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Abstract

The bidirectional texture function (BTF) is a 6D function that can
describe textures arising from both spatially-variant surface re-
flectance and surface mesostructures. In this paper, we present an
algorithm for synthesizing the BTF on an arbitrary surface from
a sample BTF. A main challenge in surface BTF synthesis is the
requirement of a consistent mesostructure on the surface, and to
achieve that we must handle the large amount of data in a BTF
sample. Our algorithm performs BTF synthesis based on surface
textons, which extract essential information from the sample BTF to
facilitate the synthesis. We also describe a general search strategy,
called the k-coherent search, for fast BTF synthesis using surface
textons. A BTF synthesized using our algorithm not only looks
similar to the BTF sample in all viewing/lighthing conditions but
also exhibits a consistent mesostructure when viewing and lighting
directions change. Moreover, the synthesized BTF fits the target
surface naturally and seamlessly. We demonstrate the effectiveness
of our algorithm with sample BTFs from various sources, including
those measured from real-world textures.

CR Categories: I.3.7 [Computer Graphics]: Three-Dimensional
Graphics and Realism–color, shading, shadowing, and texture;
I.2.10 [Artificial Intelligence]: Vision and Scene Understanding–
texture; I.3.3 [Computer Graphics]: Picture/Image Generation.

Keywords: Bidirectional texture function, 3D textons, reflectance
and shading models, texture synthesis, texture mapping, surfaces

1 Introduction

Two main ingredients for visual realism are surface geometry and
surface details. With recent advances in surface texture synthesis
[20, 18, 22, 9], we can now decorate a real-world surface (e.g.,
reconstructed from laser range scans [4]) with a texture that fits
the surface naturally and seamlessly. However, we are still a step
away from reality because textures in traditional graphics represent
only color or albedo variations on smooth surfaces. Real-world tex-
tures, on the other hand, arise from both spatially-variant surface re-
flectance and surface mesostructures, i.e., the small but visible local
geometric details [11]. Mesostructures, which are responsible for
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Figure 1: Left column exhibits images of a surface texture. Right
column exhibits images of a surface BTF.

fine-scale shadows, occlusions, and specularities [6, 12, 10, 13], are
ignored by conventional textures. Fig. 1 compares a surface texture
with a surface BTF.

The BTF introduced by Dana et al. [6] is a representation of
real-world textures that can model surface mesostructures and re-
flectance variations. The BTF is a 6D function whose variables are
the 2D position and the viewing and lighting directions. In this pa-
per, we present an algorithm for synthesizing the BTF on arbitrary
polygonal surfaces. Given a BTF sample and a mesh, we synthesize
a BTF on the mesh such that: (a) the surface BTF is perceptually
similar to the given BTF sample in all viewing/lighting conditions,
and (b) the surface BTF exhibits a consistent mesostructure when
viewing and lighting directions change. The requirement of a con-
sistent mesostructure is where surface BTF synthesis differs funda-
mentally from surface texture synthesis since conventional textures
ignore mesostructures completely.

A BTF can be mapped onto surfaces using texture mapping tech-
niques. However, BTF mapping on arbitrary surfaces can introduce
inconsistent mesostructures. The usual technique for texture map-
ping arbitrary surfaces is to use a collection of overlapping patches
[14, 16], and textures in the overlapping regions are blended to
hide seams (e.g., see [16]). This technique works well for many
textures [16], but for the BTF, blending can introduce inconsis-
tent mesostructures, as Fig. 2 illustrates. Of course, BTF mapping
on arbitrary surfaces also suffers from the usual problems of tex-
ture mapping, which include distortion, seams, and considerable
user intervention needed for creating good-quality texture maps
[20, 18, 22].

Liu et al. recognized the importance of mesostructures in de-
veloping their algorithm for synthesizing a continuous BTF from
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Figure 2: Inconsistent mesostructures caused by BTF blending. (a)
The viewing/lighting setting for the images in (b) and (c). L0 is the
lighting direction for the image shown in (b) and L1 is the lighting
direction for the image shown in (c). Both images are for the square
outlined by the yellow line in (a). The viewing direction for both
images is the same.

sparse measurements [13]. Indeed, they explicitly recovered geom-
etry details using a shape-from-shading method. The appearance of
the recovered geometry is rendered and used for synthesis images
under different viewing/lighting settings. Unfortunately, adapting
[13] to surface BTF synthesis is not possible because it is time con-
suming to reconstruct/render the appearance from the recovered ge-
ometry for all lighting and viewing settings, especially for BTFs
with complex geometry or radiance distributions. Moreover, cur-
rent shape-from-shading techniques will have problems handling
real-world textures with complex bump structures or without dom-
inant diffuse components [13].

