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Abstract— This paper presents a novel synthesis technique
for coupled-resonator filters with frequency-dependent couplings.
Unlike the works so far appeared in the literature, the proposed
technique is not based on the optimization of a network with
assigned topology, but it consists in the explicit synthesis of a
folded prototype with frequency-dependent transversal couplings.
The proposed procedure starts with the synthesis of a new
type of canonical prototype with frequency-invariant couplings
(the asymmetric lattice); this prototype is then suitably trans-
formed by means of scaling and rotations of coupling and
capacitance matrices for obtaining the new configuration with
frequency-dependent couplings. Concerning the asymmetric lat-
tice prototype, we show how this canonical network degenerates,
in a special case, into the cul-de-sac form; this happens when
the assigned reflection zeros are imaginary (or in pairs with
opposite real part). This also implies that cul-de-sac is admissible
only when reflection zeros satisfy this condition. The novel
synthesis approach is illustrated with several examples. A test
diplexer employing filters with frequency-dependent couplings
has been designed and fabricated for validating the novel
synthesis approach.

Index Terms— Coupling matrix synthesis, frequency-
dependent couplings, generalized Chebyshev filters.

I. INTRODUCTION

THE design of microwave filters exhibiting trans-

mission zeros is today faced with well established

procedures [1]–[3] that typically start with the synthesis of

a low-pass prototype network composed of ideal lumped 
components (inverter and capacitors/inductors). The most used

configurations are those based on cross-coupled topologies,

because they allow flexibility and compactness in the final 
implementation. However, new solutions are being considered

in the last years in order to further reduce the overall size and 
facilitate the implementation of high-selectivity microwave

filters in an integrated environment. In this direction are

the works recently appeared in the literature concerning the 
implementation of transmission zeros by means of frequency-

dependent couplings [4]–[14]. Some works [4], [5] actually

introduce the frequency variation of the couplings in order 
to develop a more accurate modeling of real filters (allowing

a more accurate design, especially in the case of moderate
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and large bandwidth). More recently, the use of frequency-

variable couplings has been exploited for introducing trans-

mission zeros in the frequency characteristic. Amari and

Bornemann [6] propose the use of resonant inverters in inline

filters for getting imaginary transmission zeros. A similar

solution is also presented in [7]; in both these works, the

filters are initially synthesized assuming ideal inverters and

optimization is then used for taking into account the resonating

characteristic of the couplings. Another group of works inves-

tigates the possibility of realizing cross-coupled filters with

some frequency-dependent couplings [8]–[14]. In this case,

the implementation of the zeros is not directly related to the

resonance of a coupling but just on its variation with frequency

(always assumed linear). Combining cross-couplings with

frequency-dependent couplings allows reducing the overall

number of couplings for a given set of transmission zeros.

Moreover, it is shown in [4] that any prototype network with

couplings linearly variable in frequency can be transformed

into a new network with constant couplings. This means

that, starting from the characteristic polynomials defining the

generalized Chebyshev characteristic [1], it must be possible

to synthesize a network with variable couplings exhibiting

such characteristic. The point, however, is that, unlike the

prototype with constant couplings, there is no general syn-

thesis technique allowing the design of a prototype including

frequency-dependent couplings. For this reason, all the works

in the literature on this topic [4]–[14] approach the design of a

prototype with assigned topology (and number of frequency-

variant couplings) by means of optimization. In addition,

also the choice of the topology represents an open point:

in fact, the minimum path rule [15] does not hold

for networks with frequency-dependent couplings. Conse-

quently, we are not able to know, before the optimiza-

tion completes successfully, if a network with assigned

topology and frequency-variant couplings can be actually

synthesized.

In order to overcome the mentioned drawbacks, we

present, in this paper, a novel synthesis procedure for gen-

eral low-pass prototype with folded topology and transver-

sal cross-couplings linearly variable with frequency [16].

