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Graphical contents entry 

 

Mesoporous NiO/NiCo2O4/Co3O4 composites showing variable degrees of order and tunable 

magnetic properties are achievable by nanocasting using SBA-15 silica as hard templates. The 
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NiCo2O4-rich powders are magnetic at room temperature and can be easily remotely 

manipulated using small fields (see Fig.). 
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A series of mesoporous NiO/NiCo2O4/Co3O4 composites has been synthesized by nanocasting 

using SBA-15 silica as a hard template. The evaporation method was used as the 

impregnation step. Nickel and cobalt nitrates in different Ni(II):Co(II) molar ratios were 

dissolved in ethanol and used as precursors. The composites show variable degrees of order, 

from randomly organized nanorods to highly ordered hexagonally-packed nanowires as the 

Ni(II):Co(II) molar ratio decreases. The materials exhibit moderately large surface areas, in 

the 60-80 m2/g range. Their magnetic properties, saturation magnetization (MS) and coercivity 

(HC), can be easily tuned given the ferrimagnetic (NiCo2O4) and antiferromagnetic (NiO and 

Co3O4) character of the constituents. Moreover, the NiCo2O4 rich materials are magnetic at 

room temperature and can consequently be easily manipulated by small magnets. Owing to 

their appealing combination of properties, the nanocomposites are expected to be attractive 

for myriad applications. 
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1. Introduction 

The confined growth of solids inside the mesopores of silica matrices within the so-called 

‘host-guest chemistry’ framework has aroused a lot of attention the last decades.[1] Through 

this approach, many metals and metal oxides either in the form of nanorod, nanowire or 

nanotube arrays can be fabricated. The ‘replicated materials’ find potential applications in 

several fields (optics, magnetics, electronics, catalysis, gas-sensing…) as they combine the 

physicochemical properties of nonsiliceous materials with the finite-size effects of their 

nanopores.[2-7] Among the silica compounds available as host, the SBA-15 (p6mm) can be 

regarded as the simplest one owing to its regular 2D porous network constructed by 

hexagonally arranged straight mesopores connected by some bridging micropores.[8]  

To date, several transition metal oxides have been grown inside the channels of SBA-15 silica, 

and the synthesis of hexagonally-packed nanowire arrays of Cr2O3, In2O3, MnxOy, Co3O4, 

NiO, Fe2O3, CeO2, and WO3 has been reported so far.[9-11] Less attention has been paid to the 

hard-templating of complex oxides (containing two or more types of cations) and composites 

(combining two or more metal oxides). Very recently, the successful synthesis of mesoporous 

ferrite and cobaltite spinels has been addressed, thus proving that the ‘host-guest’ chemistry 

can be expanded to more complex systems.[12-14] The possibility of producing mesoporous 

complex oxides and composites is of paramount interest from a fundamental viewpoint since 

understanding how the interaction between different guests takes place inside the silica 

channels will lead to a better control of the replicas. From the technological viewpoint, the 

composites may offer novel applications since one could take advantage of the synergistic 

effects between the different constituent phases.[15] 

Interestingly, nickel and cobalt-based nanomaterials are emerging as ideal candidates in the 

catalysis field, particularly as low-cost replacements for noble metal catalysts.[16] 

Mesostructuring is expected to enhance the efficiency of catalytic processes owing to the 

shape-selective properties and large surface areas of the mesoporous materials.[17,18] Moreover, 
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the solid solutions of the nickel cobaltite system, denoted as Ni1-xCoxOy, have exceptionally 

high activity with regard to the oxygen evolution reaction (OER) in alkaline media.[19] In 

addition, nanostructured stoichiometric NiCo2O4 is currently under focus due to its potential 

technological applications, such as magnetic hyperthermia or electrochemical 

supercapacitors.[20,21] Hence, the exploitation of the hard-templating possibilities in the 

synthesis of this class of materials is certainly worthwhile. 