A possible way to achieve a consistent mesostructure on a sur-
face is to directly apply surface texture synthesis techniques to sur-
face BTF synthesis. The sample BTF may be regarded as a 2D
texture map, in which the BTF value at a pixel is a 4D function
of the viewing and lighting directions, and this 4D function can
be discretized into a vector for texture synthesis. Unfortunately,
this approach incurs a huge computational cost because of the large
amount of data in a BTF sample. At the resolution of 12�5�12�5,
the BTF value at a pixel is a 10800-dimensional vector, as opposed
to the usual 3D RGB vectors [20, 18, 22]. Since texture synthesis
time grows linearly with the vector dimension, a surface BTF can
take days [20] or even months [18] to compute. Principal compo-
nents analysis (PCA) can reduce the vector dimension somewhat
but cannot alter the nature of the problem.

Leung and Malik introduced 3D textons based on the observa-
tion that, at the local scale, there are only a small number of per-
ceptually distinguishable mesostructures and reflectance variations
on the surface [12]. Their observation raises the hope of a compact
data structure for extracting the essential information for surface
BTF synthesis. However, 3D textons themselves are not compact
because of their huge appearance vectors [12]. Indeed, the recon-
structive BTF synthesis proposed in [12] is not feasible on surfaces
because the basic operations [18] for surface BTF synthesis – tex-
ton resampling, distance computation, and BTF reconstruction –
are prohibitively expensive with 3D texton [12]. To get a feel of
the problem, consider the following: surface BTF reconstruction
requires a 4D function to be assigned to each mesh vertex, which
implies a 2.5 Gb storage for a mesh of 250k vertices [18].

In this paper, we show that surface BTF can be efficiently syn-
thesized using the surface textons, which are derived from 3D tex-
tons [12]. Having no appearance vectors, surface textons consti-
tute a compact data structure for extracting the essential informa-
tion from the BTF sample to facilitate surface BTF synthesis. We
present an algorithm based on surface textons for synthesizing a
surface texton map, which is a texton-based compact representa-
tion of the synthesized surface BTF. This compact representation
can be directly used for rendering; no BTF reconstruction like the

one in [12] is necessary. We also describe a search strategy, called
the k-coherent search, for fast surface BTF synthesis using surface
textons. Existing general-purpose search strategies, such as those
used in [20, 18, 9, 22], can also be adapted for surface textons, but
the search speed is orders of magnitude slower.

We will demonstrate the effectiveness of our algorithm using
surface BTFs synthesized from both real and synthetic BTF sam-
ples. With the increasing availability of BTF samples measured
from real-world textures [6], surface BTFs provide a way to dec-
orate real-world geometry with real-world textures. We also show
that surface BTFs provide an efficient way for rendering surfaces
with complex synthetic appearance models and geometry details.

The rest of the paper is organized as follows. After a brief review
of related work in Section 2, we give an overview of our approach
in Section 3. Section 4 discusses how to extract surface textons
from the sample BTF. Section 5 provides details about surface BTF
synthesis. Section 6 describes how to render surface BTFs synthe-
sized by our algorithm. Results are reported in Section 7, followed
by a conclusion and discussion about future work in Section 8.

2 Related Work

Several models exist for BTF analysis and material recognition, in-
cluding the histogram model and correlation model for simple BTFs
captured from random height fields with Lambertian reflectance [5],
a color correlation model [10], a 3D-texton-based histogram model
[12], and a model combining PCA and 2D textons [3].

Existing BTF synthesis methods [5, 12, 13] are designed for 2D
rectangles [12] or rectangular surface patches [5, 13], not for arbi-
trary surfaces. Texture morphing [5] is a technique for BTF syn-
thesis under the assumption that the surface is a simple height field
with Lambertian reflectance. In [12], a BTF synthesis algorithm
was suggested based on 3D textons. This algorithm first synthe-
sizes a 2D map of texton labels using non-parametric sampling [8]
and then reconstructs a BTF from the synthesized texton labels. A
big problem with this reconstructive synthesis of a BTF is the high
computational costs for synthesizing texton labels and reconstruct-
ing the BTF using the huge appearance vectors of textons (e.g., an
appearance vector is 57600-dimensional if 400 sample images of
the BTF are used as in [12]).

To capture and efficiently render the complex appearance of the
real world surface, Malzbender et al. proposed polynomial texture
maps for capturing the surface appearance under a fixed viewpoint
but different lighting directions [15]. For surface light fields (e.g.,
[21]), the appearance of surfaces under fixed light sources but dif-
ferent view directions are captured and stored in a compact way for
rendering.