In Sections II and III, we introduce and discuss the asymmet-

ric lattice network, a prototype with frequency-independent

couplings, which is a generalization of the symmetric lattice

proposed by Bell [17]. In particular, the strict relationship

between this topology and cul-de-sac form introduced by

Cameron et al. [18] is pointed out. Then, a procedure for

transforming the asymmetric lattice network into a canonical

prototype with frequency-variable couplings is described. In

Section IV, several synthesis examples, which illustrate the



Fig. 1. Asymmetric lattice network. (a) Even order. (b) Odd order. The
solid lines represent ideal admittance inverters and the black nodes are unit
capacitances in parallel to frequency-invariant susceptances. Coupling S-L

(not reported here) is requested when the number of transmission zeros is
equal to the number of poles.

features of the proposed procedure and its advantages, are

presented. Finally, Section V describes how to approach the

implementation of frequency-variable couplings and reports an

example of a fabricated diplexer including frequency-variable

couplings, designed with the proposed technique.

II. SYNTHESIS OF THE ASYMMETRIC LATTICE NETWORK

The asymmetric lattice network here introduced is shown

in Fig. 1. Unlike the symmetric one proposed by Bell [17],

the asymmetric lattice has unequal oblique cross couplings

in each lattice block, while the vertical couplings are absent.

Note that we have not included the coupling S-L, which is,

however, required for a fully canonical characteristic.

To synthesize the asymmetric lattice, we start with the

evaluation of the characteristic polynomials defining the

two-port S matrix of the filter (many methods are available

in the literature [1])

S =

[

F(s) P(s)

P(s) (−1)N p F∗(s)

]

/E(s). (1)

Using the polynomials F , P , and E , we synthesize the

folded canonical prototype [1], represented by the coupling

matrix M . Then, the lattice topology is obtained with a

sequence of rotations of M that annihilate all the vertical cross

couplings. Assuming [i, j ] as the cross-pivots coordinates, the

rotation angles are given by

θk =
1

2
tan−1

(

2Mi j

M j j − Mii

)

k = 1 . . . m, i, j = 0 . . . N p+1

m =
N p

2
, i = m + 1 − k, j = m + k (N p even)

m =
N p − 1

2
, i = m + 1 − k, j = m + k + 1 (N p odd).

(2)

Note that these rotations are the same used in [1, p. 338]

for generating the cul-de-sac configuration in the case of

N p even. This means that there is a strict relation between the

asymmetric lattice and the cul-de-sac. In fact, if the roots of

F(s) are imaginary or in para-conjugate pairs, the asymmetric

lattice degenerates into a cul-de-sac form.

Fig. 2. Synthesis by extraction of the lattice network. Each thick line in
network N1 is an ideal admittance inverter with parameter Jk .

A. Synthesis of the Asymmetric Lattice by Extractions

For demonstrating the last statement, an alternative approach

to the synthesis of the asymmetric lattice is used. The synthesis

is carried out through the iterative extraction of a basic lattice

block constituted by four cross-coupled admittance inverters

and two admittances Y1, and Y2 (Fig. 2). Note that this

extraction involves input and output ports simultaneously.

The extractions are performed on the Y matrix of the filter,

which is defined as

Y =

[

n1(s) −P(s)
−P(s) n2(s)

]

/d(s) (3)

with

n1 =
1

2
[E − (−1)N p E∗ + (−1)N p F∗ − F]

n1 =
1

2
[E − (−1)N p E∗ − (−1)N p F∗ + F]

d =
1

2
[E + (−1)N p E∗ + (−1)N p F∗ + F].

Without loss of generality, in the following, it is assumed that

the source–load direct coupling is already removed, and there-

fore the degree of polynomial P is at most N p − 1. It is also

assumed that no frequency-invariant susceptance to ground is

present at source and load nodes. Under these conditions, the

degree of polynomial d is N p, that of polynomials n1 and n2

is N p −1. The four-port network N1 in Fig. 2 is comprised of

four admittance inverters connecting the source and load ports

to the input and output ports of the remainder network N2.

