left(\mathrm{CH}_{3}\right), 55.3\left(\mathrm{CH}_{3}\right), 52.1\left(\mathrm{CH}_{3}\right), 41.5$ $\left(\mathrm{C}, \mathrm{t},{ }^{2} J_{C-F}=12.5 \mathrm{~Hz}\right), 18.4\left(\mathrm{CH}_{3}\right) ;{ }^{19} \mathrm{~F}$ NMR $\left(282 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta-131.2\left(\mathrm{~d}_{\mathrm{ABsys}},{ }^{1} J_{F-F}=\right.$ $168.0 \mathrm{~Hz}, 1 \mathrm{~F}),-133.2\left(\mathrm{~d}_{\mathrm{ABsyst}},{ }^{1} J_{F-F}=168.0 \mathrm{~Hz}, 1 \mathrm{~F}\right) ;$ HRMS (ESI) m / z calcd for $\mathrm{C}_{23} \mathrm{H}_{24} \mathrm{~F}_{2} \mathrm{O}_{5} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}: 441.1484$, found: 441.1481.

Methyl (2S)-2-[(1R,3Z)-3-ethylidene-2,2-difluoro-1-(4-methoxyphenyl)cyclopropyl]-2-[(4methoxyphenyl)methoxy]acetate ((+)-8b). After purification by flash chromatography (petroleum ether/EtOAc $=95: 5$ to $90: 10),(+)-\mathbf{8 b}$ was isolated as pale yellow oil $(163 \mathrm{mg}$, $72 \%) ;[\alpha]_{\mathrm{D}}{ }^{20}+61.8\left(c \quad 0.68, \mathrm{CHCl}_{3}\right)$. The enantiomeric excess of $(+)-\mathbf{8 b}(\mathrm{ee}=95 \%)$ was
determined by supercritical fluid chromatography analysis of compound (+)-9b obtained after cleavage of the PMB ether (vide infra).

Methyl $\quad\left(2 S^{*}\right)-2-\left[\left(1 R^{*}, 3 Z\right)-1-(4-b r o m o p h e n y l)-3-\right.$ ethylidene-2,2-difluorocyclopropyl]-2-[(4-methoxyphenyl)methoxy]acetate (8c). After purification by flash chromatography (petroleum ether/EtOAc $=95: 5$ to $90: 10$), $\mathbf{8 c}$ was isolated as a pale yellow oil ($222 \mathrm{mg}, 75 \%$); IR: v 1756, 1736, 1613, 1514, 1247, 1147, 1112, 1010, 824, 808, $730 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.40(\operatorname{app~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.31(\operatorname{app~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.22(\operatorname{app} \mathrm{~d}, J=$ $8.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.88(\operatorname{app~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 6.56(\mathrm{~m}, 1 \mathrm{H}), 4.72\left(\mathrm{~d}_{\mathrm{ABsys}}, J=11.2 \mathrm{~Hz}, 1 \mathrm{H}\right), 4.57$ $\left(\mathrm{d}_{\mathrm{ABsys}}, J=11.2 \mathrm{~Hz}, 1 \mathrm{H}\right), 4.07(\mathrm{~d}, J=2.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H}), 3.63(\mathrm{~s}, 3 \mathrm{H}), 2.01$ (app br d, $J=7.0 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 170.2\left(\mathrm{C}, \mathrm{d},{ }^{4} J_{C-F}=1.9 \mathrm{~Hz}\right), 159.5(\mathrm{C})$, $132.22(\mathrm{CH}), 132.21(\mathrm{CH}), 131.3(2 \mathrm{CH}), 130.6\left(\mathrm{C}, \mathrm{d},{ }^{3} J_{C-F}=3.7 \mathrm{~Hz}\right), 129.8(2 \mathrm{CH}), 129.21$ $(\mathrm{C}), 129.15(\mathrm{CH}), 122.8\left(\mathrm{C}, \mathrm{t},{ }^{2} J_{C-F}=6.0 \mathrm{~Hz}\right), 122.7(\mathrm{C}), 113.8(2 \mathrm{CH}), 107.3\left(\mathrm{C}, \mathrm{t},{ }^{1} J_{C-F}=\right.$ $293.4 \mathrm{~Hz}), 78.1\left(\mathrm{CH}, \mathrm{d},{ }^{3} J_{C-F}=3.7 \mathrm{~Hz}\right), 72.5\left(\mathrm{CH}_{2}\right), 55.3\left(\mathrm{CH}_{3}\right), 52.2\left(\mathrm{CH}_{3}\right), 41.5(\mathrm{C}, \mathrm{t}$, $\left.{ }^{2} J_{C-F}=12.6 \mathrm{~Hz}\right), 18.4\left(\mathrm{CH}_{3}\right) ;$ HRMS (ESI) m / z calcd for $\mathrm{C}_{22} \mathrm{H}_{21} \mathrm{BrF}_{2} \mathrm{O}_{4} \mathrm{Na}\left[\mathrm{M}\left({ }^{79} \mathrm{Br}\right)+\mathrm{Na}\right]^{+}$ and $\left[\mathrm{M}\left({ }^{81} \mathrm{Br}\right)+\mathrm{Na}\right]^{+}: 489.0483$ and 491.0463, found: 489.0438 and 491.0458.

Methyl
(2S*)-2-[(1R*,3Z)-1-(4-acetylphenyl)-3-ethylidene-2,2-difluorocyclopropyl]-2-[(4-methoxyphenyl)methoxy]acetate (8e). After purification by flash chromatography (petroleum ether/ $\mathrm{Et}_{2} \mathrm{O}=90: 10$), $\mathbf{8 e}$ was isolated as a pale yellow oil ($156 \mathrm{mg}, 65 \%$); IR: $v 1758,1687,1609,1516,1267,1251,1149,1120,1035,827 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 7.87(\operatorname{app} \operatorname{brd}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.45(\operatorname{app~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.32(\operatorname{app~d}, J=$ $8.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.90(\operatorname{app~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.61(\mathrm{~m}, 1 \mathrm{H}), 4.74\left(\mathrm{~d}_{\mathrm{ABsyst}}, J=11.2 \mathrm{~Hz}, 1 \mathrm{H}\right), 4.59$ $\left(\mathrm{d}_{\mathrm{ABsyst}}, J=11.2 \mathrm{~Hz}, 1 \mathrm{H}\right), 4.11(\mathrm{~d}, J=2.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.81(\mathrm{~s}, 3 \mathrm{H}), 3.63(\mathrm{~s}, 3 \mathrm{H}), 2.56(\mathrm{~s}, 3 \mathrm{H})$, 2.04 (app d, $J=6.9 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 197.9(\mathrm{C}), 170.2\left(\mathrm{C}, \mathrm{d},{ }^{4} J_{C-F}=\right.$
$1.9 \mathrm{~Hz}), 159.6(\mathrm{C}), 136.9\left(\mathrm{C}, \mathrm{d},{ }^{3} J_{C-F}=3.7 \mathrm{~Hz}\right), 136.8(\mathrm{C}), 130.8(2 \mathrm{CH}), 129.8(2 \mathrm{CH}), 129.5$ $(\mathrm{CH}), 129.2(\mathrm{C}), 128.1(2 \mathrm{CH}), 122.6\left(\mathrm{C}, \mathrm{t},{ }^{2} J_{C-F}=6.1 \mathrm{~Hz}\right), 113.9(2 \mathrm{CH}), 107.3\left(\mathrm{C}, \mathrm{t},{ }^{1} J_{C-F}=\right.$ $295.4 \mathrm{~Hz}), 78.2\left(\mathrm{CH}, \mathrm{d},{ }^{2} J_{C-F}=3.3 \mathrm{~Hz}\right), 72.6\left(\mathrm{CH}_{2}\right), 55.4\left(\mathrm{CH}_{3}\right), 52.2\left(\mathrm{CH}_{3}\right), 41.9\left(\mathrm{C}, \mathrm{t},{ }^{2} J_{C-F}=\right.$ $12.7 \mathrm{~Hz}), 26.7\left(\mathrm{CH}_{3}\right), 18.4\left(\mathrm{CH}_{3}\right) ;{ }^{19} \mathrm{~F}$ NMR $\left(282 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta-130.66\left(\mathrm{~d}_{\text {ABsyst, }}{ }^{1} J_{F-F}=\right.$ $168.8 \mathrm{~Hz}),-133.04\left(\mathrm{~d}_{\mathrm{ABsyst}},{ }^{1} J_{F-F}=168.8 \mathrm{~Hz}\right) ;$ HRMS (ESI) m / z calcd for $\mathrm{C}_{24} \mathrm{H}_{24} \mathrm{~F}_{2} \mathrm{O}_{5} \mathrm{Na}$ $[\mathrm{M}+\mathrm{Na}]^{+}: 453.1484$, found: 453.1487 .