Generating textures on arbitrary surfaces has been an active area
of research (e.g., [14, 16, 20, 18, 22, 9]). One approach is to map
texture patches onto the target surface [14, 16]. A good represen-
tative work following that approach is the lapped texture technique
by Praun et al. [16]. They randomly paste texture patches onto the
surface following orientation hints provided by the user. To hide the
mismatched features across patch boundaries, textures in the over-
lapping regions are blended. This technique works well for many
textures, but for highly structured textures and textures with strong
low-frequency components, the seams along patch boundaries are
still evident [16].

A number of algorithms have been proposed for directly synthe-
sizing textures on arbitrary surfaces. Turk’s algorithm [18], Wei
and Levoy’s algorithm [20], and the multi-resolution synthesis al-
gorithm by Ying et al. [22] are general-purpose algorithms based on
the search strategy proposed by Wei and Levoy [19]. The algorithm
by Gorla et al. [9] is also a general-purpose algorithm, based on the
search strategy proposed by Efros and Leung [8]. These algorithms
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tend to be slow, but they can be accelerated by using either tree-
structured vector quantization [19, 20] or a kd-tree [22]. Generally,
these algorithms produce high-quality results. A special type of tex-
tures that cannot be handled well by general-purpose algorithms is
the so-called “natural” textures [2]. Ashikhmin proposed a special-
purpose algorithm for “natural” textures [2], and his algorithm has
been adapted for “natural” surface textures [22]. However, [2, 22]
do not generalize well to other types of textures.

3 Overview

Fig. 3 provides an overview of our system. The given sample BTF
T (x; y; �i; �i; �r; �r) is regarded as a texture map in which every
pixel (x; y) has the value of a 4D function T(x;y)(�i; �i; �r; �r).

Given T and a mesh M , we synthesize the surface BTF T 0 in two
steps: texton analysis and surface BTF synthesis.

In the first step, we generate a 2D texton map tin and build the
surface texton space S, which is represented by the dot-product ma-
trix �. From the sample BTF T , we construct a 3D texton vocab-
ulary V = ft1; :::; tnt

g as in [12]. Based on V we can assign a
texton label to each pixel of the sample BTF T and thus generate
the 2D texton map tin.

The surface texton space S is the inner-product space spanned
by using the 3D textons ft1; :::; tnt

g as basis vectors. Each ele-
ment of S is called a surface texton. The surface texton space S

is represented by the dot-product matrix �, an nt � nt matrix that
stores the dot-product of every pair of 3D textons in V . The fact
that there are only a small number of 3D textons [12] implies that
the dot-product matrix � is compact, and so is S. For example,
a 64 � 64 BTF sample consisting of 3600 color images is about
59 Mb. Its representation with 400 3D textons extracted from 400
sample images is about 92Mb; the corresponding dot-product ma-
trix is only 640 Kb. The construction of S is simple: all we need to
do is calculate the dot-product matrix � and discard the appearance
vectors.

In the surface BTF synthesis step, we use the surface texton map
to compactly represent the surface BTF T 0. The surface texton map
tout is a list of entries, one for each mesh vertex. The entry for
vertex v, tout(v), consists of a texton label and a texture coordinate
pv = (av; bv), implicitly defining

T
0

v(�i; �i; �r; �r) = T (av; bv; �i; �i; �r; �r):

We treat the 2D texton map tin as a texture sample and perform sur-
face texture synthesis to generate the surface texton map tout. We
generate the surface texton map entries for mesh vertices incremen-
tally, one vertex at a time. At each mesh vertex v, we simultane-
ously synthesize the texton label and generate a texture coordinate
defining the BTF value at v.

The basic operations in surface texton map synthesis are texton
resampling and the distance computation between surface textons.
All these calculations can be carried out as operations in the surface
texton space S and thus are fully determined by the pre-computed
dot-product matrix �.

4 Texton Analysis

The texton analysis takes the following steps: (a) build a vocabulary
of 3D textons from the sample BTF T , (b) assign texton labels to
the pixels of T to get the 2D texton map tin, and (c) construct the
surface texton space S by calculating the dot-product matrix � and
discarding the appearance vectors.

3D Texton Vocabulary: The construction of 3D textons is mostly
based the original 3D texton paper by Leung and Malik [12]. As in
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Figure 3: Data flow in our system.