In this work we report the hard-template synthesis of compositionally graded 

NiO/NiCo2O4/Co3O4 composites from SBA-15 silica host as well as their characterization by 

manifold techniques. The mesoporous composites show variable degrees of order and 

controllable magnetic response. In particular, the nanocomposites display ferromagnetism at 

room temperature and can be easily remotely manipulated, thus allowing their use in a 

broader range of conditions.  

 

2. Results 

2.1 Morphological characterization 

Fig. 1 shows a set of transmission electron microscopy (TEM) images of different composites 

obtained by impregnation of SBA-15 silica with nickel and cobalt nitrate precursors (in 

different proportions), followed by calcination at 550ºC and subsequent template removal. 

Remarkably, the powders obtained from 1:0 and 0:1 Ni(II):Co(II) molar ratios, i.e. from 

single precursor, show a rather different morphology (Fig. 1a and 1h). Namely, the cobalt 

nitrate-derived powder is composed of periodically arranged nanowires, whereas mostly 

unstuck, short nanorods were formed from the nickel nitrate precursor. This suggests that the 

small bridges in SBA-15 were not replicated in the same manner. It is in fact known that 

when the nanobridges are not successfully replicated, short nanorods are obtained instead of a 

three-dimensional network.[22] Moreover, using a 1:0.11 Ni(II):Co(II) molar ratio, the 

resulting material is essentially constructed by isolated or randomly organized bundles of few 
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nanorods (Fig. 1b). Nevertheless, upon increasing the Co(II) amount at the expense of Ni(II), 

the material becomes progressively more ordered (Fig. 1c-1g). Simultaneously, the nanorods 

evolve to nanowires, finally rendering large, elongated mesoporous particles composed of 

hexagonally-arranged nanowires (Fig. 1g). These particles clearly retain the symmetry of the 

parent 2D hexagonal silica (see Supporting Information, Fig. S1, for TEM images of the 

SBA-15 silica template).  

Fig. 2 shows High Resolution TEM (HRTEM) images of the powders obtained from 1:0, 

0.5:1 and 0:1 Ni(II):Co(II) molar ratios. The evolution from defectively connected, twisted 

nanorods towards straight nanowires is evident as the Co(II) content increases. The nanowires 

shown in Fig. 2b and 2c have diameters ca. 7.5 nm, while the nanorods in Fig. 2a appear to be 

thinner in some regions. In all cases, lattice fringes are observed in the TEM images, 

revealing the high crystallinity of the powders. In Fig. 2a the 2.4 Å periodicity of the observed 

fringes is compatible with the distance expected between the (111) planes of face-centered 

cubic NiO (JCPDF 73-1519). The fringes in Fig. 2b can be assigned to the (111), (220), (311) 

and (400) (4.7 Å, 2.8 Å, 2.4 Å and 2.0 Å respectively) reflections of NiCo2O4 spinel (JCPDF 

73-1702). Analogously, the fringes in Fig. 2c are assigned to the Co3O4 spinel (JCPDF 71-

0816). Note also that different wires show different growth orientations, implying that the 

confined growth does not determine the growth direction.  

 

2.2 Structural characterization 

In order to further corroborate the dependence of the degree of order on the Ni(II):Co(II) 

molar ratio, low-angle X-ray diffraction (XRD) patterns were acquired. Fig. 3 shows the low-

angle region of the SBA-15 silica host along with the templated materials after silica removal. 

The former exhibits three well-resolved peaks associated with the (100), (110) and (200) 

reflections of the p6mm hexagonal symmetry demonstrating its high degree of order.[8] For the 

replicated materials, the detection of the characteristic mesostructure reflections is clearly 
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linked to the Ni(II):Co(II) molar ratio. As this ratio is decreased below 1:1, the low-angle 

reflections begin to appear, indicating the formation of ordered domains.[23] This clearly 

confirms that the degree of order depends markedly on the Ni(II):Co(II) molar ratio, in 

agreement with TEM observations.  