Methyl (2S*)-2-[(1S*,3Z)-1-(2-chlorophenyl)-3-ethylidene-2,2-difluorocyclopropyl]-2-[(4methoxyphenyl)methoxy]acetate ($8 f$). After purification by flash chromatography (petroleum ether/ $/ t_{2} \mathrm{O}=90: 10$), $\mathbf{8 f}$ was isolated as a pale yellow oil ($222 \mathrm{mg}, 67 \%$); IR: v 1755,1613 , $1514,1205,1175,1246,1147,1108,1038,1004,824,757,739 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO- $\left.d_{6}, 375 \mathrm{~K}\right) \delta 7.41-7.25(\mathrm{~m}, 4 \mathrm{H}), 7.20(\operatorname{app~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.88(\operatorname{app} \mathrm{~d}, J=8.7 \mathrm{~Hz}$, $2 \mathrm{H}), 6.75(\operatorname{app~qt}, J=6.9,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.52\left(\mathrm{~d}_{\mathrm{ABsyst}}, J=11.6 \mathrm{~Hz}, 1 \mathrm{H}\right), 4.45\left(\mathrm{~d}_{\mathrm{ABsys}}, J=\right.$ $11.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.17(\mathrm{~s}, 1 \mathrm{H}), 3.77(\mathrm{~s}, 3 \mathrm{H}), 3.68(\mathrm{~s}, 3 \mathrm{H}), 2.00(\mathrm{dt}, J=6.9,2.1 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz, DMSO- $d_{6}, 375 \mathrm{~K}$) $\delta 168.5\left(\mathrm{C}, \mathrm{d},{ }^{4} J_{C-F}=1.9 \mathrm{~Hz}\right.$), 158.7 (C), $134.5(\mathrm{C}), 130.4(\mathrm{C})$, $129.10(\mathrm{CH}), 129.07(2 \mathrm{CH}), 128.8(\mathrm{C}), 128.6(2 \mathrm{CH}), 125.8(\mathrm{CH}), 120.3(\mathrm{C}), 113.3(2 \mathrm{CH})$, $99.0\left(\mathrm{C}, \mathrm{t},{ }^{1} J_{C-F}=314.8 \mathrm{~Hz}\right), 77.2(\mathrm{CH}), 71.1\left(\mathrm{CH}_{2}\right), 54.7\left(\mathrm{CH}_{3}\right), 51.1\left(\mathrm{CH}_{3}\right), 40.7(\mathrm{C}), 17.2$ $\left(\mathrm{CH}_{3}\right)$ (One quaternary aromatic carbon signal is not detected presumably because of overlap); ${ }^{19} \mathrm{~F}$ NMR ($282 \mathrm{MHz}, \mathrm{CDCl}_{3}, 295 \mathrm{~K}$) The presence of a $72: 28$ mixture of rotamers was observed, $\delta-135.61\left(\mathrm{~d}_{\mathrm{ABsyst}},{ }^{1} J_{F-F}=165.2 \mathrm{~Hz}, 0.72 \times 1 \mathrm{~F}\right),-132.38\left(\mathrm{~d}_{\mathrm{ABsys}},{ }^{1} J_{F-F}=\right.$ $173.5 \mathrm{~Hz}, 0.28 \times 1 \mathrm{~F}),-128.89\left(\mathrm{~d}_{\mathrm{ABsyst}},{ }^{1} J_{F-F}=173.5 \mathrm{~Hz}, 0.28 \times 1 \mathrm{~F}\right),-127.76\left(\mathrm{~d}_{\mathrm{ABsys}},{ }^{1} J_{F-F}=\right.$ $165.2 \mathrm{~Hz}, 0.72 \times 1 \mathrm{~F})$; HRMS (ESI) m / z calcd for $\mathrm{C}_{22} \mathrm{H}_{21} \mathrm{ClF}_{2} \mathrm{O}_{4} \mathrm{Na}\left[\mathrm{M}\left({ }^{35} \mathrm{Cl}\right)+\mathrm{Na}\right]^{+}$and $\left[\mathrm{M}\left({ }^{37} \mathrm{Cl}\right)+\mathrm{Na}\right]^{+}: 445.0989$ and 447.0959, found: 445.0989 and 447.0962 .

Methyl $\quad\left(2 S^{*}\right)$-2-[(1R*,3Z)-3-ethylidene-2,2-difluoro-1-(naphthalen-1-yl)cyclopropyl]-2-[(4methoxyphenyl)methoxy]acetate (8 g). After purification by flash chromatography (petroleum ether $/ \mathrm{Et}_{2} \mathrm{O}=90: 10$), $\mathbf{8 g}$ was isolated as a yellow oil ($137 \mathrm{mg}, 63 \%$); IR: $v 1756,1733,1613$, $1514,1248,1144,1032,822,800,778 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO- $d_{6}, 375 \mathrm{~K}$) $\delta 8.23$ (m, app br s, 1H), 7.89-7.82 (m, 2H), 7.50-7.40 (m, 4H), $7.18(\operatorname{app~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 6.87$ (app d, $J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 6.82(\mathrm{qt}, J=6.9,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.53\left(\mathrm{~d}_{\mathrm{ABsyst}}, J=11.5 \mathrm{~Hz}, 1 \mathrm{H}\right), 4.45$ $\left(\mathrm{d}_{\mathrm{ABsyst}}, J=11.5 \mathrm{~Hz}, 1 \mathrm{H}\right), 4.34(\mathrm{~s}, 1 \mathrm{H}), 3.77(\mathrm{~s}, 3 \mathrm{H}), 3.63(\mathrm{br} \mathrm{s}, 3 \mathrm{H}), 2.02(\mathrm{dt}, J=6.9,2.0 \mathrm{~Hz}$, $3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}, 296 \mathrm{~K}$) Signals with an asterisk can be assigned to a minor rotamer when distinction is possible $\delta 170.9^{*}\left(\mathrm{C}, \mathrm{d},{ }^{4} J_{C-F}=2.0 \mathrm{~Hz}\right), 170.4\left(\mathrm{C}, \mathrm{d},{ }^{4} J_{C-F}=1.6\right.$ Hz), 159.5* (C), 159.4 (C), 134.1* (C), 134.0 (C), 133.6 (C), 132.7* (C), 132.1 (CH), $130.15^{*}(\mathrm{CH}), 130.1\left(\mathrm{C}, \mathrm{d},{ }^{4} J_{C-F}=3.9 \mathrm{~Hz}\right), 129.9^{*}(\mathrm{CH}), 129.7(2 \mathrm{CH}), 129.35(\mathrm{CH}), 129.20^{*}$ (CH), 129.16* (C), 129.14 (C), 129.0* (CH), 128.4* (CH), 128.37 (CH), 127.9 (CH), 127.4 (CH), 125.9 (CH), 125.76* (CH), $125.72(\mathrm{CH}), 125.34^{*}(\mathrm{CH}), 125.3^{*}(\mathrm{CH}), 124.8(\mathrm{CH})$, $123.9^{*}(\mathrm{CH}), 123.5\left(\mathrm{C}, \mathrm{t},{ }^{2} J_{C-F}=6.0 \mathrm{~Hz}\right), 113.8^{*}(\mathrm{CH}), 113.7(2 \mathrm{CH}), 108.0\left(\mathrm{C}, \mathrm{t},{ }^{1} J_{C-F}=\right.$ $295.5 \mathrm{~Hz}), 79.9\left(\mathrm{CH}, \mathrm{d},{ }^{2} J_{\mathrm{C}-F}=4.2 \mathrm{~Hz}\right), 77.8^{*}(\mathrm{C}), 72.7\left(\mathrm{CH}_{2}\right), 72.2^{*}\left(\mathrm{CH}_{2}\right), 55.4\left(\mathrm{CH}_{3}\right)$, 52.2* $\left(\mathrm{CH}_{3}\right), 52.0\left(\mathrm{CH}_{3}\right), 40.7\left(\mathrm{C}, \mathrm{t},{ }^{2} J_{C-F}=13.1 \mathrm{~Hz}\right), 18.6^{*}\left(\mathrm{CH}_{3}\right), 18.5\left(\mathrm{CH}_{3}\right) ;$ HRMS (ESI) m / z calcd for $\mathrm{C}_{26} \mathrm{H}_{24} \mathrm{~F}_{2} \mathrm{O}_{4} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}: 461.1535$, found: 461.1532.
tert-Butyl 3-((1R*,3Z)-3-ethylidene-2,2-difluoro-1-\{(1S*)-2-methoxy-1-[(4-methoxy-phenyl)methoxy]-2-oxoethyl\}cyclopropyl)-1H-indole-1-carboxylate ($8 \boldsymbol{h}$). After purification by flash chromatography (petroleum ether $/ \mathrm{Et}_{2} \mathrm{O}=80: 20$), $\mathbf{8 h}$ was isolated as a pale yellow oil ($152 \mathrm{mg}, 70 \%$); IR: v $1736,1613,1515,1451,1372,1247,1155,1108,822,763,748 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.06(\mathrm{brd}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.60(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.55(\mathrm{~s}$, $1 \mathrm{H}), 7.31(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.24(\mathrm{~m}, 1 \mathrm{H}), 7.15(\mathrm{~m}, 1 \mathrm{H}), 6.87(\operatorname{app~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 6.62$ $(\mathrm{m}, 1 \mathrm{H}), 4.72\left(\mathrm{~d}_{\mathrm{ABsys}}, J=11.3 \mathrm{~Hz}, 1 \mathrm{H}\right), 4.58\left(\mathrm{~d}_{\mathrm{ABsyst}}, J=11.3 \mathrm{~Hz}, 1 \mathrm{H}\right), 4.11(\mathrm{~d}, J=2.2 \mathrm{~Hz}$,
$1 \mathrm{H}), 3.79(\mathrm{~s}, 3 \mathrm{H}), 3.61(\mathrm{~s}, 3 \mathrm{H}), 2.02(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}), 1.64(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 170.8(\mathrm{C}), 159.5(\mathrm{C}), 149.6(\mathrm{C}), 135.3(\mathrm{C}), 130.3(\mathrm{C}), 129.9(2 \mathrm{CH}), 129.3(\mathrm{C}), 129.1$ $(\mathrm{CH}), 127.4(\mathrm{CH}), 124.3(\mathrm{CH}), 122.7\left(\mathrm{C}, \mathrm{t},{ }^{2} J_{C-F}=5.8 \mathrm{~Hz}\right), 122.5(\mathrm{CH}), 120.6(\mathrm{CH}), 115.3$ $(\mathrm{CH}), 113.8(2 \mathrm{CH}), 111.3(\mathrm{C}), 107.5\left(\mathrm{C}, \mathrm{t},{ }^{1} J_{C-F}=295.0 \mathrm{~Hz}\right), 83.9(\mathrm{C}), 77.9(\mathrm{CH}), 72.4\left(\mathrm{CH}_{2}\right)$, $55.4\left(\mathrm{CH}_{3}\right), 52.3\left(\mathrm{CH}_{3}\right), 36.0\left(\mathrm{C}, \mathrm{t},{ }^{2} J_{C-F}=12.6 \mathrm{~Hz}\right), 28.3\left(3 \mathrm{CH}_{3}\right), 18.4\left(\mathrm{CH}_{3}\right) ;{ }^{19} \mathrm{~F}$ NMR (282 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta-129.50\left(\mathrm{~d}_{\mathrm{ABsyst}},{ }^{1} J_{F-F}=167.1 \mathrm{~Hz}\right),-134.04\left(\mathrm{~d}_{\mathrm{ABsyst}},{ }^{1} J_{F-F}=167.1 \mathrm{~Hz}\right) ;$ HRMS (ESI) m / z calcd for $\mathrm{C}_{29} \mathrm{H}_{31} \mathrm{~F}_{2} \mathrm{NO}_{6} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}: 550.2012$, found: 550.2008.