[12], we construct 3D textons from a BTF using K-means cluster-
ing. To capture the appearance of mesostructures at different view-
ing/lighting conditions, we treat the BTF sample Tin as a stack of n
images and filter each image with a filter bank of nb = 48 Gaussian
derivative filters. For each pixel of Tin, the filter responses of ns
selected images are concatenated into a nsnb-dimensional data vec-
tor. These data vectors are clustered using the K-means algorithm.
The resulting K-means centers ft1; :::; tnt

g are the 3D textons, and
the associated nsnb-dimensional concatenated filter response vec-
tors fv1; :::;vnt

g are the appearance vectors. We also generate an
extra texton by averaging the appearance vectors of all textons. This
extra texton is used as the default texton in surface BTF synthesis.
We use nt = 400 for all examples in this paper.

Our 3D texton construction differs from [12] in choosing the ns
selected images. The reason for only selecting ns images from Tin
for clustering, where ns � n, is to reduce computation by explor-
ing the coherence of the same material in different viewing/lighting
settings. In [12], the ns images are randomly chosen. However, this
is suboptimal because the radiance distribution is non-uniform in
the viewing-lighting space. Cula and Dana [3] proposed a method
for automatically selecting a subset representative images from a
BTF sample. Their method works with a statistical representa-
tion of a BTF sample (the histogram of 2D textons). Because a
histogram-based representation discards the spatial distribution of
the BTF data, adopting [3] in BTF synthesis framework is difficult.

We choose the ns representative images by K-means clustering
in the viewing-lighting dimensions of the BTF sample Tin. Specif-
ically, we filter image I� of Tin using our filter bank of 48 Gaus-
sian derivative filters, producing a 48-dimensional filter-response
vector for each pixel of I�. The filter-response vectors of pixels
on a regularly-spaced subsampling grid in I� is concatenated into
an image appearance vector representing I�. The image appear-
ance vectors of all images in Tin are then K-means clustered. For
each cluster, the image whose image appearance vector is nearest
to the cluster center is selected as the representative image. Note
that forming an image appearance vector by concatenating only
filter-response vectors on a subsampling grid is the key to saving
computation, and we are allowed to subsample because, as far as
clustering is concerned, the filter-response vector of a pixel cap-
tures enough local structure around the pixel. We used ns = 400
for all examples in this paper.

2D Texton Map: Once we have the texton vocabulary ft1,...,tnt
g,

we can easily assign a texton label to each pixel of Tin. The texton
label at pixel p is tin(p) = argmin

nt

j=1 kv(p)�vjk
2; where v(p)

is the nsnb-dimensional concatenated filter response vector of pixel
p, and vj is the appearance vector of 3D texton tj . The resulting
tin is called a 2D texton map, or texton map for short.

Surface Textons: The 3D textons ft1; :::; tnt
g can be regarded as

abstract vectors and they span a vector space S. Any vector s in
S is of the form s =

Pnt

i=1
aiti, where a1; :::; and ant

are real
numbers. We call S the surface texton space. The surface texton
space is actually an inner-product space. The dot product of two
basis vectors ti and tj is defined as ti � tj = vi � vj , where vi and
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Figure 4: The surface patch around the red vertex v in (a) is flat-
tened into the blue patch P (v) in (b). The neighborhood template
for resampling is shown in red in (b). The resampling of textons
from vertices of the yellow patch triangle to a neighborhood pixel
p is shown in (b) and (c).

vj are the appearance vectors of ti and tj respectively. We pre-
compute the dot product of every pair of basis vectors and store the
results in an nt�nt matrix � = (ij) such that ij = ti �tj . Once
� is computed, we discard all appearance vectors.

An element of the surface texton space S is a surface texton.
Note that ft1; :::; tntg, with their appearance vectors discarded, are
also surface textons because they are the basis of S. The resam-
pling and distance computation for surface textons as required by
surface BTF synthesis can be formulated as linear transformations
and dot-products in the surface texton space S. All these operations
are abstract in that they do not refer to the appearance vectors. In
particular, the dot product of any two vectors s and s

0 in S can be
obtained easily from �, without referring to any appearance vector.
Let s =

Pnt

i=1
aiti and s

0 =
Pnt

i=1
a0

iti. Then it is easy to verify

that s � s0 =
Pnt

i;j=1
aia

0

jij .

