IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL.29, NO.2, FEBRUARY 2003 99

Synthesis of Behavioral Models from Scenarios

Sebastian Uchitel, Member, IEEE Computer Society, Jeff Kramer, Member, IEEE Computer Society,
and Jeff Magee, Member, IEEE

Abstract—Scenario-based specifications such as Message Sequence Charts (MSCs) are useful as part of a requirements
specification. A scenario is a partial story, describing how system components, the environment, and users work concurrently and
interact in order to provide system level functionality. Scenarios need to be combined to provide a more complete description of system
behavior. Consequently, scenario synthesis is central to the effective use of scenario descriptions. How should a set of scenarios be
interpreted? How do they relate to one another? What is the underlying semantics? What assumptions are made when synthesizing
behavior models from multiple scenarios? In this paper, we present an approach to scenario synthesis based on a clear sound
semantics, which can support and integrate many of the existing approaches to scenario synthesis. The contributions of the paper are
threefold. We first define an MSC language with sound abstract semantics in terms of labeled transition systems and parallel
composition. The language integrates existing approaches based on scenario composition by using high-level MSCs (hMSCs) and
those based on state identification by introducing explicit component state labeling. This combination allows stakeholders to break up
scenario specifications into manageable parts and reuse scenarios using hMCSs; it also allows them to introduce additional domain-
specific information and general assumptions explicitly into the scenario specification using state labels. Second, we provide a sound
synthesis algorithm which translates scenarios into a behavioral specification in the form of Finite Sequential Processes. This
specification can be analyzed with the Labeled Transition System Analyzer using model checking and animation. Finally, we
demonstrate how many of the assumptions embedded in existing synthesis approaches can be made explicit and modeled in our
approach. Thus, we provide the basis for a common approach to scenario-based specification, synthesis, and analysis.

Index Terms—Requirements specification, scenario-based specification, Message Sequence Charts, sequence chart combination,

requirements analysis.

1 INTRODUCTION

THE software engineering community has long under-
stood the importance of requirements elicitation. Stake-
holder involvement in the elicitation process and tools to
help build a common ground between stakeholders and
developers are essential to obtain a good requirements
definition. Consequently, it is not surprising that scenarios
have become increasingly popular as part of a requirements
specification. Scenarios describe how system components
(in the broadest sense) and users interact in order to provide
system level functionality. Each scenario is a partial story
which, when combined with other scenarios provides a
more complete system description. Thus, stakeholders may
develop descriptions independently, contributing their own
view of the system to those of other stakeholders.

A widespread notation for scenarios is that of message
sequence charts (MSCs) [22] and UML sequence diagrams
[23]. These notations in their most basic form are highly
intuitive and have a well-understood and widely accepted
semantics. However, one scenario conveys relatively little
information. Many scenarios are generally required to
provide a significant system description. This makes
scenario synthesis—the combination of a number of
scenarios into a coherent whole—a central issue. How

o The authors are with the Department of Computing, Imperial College, 180
Queen’s Gate, London, SW7 2BZ, UK.
E-mail: {su2, jk, jnmj@doc.ic.ac.uk.

Manuscript received Feb. 2002; revised July 2002; accepted Sept. 2002.
Recommended for acceptance by M.-]. Harrold.

For information on obtaining reprints of this article, please send e-mail to:
tse@computer.org, and reference IEEECS Log Number 117521.

0098-5589/03/$17.00 © 2003 IEEE

<+

should a set of scenarios be interpreted? How do they relate
to each other?

There are two ways of tackling this issue. One is to try to
infer the relations between scenarios; the other is to require
these relations to be explicitly stated by stakeholders. In the
latter case, what abstractions should be provided to specify
these relationships? Unsurprisingly, there are many differ-
ent answers to this last question. For instance, the
International Telecommunication Union (ITU) [22] intro-
duces a graph-like notation that shows how the system
evolves from one scenario to another. The underlying
notion used by the ITU standard is that of scenario
composition: New scenarios can be defined in terms of
other scenarios by composing with sequential, choice, and
iteration operators. In this way, complex system behavior
can be described.

A different approach taken by Kriiger et al. [28] provides
state conditions instead of hMSCs. State conditions identify
common states throughout different scenarios. Thus, two
state conditions equally labeled on different scenarios
indicate that the scenarios have a common point in the
interactions they describe. This potentially allows the
system to switch scenario when it reaches the common state.

There are a number of advantages and disadvantages
between composition and state labeling approaches. On the
one hand, composition mechanisms such as hMSCs
promote scenario reuse, give a high-level view of the
relation between scenarios and do not require stakeholders
to specify scenarios with some kind of state machine in
mind. However, scenario composition can lead to a large
number of very short scenarios that must be composed in
complex ways to describe the system’s overall behavior.

Published by the IEEE Computer Society

100

This mitigates the advantage of using scenario notations for
depicting significant portions of system behavior. On the
other hand, state identification approaches are a convenient
way of introducing complex behaviors without having to
split scenarios into parts. A key system run can be described
in one scenario and then embellished with state information
in order to relate it with other scenarios. In addition, state
identification can be used, as we shall see, to introduce
varied information on the system throughout a scenario
specification and may provide means for progressively
moving into a more detailed system description. On the
negative side, requiring explicit identification of states
requires much more consistency from stakeholders when
constructing scenarios and forces them to reason about their
system in terms of state rather than sequences of actions. In
this paper, the MSC language we define integrates approaches
based on scenario composition and state identification.

Scenario relations do not necessarily have to be given
explicitly using hMSCs or state labels. Synthesis algorithms
can be used to infer how scenarios are to be merged. These
algorithms can include complex domain-specific and gen-
eral assumptions of how scenarios are used and can
sometimes incorporate additional information provided in
other specifications. For example, Whittle and Schumann
[50] use the Object Constraint Language (OCL) to express
pre and postconditions for messages. These are traversed
with scenarios to infer from the valuation of OCL predicates
how scenarios are to be related. Using this information, a
statechart model is constructed for each component of the
scenario description.

If the assumptions implemented in the synthesis algo-
rithm are appropriate, they help to simplify scenario
notations and reduce stakeholders’ workload. However,
some drawbacks are that important explicit knowledge may
be lost within the synthesis algorithms and that the
consequences of the embedded assumptions can be ob-
scured and produce misleading synthesis results. In
addition, there is a significant loss of flexibility; if assump-
tions change, the complete synthesis procedure must be
changed too. In this paper, we show how the consequences of
many assumptions on how to integrate scenarios can be described
explicitly in the MSC language we propose. Thus, providing a
common, intermediate representation for other approaches to
scenario synthesis.

Regardless of the way in which the relation between
scenarios is defined, the purpose of a scenario specification
is to describe how a system is intended to behave. Thus,
analyzing the described system behavior should play a
central role in the development of scenario-based specifica-
tions. To enable such analysis, synthesis algorithms build
state-machine based behavior models. In addition to
providing an alternative view, there is benefit to be gained
by experimenting with [13] and replaying analysis results
from behavior models in order to help correct, elaborate,
and refine scenario-based specifications.

However, building a statechart model [14], for example,
will not produce these benefits on its own. Synthesis
procedures must integrate with existing behavior analysis
technology to provide useful feedback to stakeholders. In
this paper, we describe an implementation of a synthesis
algorithm, which is integrated into the Labeled Transition System
Analyzer (LTSA) [32], which can be used to analyze the resulting
behavior model by using its model checking and animation

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 29, NO.2, FEBRUARY 2003

features. Some of the benefits of this integration are
illustrated in Section 4.2, where we use the model checking
features of LTSA to detect a potential deadlocking scenario
of a system described using MSCs.

Summarizing, in this paper, we aim to provide a
common approach to scenario-based specification, synth-
esis, and behavior analysis. Our approach is based on a
clear sound semantics, produces behavior models amenable
to analysis, and can support and integrate many of the
existing approaches to scenario synthesis.

We define an MSC language with sound abstract
semantics in terms of labeled transition systems and parallel
composition [32]. The language integrates scenario composi-
tion and state identification approaches by providing hMSCs
and explicit component state labeling. This allows stake-
holders to break up scenario specifications into manageable
and reusable parts using hMCSs; while also having the
possibility of using state labeling to avoid the need to break
up scenarios into excessively small parts. Additionally, state
labels support approaches that assume specific criteria for
identifying component and system states, thereby providing
a simple mechanism for making the effects of these
assumptions explicit. In this way, we aim to support existing
approaches such as [2], [6], [17], [22], [27], [28], [39], [40], [43],
[50]. In particular, we demonstrate how this can be done for
two different scenario synthesis algorithms.

Our synthesis algorithm, which is integrated into the
Labeled Transition System Analyzer (LTSA) [32], translates
a scenario specification into a Finite Sequential Processes
(FSP) specification [32]. From the FSP specification, LTSA
can build a composite behavior model in the form of a
labeled transition system (LTS), which can then be analyzed
using LTSA’s model checking and animation features. This
integration is important in terms of our more general
objective, which is to facilitate the development of behavior
models in conjunction with scenarios.

The paper is structured as follows: In Section 2, we
present a short survey on scenarios, focusing mainly on
message sequence charts, synthesis, semantics, and analy-
sis. It also serves as a discussion justifying the work
presented in this paper. In Section 3, we present the MSC
language, giving both syntax and semantics. MSC specifica-
tions are defined as a set of basic MSCs and a high-level
MSC. We also present a simple ATM system that is used
throughout the paper to illustrate the presentation. We then
introduce the synthesis algorithm for producing a beha-
vioral model from a MSC specification (Section 4) and
discuss the soundness of the algorithm (Section 5). In
Section 6, we mention the some of the experiences—includ-
ing an industrial case study—we have had using our
approach. We comment on the implementation of the ideas
presented in the paper in Section 7 and, in Section 8, we
refer to two case studies we have performed to illustrate
how our work can support other approaches to scenario
synthesis. Section 9 includes a more specific discussion on
related work than the survey. Conclusions and future
directions of our work are given in Section 10.

2 BACKGROUND

2.1 Scenarios and Message Sequence Charts

A scenario is a narrative description of how users, system
components, and the environment interact in order to

UCHITEL ET AL.: SYNTHESIS OF BEHAVIORAL MODELS FROM SCENARIOS

Message -
Sequence

Chart name Instance ™

hame

‘ Messagé
label

I—Exan}\ ple

{ Send-event ..