Methyl
(2S*)-2-[(1S*,3Z)-2,2-difluoro-3-(3-phenylpropylidene)-1-(thiophen-3-yl)-cyclopropyl]-2-[(4-methoxyphenyl)methoxy]acetate (8i). After purification by flash chromatography (petroleum ether $/ \mathrm{Et}_{2} \mathrm{O}=80: 20$), 8i was isolated as a yellow oil (129 mg , 70%; IR: v 1756, 1613, 1514, 1249, 1145, 1125, 1033, 1011, 827, 750, $699 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.36(\operatorname{app~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.33-7.28(\mathrm{~m}, 2 \mathrm{H}), 7.25-7.18(\mathrm{~m}, 5 \mathrm{H})$, $7.07(\mathrm{dd}, J=4.2,2.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.92(\operatorname{app~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 6.61(\mathrm{~m}, 1 \mathrm{H}), 4.76\left(\mathrm{~d}_{\text {ABsyst }}, J=\right.$ $11.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.62\left(\mathrm{~d}_{\mathrm{ABsyst}}, J=11.2 \mathrm{~Hz}, 1 \mathrm{H}\right), 4.03(\mathrm{~s}, 1 \mathrm{H}), 3.83(\mathrm{~s}, 3 \mathrm{H}), 3.66(\mathrm{~s}, 3 \mathrm{H}), 2.90(\mathrm{t}$, $J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 2.72-2.63(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 170.5(\mathrm{C}), 159.5(\mathrm{C})$, 140.9 (C), $132.8(\mathrm{CH}), 131.8(\mathrm{C}), 129.8(2 \mathrm{CH}), 129.4(\mathrm{C}), 129.0(\mathrm{CH}), 128.57(2 \mathrm{CH}), 128.56$ $(2 \mathrm{CH}), 126.3(\mathrm{CH}), 125.6(\mathrm{CH}), 125.1(\mathrm{CH}), 123.0\left(\mathrm{C}, \mathrm{t}^{2}{ }^{2} J_{C-F}=6.3 \mathrm{~Hz}, \mathrm{C}_{6}\right), 113.9(2 \mathrm{CH})$, $107.1\left(\mathrm{C}, \mathrm{t},{ }^{1} J_{C-F}=296.2 \mathrm{~Hz}\right), 78.1(\mathrm{CH}), 72.4\left(\mathrm{CH}_{2}\right), 55.4\left(\mathrm{CH}_{3}\right), 52.2\left(\mathrm{CH}_{3}\right), 38.3(\mathrm{C}, \mathrm{t}$, ${ }^{2} J_{C-F}=12.9 \mathrm{~Hz}$), $34.2\left(\mathrm{CH}_{2}\right), 34.1\left(\mathrm{CH}_{2}\right) ;$ HRMS (ESI) m / z calcd for $\mathrm{C}_{27} \mathrm{H}_{26} \mathrm{~F}_{2} \mathrm{O}_{4} \mathrm{SNa}$ $[\mathrm{M}+\mathrm{Na}]^{+}: 507.1412$, found: 507.1405.

Methyl
$\left(2 S^{*}\right)$-2-[(1R*,3Z)-2,2-difluoro-1-methyl-3-(3-phenylpropylidene)cyclopropyl]-2-[(4-methoxyphenyl)methoxy]acetate (8 k). After purification by flash chromatography (petroleum ether/ $\mathrm{Et}_{2} \mathrm{O}=80: 20$), $\mathbf{8 k}$ was isolated as a slightly yellow oil ($216 \mathrm{mg}, 61 \%$); IR: $v 1752,1734,1614,1515,1250,1106,1033,822,751,729,700 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (400 MHz ,
$\left.\mathrm{CDCl}_{3}\right) \delta 7.33-7.24(\mathrm{~m}, 4 \mathrm{H}), 7.22-7.16(\mathrm{~m}, 3 \mathrm{H}), 6.87(\operatorname{app~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 6.21(\mathrm{~m}, 1 \mathrm{H})$, $4.58\left(\mathrm{~d}_{\text {ABsyst}}, J=11.3 \mathrm{~Hz}, 1 \mathrm{H}\right), 4.51\left(\mathrm{~d}_{\text {ABsyst }}, J=11.3 \mathrm{~Hz}, 1 \mathrm{H}\right), 3.81(\mathrm{~d}, J=1.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.78$ $(\mathrm{s}, 3 \mathrm{H}), 3.76(\mathrm{~s}, 3 \mathrm{H}), 2.85-2.79(\mathrm{~m}, 2 \mathrm{H}), 2.59-2.52(\mathrm{~m}, 2 \mathrm{H}), 1.25(\mathrm{~s}, 3 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR (100 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 170.8\left(\mathrm{C}, \mathrm{d}^{4} J_{C-F}=2.5 \mathrm{~Hz}\right), 159.5(\mathrm{C}), 141.0(\mathrm{C}), 130.9(\mathrm{CH}), 129.8(2 \mathrm{CH})$, $129.3(\mathrm{C}), 128.51(2 \mathrm{CH}), 128.47(2 \mathrm{CH}), 126.2(\mathrm{CH}), 124.1\left(\mathrm{C}, \mathrm{t},{ }^{2} J_{C-F}=6.2 \mathrm{~Hz}\right), 113.8$ $(2 \mathrm{CH}), 108.4\left(\mathrm{C}, \mathrm{t},{ }^{1} J_{C-F}=295.6 \mathrm{~Hz}\right), 76.5\left(\mathrm{CH}, \mathrm{d},{ }^{3} J_{C-F}=2.8 \mathrm{~Hz}\right), 71.7\left(\mathrm{CH}_{2}\right), 55.3\left(\mathrm{CH}_{3}\right)$, $52.2\left(\mathrm{CH}_{3}\right), 34.12\left(\mathrm{CH}_{2}\right), 34.06\left(\mathrm{CH}_{2}\right), 33.0\left(\mathrm{C}, \mathrm{t},{ }^{2} J_{C-F}=12.1 \mathrm{~Hz}\right), 11.4\left(\mathrm{CH}_{3}\right) ;$ HRMS (ESI) m / z calcd for $\mathrm{C}_{24} \mathrm{H}_{26} \mathrm{~F}_{2} \mathrm{O}_{4} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}: 439.1691$, found: 439.1689.