Its admittance matrix YJ is thus given by

YJ = j

⎡

⎢

⎣

0 0 J1 Jx1

0 0 Jx2 J2

J1 Jx2 0 0
Jx1 J2 0 0

⎤

⎥

⎦
. (4)

Without loss of generality, we impose J1 = J2 = 1, which sets

the level of admittance of the network. After some algebraic

manipulations, it is found that the elements of the Y matrix



of remainder network N2 can be expressed as

n′
1 = n2 + J 2

x2n1 + 2Jx2 p

n′
2 = n1 + J 2

x1n2 + 2Jx1 p

−P ′ = (1 + Jx1 Jx2)p + Jx1n2 + Jx2n1. (5)

The goal of the extraction is to remove two transmission zeros

from network N. We then choose Jx1 and Jx2 so that the

degree of P ′ is dropped down to N p-3, i.e., the coefficients

of degree N p-1 and N p-2 of polynomial P ′ (here denoted as

p′
(N−1) and p′

(N−2)) vanish
{

(1 + Jx1 Jx2)p(N−1) + Jx1n2,(N−1) + Jx2n1,(N−1) = 0

(1 + Jx1 Jx2)p(N−2) + Jx1n2,(N−2) + Jx2n1,(N−2) = 0.
(6)

The next step is the extraction of (c1, b1) and (c2, b2) at

the input and output of the network N2.

Let Y1(s) = c1s + jb1 and Y2(s) = c2s + jb2 be the

admittances to be removed. The elements of the Y matrix of

remainder network N3 are then given by

n′′
1 = n′

1 − Y1(s) · d ′

n′′
2 = n′

2 − Y2(s) · d ′

P ′′ = P ′

d ′′ = d ′. (7)

For reducing the degree of network N3 by 2, we choose

the four parameters c1, b1, c2, and b2 so that the degree of

polynomials n′′
1 and n′′

2 is dropped down to N p-3, i.e., so that

the coefficients n′′
1,(N p−1), n′′

1,(N p−2), n′′
2,(N p−1), and n′′

2,(N p−2)
vanish

c1 = n′
1,(N p−1)/d ′

(N p−2)

c2 = n′
2,(N p−1)/d ′

(N p−2)

jb1 =
(

n′
1,(N p−2) − c1d ′

(N p−3)

)

/d ′
(N p−2)

jb2 =
(

n′
2,(N p−2) − c2d ′

(N p−3)

)

/d ′
(N p−2). (8)

It can be shown that the polynomial d ′′ of the remainder

network N3 as computed with (7) is of degree N p-2. Since the

degree of polynomials n′′
1 , n′′

2 , and p′′ is N p-3, the network

N3 is actually a “reduced” version of the original network N.

The synthesis procedure can then continue by reiterating the

two steps just described, obtaining the topologies in Fig. 1.

Note that for N p odd, the network N3 at last step reduces to

a simple network of degree one.

It is worth noting that in the most general case, in view

of the fact that (6) is a system of nonlinear equations, the

asymmetric lattice network is not unique for a given response.

In fact, at each synthesis step, if (Jx1, Jx2) is a solution of (6)

then (1/Jx1, 1/Jx2) is also a solution.

B. Special Case: Derivation of Cul-De-Sac Topology

The case where n1 = n2 = n is of special interest, since it

often occurs in the design of standalone filters. In fact, under

this condition, (6) imposes Jx1 = −Jx2 = ±1, so (5) becomes

n′
1 = 2(n ∓ p)

n′
2 = 2(n ± p)

P ′ = 0

d ′ = 4d. (9)

Fig. 3. Lattice network for n1(s) = n2(s).

Since P ′ = 0, the network N3 is comprised of two disjoined

one-port networks of admittances Y1(s) = n′
1/d ′ and Y2(s) =

n′
2/d ′ that are best synthesized separately. It can be shown

that all the roots of d ′ are also the roots of the product n′
1 ·n′

2.

Cancellation will then occur in Y1(s) and Y2(s) in such a way

that the sum of the degrees N1 and N2 of Y1(s) and Y2(s),

respectively, is exactly N p. The resulting topology is one

of the possible forms of Cul-de-sac topology and is shown

in Fig. 3.