5 Surface BTF Synthesis

5.1 BTF Synthesis with Surface Textons

Before the BTF synthesis starts, we have the 2D texton map tin
and the surface texton space S with the pre-computed dot-product

matrix�. We define a local texture coordinate frame (~s;~t; ~n) at each
vertex of the target mesh M . The vector ~n is the surface normal at

v, whereas ~s and ~t are the “right” and “up” directions determined
by a vector field, which is either interpolated from a number of
user-specified directions [18] or generated by relaxation [20].
Surface Texton Map Synthesis: A single-resolution version of the
surface texton map synthesis proceeds as follows. We walk through
the vertices of the target mesh M and compute an surface texton
for every vertex. At each vertex v, the surface texton map entry
tout(v) is obtained through the following steps. First, we construct
a neighborhood N(v) in the (s; t)-plane of v’s local texture coordi-

nate frame (~s;~t; ~n). Then, we build a candidate set C(v) consisting
of the candidate pixels for v in the 2D texton map tin. Next, we
search the candidate set C(v) to find a pixel p0 = (a0; b0) such that
the distance between N(v) and the neighborhood of p0, N(p0), is
the smallest. Finally, we set the texton label of the surface tex-
ton map entry tout(v) to be tin(p0) and the texture coordinate of
tout(v) to be (a0; b0). The pseudo-code of the surface texton map
synthesis is as follows.

For each vertex v on surface
construct neighborhood textons N(v)
smallest match = BIG;
form the candidates set C(v)
For each pixel p = (a; b) in C(v)

construct neighborhood textons N(p)

new match = distane(N(v); N(p));
If (new match < smallest match)
smallest match = new match
t0 = tin(p), (a0; b0) = (a; b)

tout(v):texton label = t0
tout(v):texture oordinate = (a0; b0)

The surface texton map synthesis essentially generates the BTF
value at vertex v by copying the BTF value at location p0 in the
sample BTF. Location p0 is chosen according to the neighborhood
similarity of N(v) and N(p0) as measured by their surface tex-
tons. This is a valid similarity measure because the texton-based
similarity of N(v) and N(p0) implies their similarity as measured
by their BTF values [12]. Of course a big advantage of the texton-
based neighborhood similarity measure is that texton distances can
be efficiently evaluated for surface textons.
Texton Resampling: Texton resampling is necessary for construct-
ing neighborhood N(v). We construct N(v) in the (s; t)-plane of

v’s local texture coordinate frame (~s;~t; ~n) as follows. First, a patch
P (v) is generated in the (s; t)-plane by flattening a set of triangles
near v [16, 20]. Then, the pixels in the neighborhood N(v) are
resampled from the patch triangles using a neighborhood template
[20], as is shown in Fig. 4. Finally, a surface texton s(p) is ob-
tained at each neighborhood pixel p in N(v) through the following
interpolation:

s(p) = w0ti0 + w1ti1 + w2ti2 ; (1)

where (w0; w1; w2) is the barycentric coordinates of p in the patch
triangle that contains p, and ti0 , ti1 , and ti2 are textons at the ver-
tices of that patch triangle. For implementation, s(p) can be ef-
ficiently represented by a 6-tuple (w0; w1; w2; ti0 ; ti1 ; ti2 ). The
default texton is assigned to neighborhood pixels that are not con-
tained by any patch triangle.
Distance Computation: We need to find a pixel p0 = (a0; b0)
from the candidate set C(v) such that the distance between the two
neighborhoods, N(v) and N(p0), is the smallest. For this purpose
we need to compute, for each pixel p in C(v), the distance between
the neighborhoods N(p) and N(v). This distance can be written as

distane(N(v);N(p)) =

nvX

�=1

jjs(p�)� tj� jj
2

where nv is the number of pixels in N(v) and each s(p�) is a sur-
face texton. Each term jjs(p�) � tj� jj

2 of the above distance can
be written as the dot product of two surface textons,

(s(p�)� tj�) � (s(p�)� tj� );

which can be easily evaluated using the pre-computed dot-product
matrix �.
Multi-Resolution Synthesis: To improve synthesis quality, we
have designed and implemented a two-pass multi-resolution version
of our BTF synthesis algorithm in a fashion similar to [20, 18, 22].
In the pre-processing stage of the two-pass version, we build a tex-
ton pyramid and a mesh pyramid. For the texton pyramid, we first
construct an image pyramid for each image of the BTF sample.
Then a 2D texton map and a dot-product matrix is generated at
each level. The number of textons at the next lower resolution li+1
is about a quarter of that at the current resolution li. For the mesh
pyramid, we use Turk’s algorithm [17]. Starting from the highest
resolution mesh, we generate the mesh in the next lower resolution
level li+1 by retiling the current level li mesh with about a quarter
of the vertices. The vertices at each level of the mesh are randomly
mapped to the pixels of the texton map at the same level, with the
texton label and texture coordinate of a vertex coming from its cor-
responding pixel.