Methyl $\quad\left(2 S^{*}\right)-2-\left[\left(1 S^{*}, 3 Z\right)-1-\{[(\right.$ tert-butyldiphenylsilyl)oxy]methyl\}-2,2-difluoro-3-(3-phenyl-propylidene)cyclopropyl]-2-[(4-methoxyphenyl)methoxy]acetate (8l). After purification by flash chromatography (petroleum ether/ $\mathrm{Et}_{2} \mathrm{O}=80: 20$), $\mathbf{8 1}$ was isolated as a pale yellow oil (112 mg, 48\%); IR: v 1756, 1613, 1587, 1514, 1248, 1142, 1112, 1081, 1034, 824, 744, $702 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.68-7.60(\mathrm{~m}, 4 \mathrm{H}), 7.42-7.23(\mathrm{~m}, 10 \mathrm{H}), 7.21-7.16$ $(\mathrm{m}, 3 \mathrm{H}), 6.86(\operatorname{app~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 6.46(\operatorname{app} \operatorname{br} \mathrm{t}, J=6.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.64\left(\mathrm{~d}_{\mathrm{ABsys}}, J=\right.$ $11.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.50\left(\mathrm{~d}_{\text {ABsyst}}, J=11.3 \mathrm{~Hz}, 1 \mathrm{H}\right), 4.35(\mathrm{dd}, J=10.9,3.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.90(\mathrm{~d}, J=$ $1.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.78(\mathrm{~s}, 3 \mathrm{H}), 3.70(\mathrm{~s}, 3 \mathrm{H}), 3.56(\mathrm{dd}, J=10.9,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.85-2.78(\mathrm{~m}, 2 \mathrm{H})$, $2.62-2.52(\mathrm{~m}, 2 \mathrm{H}), 1.02(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 170.8(\mathrm{C}), 159.4(\mathrm{C}), 141.0$ (C), 135.79 (2CH), 135.76 (2CH), 133.20 (C), 133.14 (C), $133.0(\mathrm{CH}), 129.79(\mathrm{CH}), 129.75$ $(\mathrm{CH}), 129.68(2 \mathrm{CH}), 129.54(\mathrm{C}), 128.53(2 \mathrm{CH}), 128.49(2 \mathrm{CH}), 127.75(2 \mathrm{CH}), 127.73(2 \mathrm{CH})$, $126.2(\mathrm{CH}), 121.3\left(\mathrm{C}, \mathrm{t},{ }^{2} J_{C-F}=6.2 \mathrm{~Hz}\right), 113.8(2 \mathrm{CH}), 107.9\left(\mathrm{C}, \mathrm{t},{ }^{1} J_{C-F}=293.5 \mathrm{~Hz}\right), 74.3$ $(\mathrm{CH}), 71.7\left(\mathrm{CH}_{2}\right), 59.3\left(\mathrm{CH}_{2}\right), 55.3\left(\mathrm{CH}_{3}\right), 52.1\left(\mathrm{CH}_{3}\right), 39.4\left(\mathrm{C}, \mathrm{t},{ }^{2} J_{C-F}=11.3 \mathrm{~Hz}\right), 34.4$ $\left(\mathrm{CH}_{2}\right), 34.1\left(\mathrm{CH}_{2}\right), 26.9\left(3 \mathrm{CH}_{3}\right), 19.3(\mathrm{C})$; HRMS (ESI) m / z calcd for $\mathrm{C}_{40} \mathrm{H}_{44} \mathrm{~F}_{2} \mathrm{O}_{5} \mathrm{SiNa}$ $[\mathrm{M}+\mathrm{Na}]^{+}: 693.2818$, found: 693.2815.

Methyl $\quad\left(2 S^{*}\right)$-2-[(1R*,3Z)-3-[2-(benzyloxy)ethylidene]-2,2-difluoro-1-methylcyclopropyl]-2-[(4-methoxyphenyl)methoxy]acetate ($8 \boldsymbol{m}$). After purification by flash chromatography (petroleum ether/ $\mathrm{Et}_{2} \mathrm{O}=80: 20$), $\mathbf{8 m}$ was isolated as a pale yellow oil ($80 \mathrm{mg}, 40 \%$); IR: $v 1752,1613,1515,1250,1210,1171,1139,1117,1032,822,738,699 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.38-7.24(\mathrm{~m}, 7 \mathrm{H}), 6.87(\operatorname{app} \mathrm{brd}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 6.22(\mathrm{~m}, 1 \mathrm{H}), 4.60$ $\left(\mathrm{d}_{\mathrm{ABsys}}, J=11.3 \mathrm{~Hz}, 1 \mathrm{H}\right), 4.56(\mathrm{~s}, 2 \mathrm{H}), 4.52\left(\mathrm{~d}_{\mathrm{ABsys}}, J=11.3 \mathrm{~Hz}, 1 \mathrm{H}\right), 4.22-4.19(\mathrm{~m}, 2 \mathrm{H})$, $3.86(\mathrm{~d}, J=1.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.79(\mathrm{~s}, 3 \mathrm{H}), 3.77(\mathrm{~s}, 3 \mathrm{H}), 1.28(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 170.7\left(\mathrm{C}, \mathrm{d},{ }^{4} J_{C-F}=2.5 \mathrm{~Hz}\right), 159.5(\mathrm{C}), 138.0(\mathrm{C}), 129.8(2 \mathrm{CH}), 129.3(\mathrm{C}), 128.5(2 \mathrm{CH})$, $127.8(\mathrm{CH}), 127.7(2 \mathrm{CH}), 127.3(\mathrm{CH}), 125.6\left(\mathrm{C}, \mathrm{t},{ }^{2} J_{C-F}=6.4 \mathrm{~Hz}\right), 113.9(2 \mathrm{CH}), 107.8(\mathrm{C}, \mathrm{t}$, $\left.{ }^{1} J_{C-F}=294.1 \mathrm{~Hz}\right), 76.3\left(\mathrm{CH}, \mathrm{d},{ }^{3} J_{C-F}=3.4 \mathrm{~Hz}\right), 72.8\left(\mathrm{CH}_{2}\right), 71.9\left(\mathrm{CH}_{2}\right), 69.1\left(\mathrm{CH}_{2}\right), 55.3$ $\left(\mathrm{CH}_{3}\right), 52.3\left(\mathrm{CH}_{3}\right), 32.9\left(\mathrm{C}, \mathrm{t},{ }^{2} J_{C-F}=12.1 \mathrm{~Hz}\right), 11.3\left(\mathrm{CH}_{3}, \mathrm{t},{ }^{3} J_{C-F}=2.6 \mathrm{~Hz}\right) ;$ HRMS (ESI) m / z calcd for $\mathrm{C}_{24} \mathrm{H}_{26} \mathrm{~F}_{2} \mathrm{O}_{5} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}: 455.1640$, found: 455.1638 .

Methyl $\quad\left(2 S^{*}\right)$-2-[(1R*,3Z)-3-[2-(benzyloxy)ethylidene]-1-\{2-[(tert-butyldiphenylsilyl)oxy]-ethyl]-2,2-difluorocyclopropyl]-2-[(4-methoxyphenyl)methoxy]acetate (8n). After purification by flash chromatography (petroleum ether $/ \mathrm{Et}_{2} \mathrm{O}=80: 20$), $\mathbf{8 n}$ was isolated as a pale yellow oil (59 mg, 43\%); IR: v 1753, 1613, 1514, 1250, 1175, 1112, 1034, $823 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.64-7.59(\mathrm{~m}, 4 \mathrm{H}), 7.42-7.27(\mathrm{~m}, 11 \mathrm{H}), 7.23(\operatorname{app~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.83$ (app d, $J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.15(\mathrm{~m}, 1 \mathrm{H}), 4.55\left(\mathrm{~d}_{\mathrm{ABsyst}}, J=11.2 \mathrm{~Hz}, 1 \mathrm{H}\right), 4.53(\mathrm{~s}, 2 \mathrm{H}), 4.44$ $\left(\mathrm{d}_{\mathrm{ABsys}}, J=11.2 \mathrm{~Hz}, 1 \mathrm{H}\right), 4.18-4.13(\mathrm{~m}, 2 \mathrm{H}), 3.81(\mathrm{~d}, J=1.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H}), 3.78-3.62$ $(\mathrm{m}, 2 \mathrm{H}), 3.61(\mathrm{~s}, 3 \mathrm{H}), 2.21-2.11(\mathrm{~m}, 1 \mathrm{H}), 2.05-1.94(\mathrm{~m}, 1 \mathrm{H}), 1.01(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 170.8(\mathrm{C}), 159.4(\mathrm{C}), 138.0(\mathrm{C}), 135.7(4 \mathrm{CH}), 133.95(\mathrm{C}), 133.92(\mathrm{C}), 129.69$ (2CH), $129.65(2 \mathrm{CH}), 129.4(\mathrm{C}), 128.54(2 \mathrm{CH}), 128.48(\mathrm{CH}), 127.9(\mathrm{CH}), 127.76(2 \mathrm{CH})$, $127.74(2 \mathrm{CH}), 127.73(2 \mathrm{CH}), 123.9(\mathrm{C}), 113.8(2 \mathrm{CH}), 107.7\left(\mathrm{C}, \mathrm{t},{ }^{1} J_{C-F}=297.4 \mathrm{~Hz}\right), 76.4$ $(\mathrm{CH}), 72.8\left(\mathrm{CH}_{2}\right), 72.0\left(\mathrm{CH}_{2}\right), 69.0\left(\mathrm{CH}_{2}\right), 61.5\left(\mathrm{CH}_{2}\right), 55.4\left(\mathrm{CH}_{3}\right), 52.2\left(\mathrm{CH}_{3}\right), 34.7(\mathrm{C}, \mathrm{t}$,
$\left.{ }^{2} J_{C-F}=12.2 \mathrm{~Hz}\right), 29.5\left(\mathrm{CH}_{2}\right), 26.9\left(3 \mathrm{CH}_{3}\right), 19.3(\mathrm{C}) ;$ HRMS (ESI) m / z calcd for $\mathrm{C}_{41} \mathrm{H}_{46} \mathrm{~F}_{2} \mathrm{O}_{6} \mathrm{SiNa}[\mathrm{M}+\mathrm{Na}]^{+}: 723.2924$, found: 723.2920.