This form of the cul-de-sac can accommodate up to

N p-1 transmission zeros (N p with the S-L coupling present).

From (3), it can be seen that the condition n1(s) = n2(s)

implies (−1)N p F∗ = F , and that is verified only if the

roots of F(s) are imaginary or in para-conjugate pairs. As

a consequence, the asymmetric lattice always degenerates into

the cul-de-sac for isolated filters exhibiting the generalized

Chebyshev characteristic (the statement at the end of the

Section II introduction is then demonstrated).

As a further consequence of this result, filters with complex

reflection zeros arbitrarily placed (e.g., those constituting the

channels in multiplexers) cannot be synthesized in cul-de-sac

form. If the generation procedure in [1] (based on matrix

rotations of the folded prototype coupling matrix) is applied

to these filters, the asymmetric lattice topology is instead

obtained.

III. SYNTHESIS OF A CANONICAL PROTOTYPE WITH

FREQUENCY-DEPENDENT COUPLINGS

The lattice network (Fig. 1) can be further manipulated

to provide alternative realizations. Let M and C be the

coupling and capacitance matrices, respectively, of the syn-

thesized filter in Fig. 1(a). We assume that the admittance

levels of the network have been normalized to unity, i.e., the

diagonal of matrix C contains only ones as nonzero elements

(excluded first and last elements that are zero). Referring to

Fig. 1(a) (N p = 10), a rotation with pivot (1, N p) and angle

α1 = − tan−1(MS,N p/MS,1) can be performed to annihi-

late coupling (S, N p). Similarly, a rotation with the same

pivot (1, N p) and angle α2 = tan−1(M1,L/MN p,L ) can be

performed to annihilate coupling (L, 1). In both the cases,

the coupling (1, N p) will be generated. In general, the

two angles α1 and α2 are different and both the two cou-

plings cannot be eliminated simultaneously. This result can

be, however, obtained with a further manipulation of M .

Let us assume in fact to multiply the capacitance of node 1

by the following value:

C ′
1 = −

M(S, N p)M(N p, L)

M(S, 1)M(1, L)
. (10)

In order to maintain the response unchanged, row and

column 1 of M must be multiplied by

√

C ′
1 obtaining the



Fig. 4. Folded topology with frequency-variant couplings.

matrix M ′. Now, computing α1 and α2 from the element of M ′,

we get α1 = α2 = α and rotation of M ′ with pivot (1, N p) and

angle α will annihilate both couplings (S, N p) and (L, 1) of

matrix M ′ simultaneously. Of course, the same rotation needs

to be carried over C as well, producing the matrix C ′ which

includes a frequency-dependent coupling (positive or negative)

in position (1, N p).

The above-mentioned operations can be reiterated

N p/2 times by assigning M ′ → M and C ′ → C . The

resulting networks for N p even and odd are shown in Fig. 4,

where the frequency-dependent couplings are marked with

an arrow and are constituted by admittance inverters with

parameter Ji, j = Mi, j + � · Ci, j .

It must be observed that not all the transversal couplings are

necessarily frequency-variant. Some of them might be constant

or might be even absent (depending on the imposed number of

transmission zeros). Moreover, the sign of a frequency variant

couplings Ci j can be changed by multiplying row and column

i or j of M and C by −1.

IV. EXAMPLES

The first example here reported concerns the nonfeasibility

of cul-de-sac form in the case of the filters in a multiplexer.

Let us consider the following diplexer specification in the low-

pass normalized domain (RL is the passband return loss):

Rx: B = [−1,−0.084] RL = 20 dB N prx = 6

f znrx = [.4337i, .6906i ]

Tx: B = [0.4094, 1] RL = 20 dB N pt x = 5

f znt x = [−.4122i,−.111i ].

The characteristic polynomials of star-junction diplexer have

been evaluated using the procedure illustrated in [19], assum-

ing the shunt connection of the two filters at the input port. The

filters are then synthesized with the folded topology and trans-

formed with the rotations sequence described in Section II.