B

Instance

Receive-

Message event

Fig. 1. Elements of a (basic) MSC.

achieve a (possibly implicit) goal (e.g., [23]). The need to
document scenarios has motivated the development of
many scenario-based notations. Although these languages
include a variety of different features and have been
designed for possibly different domains, there is a common
core. Message sequence charts (MSCs) and their UML counter-
part called sequence diagrams are a widespread graphical
notation for documenting scenarios. In MSCs (see Fig. 1),
system components, environment and users are represented
as vertical arrows called instances (lifelines in UML).
Instances model a system components participating in a
scenario. We shall use component and instance inter-
changeably. Interactions between instances are shown as
horizontal arrows called messages. The direction of a
message indicates which instance initiates the interaction.
Messages labels indicate the type of interaction that is
occurring. The points on instances where an arrow starts
and finishes are called (send and receive) events. An event can
be considered the phenomena observed by an instance
because of an interaction. MSCs are interpreted time-wise in
a top-down fashion; an event on an instance occurs before
all other events that appear below it on the same instance.
Message direction also provides information on the order in
which events occur; a send-event can never occur after its
corresponding receive-event. For this reason, as a conven-
tion, messages are required to be drawn horizontally or
with a downward slope. This is the generally accepted core
of MSCs and, from here on, many variations abound.
Messages can be considered to represent synchronous
(handshaking) or asynchronous communication. Notation
for and assumptions on queues that impose restrictions on
event orderings can be included, (e.g., [2], [36]), as can
explicit use of time to describe delays, timeouts, and
deadlines (e.g., [22], [26], [31]); dynamic creation and
termination of instances (e.g., [22]); reference to component
and system states (e.g., [28]); and parametric message and
use of data (e.g., [10]).

In this paper, we take the core aspects of scenario
descriptions, components, and their interactions (consider-
ing them synchronous, handshaking communication for
simplicity), and focus on the key issue of combining
multiple scenarios into one system model.

2.2 Managing Multiple Scenarios

Scenarios are partial descriptions that are combined
together to provide a more complete view of how a system
is expected to behave. Typically, scenarios are provided by
different stakeholders and address different system func-

101

tionalities. The conjunction of all scenarios provides a
system description. Choosing the right abstractions for
combining scenarios is a critical issue. There are very
distinct approaches to this problem; nevertheless, they can
be explained in terms of three main concepts: scenario
composition, state identification, and triggers.

2.2.1 Scenario Composition

In the approach adopted by the International Telecommu-
nication Union (ITU) [22], the focus is on providing tools for
managing complexity. Simple sequences of behavior are
described using Basic Message Sequence Charts (bMSCs) (see
Fig. 1). In addition, three fundamental constructs for
combining bMSCs are provided: vertical and alternative
composition and loops. Vertical composition of two bMSCs
combines them sequentially. The system behavior is
determined by the behavior of the scenario resulting from
the syntactical concatenation of both bMSCs. Alternative
composition defines a set of possible MSCs from which the
system can choose which to follow. Loops compose a given
bMSC sequentially with itself. The underlying notion of
scenario composition is that scenarios can be used as
building blocks to describe more complex behavior. They
can be composed to define new, more complex, scenarios.

Several syntactic constructs, equivalent in terms of
expressiveness [39], are provided by the ITU standard for
specifying scenario composition: inline expressions, MSC
reference expressions, and high-level MSCs, the last being
the most widely adopted (e.g., [2], [39], [40]). High-level
Message Sequence Charts (hMSCs) are directed graphs where
each node references either an hMSC or a bMSC (for
example, see Fig. 3, right). Edges indicate the acceptable
ordering of scenarios, thus allowing stakeholders to reuse
scenarios within a specification and to introduce sequences,
loops, and alternatives of bMSCs. The advantage of the
hMSC approach is that it allows stakeholders to break up a
scenario specification into manageable parts in a simple,
intuitive, and operational way, and to show how these
different parts relate. On the other hand, as explained by
Rudolph et al. [40], if alternative composition is the only
mechanism of introducing branching system behavior,
scenarios must typically be broken down into short bMSCs
and composed to model the many alternative behaviors.
Thus, obtaining a specification with very short scenarios
that might be meaningless without the context of the h(MSC.
This plays against the intuitiveness of scenario notations
that depict in one diagram a significant portion of system
behavior.

2.2.2 State Identification

An approach that differs significantly from the scenario
composition approach is the identification of common
component or system states throughout a set of scenarios
(e.g., [27], [28], [40], [43], [50]). The assumption here is that
the scenario specification is describing a state-machine that
models the behavior of system components. Thus, instances
in a bMSC are considered to model both a set of states in the
state-machine (which we call component states) and the
events that fire state change (usually called labeled transi-
tions). Thus, in the scenario specification, every space

102 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 29, NO.2, FEBRUARY 2003

~""Models a

component
Example 2—— "1 Example 3

A B o] A B

C
x . |
Waliting) v C Ready for operation D

-
Y i Scenario
e c states

Ready for operation
z . -

T

v v l

- vl

Model the =

same system
state

Fig. 2. Scenario, component, and system states.

between consecutive events is called a scenario state (see Fig.
2, right) and is considered to refer to component state. The
relation between scenario and component states is many to
one, meaning that several scenario states can refer to the
same component state. Thus, scenario states in different
bMSCs that refer to the same component state provide
information on how the scenarios are related.

There are two basic mechanisms for identifying compo-
nent states. The first is to allow stakeholders to tag scenario
states (e.g., [28]). Typically, labels that describe the state of
the component are placed on scenario states (see Fig. 2, left);
if two states in a scenario appear with the same label, they
are considered to refer to the same component state.

The second approach avoids the needs for explicit state
labeling in scenarios and instead provides rules for
identifying component states. These rules are usually based
on domain-specific knowledge and additional information
of the system being specified. For example, SCED [27]
synthesises statecharts [14] while applying some assump-
tions in order to decide whether two scenario states
represent the same statechart state. Another example is
the work of Whittle and Schumann [50] which uses an
Object Constraint Language (OCL) specification that states
pre and postconditions for scenario messages. The OCL
specification is traversed with the MSCs to produce a
valuation of state variables for each scenario state. Scenario
states that have equivalent valuations are considered to
represent the same component states.

We shall be discussing modeling component states in
MSC notations in more detail throughout the paper.

A variation of identifying component states is that of
system states [40]. Instead of identifying component states
on instances, labels that cover all instances of a scenario are
used to mark a specific system state (see Fig. 2), which
essentially models the state in which each component is in
at a particular moment. Identically labeled system states
refer to the same system state.

An advantage of explicitly labeling component or system
states is that they can be used to enrich scenario descrip-
tions with additional information. This information can
come from specifications that have different system view-
points or from domain-specific knowledge. In addition,
incorporating component or system state information may
provide means for progressively moving into a more
detailed design description. Compared with scenario
composition, identifying states allows complex component
behavior including alternative behaviors to be described in
bMSCs of any length. For example, in Fig. 2, we have two

rExample 2.1 ———— rExample 3.1 ———
A B c A B c .
X a
Y
v Y
rExample 3.2—— Eﬂzr:pls E’gﬂ'p'e
rExample 22— | A B [
A B c b L 2R J LAk J
b z l l c Example Example
22 3.2

Fig. 3. bMSCs and hMSC.

bMSCs with a system state labeled Ready for operation. This
means that, if the system is in bMSC Example 2 and
messages x and y occur, then, instead of message z
occurring, the system could now continue with b and c.
Thus, the system state has introduced alternative behavior.

To introduce the same alternative using scenario
composition, we would need to split the scenarios exactly
where the “Ready for operation” state is and then introduce
some composition mechanisms to establish all possible
alternative behavior (see Fig. 3). Although the specified
behavior is the same, we have had to split scenarios into
smaller parts (some with only one message in them!) that
may not be meaningful on their own.

The ITU provides a notation that resembles that of state
labeling. Its MSC standard [22] includes the notion of local
and global conditions, which could be interpreted as
component and system states. However, ITU has not
assigned any semantics to these syntactic elements. Several
meanings to these constructs have been proposed. Compo-
nent and system state identification is one of the possibi-
lities being studied.

In UML [23], sequence diagrams allow introducing state
information; however, it is not clear how this information
affects the composition of different scenarios [16], [23], [38],
[44]. To understand the relation between sequence dia-
grams, it is usually necessary to refer to the statechart
descriptions.

2.2.3 Triggers

The third mechanism for combining scenarios is through
the use of triggers or preconditions. Instead of relating
scenarios to each other, information on when each scenario
can occur is provided. This approach is popular in informal
development methods [8], [38], [44], where scenarios are
provided with a precondition normally stated in natural
language. The precondition can refer informally to a state in
which the scenario may occur or to a sequence of events
that trigger the scenario. Other possibilities for describing
preconditions are OCL or temporal logic, while scenario
triggers can be specified using temporal logic or bMSC-like
notations [15].

An advantage of using triggers is that scenarios are
loosely coupled. In contrast with scenario composition
methods, such as hMSCs, where the whole set of scenarios
must fit together in one graph, triggers permit expression of
the context of scenarios independently of existing scenarios.
However, this same characteristic is a disadvantage in
handling a scenario specification as a whole. This is
especially acute when triggers are the only mechanism for
specifying relations between scenarios.

UCHITEL ET AL.: SYNTHESIS OF BEHAVIORAL MODELS FROM SCENARIOS

In the work presented here, we define a scenario-based
language that supports two main approaches to managing
multiple scenarios, namely, those approaches based on
scenario composition and on state identification. We do not
support scenario triggers; although we do plan to look into
this in future work.

2.2.4 Overlapping Scenarios

Many approaches assume that a scenario describes all the
concurrent behavior of participating components at a given
time (e.g., [27], [50]). This means that, for example, when the
system is going through the scenario of Fig. 1, component B
does not interact with other components between messages
x and y. Other approaches allow further interactions on
message types that do not appear in the scenario [15]. So,
for example, component B, after receiving x in Fig. 1, may
be allowed to receive a message 4, but not another message
x before it sends message y. Other approaches allow
scenarios to be composed in parallel, meaning that
scenarios with common participating components can occur
simultaneously. For instance, the horizontal composition
operator defined in the MSC standard [22] has been
introduced for this purpose. Composition of scenarios
overlapping in time introduces a series of complex issues
such as events with the same label appearing in different
scenarios: Do they represent the same event and, thus, the
same moment in time, or are they different occurrences of
the sending or receiving of a message of the same type?

In this paper, we do not consider composition of
overlapping scenarios. However, this could form a future
extension to our work.

2.3 Semantics

Independently of the mechanisms provided for managing
multiple scenarios, there are also subtle yet significant
differences in the semantics of scenario languages. These
differences have important practical consequences.

2.3.1 Semantic Definitions

In terms of how semantics for scenario-based languages are
defined, existing work is quite varied. We identify three
broad categories: informal, algorithmic, and abstract
semantics. The first category corresponds to scenario
languages with no precise semantics that are used in the
context of informal development methods (e.g., [8]) and in
some UML-based development methods such as the
Unified Software Development Process [23] and others
(e.g., [16], [38], [44]). Although useful for documentation
and informal analysis, the lack of a precise interpretation of
scenarios makes rigorous analysis of scenarios and formal
verification of system compliance to requirements extre-
mely difficult.