Methyl (2S*)-2-[(1R*,3Z)-2,2-difluoro-1-phenyl-3-(3-phenylpropylidene)cyclopropyl]-2-hydroxyacetate ($\mathbf{9 a}$). To a solution of $\mathbf{8 a}(478 \mathrm{mg}, 1.00 \mathrm{mmol})$ in a $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ /aqueous buffer ($\mathrm{pH}=7.2$) mixture ($4: 1,20 \mathrm{~mL}$) was added $\mathrm{DDQ}(908 \mathrm{mg}, 4.00 \mathrm{mmol}, 4$ equiv). After 6 h of vigorous stirring at rt , the reaction mixture was diluted with EtOAc $(10 \mathrm{~mL})$ and stirred for a further 15 min . The layers were separated and the aqueous phase was extracted with EtOAc. The combined organic extracts were successively washed with a 25% aqueous solution of $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$, brine, then dried over MgSO_{4}, filtered and concentrated under reduced pressure. The crude material was purified by flash chromatography on silica gel (petroleum ether $/ \mathrm{Et}_{2} \mathrm{O}=90: 10$ to $80: 20$) to afford $269 \mathrm{mg}(75 \%)$ of $\mathbf{9 a}$ as a colorless oil; IR: v 3510 , 1742, 1603, 1390, 1254, 1218, 1145, 1121, 1097, 749, 717, $699 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 7.32-7.24(\mathrm{~m}, 7 \mathrm{H}), 7.21-7.16(\mathrm{~m}, 3 \mathrm{H}), 6.62(\mathrm{tt}, J=6.1,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.30(\mathrm{~d}, J=$ $6.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.72(\mathrm{~s}, 3 \mathrm{H}), 3.10(\mathrm{~d}, J=6.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{OH}), 2.92-2.83(\mathrm{~m}, 2 \mathrm{H}), 2.69-2.60(\mathrm{~m}$, $2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 172.7\left(\mathrm{C}, \mathrm{t},{ }^{4} J_{C-F}=2.0 \mathrm{~Hz}\right), 140.9(\mathrm{C}), 132.5(\mathrm{CH}), 130.8$ $\left(\mathrm{C}, \mathrm{t},{ }^{3} J_{C-F}=3.7 \mathrm{~Hz}\right), 130.2(2 \mathrm{CH}), 128.6(\mathrm{CH}), 128.5(4 \mathrm{CH}), 128.4(2 \mathrm{CH}), 126.3(\mathrm{CH}), 123.0$ $\left(\mathrm{C}, \mathrm{t},{ }^{2} J_{C-F}=6.5 \mathrm{~Hz}\right), 107.5\left(\mathrm{C}, \mathrm{t},{ }^{1} J_{C-F}=295.0 \mathrm{~Hz}\right), 72.0\left(\mathrm{CH}, \mathrm{dd},{ }^{3} J_{C-F}=4.4,3.0 \mathrm{~Hz}\right), 52.9$ $\left(\mathrm{CH}_{3}\right), 42.4\left(\mathrm{C}, \mathrm{t},{ }^{2} J_{C-F}=12.5 \mathrm{~Hz}\right), 34.3\left(\mathrm{CH}_{2}\right), 34.1\left(\mathrm{CH}_{2}\right)$; HRMS (ESI) m / z calcd for $\mathrm{C}_{21} \mathrm{H}_{20} \mathrm{~F}_{2} \mathrm{O}_{3} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}: 381.1273$, found: 381.1279.

Methyl
(2S)-2-[(1R,3Z)-3-ethylidene-2,2-difluoro-1-(4-methoxyphenyl)cyclopropyl]-2-hydroxy-acetate ((+)-9b). Cleavage of the PMB ether in compound (+)-8b was achieved as under the conditions described for the formation of 9a from 8a. After purification by flash chromatography (petroleum ether/Et ${ }_{2} \mathrm{O}=90: 10$ to $80: 20$), alcohol (+)-9b was isolated as a
colorless oil (14 mg, 70\%); $[\alpha]_{\mathrm{D}}{ }^{20}+40.4\left(c 0.6, \mathrm{CHCl}_{3}\right)$; IR: $v 3500,1741,1610,1511,1248$, 1143, 1111, 1027, 834, 818, 736, $706 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.24$ (app d, $J=$ $8.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.84(\operatorname{app~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.52(\mathrm{qt}, J=6.9,2.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.32(\mathrm{dd}, J=6.6$, $2.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.78(\mathrm{~s}, 3 \mathrm{H}), 3.76(\mathrm{~s}, 3 \mathrm{H}), 3.05(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{OH}), 2.03(\mathrm{dt}, J=6.9,1.9 \mathrm{~Hz}$, $3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 172.9\left(\mathrm{C}, \mathrm{d},{ }^{4} J_{C-F}=2.1 \mathrm{~Hz}\right), 159.8(\mathrm{C}), 131.40(\mathrm{CH})$, $131.38(\mathrm{CH}), 128.0(\mathrm{CH}), 123.8\left(\mathrm{C}, \mathrm{d},{ }^{2} J_{C-F}=6.2 \mathrm{~Hz}\right), 122.7\left(\mathrm{C}, \mathrm{d},{ }^{2} J_{C-F}=3.8 \mathrm{~Hz}\right), 113.9$ $(2 \mathrm{CH}), 107.8\left(\mathrm{C}, \mathrm{t},{ }^{1} J_{C-F}=294.3 \mathrm{~Hz}\right), 72.1\left(\mathrm{CH}, \mathrm{dd},{ }^{3} J_{C-F}=4.5,3.1 \mathrm{~Hz}\right), 55.3\left(\mathrm{CH}_{3}\right), 53.0$ $\left(\mathrm{CH}_{3}\right), 42.2\left(\mathrm{C}, \mathrm{t},{ }^{2} J_{C-F}=12.5 \mathrm{~Hz}\right), 18.4\left(\mathrm{CH}_{3}\right) ;$ HRMS (ESI) m / z calcd for $\mathrm{C}_{15} \mathrm{H}_{16} \mathrm{~F}_{2} \mathrm{O}_{4} \mathrm{Na}$ $[\mathrm{M}+\mathrm{Na}]^{+}: 321.0909$, found: 321.0908 . The enantiomeric excess of $(+)-9 \mathbf{b}$ was determined by supercritical fluid chromatography using a chiral stationary phase (AD-H column, 100 bar, $\left.3 \mathrm{~mL} / \mathrm{min}, \mathrm{scCO}_{2} / \mathrm{MeOH}=96: 4\right)$: minor enantiomer: $\mathrm{t}_{\mathrm{R}}=3.6 \mathrm{~min}$; major (S)-enantiomer: $\mathrm{t}_{\mathrm{R}}=$ 4.1 min . ee $=95 \%$.

Methyl $\quad\left(1 R^{*}, 2 S^{*}, 4 S^{*}, 5 R^{*}\right)$-6,6-difluoro-5-iodo-1-phenyl-4-(2-phenylethyl)-3-oxabicyclo-[3.1.0]hexane-2-carboxylate (10a). To a solution of $9 \mathbf{9 a}(35.8 \mathrm{mg}, 0.100 \mathrm{mmol})$ in a $\mathrm{MeCN} / \mathrm{H}_{2} \mathrm{O}$ mixture (2:1, 6 mL) was added NIS ($45.0 \mathrm{mg}, 0.200 \mathrm{mmol}$). After 1 h stirring at $50^{\circ} \mathrm{C}$, the reaction mixture was diluted with EtOAc and $\mathrm{H}_{2} \mathrm{O}$. The layers were separated and the aqueous phase was extracted with EtOAc. The combined extracts were successively washed with a 15% aqueous solution of $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$, a 1 M aqueous solution of NaOH , brine, then dried over MgSO_{4}, filtered and concentrated under reduced pressure. The residue was purified by flash chromatography on silica gel (petroleum ether/ $\mathrm{Et}_{2} \mathrm{O}=90: 10$) to afford $48.3 \mathrm{mg}(99 \%)$ of $\mathbf{1 0 a}$ as a pale yellow oil; IR: v 1749, 1603, 1297, 1219, 1162, 1105, 1076, 969, $758,698,667 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.47-7.21(\mathrm{~m}, 10 \mathrm{H}), 4.84(\mathrm{~d}, J=$ $7.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.67(\mathrm{~m}, 1 \mathrm{H}), 3.75(\mathrm{~s}, 3 \mathrm{H}), 3.04(\mathrm{ddd}, J=14.0,10.0,3.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.82(\mathrm{ddd}, J=$ $14.0,9.5,7.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.39-2.31(\mathrm{~m}, 1 \mathrm{H}), 2.22-2.12(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$
$167.5(\mathrm{C}), 141.1(\mathrm{C}), 130.9\left(\mathrm{C}, \mathrm{t},{ }^{4} J_{C-F}=1.7 \mathrm{~Hz}\right), 130.2(2 \mathrm{CH}), 128.9(\mathrm{CH}), 128.7(2 \mathrm{CH})$, $128.62(2 \mathrm{CH}), 128.59(2 \mathrm{CH}), 126.2(\mathrm{CH}), 110.6\left(\mathrm{C}, \mathrm{dd},{ }^{1} J_{C-F}=314.7,283.3 \mathrm{~Hz}\right), 88.4(\mathrm{CH})$, $83.6(\mathrm{CH}), 52.7\left(\mathrm{CH}_{3}\right), 47.4\left(\mathrm{C}, \mathrm{dd},{ }^{2} J_{C-F}=13.2,9.2 \mathrm{~Hz}\right), 32.5\left(\mathrm{CH}_{2}\right), 32.4\left(\mathrm{CH}_{2}\right), 23.7(\mathrm{C}, \mathrm{t}$, ${ }^{2} J_{C-F}=11.3 \mathrm{~Hz}$); HRMS (ESI) m / z calcd for $\mathrm{C}_{21} \mathrm{H}_{20} \mathrm{~F}_{2} \mathrm{IO}_{3}[\mathrm{M}+\mathrm{H}]^{+}: 485.0420$, found: 485.0421.