The wide-angle XRD patterns of the synthesized powders, plotted in a 3D graph, are shown in 

Fig. 4a. Broad reflections were observed in all patterns, indicating the existence of 

nanocrystalline phases. Successful removal of the silica template was assessed from the 

absence of a wide reflection at around 2θ = 25º. In fact, silicon was not detected by energy 

dispersive X-ray analyses (EDS) performed in the TEM either. Table 1 lists the cell parameter, 

a, crystallite size, <D>, and phase amount (in wt%) extracted from the Rietveld refinement of 

the XRD patterns. The diffactograms in green and red color belong to the materials obtained 

from single precursor and are assigned to cubic NiO and Co3O4 phases, respectively. Within 

the range where mixed precursors were used, i.e. 1:0.11-0.11:1 Ni(II):Co(II) molar ratios, 

either two or three phases coexisted. With decreasing the nickel nitrate precursor amount in 

the synthesis, the XRD patterns show the presence of NiO together with NiCo2O4 spinel phase. 

As can be seen in Fig. 4b, the amount of nickel cobaltite progressively increases at the 

expense of NiO up to a maximum of about 97 wt%, which corresponds to the nominal molar 

ratio (0.5:1) theoretically needed to obtain the stoichiometric NiCo2O4 spinel (see pattern in 

blue). However, the pure NiCo2O4 phase is not formed, but a nickel-deficient off-

stoichiometric NiCo2O4 phase accompanied by NiO impurities is obtained. With decreasing 

further the amount of nickel nitrate precursor beyond the 0.5:1 Ni(II):Co(II) ratio towards the 

0.11:1 ratio, the XRD patterns show the presence of an additional phase (Co3O4). The amount 

of Co3O4 increases while the NiCo2O4 one falls (see Fig. 4b and Table 1) as the Ni precursor 

is reduced.  Nevertheless, the presence of NiO is still detected even for low Ni(II) contents 

(e.g., in Fig. S2 the XRD pattern corresponding to the 0.25:1 Ni(II):Co(II) molar ratio is 

shown, where the NiO peaks are indicated). Note that discriminating between the NiCo2O4 
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and Co3O4 phases, both of which have a spinel structure, is not straightforward. Their XRD 

patterns are almost identical and the close inspection of high angle reflections is necessary to 

assess the presence of Co3O4. At this point it should be emphasized that the extracted phase 

weight amounts should not be taken quantitatively, but from a qualitative viewpoint. The 

Rietveld analysis of a multi phase sample is an extremely complex refinement process and the 

weight fraction is strongly correlated with the most of the refined parameters. However, the 

obtained values are fully consistent with the magnetic response displayed by the powders as it 

will be shown later. The lattice parameter of the spinel NiCo2O4 deviates from the bulk lattice 

constant (a = 8.114 Å) (Table 1). It should be kept in mind that the NiCo2O4 phase is probably 

nickel-deficient, that is, slightly out of the ideal stoichiometry, since some NiO segregates 

from the spinel during the calcination step.[14] Partial decomposition of the spinel into NiO is 

known to occur above 400−500 °C.[24] This feature could in fact contribute to the observed 

cell parameter values. The lattice constants of both NiO and Co3O4 also deviate from their 

bulk values (4.168 Å and 8.065 Å, respectively).  

Interestingly, the Brunauer-Emmett-Teller (BET) analyses show that moderately large surface 

areas are obtained independently of the replica morphology. For example, pure NiO and 

Co3O4 powders have BET surface areas of about 74 m2/g and 64 m2/g, respectively. These 

values are close to the ones reported in the literature for hard-templated nickel and cobalt 

oxides and would justify their use in catalysis applications.[25,26] Meanwhile, the NiCo2O4/NiO 

composite derived from the 0.5:1 Ni(II):Co(II) molar ratio, thus having the maximum 

NiCo2O4 amount, exhibited a BET surface area of 81 m2/g, which also compares nicely with 

mesoporous NiCo2O4 synthesized by one-step nanocasting as well as aerogels produced by 

sol-gel routes.[19,27] Typical isotherms are shown in Figure S3 (Supporting Information). 

Importantly, the multi-step nanocasting approach has the advantage that it overcomes the 

structural instability encountered in soft-chemistry approaches and does not require specific 

equipment such as supercritical dryers commonly employed in aerogel synthesis. 
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In order to clarify the origin of the correlation between the degree of order and the different 

precursors, thermogravimetric analyses (TGA) of the metal nitrate salts were carried out. Fig. 