The second category includes approaches in which the
semantics of a scenario specification is implicit, given by
means of a translation algorithm. Using an algorithm to
translate scenario specifications into other notations can
determine a precise interpretation if the target notation has
a well-defined semantics. However, this procedure is rather
operational and does not provide an intuitive and abstract
meaning to scenario specifications. Subtle aspects of the
semantics may be, and usually are, buried in the synthesis

103

algorithm. Some approaches translate scenario specifica-
tions into statecharts (e.g., [27], [28], [50]). In these cases, it is
important to distinguish between the several different
interpretations of statecharts that exist [11]; however, this
is not always the case. Furthermore, approaches that build
individual statecharts for each component do not always
explain how these statecharts are to be composed to provide
the overall system behavior. We believe that this is crucial
as many of the subtle design issues can lead to errors when
concurrent interacting components are composed. Other
work based on translation have focused on producing SDL
specifications (e.g., [21]), hierarchical state machines (e.g.,
[6]), and other state machine based formalisms (e.g., [25]).

Finally, the third category includes work in providing a
formal abstract semantics for scenario-based languages. The
difference with the previous category is that the semantics
is defined in an abstract manner rather than by a translation
algorithm. Formalization work includes the use of process
algebras [22], [39], partial orders [1], pomsets [24], biichi
automata [29], and petri-nets [19]. In many cases, synthesis
algorithms are also provided but not as a means for
defining scenario semantics. In some cases, they are
developed for producing the input of model checkers [20].
If so, algorithms must be shown to preserve the semantics
of the specification.

2.3.2 Design vs. Early Requirements Oriented
Semantics

Although the differences among approaches to scenario
semantics can be considered a technical issue, it can
strongly impact the role of scenario-based specification
within the development process. Consequently, it also
impacts on practical and research issues. There are two
fundamentally different approaches to scenario semantics
that we now discuss.

Many authors consider that scenario specifications
describe high-level design of system components, i.e., that
a set of scenarios directly determines a state machine for
each system component. This is particularly true for most
approaches that use synthesis algorithms as a means of
providing scenario semantics, for those in which compo-
nent or system state identification is considered or those
approaches that use state machine semantics (for e.g., [15],
[21], [22], [27], [28], [39], [40], [49], [50]). These approaches
take on a design-oriented perspective, in which scenario
descriptions are a design document in their own right. This
design-oriented or late-requirements perspective tends to
support the move from scenario-based notations to tradi-
tional design notations and techniques more easily.

A different interpretation of scenario specifications
considers them to be describing system functionality not
design. In other words, that a scenario specification
determines a set of acceptable behaviors for which many
designs can be found. This view is taken by some informal
approaches to scenarios (e.g., [8]), as well as approaches
using semantics based on partial ordering of events [1], [4],
[24]. This perspective introduces the problem of finding a
design (or possibly many) for a given scenario specification
and also of proving that the design satisfies the require-
ments specification [1], [47]. Compared to the design-
oriented approach discussed previously, this approach
seems to be more suitable in an early requirements view.

104 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 29, NO.2, FEBRUARY 2003

We believe that both approaches to scenario semantics
can be useful, and we are involved in conducting research
in both. The work presented here corresponds to the design-
oriented view of scenario-based descriptions. We define a
semantics based on labeled transition systems (LTSs) and
provide a synthesis algorithm for building such models
using Finite State Processes (FSP) and the Labeled Transi-
tion System Analyzer (LTSA). Our work on the early
requirements view of scenarios-based specifications can be
found in [47], [48].

2.4 Analysis

Providing scenario-based languages with clear syntactic
and semantic constructs for specifying requirements is a
helpful first step. Substantial benefit can then be obtained
from tools which support analysis of such specifications.
There are a number of efforts in this direction, many of
which focus on checking for syntactic consistency (e.g.,
MSC and POGA tools [2]). However, since scenario-based
specifications describe inherently concurrent systems,
analyzing syntactic correctness is not sufficient and
analysis of the semantic implications of specifications is
crucial. Many authors have focused on specific system
properties and have produced ad hoc algorithms that can
check their validity. Some examples of specific properties
are process divergence [4] where, in an asynchronous
communication setting, a component can flood another
by sending it an unbounded number of messages that the
receiver cannot process. Nonlocal choice [4] can result from
alternatives in hMSCs. These choices can be under-
specified if asynchronous communication is considered
and the initial events of the different alternatives corre-
spond to different components. Both process divergence
and nonlocal choice are implemented in the MESA tool [4].
Race conditions [2] can also arise if assumed queuing
mechanisms fail to enforce event orderings determined
by scenarios. Template matching has also been developed as
a mechanism for querying for behavior patterns in
scenario-based specifications [35]. The TEMPLE tool
implements template matching [20]. Semantic analysis
based on additional model information is performed in
many cases with specifically tailored integration methods,
such as in [45], [50]. Scenarios can also be used to derive
system performance models as in [3].

An attractive approach to scenario specification analysis
is the use of standard model checking tools to verify
properties of models. Thus, if scenario-based specifications
are used to synthesise behavior models, properties such as
process divergence can be detected using standard model
checking techniques. In addition, the constructed behavior
models can be used for general property analysis (such as
deadlock) and for verifying domain specific, user defined
properties. Some tools can directly generate the input for
model checkers from scenario-based specifications (e.g.,
[20]). We have adopted this approach and implemented a
synthesis algorithm integrated into an existing model
checker. The MSC specification is translated into a Finite
Sequential Processes (FSP) specification [32], which can
then be analyzed using the Labeled Transition System
Analyzer [32] (LTSA) by model checking for deadlock,
safety, and liveness properties and by model animation.

3 MESSAGE SEQUENCE CHARTS

In this section, we briefly describe the syntax and semantics
of our Message Sequence Charts (MSCs) language, based on
scenario composition, state identification, and labeled
transition system (LTS) based semantics. An ATM example
(see e.g., [41]) is introduced to illustrate the different aspects
of our approach. This example has several scenarios
showing how a customer operates a bank account through
an ATM machine and a consortium. For the sake of brevity,
we use a reduced set of scenarios.

3.1 Syntax

Syntactically (but not semantically, as explained later), the
language is a subset of the MSC ITU language [22]. A basic
MSC (bMSC) describes a finite interaction between a set of
components (for example see Fig. 4, Bad Bank Account). Each
vertical line represents a component and is called an
instance. Each horizontal arrow represents a synchronous
message, its source on one instance corresponds to a message
output, and its target on a different instance corresponds to a
message input. Ovals on instances represent states, where the
label appearing within the oval identifies a particular
component state. Some approaches (e.g., [22]) refer to state
labels as conditions. Placing MSC events (message inputs,
message outputs, or state labels) further down on an
instance means that they occur later on. For simplicity,
throughout the paper, we assume that message labels are
types; that is, they are used consistently to identify only one
outputting component and only one (different) inputting
component.

Definition 1 (Instances). An instance is a structure (E, L, <,
Ibl), where

o FE=1InUOutUCond is a set of MSC events that is
partitioned into message inputs, message outputs, and
States.

e L is a finite set state labels. We shall assume that the
label Init denotes the initial component state.

e < C(EXE)isa total ordering of events. We denote
the minimal event €' such that e < €' as suc(e).

e [bl: E— L is function that describes each event’s
label. We shall sometimes use Ibl(A) to denote the set
{lbl(e) | e € A}.

Definition 2 (bMSCs). A basic message sequence chart (bMSC)
is a structure B = (I,tgt), where I is a finite set of bMSC
instances (Ej, Lj, <;, Ibl;) with 0 < j < n and disjoint sets of
events E; and tgt: \J;_, In; — U], Out; is a bijective
function that maps output and input events such that:

o Ifi € Inj, then tgt(i) & Out;.

o Iftgt(i)=o0,i€Inj, and o € Outy, then Ibl;(t) =1bl;(0).

e If the transitive closure of (|Jl, <;)UtgtUtgt™
contains {(a,b), (b,a)}, then tgt(a) =b, tgt(b) = a,
ora="b

Note that the condition for the transitive closure defined
above is to ensure that the bMSC is consistent in terms of
time. In other words, no messages arrows cross each other.
We use tgt and tgt~! because messages are synchronous,
and <; as it is the ordering of events over time on an

UCHITEL ET AL.: SYNTHESIS OF BEHAVIORAL MODELS FROM SCENARIOS

rCustomer Arrives

User ATM Consortium Bank
<displayMainScreen
insertCard
g
” requestPassword
v v v v
rBad Bank Account
User ATM Consortium Bank
enterPassword
verifyAccount
verifyCardwithBank
{ waiting i Verifying v\\;ﬁql é:r?k‘ { Checking
) ') ') badBankAccount |
badAccount
aadAccountMessage
intReceipt
le printReceip!
ejectCard
[«
requestTakeCard
| g LSt T ARE
takeCard
v v v v
v
Customer Bad Bank
Arrives Password
v v i
Bad Bank User User
Account Cancel 2 Cancel 1

Fig. 4. MSC specification of the ATM system.

instance. Thus, if two events mutually precede each other,
they must either be the same event or be the send and
receive events of the same message.

A high-level MSC (hMSC) provides the means for
composing bMSCs: It is a directed graph where nodes are
bMSCs and edges indicate their possible continuations. An
hMSC can have a special initial node that corresponds to the
initial system states. We define hMSCs within the definition
of MSC specifications and assume that message labels are
used consistently as message types throughout all bMSCs of
the specification. A portion of the MSC specification of the
ATM example is shown in Fig. 4. It consists of five bMSCs
and one hMSC.

Definition 3 (MSC Specification). An MSC Specification is a
structure S = (B, H, C, name), where

e Bisa finite set of b(MSCs (1, tgt;) with disjoint sets of
events.

e H=DBU{Init} — 28 is the hMSC function that
determines the possible continuations of the bMSCs.

o Cis a finite set of components.

e name is a family of bijective functions name;: I[; — C

that determines to which component each instance
belongs.