Methyl (2S*)-2-[(lS*,3S*)-2,2-difluoro-1-phenyl-3-(3-phenylpropyl)cyclopropyl]-2-hydroxyacetate (11). To a solution of alkylidenecyclopropane $\mathbf{9 a}$ ($300 \mathrm{mg}, 0.837 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $(10 \mathrm{~mL})$ was added Crabtree's catalyst [Ir]-I ($40.5 \mathrm{mg}, 50.3 \mu \mathrm{~mol}, 6 \mathrm{~mol} \%)$ and the resulting mixture was stirred under an atmospheric pressure of hydrogen. After 18 h , the reaction mixture was concentrated under reduced pressure and analysis of the residue by ${ }^{1} \mathrm{H}$ NMR spectroscopy indicated the formation of a single detectable diastereomer. Purification by flash chromatography (petroleum ether/EtOAc $=80: 20)$ afforded $275 \mathrm{mg}(91 \%)$ of $\mathbf{1 1}$ as a colorless oil; IR: v 3515, 1742, 1604, 1263, 1216, 1195, 1098, 748, 731, $700 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.35-7.26(\mathrm{~m}, 5 \mathrm{H}), 7.21-7.11(\mathrm{~m}, 5 \mathrm{H}), 4.16(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 3.81(\mathrm{~s}, 3 \mathrm{H}), 2.74(\mathrm{br}$ $\mathrm{s}, 1 \mathrm{H}, \mathrm{OH}), 2.68-2.53(\mathrm{~m}, 2 \mathrm{H}), 2.10(\mathrm{dddd}, J=14.8,9.5,5.1,2.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.83-1.73(\mathrm{~m}, 2 \mathrm{H})$, $1.67-1.56(\mathrm{~m}, 1 \mathrm{H}), 1.16-1.05(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 173.0\left(\mathrm{C}, \mathrm{d},{ }^{4} J_{C-F}=\right.$ $2.6 \mathrm{~Hz}), 142.0(\mathrm{C}), 131.5(2 \mathrm{CH}), 129.5(\mathrm{C}), 128.52(2 \mathrm{CH}), 128.49(2 \mathrm{CH}), 128.47(\mathrm{CH})$, $128.41(2 \mathrm{CH}), 126.0(\mathrm{CH}), 114.5\left(\mathrm{C}, \mathrm{dd},{ }^{1} J_{C-F}=293.4,288.7 \mathrm{~Hz}\right), 73.8\left(\mathrm{CH}, \mathrm{dd},{ }^{3} J_{C-F}=7.8\right.$, $2.4 \mathrm{~Hz}), 52.8\left(\mathrm{CH}_{3}\right), 40.8\left(\mathrm{C}, \mathrm{dd},{ }^{2} J_{C-F}=10.8,8.8 \mathrm{~Hz}\right), 35.5\left(\mathrm{CH}_{2}\right), 31.2\left(\mathrm{CH}, \mathrm{t},{ }^{2} J_{C-F}=\right.$ $9.6 \mathrm{~Hz}), 30.9\left(\mathrm{CH}_{2}\right), 24.1\left(\mathrm{CH}_{2}, \mathrm{~d},{ }^{3} J_{C-F}=2.7 \mathrm{~Hz}\right) ;$ HRMS (ESI) m / z calcd for $\mathrm{C}_{21} \mathrm{H}_{22} \mathrm{~F}_{2} \mathrm{O}_{3} \mathrm{Na}$ $[\mathrm{M}+\mathrm{Na}]^{+}: 383.1429$, found: 383.1430.

Methyl $\quad\left(2 S^{*}\right)$-2-[(lS*,3Z)-2,2-difluoro-1-(hydroxymethyl)-3-(3-phenylpropylidene)-cyclo-propyl]-2-[(4-methoxyphenyl)methoxy]acetate (12). To a solution of $\mathbf{8 1}$ (97.0 mg ,
$0.145 \mathrm{mmol})$ in THF $(8 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$, were subsequently added $\mathrm{AcOH}(41 \mu \mathrm{~L}, 0.72 \mathrm{mmol}$, 5 equiv) and $n-\mathrm{Bu}_{4} \mathrm{NF}$ ($0.72 \mathrm{~mL}, 1 \mathrm{M}$ solution in THF, $0.72 \mathrm{mmol}, 5$ equiv). After 18 h at rt , the reaction mixture was hydrolyzed with a saturated aqueous solution of $\mathrm{NH}_{4} \mathrm{Cl}$. The resulting mixture was diluted with EtOAc, the layers were separated and the aqueous phase was extracted with EtOAc. The combined organic extracts were washed with brine, dried over MgSO_{4}, filtered and concentrated under reduced pressure. The residue was purified by flash chromatography on silica gel (petroleum ether/EtOAc $=80: 20)$ to afford $34.1 \mathrm{mg}(55 \%)$ of $\mathbf{1 2}$ as a colorless oil; IR: v 3522, 1752, 1613, 1514, 1250, 1213, 1176, 1128, 1035, 823, 750, $700 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.31-7.25(\mathrm{~m}, 4 \mathrm{H}), 7.22-7.16(\mathrm{~m}, 3 \mathrm{H}), 6.88($ app d, $J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 6.26(\operatorname{app} \mathrm{tt}, J=6.1,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.63\left(\mathrm{~d}_{\mathrm{ABsys}}, J=11.2 \mathrm{~Hz}, 1 \mathrm{H}\right), 4.52$ $\left(\mathrm{d}_{\text {ABsyst }}, J=11.2 \mathrm{~Hz}, 1 \mathrm{H}\right), 3.93(\mathrm{~d}, J=1.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.92-3.78(\mathrm{br} \mathrm{m}, 2 \mathrm{H}), 3.81(\mathrm{~s}, 3 \mathrm{H}), 3.78$ (s, 3H), 2.87-2.77 (m, 2H), 2.62-2.55 (m, 2H) (OH not detected); ${ }^{13} \mathrm{C}$ NMR (100 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 171.2(\mathrm{C}), 159.7(\mathrm{C}), 140.8(\mathrm{C}), 132.5(\mathrm{CH}), 130.0(2 \mathrm{CH}), 128.7(\mathrm{C}), 128.6(2 \mathrm{CH})$, $128.5(2 \mathrm{CH}), 126.3(\mathrm{CH}), 120.9\left(\mathrm{C}, \mathrm{t},{ }^{3} J_{C-F}=6.6 \mathrm{~Hz}\right), 114.0(2 \mathrm{CH}), 76.1\left(\mathrm{CH}, \mathrm{t},{ }^{3} J_{C-F}=\right.$ $3.3 \mathrm{~Hz}), 72.4\left(\mathrm{CH}_{2}\right), 59.9\left(\mathrm{CH}_{2}\right), 55.4\left(\mathrm{CH}_{3}\right), 52.5\left(\mathrm{CH}_{3}\right), 38.5\left(\mathrm{C}, \mathrm{t},{ }^{2} J_{C-F}=12.1 \mathrm{~Hz}\right), 34.3$ $\left(\mathrm{CH}_{2}\right), 34.0\left(\mathrm{CH}_{2}\right)$ (the signal corresponding to $C F_{2}$ is not seen unambigusouly because of its weak intensity); HRMS (ESI) m / z calcd for $\mathrm{C}_{24} \mathrm{H}_{26} \mathrm{~F}_{2} \mathrm{O}_{5} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}$: 455.1640, found: 455.1639 .