The form finally obtained (Fig. 5) is the asymmetric lattice

being the cul-de-sac not permitted in this case (reflection zeros

not imaginary). The response of the diplexer is shown in Fig. 6.

The diplexer can be transformed in order to include

frequency-variable couplings. To this end, we have applied the

transformation explained in Section III to M and C matrices

of both filters. The topology becomes that reported in Fig. 7

(the response remains the same as shown in Fig. 6).

Fig. 5. Diplexer with asymmetric lattice filters. Numbers represent the
elements of the coupling matrices of the two filters obtained after the rotation
from (2).

Fig. 6. Response of the synthesized diplexer.

The second example is taken from [8, Example 3]. It refers

to an isolated filters with N p = 5, RL = 20 dB, and

f z = [−2.3i,−1.5i, 1.2i, 1.8i ]. In this case, the synthesis of

the asymmetric lattice produces the cul-de-sac form [Fig. 8(a)],

which is transformed into the folded form with two frequency-

dependent couplings [Fig. 8(b)] when the transformation of

Section III is applied.

Note that, the elements of matrices C and M in Fig. 8(b)

are practically coincident with those reported in [8, Table I].

The frequency response is not reported here, because it is

coincident with that in [8, Fig. 3].

The last example shows how the synthesis of a prototype

with frequency-dependent couplings can be carried out with

the proposed approach also with complex zeros (for equalizing

purpose). The filter data are taken from [12]: N p = 5,

RL = 20 dB, and f z = [±2i,±1.5]. The final synthesized

prototype is shown in Fig. 9, together with the frequency

response (transmission and group delay). It can be observed

that all the nodes have zero susceptance, due to the symmetry

of the imposed transmission zeros. Moreover, the frequency-

dependent couplings in this case vanish at the center of the

frequency characteristic (i.e., they resonate at the passband

center frequency in the denormalized frequency domain).



Fig. 7. Diplexer synthesized with frequency-variant couplings.

Fig. 8. Synthesis of filter from [8, Example 3]. (a) Cul-de-sac obtained from
the asymmetric lattice. (b) Transformed topology with frequency-dependent
couplings.

We can also observe that the network in Fig. 9(a) does

not coincide topologically with that reported in [12, Fig. 1],

which includes three frequency-dependent couplings; the two

networks are, however, equivalent, because they exhibit the

same response (generalized Chebyshev characteristic) and a

suitable transformation should exist for transforming one into

the other (this subject, however, needs further investigations).

V. NOTES ON IMPLEMENTATION OF

FREQUENCY-DEPENDENT COUPLINGS

After the synthesis of the prototype, we need to denor-

malize the circuit in order to derive suitable parameters for

dimensioning the physical structure implementing the filter.

We assume that the band-pass domain f is related to the

normalized low-pass domain � by the well-known expression

fn = ( f/ f0 − f0/ f )/Bn , with f0 and Bn center frequency

and normalized bandwidth of the filter, respectively. For all

Fig. 9. Synthesized filter for the last example. (a) Routing scheme.
(b) Transmission (S21) and group delay response.

the resonators and frequency-invariant couplings, the usual

formulas expressing the coupling coefficients, the external

Q values, and the resonating frequencies as function of the

elements of matrix M can be used [2]

f0,i = f0

⎡

⎣

√

1 +

(

Mi,i · Bn

2

)2

−

(

Mi,i · Bn

2

)

⎤

⎦ (11a)

ki, j = Mi, j · Bn

QEXT,S =
1

(Ms,1)2 · Bn

QEXT,L =
1

(MN,L )2 · Bn

. (11b)

For the frequency-dependent couplings, the denormalized

admittance inverters are given by

J̄i, j = Mi, j +
Ci, j

Bn

(

f

f0
−

f0

f

)

. (12)

Unit capacitance resonators and unit loads have been assumed.

Dividing J̄i, j by the equivalent susceptance of the res-

onators (1/Bn), we get the frequency-variant coupling coef-

ficient k̄i, j

k̄i, j = Bn · J̄i, j

= Bn · Mi, j + Ci, j

(

f

f0
−

f0

f

)

∼= k0,i. j + 2Ci, j

(

f

f0
− 1

)

. (13)



Fig. 10. Example of coupled-resonator structure implementing a frequency-
dependent coupling [21], [22].