The ITU MSC standard [22] includes several more
features. We have excluded some of them for simplicity,
as they are variations for expressing scenario composition
as the case, inline expressions, and bMSC references [39].
We have excluded other features such as coregions in order
to simplify our presentation; however, they could be
included without introducing substantial change to our
results. We do not consider aspects such as timers, gates,

105

rBad Bank Password
User
enterPassword

ATM Consortium Bank

verifyAccount

verifyCardWithBanb
“Veritying ™, LN
With Bank/ { Checking |

Waiting
) badBankPassword|

{ VVerifyingr

badPassword
requestPassword
\4 Y

rUser Cancel 1
User ATM

enterPassword
B >

¢ Waiting)

Consortium Bank

verifyAccount

\: Verifying
T
<cancelledMessage

cancel

ejectCard

requestTakeCard

takeCard
v v v v

rUser Cancel 2
User
cancel

ATM Consortium Bank

g
<cancelledMessage
jectCard
» ejectCar
» requestTakeCard

takeCard

v v v v

process creation and termination, and incomplete messages,
as we wish to focus on the key issue of combining multiple
scenarios into one system model. As discussed in the
previous section, we do not include horizontal composition
either. Finally, we do not consider asynchronous messages
and queues; these could however be modeled by using
additional components for buffering and, hence, decou-
pling the message passing.

3.2 Semantics

The semantic of the MSC language is not a subset of the ITU
MSC language. There are two major differences. First, the
ITU semantics does not provide any meaning to state labels
(called conditions by the ITU). Second, the ITU version
introduces delayed choice, which assumes that components
can delay the choice of which scenario to follow in a bMSC
in order to prevent deadlocking situations. We do not make
this assumption and, rather, require delayed choice to be
modeled explicitly where required using state labels.

We define the semantics of MSC specifications in terms
of labeled transition systems (LTSs) and parallel composi-
tion [34]. In other words, we take a design-oriented view in
which a MSC is considered to define a system resulting
from the parallel composition of LTSs, one for each
component.

Definition 4 (Labeled Transition Systems). A finite labeled
transition system (LTS) P is a structure (S, L, A, q), where:

S is a set states.

L = (P)U{r} is a set of labels where (P) denotes
the alphabet of P and T denotes internal actions that
cannot be observed by the environment of an LTS.

106 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 29, NO.2, FEBRUARY 2003

Bad Bank Account

Bad Bank Password

User Cancel 1
verifyAccount Customer Arrives

® © ©

Fig. 5. Instance LTSs of consortium.

"Verifying with bank"

User Cancel 2 .

o AC(SxLxS). We use s——s' to denote (s,a,s')
€ A, and s—5' to denote that there are l; and s;, such
, I \
that w=1,...1,, s, =&, and s—s; --- —8,,.
e ¢ € S is the initial state.

Given two LTSs P and Q, we denote P||Q the LTS that
models their joint behavior. The joint behavior is the result
of both LTSs executing asynchronously but synchronizing
on all shared message labels. This means that any of the two
LTSs can perform a transition independently of the other
LTS, so long as the transition label is not shared with the
alphabet of the other LTS. Shared observable labels have to
be performed simultaneously. Observability of labels
signifies that the LTSs never synchronize on 7 since they
represent internal behavior.

We first define the semantics of an instance, then that of
components, and finally we define the system that is
determined by an MSC specification.

There are the two types of information that an MSC
specification provides: sequences of message inputs and
outputs, and information on states. Information on se-
quences of messages is provided by instances. For example,
reading from the top to bottom, it is natural to say that, in the
badBankAccount bMSC of Fig. 4, the Consortium inputs a
verifyAccount message, then after sending verifyCardWith-
Bank and receiving a badBankAccount message, it forwards
the message badAccount to the ATM. If each of these events is
considered instantaneous, the instance can be viewed as a
labeled transition system (LTS) as shown in the Bad Bank
Account instance LTS of Fig. 5. In addition, note that state 2
corresponds to the Verifying With Bank state label of the ATM.

To simplify the presentation of semantics, we shall
assume normalized instances. A normalized instance is an
instance in which there are no two consecutive states and no
two consecutive message events, i.e., for all events e, ¢’ such
that ¢ = suc(e), then (e € Cond and ¢ € {InUOQut}) or
(e € {InUOut} and € € Cond). In addition, a normalized
instance has states as the first and last events, i.e,, if e is the
minimal or maximal event in E, then e € Cond. Normalized
instances have events of a special kind, 7-events, that
represent internal changes of a component’s state. Normal-
izing an instance is done by using 7-events to separate
consecutive states and states labeled with ¢ to separate
consecutive message events.

Definition 5 (Instance LTS of a Component). Let [=(E, L, <,
Ibl) be a normalized instance. The instance LTS of I is a labeled
transition system (S, A, A, Start), where

e S =Cond.
e A =1bl(In)Ulbl(Out).

e Start is the minimal event in E.

o AC(SxAxS) is the transition relation where
(g,a,¢") € A if and only if there is a message event
e € E such that suc(q)=e, suc(e)= ¢, and Ibl(e) = a.

We shall refer to the maximal state in E as Stop.

Note that the semantics abstracts away the fact that
events are outputs and inputs. A naming convention can be
introduced to differentiate in the LTS send-events from
receive-events. This, however, would then require some
renaming when components are composed in parallel, in
order to force synchronization between correspond send-
and receive-events.

State labels and hMSCs provide information on states of
instance LTSs. State labels identify component states
indicating that, although they appear as distinct in
instances, they are actually the same internal component
state. For example, there are three different bMSCs in Fig. 4,
where the ATM reaches a state called Verifying. In terms of
component behavior, this means that the ATM could
“switch,” between bMSCs when arriving at that state.
hMSCs provide information on how components can
continue once they have completed a bMSC. In other
words, they determine a relation between the Start and Stop
states of instance LTSs. For example, according to the hMSC
in Fig. 4, the states in which components are once the
Customer Arrives bMSC concludes can continue as the initial
states of the bMSCs Bad Bank Password, Bad Bank Account,
User Cancel 1, and User Cancel 2. Thus, given an MSC
specification, using state labeling and hMSCs, it is possible
to define a continuation relation between the instance states
of a component plus component initial and final states as
follows:

Definition 6 (Continuation Relation). Let (B, H, C, name) be
an MSC specification and let (S;, A;, Aj, Start;) with 0 <
J < n be the instance LTSs of component ¢ € C. If g and ¢ are
states in S; and Sy, the continuation relation of c is
R C S xS, where

[] S = U?:l Sj @] {I’I"th}

e (g9 €R
o Iflbl(q) = Ibl(q") and Ibl(q) # €, then (q,¢') € R and
(¢,9) € R

e If B, € H(B,), then (Stop;, Starty) € R.
e If B, € H(Init), then (Init, Start;) € R.
e IfIbl(q) = Init, then (Init,q) € R.

In conclusion, components defined by an MSC specifica-
tion are the result of putting together their instance LTSs
and their continuation relation.

Definition 7 (Component LTS). Let (B, H, C, name) be an
MSC specification, let (Sj, Aj, A, Start;) with 0 < j <n be
the instance LTSs of component c € C, and R% is the
transitive closure of the continuation relation of c. The
component LTS of c is a labeled transition system
(S, A, A, Init), where

o S=,S;U{Init, End}.

e A={ 4

o (s,a,s') € Aifand only if (q,a,¢) € A; for some j,
(s,q) € RY, (¢,¢') € R".

UCHITEL ET AL.: SYNTHESIS OF BEHAVIORAL MODELS FROM SCENARIOS

badBankPassword

hadBankAccount

verifyAccount

verifyCardWithBank

had Aceount

hadPassword

Fig. 6. Minimized component LTS for consortium.

The resulting component LTS may have a large number
of states and transitions. In the case of the Consortium
component, we have 15 states and over 20 transitions. In
order to simplify and improve comprehension of these
models, it is possible to find an equivalent LTS that has a
minimal number of states. The equivalence relation we use
the standard observational equivalence [34].

In Fig. 6, we show the LTS that has the least number of
states and that is observationally equivalent to the
Component LTS model for the Consortium component.
Note that state 2 corresponds to the state modeled by label
Verifying with Bank. The states with this label have been
merged into one unique state. Had we not used the state
label Verify with Bank the resulting model for the consortium
component would have had a nondeterministic choice on
state 1: Two different transitions labeled verifyCardWithBank
enabled, leading to the two different states.

Note that the LTS semantics defines a model that
captures the state Verify with Bank but not its label. The
semantics could be changed to include such labels;
however, the loss of the state label does not impact on the
behavior of the overall system: The observable behavior of
the system remains the same.

Finally, the semantics of an MSC specification is the
parallel composition of its components.

Definition 8 (System LTS). Let (B, H, C, name) be an MSC
specification C = {ci,...,c,} and C; the component LTS of
¢;. The system LTS defined by the MSC specification is the
parallel composition of all component LTSs: (C4| ... ||C)).

Note that the introduction of bounded asynchronous
communication does not require a major change to the
semantics: port abstractions could be introduced into the
final parallel composition as explained in [32].

4 SYNTHESIS OF BEHAVIOR MODELS

In this section, we show how an LTS model can be
synthesised from an MSC specification. We translate the
MSC specification into a model specification in the form of
FSP [32], a simple process algebra with precise LTS
semantics that provides a concise way of describing LTSs.
Additionally, we use the Labeled Transition System Analy-
zer (LTSA) [32] to build a composite LTS model from our
FSP specification. LTSA is a verification tool for concurrent
systems. It mechanically builds LTS models from FSP
specifications and can be used to check that the specification
of a concurrent system satisfies the behavioral properties
required. In addition, LTSA supports specification anima-
tion to facilitate interactive exploration of system behavior.

107

S8, String Component) |

Compenent] ;
inuationRelationi(s,

ces (S,

Component) ;

(5]

LeiI);

[, =y

L astistate unlz
I.labelLastState("E_" -

Fig. 7. FSP synthesis algorithm.

4.1 Synthesis Algorithm

The synthesis algorithm builds an FSP process for a given
component according to a MSC specification. It consists of
five steps and is outlined in Fig. 7. We provide a detailed
explanation while applying each step to the synthesis of the
ATM component of Fig. 4.

The general idea of the algorithm is to build local FSP
processes that correspond to portions of component
behavior and to combine them in such a way as to provide
the complete component behavior. Each local FSP process
corresponds to the behavior described on a component
instance between labeled states, the top and bottom of the
instance. The local process names can then be used when
specifying how the local processes are combined according
to the MSC specification.

The first step of the algorithm is to add labeled states at
the top and bottom of all the ATM instances that do not
already have such states. We use the convention
B_<bMSC.Name> to label the top (Begin) state of an instance
and E_<bMSC.Name> for the bottom (End) state. For
example, the ATM instance corresponding to the Bad Bank
Account bMSC is shown in Fig. 8.

The algorithm then constructs a relation on the set of
state labels. The relation only includes labels corresponding
to top and bottom instance states and an additional label
representing the initial component state: Init. The construc-
tion of such a relation is straightforward; an edge in the
hMSC defines a pair in the relation. Fig. 9 shows the
resulting relation for the ATM component. The relation
constructed by the algorithm represents a subset of the
Continuation relation described in Section 3.