Methyl (2S*)-2-[(1S*,3R*)-2,2-difluoro-1-(hydroxymethyl)-3-(3-phenylpropyl)cyclopropyl]-2-[(4-methoxyphenyl)methoxy]acetate (13). Alkylidenecyclopropane $\mathbf{1 2}$ ($35 \mathrm{mg}, 0.081 \mathrm{mmol}$) was hydrogenated in the presence of Crabtree's Catalyst [Ir]-I ($3.9 \mathrm{mg}, 4.9 \mu \mathrm{~mol}, 6 \mathrm{~mol} \%$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \mathrm{~mL})$. After 18 h at rt , the reaction mixture was concentrated under reduced pressure and analysis of the residue by ${ }^{1} \mathrm{H}$ NMR spectroscopy indicated the formation of a single detectable diastereomer (dr > 96:4). The crude material was purified by flash chromatography
on silica gel (petroleum ether/EtOAc $=80: 20)$ to afford $32.3 \mathrm{mg}(92 \%)$ of $\mathbf{1 3}$ as a colorless oil; IR: v 3518, 1752, 1615, 1516, 1252, 1216, 1109, 1036, 825, 752, $703 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.31-7.26(\mathrm{~m}, 4 \mathrm{H}), 7.22-7.15(\mathrm{~m}, 3 \mathrm{H})$, $6.88(\operatorname{app~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 4.59\left(\mathrm{~d}_{\mathrm{ABsyst}}, J=11.0 \mathrm{~Hz}, 1 \mathrm{H}\right), 4.47\left(\mathrm{~d}_{\mathrm{ABsyst}}, J=11.0 \mathrm{~Hz}, 1 \mathrm{H}\right)$, $3.98(\mathrm{~d}, J=1.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.91(\mathrm{ddd}, J=12.4,7.0,3.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.81(\mathrm{~s}, 3 \mathrm{H}), 3.75(\mathrm{~s}, 3 \mathrm{H})$, $3.70-3.64(\mathrm{~m}, 1 \mathrm{H}), 2.72-2.56(\mathrm{~m}, 2 \mathrm{H}+\mathrm{OH}), 1.79-1.66(\mathrm{~m}, 3 \mathrm{H}), 1.66-1.56(\mathrm{~m}, 1 \mathrm{H}), 1.46-1.36$ $(\mathrm{m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 171.7\left(\mathrm{C}, \mathrm{d},{ }^{4} J_{C-F}=2.9 \mathrm{~Hz}\right), 159.7(\mathrm{C}), 141.9(\mathrm{C})$, $129.9(2 \mathrm{CH}), 128.9(\mathrm{C}), 128.51(2 \mathrm{CH}), 128.46(2 \mathrm{CH}), 126.0(\mathrm{CH}), 114.0(2 \mathrm{CH}), 74.8(\mathrm{CH}$, $\left.\mathrm{dd},{ }^{3} J_{C-F}=7.1,1.6 \mathrm{~Hz}\right), 72.6\left(\mathrm{CH}_{2}\right), 61.0\left(\mathrm{CH}_{2}, \mathrm{~d},{ }^{3} J_{C-F}=6.0 \mathrm{~Hz}\right), 55.4\left(\mathrm{CH}_{3}\right), 52.6\left(\mathrm{CH}_{3}\right)$, $36.0\left(\mathrm{C}, \mathrm{t},{ }^{2} J_{C-F}=11.0,7.9 \mathrm{~Hz}\right), 35.4\left(\mathrm{CH}_{2}\right), 31.1\left(\mathrm{CH}_{2}\right), 30.4\left(\mathrm{CH}, \mathrm{t},{ }^{2} J_{C-F}=10.1 \mathrm{~Hz}\right), 22.8$ $\left(\mathrm{CH}_{2}\right)$ (the signal corresponding to $C F_{2}$ is not seen unambigusouly because of its weak intensity); HRMS (ESI) m / z calcd for $\mathrm{C}_{24} \mathrm{H}_{28} \mathrm{~F}_{2} \mathrm{O}_{5} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}: 457.1797$, found: 457.1794.
(1S*,3S*)-2,2-Difluoro-1-phenyl-3-(3-phenylpropyl)cyclopropane-1-carboxaldehyde (14). To a solution of α-hydroxy ester $\mathbf{1 3}(10 \mathrm{mg}, 0.028 \mathrm{mmol})$ in THF $(2 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$, was added $\mathrm{LiAlH}_{4}(2.1 \mathrm{mg}, 0.055 \mathrm{mmol})$. After 1 h at rt , the reaction mixture was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and poured into a 10% aqueous solution of Rochelle's salt. After 1 h stirring, the layers were separated and the aqueous phase was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined extracts were washed with brine, dried over MgSO_{4}, filtered and concentrated under reduced pressure. The residue was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \mathrm{~mL})$ and NaIO_{4} adsorbed on silica gel $(80 \mathrm{mg}, 14.9 \%$ $\mathrm{w} / \mathrm{w}, 0.056 \mathrm{mmol}$) was added. After 1 h stirring at rt , the reaction mixture was filtered through a short plug of Celite $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$, the filtrate was evaporated under reduced pressure and the residue was purified by chromatography on a preparative silica gel plate (petroleum ether/ $\left./ \mathrm{Et}_{2} \mathrm{O}=90: 10\right)$ to afford $6.0 \mathrm{mg}(72 \%)$ of $\mathbf{1 4}$ as a colorless oil; IR: $v 1719,1604,1454$, 1261, 1195, 1151, 1113, 1018, 750, 724, $701 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) ${ }^{1} \mathrm{H}$ NMR
($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 9.41(\mathrm{~s}, 1 \mathrm{H}), 7.44-7.39(\mathrm{~m}, 3 \mathrm{H}), 7.31-7.16(\mathrm{~m}, 5 \mathrm{H}), 7.16-7.12(\mathrm{~m}, 2 \mathrm{H})$, 2.75 (dddd, $J=14.9,9.5,5.2,3.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.69-2.52(\mathrm{~m}, 2 \mathrm{H}), 1.86-1.74(\mathrm{~m}, 2 \mathrm{H}), 1.64-1.54$ $(\mathrm{m}, 1 \mathrm{H}), 1.25-1.15(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 194.0\left(\mathrm{CH}, \mathrm{dd},{ }^{4} J_{C-F}=4.4,3.1\right.$ $\mathrm{Hz}), 141.6(\mathrm{C}), 131.3(2 \mathrm{CH}), 129.1(2 \mathrm{CH}), 128.94(\mathrm{C}), 128.86(\mathrm{CH}), 128.6(2 \mathrm{CH}), 128.4$ $(2 \mathrm{CH}), 126.1(\mathrm{CH}), 114.0\left(\mathrm{C}, \mathrm{dd},{ }^{1} J_{C-F}=294.8,291.2 \mathrm{~Hz}\right), 49.6\left(\mathrm{C}, \mathrm{dd},{ }^{2} J_{C-F}=12.6,8.7 \mathrm{~Hz}\right)$, $35.4\left(\mathrm{CH}_{2}\right), 33.4\left(\mathrm{CH}, \mathrm{t},{ }^{2} J_{C-F}=9.3 \mathrm{~Hz}\right), 30.4\left(\mathrm{CH}_{2}\right), 23.4\left(\mathrm{CH}_{2}, \mathrm{~d},{ }^{3} J_{C-F}=2.7 \mathrm{~Hz}\right)$; HRMS (ESI) m / z calcd for $\mathrm{C}_{19} \mathrm{H}_{19} \mathrm{~F}_{2} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+}: 301.1398$. Found: 301.1410 .

ASSOCIATED CONTENT

Supporting Information

Copies of ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra for all new compounds, ${ }^{19} \mathrm{~F}$ NMR spectra of selected representative compounds, data relative to the determination of the optical purities of $(S) \mathbf{- 1 b}$ and (+)-8b by supercritical fluid chromatography (SFC).

ACKNOWLEDGEMENT

One of us (G.E.) thanks Diverchim for a CIFRE grant.

REFERENCES

(1) Talele, T. T. J. Med. Chem. 2016, 59, 8712-8756.
(2) (a) Müller, K.; Faeh, C.; Diederich, F. Science 2007, 317, 1881-1886. (b) Purser, S.; Moore, P. R.; Swallow, S.; Gouverneur, V. Chem. Soc. Rev. 2008, 37, 320-330. (c) Ojima, I., Ed.; Fluorine in Bioorganic and Medicinal Chemistry; Wiley-Blackwell: Chichester, 2009. (d) O’Hagan, D. J. Fluorine Chem. 2010, 131, 1071-1081. (e) Gillis, E. P.; Eastman, K. J.; Hill, M. D.; Donnelly, D. J.; Meanwell, N. A. J. Med. Chem. 2015, 58, 8315-8359. (f) Zhou,
Y.; Wang, J.; Gu, Z.; Wang, S.; Zhu, W.; Aceña, J. L.; Soloshonok, V. A.; Izawa, K.; Liu, H. Chem. Rev. 2016, 116, 422-518.
(3) For reviews on fluorocyclopropanes, see: (a) Taguchi, T.; Okada, M. J. Fluorine Chem. 2000, 105, 279-283. (b) Dolbier, W. R., Jr.; Battiste, M. A. Chem. Rev. 2003, 103, 10711098. For a review on gem-dihalocyclopropanes, see: (c) Fedoryński, M. Chem. Rev. 2003, 103, 1099-1132.
(4) For specific reviews on monofluorocyclopropanes, see: (a) Pons, A.; Poisson, T.; Pannecoucke, X.; Charette, A.-B.; Jubault, P. Synthesis 2016, 48, 4056-4071. (b) David, E.; Milanole, G.; Ivashkin, P.; Couve-Bonnaire, S.; Jubault, P.; Pannecoucke, X. Chem.-Eur. J. 2012, 18, 14904-14917.
(5) (a) Itoh, T. in Fluorine in Bioorganic and Medicinal Chemistry; Ojima, I., Ed.; WileyBlackwell, Chichester, 2009, pp. 313-334. For examples of bioactive gem-difluorocyclopropanes, see: (b) Pfister, J. R.; Makra, F.; Muehldorf, A. V.; Wu, H.; Nelson, J. T.; Cheung, P.; Bruno, N. A.; Casey S. M.; Zutshi, N.; Slate, D. L. Bioorg. Med. Chem. Lett. 1995, 5, 2473-2476. (c) Burch, J. D.; Barrett, K.; Chen, Y.; DeVoss, J.; Eigenbrot, C.; Goldsmith, R.; Ismaili, M. H. A.; Lau, K.; Lin, Z.; Ortwine, D. F.; Zarrin, A. A.; McEwan, P. A.; Barker, J. J.; Ellebrandt, C.; Kordt, D.; Stein, D. B.; Wang, X.; Chen, Y.; Hu, B.; Xu, X.; Yuen, P;-W.; Zhang, Y.; Pei, Z. J. Med. Chem. 2015, 58, 3806-3816.
(6) (a) Dolbier, W. R., Jr.; Fielder, T. H. J. Am. Chem. Soc. 1978, 100, 5577-5578. (b) Bunegar, M. J.; Fields, R.; Haszeldine, R. N. J. Fluorine Chem. 1980, 15, 497-509. (c) Birchall, J. M.; Fields, R.; Haszeldine, R. N.; McLean, R. J. J. Fluorine Chem. 1980, 15, 487-495. (d) Dolbier, W. R., Jr.; Burkholder, C. R.; Chaves, A. L.; Green, A. J. Fluorine Chem. 1986, 77, 31-37. (e) Pechacek, J. T.; Bargar, T. M.; Sabol, M. R. Bioorg. Med. Chem. Lett. 1997, 7, 2665-2668. (f) Cheng, Z.-L.; Xiao, J.-C.; Liu, C.; Chen, Q.-Y. Eur. J. Org.