668



(a)

p
0

(b)

p
1

p
2

p
3

(c)

p
1

Figure 5: The k-coherence candidates of a pixel p0 for k = 4. (a)
The neighborhood N(p0) for pixel p0 (colored black) in Iout. (b)
The pixels of C1(p0) in Iin are colored black. Each black pixel is
the coherence candidate corresponding to a colored pixel in N(p0):
p3 is the coherence candidate corresponding to the green pixel, p2
is the coherence candidate corresponding to the red pixel, and p1 is
the coherence candidate corresponding to both the yellow and blue
pixels. (c) For each pixel in C1(p0), its 3 nearest neighbors are
added to C4(p0). Here we only show the 3 nearest neighbors of p1.

In the first pass, the surface texton map at the level li mesh is
synthesized from the level li+1 texton map. For a mesh vertex vi
at level li, we find a point vi+1 at the level li+1 mesh by following
the surface normal at vi on the level li mesh. We compute the
surface texton map entry at vi+1 using the level li+1 texton map.
The texture coordinate of vi is derived from that of vi+1. The texton
label at vi is fetched from the level li texton map using vi’s texture
coordinate.

In the second pass, when synthesizing the surface texton map
entry at vertex vi in the level li mesh, we use the neighborhood of
vi as well as that of vi+1 at level li+1, where vi+1 is found as in the
first pass. For vertex vi, we form the candidate set C(vi) using vi’s
neighborhood at level li only. The two-level neighborhoods and
the corresponding dot-product matrices are used for neighborhood
distance computation when searching for the best candidate from
C(v).

5.2 Fast Search for Surface Textons

So far we have not described the search strategy, i.e., the strategy
to form the candidate set C(v) for a mesh vertex v. Most existing
search strategies [20, 18, 22, 9] can be adapted for constructing
C(v). We have experimented with the full search, in which C(v)
consists of all pixels of the 2D texton map tin. This is a general
search strategy used by [20, 18, 9] and the multiresolution synthesis
algorithm in [22]. Unfortunately, the full search is painfully slow
with surface textons for two reasons. First, the full search is itself
slow because the candidate set is as big as it gets. Second, existing
acceleration techniques including vector quantization [19] and the
kd-tree [1] do not work well with surface textons because surface
textons are not the usual intensity values. The kd-tree, for example,
requires sorting data vectors by one of their components [1]. Such
sorting is not possible when the data vectors are surface textons. For
fast searching with surface textons, we have developed a general
search strategy called the k-coherence search.

Candidate Set for 2D Textures: For simplicity we explain the k-
coherence search in the context of synthesizing a 2D texture Iout.
Suppose we are to synthesize a pixel p0 of Iout based on the already
synthesized pixels in a neighborhood N(p0) of p0, as is illustrated
in Fig. 5. Every synthesized pixel ps in N(p0) corresponds to a
pixel p1 in the input sample texture Iin. We call p1 a coherence
candidate for p0 because it is a good candidate according to the
coherence of Iout: a pixel that is appropriately “forward-shifted”
with respected to a pixel already used for synthesis is well-suited to
fill in p0 [2]. The coherence candidates are collected in C1(p0), the

coherence candidate set.

The k-coherence search constructs the candidate set C(p0) as the
k-coherence candidate set Ck(p0), which is formed by adding, for
each pixel p1 of C1(p0), a set of pixels fp2; :::; pkg of Iin such that
the newly-added pixels are closer to p1 than any other pixels in Iin
by the neighborhood distance. The idea of k-coherence search is to
speed up the search by guiding it to pixels of Iin that are close to the
coherence candidates according to the neighborhood distance. This
guidance is valid because by the Markov property [8, 19], whether
a pixel is an eligible candidate is completely determined by pixels
in its surrounding neighborhood. If the coherence candidates are
suitable to fill p0, then pixels close to the coherence candidates by
the neighborhood distance are also good candidates for p0.

The k-coherence search is fast because the k-coherence candi-
dates set is much smaller (usually k � 11) than that of the full
search and it can be constructed very quickly with the pre-computed
list of k nearest neighbors for each pixel of Iin. For a small Iin (
� 64 � 64), the k nearest neighbors of every pixel of Iin can be
pre-computed fairly quickly by an exhaustive search in Iin. For a
large Iin (> 64 � 64), a two-level pyramid is built to speed up the
pre-processing of lists of k nearest neighbors for all pixels in Iin.
Specifically, to compute the k nearest neighbors of a pixel p(a; b),
we first compute m initial candidates for p(a=2; b=2) in the low-
resolution version of Iin, where m = 100 in our implementation.
For each initial candidate in the low-resolution version of Iin, its
four corresponding pixels in Iin are added to the set of initial can-
didates in Iin. After all 4 �m initial candidates are so generated,
the k nearest neighbors of pixel p are found from these initial can-
didates.