5 shows the TGA mass/temperature curves of nickel nitrate, cobalt nitrate and a mixture of 

metal nitrates in 0.5:1 Ni(II):Co(II) molar ratio. It can be seen that the different steps, i.e., loss 

of adsorbed water, further decomposition of the nitrates and final oxide crystallization, occur 

at lower temperature for cobalt nitrate compared to nickel nitrate. On the other hand, 

decomposition/crystallization of the mixed nitrates, from which the NiCo2O4 spinel is mainly 

formed, occurs at intermediate temperatures. It is thus likely that the growth of the different 

constituents (NiO, Co3O4 and NiCo2O4) in the silica channels during calcination takes place at 

different temperatures and therefore, on different time scales. This would severely hinder the 

growth of long wires especially in the case of the NiO/NiCo2O4 composites. Since the 

NiCo2O4 phase forms at lower temperature compared to NiO, this results in the formation of 

discontinuous nanorods due to an inhomogeneous material growth. Upon dissolution of the 

silica template, the short nanorods are not able to keep the self-supported periodic 

arrangement. The same behaviour was observed for impregnated silica (i.e. when performing 

the thermal analyses of the metal nitrates inside the silica pores). As shown schematically in 

Fig. 6a inhomogeneous oxide growth inside the silica template leads to nanorods after silica 

removal, whereas continuous filling generates the mesoporous replica (Fig. 6b). Within the 

NiO/NiCo2O4 series, such effect becomes more pronounced as the Ni(II):Co(II) molar ratio 

increases, highlighting the fact that the interaction between different guests determines the 

final morphology of the replicas. 

 

2.3 Magnetic properties 

Fig. 7 shows that the combination of ferrimagnetic (FiM) and antiferromagnetic (AFM) 

phases allows for a tuning of both the saturation magnetization, MS, and the coercivity, HC, of 

the composites. First of all, it should be stressed that the response of mesoporous pure Co3O4 



 

 - 10 - 

is typical of an AFM material, in which the magnetization increases almost linearly with the 

magnetic field, while the AFM NiO powder displays a hysteresis loop that can be understood 

on the basis of finite size effects well described for NiO nanoparticles.[28] These results are 

consistent with studies of mesoporous NiO and Co3O4.[29-31] The presence of NiCo2O4 spinel 

phase in the composites gives rise to clear hysteresis loops owing to its FiM nature. 

The experimental magnetization has been found not to saturate even at the maximum applied 

field (70 kOe), as expected from the contribution of AFM phases and magnetic surface 

disorder effects often observed at reduced dimensions.[32,33] The MS obtained after subtracting 

the linear contribution, increases with the amount of NiCo2O4 (Table 2), which confirms that 

this compound definitely forms instead of, for example, a NiO-Co3O4 solid solution. The 

increase of MS with the amount of NiCo2O4 spinel is in agreement with the refined phase 

percentage estimated by means of XRD. The composite with the highest NiCo2O4 spinel 

amount (97 wt%) has MS of 24 emu/g, slightly lower than in mesoporous pure NiCo2O4 (26 

emu/g)[14] and bulk NiCo2O4 (29 emu/g).[34] Remarkably, the high field susceptibility of the 

loops depends significantly on the composition of the material, being larger for composites 

containing Co3O4. This is likely caused by the difference in AFM susceptibility between NiO 

and Co3O4 (see Fig. 7). This demonstrates that magnetic measurements are a powerful 

fingerprint of the presence of phases with dissimilar magnetic properties in the composites. 

Importantly, the coercivity exhibits a non-monotonic behaviour, reaching values in excess of 

HC = 1600 Oe for composites containing similar amounts of NiO and NiCo2O4 (see Table 2). 