Third, the algorithm then works on the component
instances. Each instance is split into several subinstances in
such a way that all subinstances start and end with labeled
states and have no other labeled states in between. Fig. 10

108 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 29, NO.2, FEBRUARY 2003

rBad Bank Account

User ATM Consortium Bank
P I
' B_BadBankAccount)
enterPassword
verifyAccount

verifyCardWithBank

/“Veritying™,

(. VWamngr i | V\Ierlfylngr | L with Bank \ Checklng
badBankAccount
la badAccount
badAccountM]
[
rintReceipt
le p p
ejectCard
[«

requestTakeCard
g 2quest ake

takeCard
akeCar »

'E_BadBankAccount)

Fig. 8. Annotated ATM instance.

shows the two subinstances that result from breaking up
the ATM instance of the Bad Bank Account bMSC.

The fourth step is to combine the continuation relation
with the instances. The leftmost instance of Fig. 10 shows
how the ATM component being in state B_BadBankAccount
can end in state Verifying if events enterPassword and
verifyAccount occur. From Fig. 9, we also know that the
pair (E_CustomerArrives, B_BadBankAccount) is in the ATM’s
continuation relation. This means that the state E_Customer-
Arrives can continue as state B_BadBankAccount. Thus, if the
ATM is in state E_CustomerArrives and events enterPassword
and verifyAccount occur, the ATM must also reach Verifying
state. The same reasoning can be applied to the rightmost
instance of Fig. 10, where B_CustomerArrives can replace
E_BadBankAccount. These new derived instances are shown
in Fig. 11. The Derive method follows this reasoning and for
each instance it creates a set of derived instances by
replacing initial and final states according to the continua-
tion relation.

In the fifth step, every instance is trivially translated into
a local FSP process by using the label of its first state as the
process name and the sequence of events as the process
behavior. The final state of the local process must be
another local process; we use the label of the instance’s last
state. Thus, in the case of the leftmost instance of Fig. 11,
the resulting FSP definition is: E_CustomerArrives =
(enterPassword -> verifyAccount -> Verifying).
Note that the “->" operator is the action prefix operator that
defines a local process as the occurrence of an action
(starting with lower-case label) and another local process
(starting with upper-case label).

ATM
|
Verifying
ATM
: badAcoouniMessagde 2o ceount
Begin Bad P sag
Bank Account « printFeceipt
enterPassword s
verifyAccount R
requestTakeCard
Veritying e
v takeCard
End Bad
Bank Account

Fig. 10. ATM instance split in two.

We now have a series of local processes that can be put
together to form the component behavior. However, multi-
ple definitions of local processes must first be handled. For
instance, due to the fact that the CustomerArrives bMSC
has two continuations, we obtain two definitions of local
process E_CustomerArrives. These definitions are com-
bined using the choice operator (|), meaning that the
component, having finished the bMSC CustomerArrives,
has two different possible behaviors. The final definition for
the local process is:

E_CustomerArrives =
(cancel -> canceledMessage -> ejectCard ->
requestTakeCard -> takeCard -> Init
| enterPassword -> verifyAccount -> Verifying)

The resulting set of local processes together with the
definition of the ATM component as the local process Init
define the ATM behavior. However, before outputting the
final FSP code, we apply some simple procedures for
eliminating local processes with identical behavior. In
addition, we utilize the LTSA keyword minimize in order
to obtain the minimal observationally equivalent LTS to the
behavior described by the FSP process. The final FSP
specification and actual output of our implementation is
shown in Fig. 12. The FSP code for the ATM component is at
the top. Note that the complete system (appearing at the end
of Fig. 12) is the parallel composition of all FSP components:

| |ISystem = (ATM | | Consortium | | Bank | | User).

4.2 Analysis

Once an FSP specification has been generated, LTSA can
generate an LTS model of each component and of the
complete system. Furthermore, LTSA can minimize models

{Init, B_CustomerAr
(E_BadBankPassword,
(E_CustomerArrives,
(E_BadBankPassword,
{(E_CustomerArrives,
(E_BadBankPassword,
(E_CustomerArrives,
(E_BadBankPassword,
{(E_CustomerArrives,
(E_UserCancel2,
(E_UserCancell,
(E_BadBankAccount,

rives)

B_UserCancell)
B_UserCancell)
B_BadBankAccount)
B_BadBankAccount)
B_UserCancel2)
B_UserCancel2)
B_BadBankPassword)
B_BadBankPassword)

B_CustomerArrives)
B_CustomerArrives)

B_CustomerArrives)

Fig. 9. R for the ATM component.

ATM
. .
ATM . Verifying
. | B) y
7" End Customer ™ badAccountMesssaged badAccount
. -
N Amives rintReceipt
enterPassword « P P
verifyAccount> ejectCard
" Verifying requestTakeCard
takeCard

“Begin Customer™.
Arrives

Fig. 11. Derived instances from Fig. 10.

UCHITEL ET AL.: SYNTHESIS OF BEHAVIORAL MODELS FROM SCENARIOS

109

User = Tnit,
E_BadBankPassword =

E_BadBankPazsword =
Verifying = (badPa

sosipt —>

> prir e
-» takeCard -> Init).
ferifyingWithBank

VerifyingWithBank =

System = AT Bank || User).

{Consortium ||

Fig. 12. FSP specification for an ATM component.

with respect to observational equivalence (defined pre-
viously), which provides a more compact model and
potentially clearer insight into its behavior. One problem
is that the number of system states grows exponentially
with respect to the number of components [9]. For the small
example used in this paper, the number of states of the
minimised system LTS is 43. Graphical representation of
large systems does not favour rigorous analysis, even if
hierarchical states such as those used in statecharts are
introduced. Tools such as LTSA provide mechanisms for
automated, rigorous analysis of behavior models.

In particular, as the synthesis algorithm preserves the
semantics of the MSC specification, the synthesized model
can be analyzed to provide sound and useful feedback to
those who wrote the MSC specification. An immediate
result when the complete ATM example is analyzed is that
the system may deadlock. In Fig. 13, we show LTSA output
of a trace that takes the system to deadlock: If the User
cancels just after entering a password but before receiving
an answer, the ATM, which has requested the account to be
verified, does not wait for the answer from the Consortium.
Eventually, when the ATM serves the User again, it cannot
communicate with the Consortium as the latter is still trying
to communicate the results of verifying the previous
account.

Note that the deadlock detection mechanism works
independently of the semantics of the message labels. LTSA
applies model checking algorithms that traverse the system
LTS verifying specific user defined properties or standard
properties such as deadlock freedom. In the case of the
latter, the state space of the LTS is traversed to find a state
with no outgoing transitions.

This section has illustrated the kind of benefits that can
be obtained by combining scenario-based notations such as
MSCs with behavior models. By doing so, it is possible to
provide scenario-developers with feedback that will help
them to correct and elaborate their specifications.

Progress violation for actions: . . .
Trace to terminal set of states:
displayMainScreen

insertCard
requestPassword
enterPassword
verifyAccount
cancel
canceledMessage
ejectCard
requestTakeCard
takeCard
displayMainScreen
insertCard
requestPassword
enterPassword
verifyCardWithBank
badBankPassword
Actions in terminal set:

£

Fig. 13. LTSA output with deadlocking trace.

5 EXPERIENCE

In order to validate our approach, we have experimented
with several variations of scenario-based specifications that
are available in the literature. These include a more
complete ATM system, an alarm clock [33], an elevator
system [12], a gas station [42], a journal editing process [51],
a parcel router [32], a rail-car control system [15], and a
boiler control system [47].

In addition, we have conducted one medium-sized
industrial case study. The case study involved specifying
the behavior of instances of a software architectural style
being developed at Philips. The architectural style involves
a horizontal communication protocol [37] that supports
building product families of television sets. We first
constructed a scenario specification for the simplest
instance of the architectural style, and then tackled two
more complex instances. Fortunately, we were able to
validate the synthesized LTS models obtained from our
scenario specifications against a separate behavior model,
developed independently by Rob van Ommering and Jeff
Magee. From the case study, we have been able to increase
our confidence in scenarios-based specifications as a means
for specifying and constructing behavior models of con-
current systems.

6 IMPLEMENTATION

The synthesis algorithm presented in Section 4 has been
implemented in Java and integrated with the LTSA tool we
have mentioned in previous sections. It inputs MSC
specifications in textual format [22] and outputs an FSP
specification, which can then be processed by LTSA. The
implementation, together with the examples used through-
out this paper, is available at [46].

Table 1 gives the execution times for the examples
presented in this paper and other case studies we have
conducted. All examples were run on a Pentium III,
300Mhz, 256Mb with Windows NT 4.0, and Java 1.3. This
implementation of the synthesis algorithm was developed
fundamentally as a proof of concept rather than to build an
efficient implementation. Consequently, the execution times
of our naive implementation could be made more efficient.
The implementation builds component FSP processes one at
a time. The complexity of this algorithm resides in the

110 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 29, NO.2, FEBRUARY 2003

TABLE 1
Synthesis Algorithm Execution Times

o | 8Se [Semes | States | mey
ATM Section 3 5 11 4 10 181
ATM Section 8.1 5 15 21 125 200
ATM Section 8.2 5 4 33 98 171
Complete ATM 14 35 22 146 541
Alarm Clock 6 10 21 15 140
Gas Station 12 21 0 63 2564
Elevator System 8 12 42 190 371
Journal Editing Process 15 36 0 51 4276
Railcar System 11 28 0 475 300
Industrial Case Study 18 33 88 658 | 24191

number of FSP productions that must be built. Given B
bMSCs and S labeled states of the component being
synthesized, (B+S) split bMSCs are constructed. In addition,
each split bMSC can have at most the (B+S) continuations
and be the continuation of at most another (B+S) split
bMSCs. Thus, the number of FSP productions that are
initially built is bounded by (B+S)3. This theoretical bound
could be reduced significantly in a nonnaive implementa-
tion by detecting equivalent FSP productions on the fly
rather than implementing clean-up procedures such as the
ones we have implemented.

7 SuPPORT FOR OTHER APPROACHES
TO SYNTHESIS

So far, we have presented an MSC specification language
that integrates approaches based on hMSCs and on
identifying component states. We have also provided a
synthesis algorithm that generates LTS behavior models. In
this section, we illustrate how this approach can be used to
support different approaches to behavior model synthesis.