An important advantage of the k-coherent search is that its
pyramid-based acceleration also works for surface textons. For the
k-coherent search, the low-pass filtering needed for pyramid-based
acceleration only takes place on the 2D texton map tin. The tex-
ton pyramid constructed for multi-resolution synthesis can also be
used for building the list of the k nearest neighbors. As a result, we
do not need to low-pass filter the surface textons during the surface
texton map synthesis. Low-pass filtering surface textons is a hard
operation to define because surface textons have no appearance vec-
tors.

Fig. 6 shows the basic behaviors of k-coherence search. When
k = 11 the results of the k-coherence search are practically the
same as that by the full search [19]. As k decreases, the results look
less and less like that of the full search. When k = 1, the results
become the same as those generated by Ashikhmin’s algorithm [2].

Candidate Set on Surfaces: We now consider the construction
of the k-coherence candidate set Ck(v) for a mesh vertex v. Let
fv1; :::; vmg be the set of all vertices in the flattened patch P (v)
whose surface textons have been synthesized. Vertex vi has a tex-
ture coordinate (si; ti) and an offset (xi; yi) from v in the patch
P (v). As shown in Fig. 4 (b), we forward-shift (si; ti) by the off-
set (xi; yi) in the 2D texton map tin, getting to location (s0

i; t
0

i) =
(si � xi; ti � yi) in tin. Then we fetch the list Li of k nearest
neighbors at the pixel closest to (s0

i; t
0

i). The candidate set Ck(v)
consists of all k nearest neighbors in all the lists L1 through Lm.

In multiresolution synthesis, a list of k nearest neighbors is built
for each pixel of the texton map at every level. In the second pass of
a two-pass synthesis, we also use a two-level neighborhood when
building the list of k nearest neighbors for every pixel so that the
neighborhoods on the side of the texton pyramid are consistent with
the two-level neighborhoods on the side of the mesh pyramid.

Discussion: The k-coherence search was inspired by Ashikhmin’s
work [2]. However, our goal is different from Ashikhmin’s. We
want to derive a general-purpose search strategy for fast search with
surface textons; his goal was to develop a special-purpose algorithm
for handling “natural” textures, i.e., textures consisting of arrange-
ments of small objects of familiar but irregular shapes [2].
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Sample (a) (b)

(c) (d)

Figure 6: 2D texture synthesis results using the k-coherence search
and the full search. (a) k-coherence search with k = 1. (b) k-
coherence search with k = 5. (c) k-coherence search with k = 11.
(d) The full search [19].

6 Surface BTF Rendering

From the surface texton map tout and the sample BTF T , we can ef-
ficiently render the BTF on the target mesh M as follows. First, we
compute the viewing and lighting directions for each mesh vertex
v in its local texture coordinate frame from the given light source
location and the viewpoint. Vertices occluded from either the light
sources or the viewpoint are ignored. Then, a set of nearby images
are found from the BTF sample T . Using v’s texture coordinate,
we can look up colors from this set of images and blend them to
get the color of v. With all vertex colors obtained, the mesh can be
sent to the graphics pipeline for display. This procedure repeats for
every novel lighting/viewing configuration.

Finding the nearest images from the sample BTF T is simple
because the images in T are evenly distributed in the viewing and
lighting space. We first find 4 nearest sample viewing directions
and 4 nearest sample lighting directions separately. The angle be-
tween two lighting/viewing directions is used as the distance mea-
sure. Then, the 4�4 nearest images are simply those corresponding
to all combinations of the viewing/lighting directions found in the
previous step. Debevec et al. [7] proposed a general technique for
finding the nearest images for a given viewing/lighting setting.

7 Results

We have implemented our surface BTF synthesis algorithm on a
PC. The system is easy to use. The texton analysis stage involves no
user intervention. The BTF synthesis stage is as automatic as sur-
face texture synthesis (e.g., [18, 20]). The system only requires the
user to determine whether the BTF sample resemble “natural” tex-
tures and if so, set k = 1 for the k-coherence search. Anisotropic
BTFs are handled the same way as anisotropic textures in surface
texture synthesis [18, 20]. Like [18, 20], an optional but often help-
ful user intervention for an anisotropic BTF is to specify a vector
field to guide the orientation of the BTF on the target surface.

In the following we report synthesis results for both sample BTFs
of real-world textures and synthetic BTF samples. The real-world
samples were taken from the CUReT database [6]. All surface
BTFs shown in this paper were synthesized using three- or four-
level pyramids of the meshes and the sample BTFs. All examples
use k-coherence search with k = 11 unless otherwise mentioned.