Due to the morphology and composition of these materials, HC is likely to have two main 

contributions apart from magnetocrystalline anisotropy: shape anisotropy and AFM-FiM 

exchange coupling. As the material transforms from nanorods to nanowires, their shape 

anisotropy increase significantly leading to an increase in coercivity.[35,36] Moreover, when 

FiM materials are exchange coupled to AFMs and the latter has a low anisotropy (like in the 

case of NiO) the FiM has to drag the spins of the AFM during the reversal which costs an 
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extra energy resulting in an increased HC. Since this is an interface effect, the amount of AFM 

material and the degree of coupling determine the coercivity enhancement.[37,38] Moreover, 

FiM materials are known to have magnetic disorder at the surface, which depends on the 

shape, that also contributes to HC at low temperatures.[37,39] 

Interestingly, the composites are still FiM at room temperature (Fig. 8), i.e., the 

superparamagnetic blocking temperature, TB, is higher than 300 K. In particular, the 

composites rich in NiCo2O4 exhibit MS in the range of MS ~ 2-3.5 emu/g and moderate 

coercivities HC ~ 50-300 Oe. In spite of the fact that the bulk Curie temperature of NiCo2O4 is 

well above room temperature (TC = 500 oC),[33] the magnetic stability of the composites at 

room temperature is somewhat surprising, given the small volume, V, and the rather low 

anisotropy, K, of NiCo2O4
[24] (since TB = KV/25kB,[40] where kB is the Boltzman constant). 

Probably the enhanced TB is due to an increased of the effective anisotropy due to the shape 

anisotropy[36] and the FiM-AFM exchange coupling.[41] 

The room temperature FiM character of the samples results in another appealing effect. 

Namely, the powders are strongly attracted to a small tabletop magnet (see Fig. 9) and can 

consequently be easily manipulated using small fields. This opens new perspectives for 

applications of these materials since by using magnetic fields they can be moved to or trapped 

in specific locations where the desired application wants to be implemented.  

 

 

3. Conclusions 

Nickel- and cobalt-based mesoporous composites have been prepared by nanocasting from 

SBA-15 silica templates. Depending on the Ni(II):Co(II) molar ratio of the precursors, the 

nanocast NiO/NiCo2O4/Co3O4 composites show distinct morphology and order, from 

disordered nanorods at high ratios to hexagonally-packed nanowires at low ratios. The 

materials are ferrimagnetic at low temperatures with a maximum MS of 24 emu/g (for the 
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sample with 97 wt% of NiCo2O4) and HC > 1600 Oe (for the sample containing 53 wt% of 

NiCo2O4). The combination of FiM and AFM phases allowed for a fine tuning of the 

magnetic properties. Moreover, the synthesized nanocomposites are ferromagnetic at room 

temperature and can be easily manipulated using small fields. Applications of these hybrid 

materials, which have been largely overlooked in the past, are expected to grow in the near 

future by virtue of the interesting properties derived from the nanoscaling. 

 

4. Experimental Section 

Unless stated, chemicals used in all syntheses were purchased from Sigma-Aldrich and used 

without further purification. Reagent-grade (Milli-Q) water was also used. 

Mesoporous silica SBA-15 was synthesized by dissolving 6.0 g of Pluronic P123 copolymer 

(BASF corporation) in diluted HCl. Tetraethyl ortosilicate (12.5 g), which served as the 

silicon source, was then added and the solution stirred for 24 h at a constant temperature 

(about 37 ºC). The hydrothermal treatment was carried out at 90 ºC in a sealed container and 

the solid obtained was filtered, copiously washed with water and finally calcined at 550 ºC for 

5 h to remove the organic surfactants.  

For the synthesis of the replicas, 0.150 g of mesoporous silica template was mixed with x g of 

Ni(NO3)2·6H2O plus (0.291 – x) g of Co(NO3)2·6H2O (99.999% purity) dissolved in ethanol. 