Many synthesis algorithms have been proposed and,
although they agree on the basic interpretation of MSCs,
they differ greatly in terms of the algorithms and the results
obtained. This is because these approaches embed assump-
tions in their synthesis algorithms. These can be domain-
specific assumptions, assumptions on how to include
additional information provided in alternative specification
languages, or other assumptions based on, for example,
characteristics of the stakeholders, organization, or devel-
opment process. Synthesizing behavior models with certain
assumptions in mind is not a problem; however, having
assumptions embedded in the algorithms results in less
flexibility and loss of explicit knowledge. States in MSC
specifications can be used to make the explicit the effect that
these assumptions have on the semantics of the scenario
specification.

The purpose of this section is to demonstrate through two
different cases, how our approach can be used to support
synthesis approaches with different kinds of assumptions.
By supporting these approaches, we are providing an
intermediate step between the original specification with
which these approaches start from and the final state

machine generated by the synthesis algorithms. This
intermediate step is a new MSC specification using syntax
and semantics described above, which shows how states are
to be merged and where to loops are being introduced. In
addition, by mapping these approaches onto our language,
we are providing a sound, common synthesis procedure and
the possibility of rigorous analysis using LTSA.

We now discuss in detail two approaches we have
studied.

7.1 Case 1

Whittle and Schumann [50] present an algorithm for
automatically generating UML statecharts from the combi-
nation of scenarios with a set of message pre- and
postconditions given in UML Object Constraint Language
(OCL). In fact, a LTS is first synthesized and then some
abstraction techniques used to build statecharts. We
describe this approach to synthesis in detail using the same
example given by authors in [50].

Suppose we start with a set of bMSCs that describe the
ATM system and that differ with the four bMSCs of Fig. 4 in
that no states—Waiting, Verifying, Verifying With Bank, and
Checking—have been labeled ([50] does not support compo-
nent state labeling nor hMSCs).! In addition, suppose that
we have some domain knowledge regarding the ATM
component that has been specified in OCL (see Fig. 14). The
OCL describes a set of ATM state variables—cardIn,
cardHalfway, passwdGiven, card, and passwd—together with
pre and postconditions for ATM interactions. By finding
messages in scenarios for which we have pre and post-
condition information, it is possible to infer the value that
OCL state variables have at specific points in the scenario.

For example, in bMSC Bad Bank Account, the first
message is Display Main Screen. In addition, the OCL
specification states a precondition for such a message, thus
we know that the value of cardIn and cardHalfway is false
at the beginning of bMSC Bad Bank Account. By taking into
account the available OCL for all components and using the
unification and frame action techniques defined in [50], it is
possible to infer further information on the value of state
variables throughout the available scenarios.

Consequently, it is possible to assign a (possibly partial)
valuation of state variables to every state of a bMSC. In [50],
these valuations are used in two different ways. First,
within an instance, two states with the same valuation are
considered to determine a loop. However, as not all
message occurrences provoke a change in the state variable
values, it is also required that valuations that determine
loops be the result of state-changing messages. Second,
between two instances of the same component, two states
that follow messages with the same label and that have the
same valuation are considered to refer to the same state.

According to the criteria described above and the
assumption that stakeholders describe system behavior
from its initial state, the authors provide an algorithm for
building a LTS model from a MSC and OCL specification.
The algorithm, of course, has been specifically tailored for
the criteria presented above and produces an LTS model

1. We also change message labels to concord with the authors naming
conventions.

UCHITEL ET AL.: SYNTHESIS OF BEHAVIORAL MODELS FROM SCENARIOS

cardIn, cardHalfway, passwdGiven : Boolean
card : Card

passwd : Seguence

Insert card(c : Card)
pre : cardIn = false
post: cardIn = true and card = c

Enter password(p : Seguence)
pre : passwdGiven = false and

p->forall (p->includes (d)=>digit(d))
post: passwdGiven = true and passwd = p

Take card

pre : cardHalfway = true

post: cardHalfway = false and cardIn =
Display main screen

pre: cardIn = false and cardIn =
post:

false
false
Reguest password()

pre : passwdGiven =
post:

false

Eject card

pre : cardHalfway = true

post: cardIn = false and cardHalfway = false
and card = null and passwd =
and passwdGiven = false

null

Request take card(})
pre : cardHalfway =
post:

true

Canceled messade (}
pre : cardIn = true
post:

Fig. 14. OCL for the ATM component.

directly from the specifications. Information on valuations
and loops is not visible to the scenario provider.

We now show how this approach can be used in our
setting, making all assumptions explicit. This is achieved by
using our MSC language as an intermediate representation
of the criteria of [50]. There are three different issues and we
address each of them separately: loops, references to same

states, and behaviors starting at initial system state.
First of all, we construct an hMSC to make explicit the

assumption that scenarios describe system behavior from
the very start of it. This can be done trivially and is shown
in Fig. 16.

rBad Bank Account

rAnnotated Bad Bank Scenario

111

Second, after valuations have been inferred (using
techniques described in [50]), all states in bMSCs are
labeled with two pieces of information: the message label
that precedes the bMSC state and the valuation that
corresponds to the state. By doing so, we identify
component states using the same criteria as Whittle and
Schumann. In Fig. 15, we show bMSC Bad Bank Account
before adding state labels and part of the same bMSC
annotated as explained above. Valuations are shown as
vectors where each position represents the value of a
variable in the OCL specification in the following order:
<cardIn, cardHalfway, passwdGiven, card, passwd>. We have
coded the valuations with letters A to D (see reference in
Fig. 15) and used message label initials to make the
annotated bMSC easier to read.

Finally, every loop, detected using the criteria provided
in [50], is used to split bMSCs into three: the initial part that
occurs before the loop, the looping part, and the part that
occurs after the loop is exited. The hMSC is modified to
reflect the relation between the new bMSCs resulting in an
hMSC as in Fig. 17.

The final MSC specification contains all relevant infor-
mation derived from the authors’ criteria and all assump-
tions have been made explicit through a process that can be
automated. The final step is to apply the synthesis
algorithm defined in previous sections to obtain an LTS
model that is equivalent to that obtained in [50]. The ATM
synthesized from the annotated scenarios using the algo-
rithm presented in this paper models the same behavior as
the statechart built using the Whittle and Schumann
approach (Fig. 18).

In conclusion, we have shown that both the ideas and
algorithms developed in [50] can be complemented with our
approach giving the benefit of a potentially standardized
synthesis algorithm and an intermediate step in which all
information and assumptions are in one specification.

7.2 Case 2

Koskimies et al. [27] have developed a tool for building
statechart models of components from scenario-based
specifications. The actual synthesis algorithm is based on

User ATM Consortium Bank User ATM Consortium Bank
i i | |
Display main screen (A- \ Ae O
Insert card Display main screen
| Pequest password (A- DMS CA- DMS)
Enter password Insert card
Verify account { B-IC _B-IC
Verify card with bank> Request password
Bad bank account (@ RP " B-RP
Bad account Enter password
<Bad account message ¢ b C-EP e
Print Receipt Verify account
Eject card _ C-VA { C-VA i c
e Request take card) Venny card with ?ank’l
Take card C- VCWBJ\ {C-VCWB;
Bad bank account
Displ. i
| Display main screen “C-BBA CBBA
v v v v Bad account
[d - N
{ Valuations: A=<f,f,f,cnull> B=<t 1,1 c null> (_C-BA
. C=<tft,c,p> D=<ftf nul null> Initials of previous message

Fig. 15. Original and annotated bMSCs.

112 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 29, NO.2, FEBRUARY 2003

Y A J L 4 hJ
Bad Bank Bad Bank User User
Account Password Cancel 1 Cancel 2

Fig. 16. Explicit specification of initial system state.

the BK-algorithm [5] for constructing programs from
example computations. In the synthesized statecharts, states
are labeled with component actions (message outputs) and
transitions with sequences of events (message inputs).

The main assumption of the approach is that all states
with the same action correspond, in principle, to the same
component state. The underlying rationale for this approach
is that scenarios describe components in which the
capability of outputting a particular message uniquely
identifies its state. However, if states introduce nondeter-
minism when merged, then they must remain separate; this
is done to avoid overgeneralizations.

We now show how the assumption can be made explicit
in an MSC specification using state labels. However, one
aspect we cannot model in our setting is that in [27], the
resulting statecharts have no initial state. We cannot
reproduce this in our setting because LTSs must have an
initial state.

Suppose we start with a set of bMSCs that describe the
ATM system and that differ with the four bMSCs of Fig. 4
in that no states have been labeled ([27] does not support
component state labeling nor hMSCs). We first introduce
an initial system state through an hMSC as shown in
Fig. 16. In addition, to implement the criteria for identify-
ing states, we add two sets of state labels. Essentially, on
every instance, when a message is output, we introduce a
state label B_<Message Label> just before the output and a
state label E_<Message Label> just after. This guarantees two
unique states for every output message in the resulting
LTS. These pairs of states model statechart states, one for
the entrance of the component to the statechart state and
the other for its exit. The transition between both states
models the action being performed by the component
when in the statechart state. In Fig. 19, we show the bMSC
Bad Bank Account annotated with labels B_<Message Label>
and E_<Message Label>.

Summarizing, using state labels, an MSC specification
can be built that has some of the information on how states
are (according to [27]) to be merged. LTS synthesis is
performed using the algorithm described in previous

v v v v
Bad Bank < Bad Bank User < User
Account 1 Password 1 Cancel 1.1 Cancel 2.1

v v v
Bad Bank Bad Bank User User
Account 1 Password 2 Cancel 1.2 Cancel 2.2
Bad Bank
Password 3

v
Bad Bank
Password 4

Fig. 17. Explicit specification of detected loops.

[] ‘/' h « Take card }"

/ Display main screen
Insert card

/ Request password

Cancel / Canceled message; Eject card “’/
g

/ Request take card

Bad password lEnter password / Verify account

Cancel/ Canceled message; Eject card
-/ Bad account / Bad account message; Print receipt; Eject card

Fig. 18. Statechart synthesised using Whittle and Schumann approach.

sections. The resulting ATM component models the same
behavior as that of the statechart synthesized by the SCED
tool (Fig. 20) that implements the approach described in [27].

Note that, if the component being synthesized had
nondeterministic choices, the simple mapping described
in this section would have not been sufficient to emulate the
approach in [27]. However, it would be possible to extend
the ideas presented in this section to also incorporate the
assumptions on nondeterminism taken in the SCED
approach. We would probably need to incorporate a
backtracking algorithm as described in [27] to calculate
which states are not to be merged.

Mékinen and Systd have developed a more recent
approach and tool called MAS [33] that address the issue
of merging states by using a different synthesis algorithm
and an iterative approach that requires a user to accept or
reject new scenarios provided by the tool. In this way, the
authors can tackle the overgeneralizations that may appear
when merging states as done in the SCED approach.