Chem. 2006, 5581-5587. (g) Rullière, P.; Cyr, P.; Charette, A. B. Org. Lett. 2016, 18, 19881991. For a review on fluorinated carbenes, see: (h) Brahms, D. L. S.; Dailey, W. P. Chem. Rev. 1996, 96, 1585-1632.
(7) (a) Taguchi, T.; Kurishita, M.; Shibuya, A.; Aso, K. Tetrahedron 1997, 53, 9497-9508. (b) Taguchi, T.; Kurishita, M.; Shibuya, A. J. Fluorine Chem. 1999, 97, 157-159. (c) Dolbier, W. R., Jr.; Gautriaud, E.; Cai, X. J. Fluorine Chem. 2005, 126, 339-343.
(8) (a) Wang, R.; Ksebati, M. B.; Corbett, T. H.; Kern, E. R.; Drach, J. C.; Zemlicka, J. J. Med. Chem. 2001, 44, 4019-4022. (b) Wang, R.; Ksebati, M. B.; Drach, J. C.; Zemlicka, J. Nucleosides, Nucleotides \& Nucleic Acids 2001, 20, 329-332.
(9) (a) Dolbier, W. R., Jr.; Sellers, S. F.; Al-Sader, B. H.; Smart, B. E. J. Am. Chem. Soc. 1980, 102, 5398-5399. (b) Dolbier, W. R., Jr.; Seabury, M.; Daly, D.; Smart, B. E. J. Org. Chem. 1986, 51, 974-979.
(10) Shibuya, A.; Okada, M.; Nakamura, Y.; Kibashi, M.; Horikawa, H.; Taguchi, T. Tetrahedron 1999, 55, 10325-10340.
(11) Sang, R.; Yang, H.-B.; Shi, M. Tetrahedron Lett. 2013, 54, 3591-3594.
(12) Borden, W. T. Chem. Commun. 1998, 1919-1925.
(13) (a) Bessard, Y.; Schlosser, M. Tetrahedron 1991, 47, 7323-7328. (b) Cheng, Z.-L.; Chen, Q.-Y. Chin. J. Chem. 2006, 24, 1219-1224. (c) Kuzmin, A. V.; Popik, V. V. Chem. Соттии. 2009, 5707-5709.
(14) Babin, D.; Pilorge, F.; Delbarre, L. M.; Demoute, J. P. Tetrahedron 1995, 51, 96039610.
(15) Ernouf, G.; Brayer, J.-L.; Folléas, B.; Demoute, J.-P.; Meyer, C.; Cossy, J. Org. Lett. 2015, 17, 3786-3789.
(16) For other examples of [3,3]-sigmatropic rearrangement of cyclopropenylcarbinol derivatives leading to heterosubstituted cyclopropanes, see: (a) Simaan, S.; Masarwa, A.; Zohar, E.; Stanger, A.; Bertus, P.; Marek, I. Chem.-Eur. J. 2009, 15, 8449-8464. (b) Howard, J. K.; Amin, C.; Lainhart, B.; Smith, J. A.; Rimington, J.; Hyland, C. J. T. J. Org. Chem. 2014, 79, 8462-8468.
(17) Wang, F.; Luo, T.; Hu, J.; Wang, Y.; Krishnan, H. S.; Jog, P. V.; Ganesh, S. K.; Prakash, G. S. K.; Olah, G. A. Angew. Chem., Int. Ed. 2011, 50, 7153-7157.
(18) Tian, F.; Kruger, V.; Bautista, O.; Duan, J.-X.; Li, A.-R.; Dolbier, W. R., Jr.; Chen, Q.-Y. Org. Lett. 2000, 2, 563-564.
(19) For a recently developed difluorocyclopropenation/cycloaddition sequence leading to 5-fluoropyridazines from alkynes, see: Tran, G.; Gomez Pardo, D.; Tsuchiya, T.; Hillebrand, S.; Vors, J.-P.; Cossy, J. Org. Lett. 2015, 17, 3414-3417.
(20) (a) Gould, T. J.; Balestra, M.; Wittman, M. D.; Gary, J. A.; Rossano, L. T.; Kallmerten, J. J. Org. Chem. 1987, 52, 3889-3901. (b) The Claisen Rearrangement. Methods and Applications, Nubbenmeyer, U.; Hiersemann, M., Eds.; Wiley-VCH: Weinheim, 2007.
(21) Hashimoto, N.; Aoyama, T.; Shioiri, T. Chem. Pharm. Bull. 1981, 29, 1475-1478.
(22) Wang, B.-Y.; Huang, J.-W.; Liu, L.-P.; Shi, M. Synlett 2005, 421-424.
(23) (a) Matsumara, K.; Hashiguchi, S.; Ikariya, T.; Noyori, R. J. Am. Chem. Soc. 1997, 119, 8738-8739. (b) Frantz, D. E.; Fässler, R.; Tomooka, C. S.; Carreira, E. M. Acc. Chem. Res. 2000, 33, 373-381. (c) Pu, L. Tetrahedron 2003, 59, 9873-9886. (d) Cozzi, P. G.; Hilgraf, R.;

Zimmermann, N. Eur. J. Org. Chem. 2004, 4095-4105. (e) Trost, B. M.; Weiss, A. H. Adv. Synth. Catal. 2009, 351, 963-983. (f) Turlington, M.; Pu, L. Synlett 2012, 649-684.
(24) The enantiomeric purities were determined by Supercritical Fluid Chromatography (SFC) analysis using a chiral stationary phase after calibration with the racemic samples, see Experimental Section and Supporting Information.
(25) The difluorocyclopropenation of propargyl glycolates possessing a terminal alkyne, could not be achieved successfully, despite a report on the difluorocyclopropenation of this class of propargyl esters, see: Hang, X.-C.; Gu, W.-P.; Chen, Q.-Y.; Xiao, J.-C. Tetrahedron 2009, 65, 6320-6324. The resulting 3,3-difluorocyclopropenes were too labile and decomposed under the reaction conditions.
(26) Crabtree, R. H.; Davis, M. W. J. Org. Chem. 1986, 51, 2655-2661.
(27) The relative configuration of $\mathbf{1 1}$ and $\mathbf{1 3}$ was confirmed by NMR spectroscopy (NOESY), see Supporting Information.
(28) Guptan D. N.; Hodge, P.; Davies, J. E. J. Chem. Soc., Perkin Trans 1 1981, 2970-2973.
(29) The same sequence (ester reduction and subsequent 1,2-diol cleavage) applied to α-hydroxy ester 9a did not deliver the corresponding alkylidene(gem-difluorocyclopropanecarboxaldehyde). Although the oxidative cleavage occurred, the resulting aldehyde was unstable and could not be isolated.
(30) Boussonnière, A.; Bénéteau, R.; Zimmermann, N.; Lebreton, J.; Dénès, F. Chem.-Eur. J. 2011, 17, 5613-5627.
(31) Suffert, J.; Toussaint, D. J. Org. Chem. 1995, 60, 3550-3553.
(32) Takahashi, M.; McLaughlin, M.; Micalizio, G. C. Angew. Chem., Int. Ed. 2009, 48, 3648-3652.
(33) (a) Pacheco, M. C.; Gouverneur, V. Org. Lett. 2005, 7, 1267-1270. (b) Mukherjee, P.; Widenhoefer, R. A. Chem.-Eur. J. 2013, 19, 3437-3444.
(34) Mizutani, M.; Inagaki, F.; Nakanishi, T.; Yanagihara, C.; Tamai, I.; Mukai, C. Org. Lett. 2011, 13, 1796-1799.
(35) Panteleev, J.; Huang, R. Y.; Lui, E. K. J.; Lautens, M. Org. Lett. 2011, 13, 5314-5317.
(36) Butler, K. L.; Tragni, M.; Widenhoefer, R. A. Angew. Chem., Int. Ed. 2012, 51, 51755178.
(37) (a) Hansmann, M. M.; Hashmi, A. S. K.; Lautens, M. Org. Lett. 2013, 15, 3226-3229.
(b) Harris, R. J.; Nakafuku, K.; Widenhoefer, R. A. Chem.-Eur. J. 2014, 20, 12245-12254.
(38) (a) Gallagher, W. P.; Maleczka, R. E., Jr. J. Org. Chem. 2003, 68, 6775-6779. (b) Dutta, P.; Sarkar, A. Adv. Synth. Catal. 2011, 353, 2814-2822.
(39) Kashiwagi, Y.; Chiba, S.; Ikezoe, H.; Anzai, J.-i. Synlett 2004, 2513-2516.
(40) Naito, J.; Yamamoto, Y.; Megumi, A.; Sekiguchi, S.; Watanabe, M.; Harada, N. Monatsh. Chem. 2005, 136, 411-445.
(41) Witulski, B.; Buschmann, N.; Bergsträßer, U. Tetrahedron 2000, 56, 8473-8480.
(42) Marshall, J. A.; Liao, J. J. Org. Chem. 1998, 63, 5962-5970.
(43) Glover, S. A.; Golding, S. L.; Gossen, A.; McCleland, C. W. J. Chem. Soc., Perkin Trans 1 1983, 2479-2483.