The total metal nitrate amount was kept at 1 mmol. The Ni(II):Co(II) molar ratio was varied 

as follows: 1:0, 1:0.11, 1:0.25, 1:0.43, 1:0.67, 1:1, 0.67:1, 0.5:1, 0.25:1, 0.11:1, 0:1. The 

mixtures were stirred for 30 min in a crucible and left for ethanol evaporation overnight. The 

crucible was then placed in a tubular furnace and the impregnated silica was calcined. The 

furnace temperature was increased to 550 ºC at a rate of 3 ºC/min and held at this temperature 

for 4 h in air. At the end of this process, the furnace was slowly cooled down to room 

temperature. Note that calcination at 550ºC leads to an increased thermal stability of the 

porous network compared to treatments at lower temperatures.[14] The silica matrix was 
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removed with 30 mL of 2 M NaOH solution at 70 ºC under stirring. The powder was 

collected after centrifugation and decanted off the supernatant, copiously rinsed in absolute 

ethanol and finally dried in vacuum. The formation of metal oxides from metal nitrates was 

quantitative in all cases. 

The synthesized composites were characterized by transmission electron microscopy (TEM), 

X-ray diffraction (XRD), Brunauer-Emmett-Teller method (BET) surface area analysis, and 

magnetic measurements. TEM characterization was performed on a Jeol-JEM 2011 

microscope operated at 200 kV. The samples for TEM were prepared by dispersing a small 

amount of the powder in ethanol and then one or two drops of the suspension were deposited 

onto a holey carbon supported grid. Low-angle XRD patterns were recorded on a Panalytical 

X’Pert Pro diffractometer operating in transmission mode with Cu K radiation. Wide-angle 

XRD patterns were collected on a Phillips X’Pert diffractometer in the 15-90º 2 range using 

Cu K radiation. The structural parameters were evaluated by fitting the XRD patterns over 

the entire measured profile using the ‘Materials Analysis Using Diffraction’ (MAUD) 

Rietveld refinement program.[42,43] BET analyses were performed on a Micromeritics ASAP 

2020 accelerated surface area and porosimetry analyzer. The magnetic properties were studied 

by measuring hysteresis loops at low and room temperatures using a MPMS-XL7 

Superconducting Quantum Interference device (SQUID) and a vibrating sample 

magnetometer (VSM) from Oxford Instruments, respectively. The SQUID hysteresis loops 

were recorded in the 70 kOe range at 10 K after zero-field-cooling (ZFC) from room 

temperature. Thermogravimetric Analysis (TGA) of the metal nitrate precursors was carried 

out using a Perkin Elmer TGA7 equipment. The nitrate salts were placed in an alumina 

crucible and heated from ambient temperature to 550 ºC in air (flow rate 20 mL/min; heating 

rate 10 °C/min). 
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Fig. 1. TEM images of powders synthesized using different Ni(II):Co(II) molar ratios: a) 1:0, 

b) 1:0.11, c) 1:0.67, d) 1:1, e) 0.67:1, f) 0.25:1, g) 0.11:1 and h) 0:1. 
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Fig. 2. HRTEM images of powders synthesized using a) 1:0, b) 0.5:1 and c) 0:1 Ni(II):Co(II) 

molar ratios. The marked interplanar distances belong to a) face-centered cubic NiO, b) 

NiCo2O4 spinel and c) Co3O4 spinel. 
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Fig. 3. Low-angle XRD patterns of nanocast powders obtained from a) 0.11:1 , b) 0.25:1, and 

c) 0.67:1 Ni(II):Co(II) molar ratios. The inset shows the low-angle XRD pattern of SBA-15 

silica template. 
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Fig. 4. a) XRD patterns of the synthesized powders. The patterns are shifted along the z-axis, 

which corresponds to the amount of nickel nitrate precursor used in the synthesis. For clarity, 

the patterns of pure NiO, almost pure NiCo2O4 and pure Co3O4 are in green, blue and red 

colors respectively. b) Variation of the refined phase percentages as a function of the nickel 

nitrate amount used in the synthesis. The solid lines are an eye-guide. 
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Table 1. Cell parameter (a), crystallize size (D) and phase amount (wt%) values extracted from Rietveld refinement of the full XRD patterns. The 

standard deviations from the refinements are given in brackets. 