We believe that the general approach taken in [27] and
[33] can prove to be beneficial in the construction of state-
based formalisms. Inferring from common behavior and
posing questions to stakeholders to build and refine the
resulting state machine has been shown to aid behavior
model development. However, we believe that it is
important that the conclusions drawn from the inference

Bad Bank Account

User ATM Consortium Bank
S
~ BDMS

Display main screen
BIC) EDMS
|Insert card
N Initials of
E_IC J B) RP

J . L output action
|, Request passwgrd |
Il L~

BVA
| Verify account

{ BVAWB)
Verify card with bank>

E_VA

C EvawB 1 (BBBA

"B"egin or "E"nd of
output action

Fig. 19. Annotated bMSC.

UCHITEL ET AL.: SYNTHESIS OF BEHAVIORAL MODELS FROM SCENARIOS

do: Request
take card

do: Display main
screen Take card

Insert card
v

‘ do: Request
password

Enter p d_ —
do: Verify
account

i Bad password

Cancel Bad account
v Cancel

do: Canceled ‘ " do: Bad account

message

‘ do: Eject card }47 do: Print receipt ‘

message

Fig. 20. Statechart synthesized using SCED.

procedures should be made explicit within scenario nota-
tions, thus allowing for feedback to stakeholders in the
same format as the input they provided.

8 DiscussioN AND RELATED WORK

We have discussed some related work in Section 2, focusing
on scenario semantics, management of multiple scenarios,
and analysis; we now revisit some of this work going into
more detail and also commenting on related work on a
broader scale.

Several semantics for scenario-based languages have
been proposed and, also, a number of synthesis techniques
for building models from a scenario description have been
developed. Our work focuses on integrating some of these
approaches and supporting other approaches by providing
a mechanism for representing their assumptions explicitly.

There are many approaches that generate statechart
models from MSCs [27], [28], [50]. Authors argue that
statecharts provide a more structured and, therefore,
understandable view of behavior. Automatically synthesiz-
ing this structure does require that some design decisions
be embedded into the synthesis process. However, we
argue that this can be counterproductive. Design decisions
should be explicit and changeable, particularly as they may
vary a great deal according to the system, designer, and
organization. Our approach allows some of these decisions
to be made explicit with state labels. In addition, we give
special importance to producing analyzable models and
tools to support such analysis. In particular, we use
standard minimization techniques to help to provide
compact, comprehensible models.

A difference with approaches using statecharts is that the
semantics we use does not retain the labels used to identify
states within the scenarios. We use labeled transition
systems to define the semantics of MSC; these do not allow
state labeling, only transition labeling. However, a labeling
convention for state names could be added to our approach.
On the other hand, we interpret state labels as a way of
explicitly declaring which states in scenarios represent the
same state in the state machine model. The actual label is
given no further meaning. Thus, each state label determines

113

a state in the LTS and, consequently, there is no loss in terms
of behavioral analysis (i.e., observational, trace equivalence).

Many approaches do not explicitly provide semantics for
the scenario language they use, providing instead a
synthesis algorithm to some other notation. Kriiger et al.
[28] present a statechart synthesis algorithm in which
interpretation of conditions is similar to our use of state
labels. However, their approach does not support hMSCs.
We share the authors’ view of MSC specifications as an exact
representation of interaction sequences and also the
synchronous communication setting.

We have discussed Whittle and Schumann’s [50] work in
detail in the previous sections. Somé et al. [43] also use
additional information to infer equivalences between states.
We believe that they too might benefit from making the
results of their inference process explicit. We also believe
that some aspects of the approach taken in [45] for semantic
analysis of sequence diagrams could also be supported by
our approach to scenario synthesis. Koskimies et al.’s
approach [27] discussed in previous sections also focuses
on synthesizing readable and understandable statecharts.
The approach has strong assumptions embedded into the
synthesis algorithm as to when states should be merged. We
have shown how these assumptions can also be made
explicit by mapping the approach to ours. The synthesis
algorithm of [27], tries to avoid nondeterminism by only
unifying states with the same action if they do not have
common events leading to different states. Our approach
allows for nondeterminism. In fact, in order to synthesize a
model with a deterministic choice, the choice must be
explicitly modeled in the high-level MSC or using state
labels. An example of this has been described in Section 3.

Some approaches give a different semantics to hMSCs
and state labels. The latter are often called conditions [28],
[39], [22], [40]. Rudolph et al. [40] allow conditions in
hMSCs for referencing system states as opposed to
component states. A referenced bMSC in an hMSC must
have the same initial and final condition as its reference.
The redundancy introduced by conditions does not provide
an alternative composition mechanism; rather, it provides a
double check for consistency between bMSCs and hMSCs.
In addition, as pointed out by the authors, all alternatives
must be placed in the hMSC, as choices are not allowed in
bMSCs. This leads to short bMSCs. The way we use
conditions (state labels) addresses this, as it allows many
ways of expressing the systems behavior, using long or
short, and several or few bMSCs as appropriate. In [28],
conditions are interpreted in the same way as we do,
however, hMSCs are not considered in the synthesis
process.

The formal semantics of MSCs proposed by Reniers [39]
is part of the Z.120 recommendations for MSCs [22]. The
semantics of hMSCs differs slightly as a late decision
assumption is used. Late decision means that a component,
when choosing between two different possible scenarios,
will postpone the decision if both scenarios have common
initial events. In our approach, this needs to be explicitly
stated using state labels. The advantage of the late decision
assumption is that it can reduce the size of specifications.
However, we again prefer to make this assumption explicit.
Late decision semantics could be translated automatically
into state labels in our approach. Furthermore, the Z.120
formal semantic definition is given in terms of process

114 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 29, NO.2, FEBRUARY 2003

algebra, with nonstandard operators of delayed choice and
delayed parallel composition. We prefer the more standard
model of LTS with parallel composition. Other formaliza-
tions similar to [39] are given in [18], [24].

Buhr and his group have developed a notation called Use
Case Maps [7] (UCMs) that allow the description of
scenarios at a more abstract level in terms of sequences of
responsibilities over a set of components. UCMs do not
model explicit intercomponent communication as scenario
notations such as MSCs do. UCMs can be used as an abstract
specification for the construction of MSC specifications [6].

Van Lamsweerde and Willemet [30] present a very
different approach to scenarios. A set of examples and
counterexamples expressed as scenarios is used to infer a
temporal logic specification. Thus, generating explicit
declarative requirements from an operational description.
Combining these requirements with LTS models may be an
interesting possibility for future work.

9 CONCLUSIONS

We have presented a language for MSC specifications with
sound abstract semantics in terms of labeled transitions
systems and parallel composition that integrates approaches
based on scenario composition and on states identification.
We have defined and implemented a synthesis algorithm
that generates behavioral models for analysis in LTSA and
illustrated how this approach can be used to support other
approaches to model synthesis and analysis. Using hMSCs,
we help to manage complexity of MSC specifications,
promoting scenario reuse, and providing a simple, intuitive,
operational way of showing how scenarios relate. Using
state labels to provide information on component states we
help to make explicit any additional information, and
domain-specific or general assumptions in MSC specifica-
tions. By generating FSP specifications, our approach
integrates with LTSA, thus supporting model checking of
deadlock, safety, and liveness properties. There is also the
potential for model animation as a means of including
further domain constraints and of making the models more
comprehensible to stakeholders and developers.

Finally, by taking two dissimilar approaches with their
own assumptions and their own means of adding informa-
tion to MSC specifications and, by showing how they can be
built upon our approach, we have demonstrated how our
approach provides the basis for a common approach to
scenario-based specification, synthesis, and analysis. This
means that our approach could be used as an intermediate
step in approaches where complex assumptions are
embedded in synthesis procedures. This intermediate step
would provide a notation for making some of the effects
these assumption have explicit and providing a common
ground for the final synthesis of behavior models that can
be analyzed rigorously using LTSA.

One direction for future work is to study how triggered
scenarios can be integrated into our approach. Use of
triggers and preconditions for describing how scenarios fit
together complements well with approaches based on
scenario composition and state identification. Another
direction is that of managing overlapping or concurrent
scenarios.

Finally, scenarios have proven to be a good tool for
bridging the gap between stakeholders and developers.

However, up to now, this is mainly a one-way bridge in
which developers gain more insight of stakeholders’
domain knowledge. We believe an important direction of
future work should focus on building a bridge in the other
direction, in other words, building mechanisms to provide
feedback of the developer’s world to stakeholders. Pre-
liminary work in this direction is promising. We are
automating the construction of alternative system views
from synthesised LTS models. Interestingly, many views
can be generated by taking advantage of the semantic
overlap between hMSCs and state labels. The latter identify
component states across scenarios, while the former
provide information about all components by relating
bMSCs. Moving information from state labels to hMSCs
allows for a large number of possible views that vary from
long bMSCs that start at the system’s initial state to short
bMSCs that optimise reuse. These views can allow
stakeholders to gain more insight into their own MSC
specifications or be used by designers to show the impact of
their changes to behavioral models in a language that
stakeholders manage.

ACKNOWLEDGMENTS

The authors would like to thank the referees for their
thorough reviews, helpful comments, and corrections that
have improved this paper. Finally, they would like to
acknowledge that this research was supported, in part, by
the EPSRC under grant BR/M24493 (BEADS).

REFERENCES

[1] R. Alur, K. Etessami, and M. Yannakakis, “Inference of Message
Sequence Charts,” Proc. 22nd IEEE Int’l Conf. Software Eng.
(ICSE "00), pp. 304-313, 2000.

[2] R. Alur, GJ. Holzmann, and D. Peled, “An Analyser for Message
Sequence Charts,” Proc. Second Int’l Conf. Tools and Algorithms for the
Construction and Analysis of Systems (TACAS '96), pp. 35-48, 1996.

[3] F. Andolfi, F. Aquilani, S. Balsamo, and P. Inverardi, “Deriving
QNM from MSCs for Performance Evaluation of Software
Architectures,” Proc. Second Int’l Workshop Software and Performance
(WOSP "00), pp. 47-57, 2000.

[4] H. Ben-Abdhallah and S. Leue, “MESA: Support for Scenario-
Based Design of Concurrent Systems,” Proc. Fourth Int’l Conf. Tools
and Algorithms for the Construction and Analysis of Systems
(TACAS "98), pp. 118-135, 1998.

[5] AW. Biermann and R. Krishnaswamy, “Constructing Programs
from Example Computations,” IEEE Trans. Software Eng., vol. 2,
pp. 141-153, 1976.

[6] F. Bordeleau, “A Systematic and Traceable Progression from
Scenario Models to Communicating Hierarchical Finite State
Machines,” PhD Thesis, Carleton Univ., Ottawa, 1999.

[71 RJ.A.Bubhr, “Use Case Maps as Architectural Entities for Complex
Systems,” IEEE Trans. Software Eng., vol. 24, pp. 1131-1155, 1998.