Model Sample Size Vertex Number Time (minutes)

Dinosaur 96 � 96 250k 21 (k=1)

Horse 128� 128 250k 22 (k=1)

Cat 64 � 64 300k 141

Bunny 128� 128 300k 186

Table 1: Timings for synthesizing the surface BTFs shown in Fig. 7.

Sample Size Full Search k-Coherence Search

64 � 64 747 min. 70 min.

96 � 96 3000 min. 123 min.

128� 128 8066 min. 157 min.

Table 2: Speed comparison for BTF synthesis using the full search
(e.g. [18]) and the k-coherence search.

Fig. 7 exhibits several surface BTFs. Timings for surface BTF
synthesis are summarized in Table 1. Timings are in minutes mea-
sured on a 700MHz Pentium III. The time complexity of our al-
gorithm only depends on size of the neighborhood and k for the
k-coherence search. During the BTF synthesis, our algorithm uses
about the same amount of memory as surface texture synthesis al-
gorithms such as [20, 18]. The only extra memory we need is that
for the dot-product matrix, which is less than 1 Mb in our system.
Timings are for BTF synthesis only. The texton analysis time for
a BTF sample of size 64 � 64 takes about 45 minutes on the same
machine. For the BTF sample in Fig. 7 (a) and (b), we set k = 1
because the samples resemble “natural” textures [2].

Like surface textures, the synthesized BTFs fit the surface geom-
etry naturally and seamlessly. More importantly, the surface BTFs
capture the fine-scale shadows, occlusions, and specularities caused
by surface mesostructures. Comparison of the synthesized surface
BTFs with the sample BTFs demonstrates their similarity. In the
companion video, we show that this similarity remains in all view-
ing and lighting conditions. Moreover, the synthesized mesostruc-
tures are consistent as viewing and lighting directions change.

Table 2 compares the BTF synthesis speed for the full search
(e.g. [18]) and the k-coherence search using the dinosaur model
with 250k vertices. For a small BTF sample (64 � 64), BTF syn-
thesis based on the k-coherence search is about 10 times faster than
that based on the full search. The speed gain increases quickly as
the BTF sample gets larger. In Fig. 9, we compare the qualities
of the surface BTFs synthesized with these two search strategies
by rendering the BTFs with identical viewing and lighting. Our
experiments demonstrate that the k-coherence search allows us to
synthesize surface BTFs orders of magnitude faster while getting
comparable quality.

Surface BTFs provide an efficient way for rendering surfaces
with complex appearance models that are created synthetically.
Fig. 8 shows an example, in which a small BTF sample is rendered
by ray tracing and then synthesized onto a surface. The render-
ing of the surface BTF captures the shadow and occlusion caused
by the height field of the synthetic appearance model. Conventional
textures and bump maps cannot capture these effects. Although dis-
placement maps can capture these effects, rendering displacement
maps is very expensive. In addition, some appearance models have
complex local geometry details and BRDF variations that cannot be
rendered by displacement maps. Surface BTFs will not have prob-
lems handling these appearance models. With our unoptimized im-
plementation, the surface BTF shown in Fig. 8 (300k vertices) can
be rendered at a speed of more than one frame per second.
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Figure 7: Top row: Surface BTFs synthesized using real BTF samples from the CUReT database [6]. Bottom row: Surface BTFs synthesized
from synthetic BTF samples.

 

Figure 8: (a) Surface BTF. (b) Surface texture. (c) Surface BTF. (d) Surface texture.
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Figure 9: Quality comparison for BTF synthesis using the k-coherence search (left) and the full search (right).

8 Conclusion

We have presented an algorithm for synthesizing BTFs on arbitrary
manifold surfaces using surface textons. A BTF synthesized using
our algorithm not only looks similar to the sample BTF in all view-
ing and lighting conditions but also exhibits a consistent mesostruc-
ture when the viewing and lighting directions change. Because the
BTF can describe real-world textures, our algorithm enables the
user to decorate real-world geometry with real-world textures.

A limitation of surface BTF synthesis using surface textons is
that the synthesis algorithm does not work well for materials that
cannot be described by 3D textons. So far one such material has
been reported [12], i.e., the ”Aluminum Foil” dataset in the CUReT
database [6]. It will be desirable to develop more sophisticated fil-
tering/clustering techniques for this sort of materials. We are also
interested in efficient rendering methods for a surface BTF repre-
sented by a sample BTF and a surface texton map. The basic ren-
dering operations of a surface BTF so represented are simple and
should be amenable to hardware acceleration. Finally, an intriguing
possibility is to use synthesis methods to produce appearance not
captured by the BTF, e.g., subsurface scattering.
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guo Liu for useful discussions. Many thanks to Yanyun Chen for
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