 

  NiO (Fm3m) NiCo2O4 (Fd3m) Co3O4 (F43m) 

Ni(II):Co(II) molar 

ratio 

wt% nickel 

nitrate 

a 

(5 x 10–3 Å) 

D 

(5 nm) 

wt% 

(5) 

a 

(5 x 10–3 Å) 

D 

(5 nm) 

wt% 

(5) 

a 

(5 x 10–3 Å) 

D 

(5 nm) 

wt% 

(5) 

1:0 100 4.177 22 100 -- -- -- -- -- -- 

1:0.11 90 4.177 18 95 8.135 11 5 -- -- -- 

1:0.25 80 4.172 14 84 8.132 11 16 -- -- -- 

1:0.43 70 4.177 13 58 8.129 13 42 -- -- -- 

1:0.67 60 4.183 13 47 8.143 16 53 -- -- -- 

1:1 50 4.179 12 30 8.142 15 70 -- -- -- 

0.67:1 40 4.166 19 5 8.130 17 95 -- -- -- 

0.5:1 33 4.177 11 3 8.124 17 97 -- -- -- 

0.25:1 20 4.182 15 3 8.113 22 92 8.091 34 5 

0.11:1 10 4.182 22 3 8.102 25 31 8.077 26 66 

0:1 0 -- -- -- -- -- -- 8.070 21 100 
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Fig. 5. TGA curves of Ni(NO3)2·6H2O, Co(NO3)2·6H2O and a mixture of these nitrates in 

0.5:1 Ni(II):Co(II) molar ratio.  
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Fig. 6. Schematic picture of material crystallization inside the SBA-15 silica matrix and the 

morphology resulting after silica removal in the case of a) inhomogeneous and b) complete 

filling of the silica channels. 
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Fig. 7. Hysteresis loops at 10K of various composites (the corresponding refined NiCo2O4 

phase percentages are given in the left side) together with pure Co3O4 and NiO. An enlarged 

view at low fields is shown in the inset. 
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Table 2. MS and HC values extracted from the hysteresis loops at 10K of the synthesized 

powders after subtracting the high-field linear contribution. 

 

wt% 

nickel nitrate 
Phases present 

MS 

(emu/g) 

HC 

(Oe) 

100 NiO* 0.5 4032 

90 95 wt% NiO / 5 wt% NiCo2O4 1 215 

80 84 wt% NiO / 16 wt% NiCo2O4 2 918 

70 58 wt% NiO / 42 wt% NiCo2O4* 9 1596 

60 47 wt% NiO / 53 wt% NiCo2O4* 13 1608 

50 30 wt% NiO / 70 wt% NiCo2O4* 17 1308 

40 5 wt% NiO / 95 wt% NiCo2O4 22 981 

33 3 wt% NiO/ 97 wt% NiCo2O4* 24 860 

20 3 wt% NiO / 92 wt% NiCo2O4 / 5 wt% Co3O4 19 429 

10 3 wt% NiO / 31 wt% NiCo2O4 / 66 wt% Co3O4* 5 169 

0 Co3O4* -- -- 

*The corresponding loops are displayed in Fig. 7. 
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Fig. 8. Room temperature hysteresis loops of the composites with 95 wt% () and 53 wt% () 

NiCo2O4 spinel. An enlarged view at low fields is shown in the inset. 
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Fig. 9. Photos showing a) the blackish powder corresponding to the nanocomposite with 95 

wt% NiCo2O4 and b) the powder being strongly attracted to the magnet when this is brought 

near the vial. 
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Fig. S1. TEM images of the SBA-15 silica template. 
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Fig. S2. Experimental pattern (), Rietveld fitting (solid line) and Rietveld difference between 

the original and computed spectra (at the bottom) of the powder obtained from 0.25:1 

Ni(II):Co(II) molar ratio of the metal precursors. The peaks at 2θ = 43.4º and 63.0º 

correspond to the (200) and (220) reflections, respectively of the NiO phase (JCPDF 73-1519). 

Goodness of fitting, Rw = 9.27. 
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Fig. S3. Typical N2 adsoption-desorption isotherms and corresponding BET areas of the 

powders obtained form the indicated Ni(II):Co(II) ratios.  