[8] J.M. Carroll, Scenario-Based Design: Envisioning Work and Technol-
ogy in System Development. New York: Wiley, 1995.

[9] E.M. Clarke and J.M. Wing, “Formal Methods: State of the Art and
Future Directions,” ACM Computing Surveys, vol. 28, pp. 626-643,
1996.

[10] A. Engels, L. Feijs, and S. Mauw, “MSC and Data: Dynamic
Variables,” Proc. Ninth SDL Forum, pp. 105-120, 1999.

[11] M. Glinz, “Statecharts For Requirements Specification—As Simple
as Possible, as Rich as Needed,” Proc. ICSE 2002 Workshop
Scenarios and State Machines: Models, Algorithms, and Tools, 2002.

[12] H. Gomaa, “Designing Concurrent, Distributed and Real-Time
Applications with UML,” Proc. 23rd Int'l Conf. Software Eng.
(ICSE’01), pp. 737-738, 2001.

[13] D. Harel, “From Play-In Scenarios to Code: An Achievable
Dream,” IEEE Software, vol. 34, pp. 53-60, 2001.

UCHITEL ET AL.: SYNTHESIS OF BEHAVIORAL MODELS FROM SCENARIOS
[14] D. Harel, “Statecharts: A Visual Formalism for Complex Systems,”
Science of Computer Programming, vol. 8, pp. 231-274, 1987.

D. Harel and W. Damm, “LSCs: Breathing Life into Message
Sequence Charts,” Proc. Third IFIP Int'l Conf. Formal Methods for
Open Object-Based Distributed Systems, pp. 293-312, 1999.

P. Harmon and M. Watson, Understanding UML: The Developers
Guide. San Fransisco: Morgan Kaufmann, 1998.

O. Haugen, “From MSC-2000 to UML 2.0—The Future of
Sequence Diagrams,” Proc. 10th Int’l SDL Forum, pp. 38-51, 2001.
S. Heymer, “A NonlInterleaving Semantics for MSC,” Proc.
SAM ’98, First Workshop SDL and MSC, 1998.

S. Heymer, “A Semantics for MSCs Based on Petri Net Compo-
nents,” Proc. Second Workshop SDL and MSC (SAM "00), 2000.

G.J. Holzmann, D. Peled, and M.H. Redberg, “Design Tools for
Requirement Engineering,” Bell Labs Technical |., vol. 2, pp. 86-95,
1997.

H. Ichikawa, M. Itoh,]J. Kato, A. Takura, and M. Shibasaki, “SDE:
Incremental Specification and Development of Communications
Software,” IEEE Trans. Computers, vol. 40, pp. 553-561, 1991.
ITU, Message Sequence Charts, Recommendation Z.120, Int’l
Telecomm. Union., Telecomm. Standardization Sector, 1996.

I. Jacobson, J. Rumbaugh, and G. Booch, The Unified Software
Development Process. Harlow: Addison Wesley, 1999.
J.P.Katoenand L. Lambert, “Pomsets for Message Sequence Charts,”
Proc. First Workshop SDL and MSC (SAM 98), pp. 197-208, 1998.

J. Klose and H. Wittke, “An Automata Based Interpretation of Live
Sequence Charts,” Proc. Seventh Int’l Conf. Tools and Algorithms for the
Construction and Analysis of Systems (TACAS '01), pp. 512-527, 2001.
P. Kosiuczenko and M. Wirsing, “Towards an Integration of
Message Sequence Charts and Timed Maude,” Proc. Fifth World
Conf. Integrated Design and Process Technology (IDPT '00), pp. 23-44,
2000.

K. Koskimies, T. Méannisto, T. Systd, and J. Tuonmi, “Automated
Support for Modeling OO Software,” IEEE Software, vol. 15, pp. 87-
94, 1998.

I. Kriiger, R. Grosu, P. Scholz, and M. Broy, “From MSCs to
Statecharts,” Distributed and Parallel Embedded Systems, F.J. Ram-
mig, ed., Kluwer Academic Publishers, pp. 61-71, 1999.

P.B. Ladkin and S. Leue, “Interpreting Message Flow Graphs,”
Formal Aspects of Computing, vol. 7, pp. 473-509, 1995.

A. van Lamsweerde and L. Willemet, “Inferring Declarative
Requirements Specifications from Operational Scenarios,” IEEE
Trans. Software Eng., vol. 24, pp. 1089-1114, 1998.

S. Leue, L. Mehrmann, and M. Rezai, “Synthesizing ROOM
Models from Message Sequence Charts Specifications,” Proc. 13th
IEEE Conf. Automated Software Eng. (ASE "98), pp. 192-195, 1998.
J. Magee and]J. Kramer, Concurrency: State Models and Java
Programs. John Wiley and Sons, 1999.

E. Mékinen and T. Systd, “"MAS—An Interactive Synthesizer to
Support Behavioral Modeling in UML,” Proc. 23rd IEEE Int’l Conf.
Software Eng. (ICSE '01), pp. 15-24, 2001.

R. Milner, Communication and Concurrency. Prentice-Hall, 1989.
A. Muscholl and D. Peled, “Analyzing Message Sequence Charts,”
Proc. SAM '00, Second Workshop SDL and MSC, pp. 108-122, 2000.
A. Muscholl, D. Peled, and Z. Su, “Deciding Properties of Message
Sequence Charts,” Proc. First Int’l Conf. Foundations of Software
Science and Computation Structure, (FOSSACS "98), pp. 226-242,1998.
R.V. Ommering, “Examples of Horizontal Communication,”
Internal Report Philips Research, Eindhoven, 2000.

T. Quatrani, Visual Modeling with Rational Rose 2000 and UML.
Addison Wesley, 1998.

M.A. Reniers, “Message Sequence Chart. Syntax and Semantics,”
PhD Thesis, Eindhoven Univ. of Technology, Eindhoven, 1999.
E. Rudolph, P. Graubmann, and J. Grabowski, “Tutorial on
Message Sequence Charts '96,” Proc. IFIP TC6 WG6.1 Int’l Conf.
Formal Description Techniques (FORTE '96), pp. 1629-1641, 1996.

J. Rumbaugh, M. Blaha, W. Premerlani, F. Eddy, and W. Lorensen,
Object-Oriented Modeling and Design. Prentice Hall, 1991.

F. Shull, I. Russ, and V.R. Basili, “Improving Software Inspections
by Using Reading Techniques,” Proc. Tutorial at 23rd Int’l Conf.
Software Eng. (ICSE '01), pp. 726-727, 2001.

S. Somé, R. Dssouli, and J. Vaucher, “From Scenarios to Timed
Automata: Building Specifications from User Requirements,” Proc.
Asia Pacific Software Eng. Conf. (APSEC "95), pp. 48-57, 1995.

P.P. Texel and C.B. Williams, Use Cases Combined with Booch, OMT,
and UML. Prentice-Hall, 1997.

(15]

[10]
(171
(18]
(19]

(20]

(21]

(22]
(23]
(24]

(23]

[26]

[27]

(28]

[29]

(30]

(31]

(32]
(33]
[34]
[35]

[30]

(371
(38]
(39]

[40]

[41]

(42]

[43]

(44]

115
[45] A. Tsiolakis, “Integrating Model Information in UML Sequence
Diagrams,” Electronic Notes in Theoretical Computer Science, vol. 50,
2001.
S. Uchitel, MSC-FSP Synthesiser, http://www.doc.ic.ac.uk/~su2/,
2000.
S. Uchitel,]. Kramer, and J. Magee, “Detecting Implied Scenarios in
Message Sequence Chart Specifications,” Proc. Joint Eighth European
Software Eng. Conf. (ESEC '01) and Ninth ACM SIGSOFT Symp.
Foundations of Software Eng. (FSE "01), pp. 74-82, 2001.
S. Uchitel, J. Kramer, and]J. Magee, “Negative Scenarios for
Implied Scenario Elicitation,” Proc. 10th ACM SIGSOFT Symp.
Foundations of Software Eng. (FSE '02), 2002.
Y. Wakahara, Y. Kayuda, A. Ito, and E. Utsunomiya, “ESCORT:
An Environment for Specifying Communication Requirements,”
IEEE Software, vol. 6, pp. 38-43, 1989.
J. Whittle and J. Schumann, “Generating Statechart Designs from
Scenarios,” Proc. 22nd Int’l Conf. Software Eng. (ICSE "00), pp. 314-
323, 2000.
M.D. Zisman, “Use of Production Systems for Modeling Asynchro-
nous, Concurrent Processes,” Pattern-Directed Inference Systems,
Waterman and Hayes-Roth, eds., Academic Press, pp. 53-68, 1978.

[40]

[47]

(48]

[49]

[50]

[51]

Sebastian Uchitel received the computer
science degree from the University of Buenos
Aires, Argentina. He is a research associate and
PhD candidate in the Department of Computing,
Imperial College, London. His research interests
include requirements engineering, design meth-
ods, analysis techniques, and behavior model-
ing, particularly as applied to the engineering of
concurrent and distributed software-based sys-

2 tems. He is a member of the IEEE Computer

Sbéi-ety and ACM.

Jeff Kramer is head of the Department of
Computing at Imperial College. His research
interests include requirements engineering, soft-
ware architectures, and analysis techniques,
particularly as applied to concurrent and dis-
tributed software. He was a principal investigator
in the various research projects which led to the
development of the CONIC environment for
configuration programming and the Darwin
- B VIR architectural description language. His current
research work is on behavior analysis, the use of models in
requirements elaboration, and architectural approaches to self-organiz-
ing software systems. He is a chartered engineer, fellow of the IEE, and
fellow of the ACM. He was program cochair of the 21st ICSE in Los
Angeles in 1999, chair of the steering committee for ICSE from 2000 to
2002, and associate editor and member of the editorial board of
Transactions on Software Engineering and Methodology from 1995 to
2001. He is a coauthor of a recent book on concurrency, coauthor of a
previous book on distributed systems and computer networks, and the
author of more than 150 journal and conference publications. He is a
member of the IEEE Computer Society.

Jeff Magee is head of the Software Architecture
Research Group in the Department of Comput-
ing at Imperial College, London. His research is
primarily concerned with the software engineer-
ing of distributed systems, including design
methods, analysis techniques, operating sys-
tems, languages, and program support environ-
ments for these systems. His work on software
architecture has lead to the commercial use by
Phillips of a novel architectural description
language in their next generation of consumer television products. He
is the author of more than 100 refereed conference and journal
publications and has recently written a book on concurrent programming
entitled Concurrency—State Models and Java Programs. He is a
member-at-large of the ACM SIGSOFT committee and currently chairs
the steering committee of the International Conference on Software
Engineering. He is a member of the IEEE and the IEEE Computer
Society.