In practice, we need to look for a physical coupling structure

producing a coupling coefficient at frequency f0 equal to k0,i· j

and vanishing at fz = f0(1 − k0,i, j /2Ci, j ). This result can

be achieved by means of a suitable mix of electrical and

magnetic couplings as shown in the literature in the case of

coaxial coupled resonators [20], [21]. An example is reported

in Fig. 10, where additional inductive and capacitive couplings

are introduced in two coupled comb resonators.

The evaluation of the Y parameters at the reference sections

indicated in Fig. 10 allows the extraction of the frequency-

variant coupling parameters (using a suitable EM software

like HFSS). In fact, from y11 and y12, we can compute k̄1.2

as follows:

k̄1,2 =
2

f0

Im(y12)

∂(Im(y11))/∂ f
. (14)

Fig. 11 shows k̄1.2 and Im(y11) versus frequency for the

structure in Fig. 10, from which we can derive f0 =

724.07 MHz, fz = 776.3 MHz, k0,1,2 = 0.0454, and C1,2 =

−k0,1,2/2( f z/ f0 − 1) = −0.0397.

For dimensioning the filter structure, once the denor-

malized parameters have been computed, the dimensions

affecting the couplings are adjusted until the extracted para-

meters coincide with those computed from the denormalized

circuit.

Using the described approach, a diplexer for mobile com-

munications has been designed and fabricated. It is used in

dual band base station antennas to combine the two input

signals (one at 700 MHz and one at 800 MHz in this case)

onto the same radiating element. When independent electric

tilt between the two bands is required, both input signals

are first split in several copies, which are then individually

phase-shifted and lastly combined in pairs onto the radiating

elements. According to this, the number of diplexers in one

such antenna can be as high as ten or more, and thus the need

of compact filters (as those using inline structures) is evident.

The following specs have been assumed (return loss is 23 dB

for both channels).

Fig. 11. Computed parameters for the structure in Fig. 10. The admittance
parameters have been obtained by means of HFSS.

Fig. 12. Denormalized schematic of the diplexer. White circles represent
the resonators (bold numbers are the resonating frequencies in megahertzes).
Numbers next to the lines connecting the circles represent coupling coeffi-
cients or external Q (this latter when the ports Pi are involved). For frequency-
dependent couplings the pair k0i, j /Ci, j is reported.

1) Junction: Resonant node.

2) RX Filter: Band = [683.3 791.2] MHz and fz =

825.9 MHz.

3) TX Filter: Band = [818.2 902.1] MHz and fz =

795 MHz.

The synthesis of the folded prototype of each filter is first

carried out with the procedure outlined in Section III (charac-

teristic polynomials of the diplexers are evaluated as described

in [19]); then, applying (11)–(13), the denormalized circuit

in Fig. 12 is obtained (resonating frequencies and coupling

coefficients are reported. The frequency-dependent couplings

are identified by the pair k0i, j /Ci, j introduced previously).

Note the inline topology of the filters, where the frequency-

dependent coupling allows the introduction of one transmis-

sion zeros (an inline filter with one or two transmission zeros

obtained with constant couplings is shown in [22], but it is

not practical for diplexers application).

The computed scattering parameters of the denormalized

network are shown in Fig. 13 (lumped resonators and ideal

inverters are assumed).

The diplexer has been then fabricated in comb configuration

similar to that reported in Fig. 10. Fig. 14 shows a picture



Fig. 13. Simulated response of the designed diplexer (denormalized network
with ideal elements).

Fig. 14. Fabricated diplexer.

Fig. 15. Measured response of the fabricated diplexer.

of the realized device, whose dimensions are 154 mm ×

110 mm × 24 mm. The measured response is shown in

Fig. 15, which is in reasonable agreement with the expected

one (Fig. 13); the discrepancies (e.g., the additional zero in

the measured |S31|) are likely due to the actual frequency

variation of all the couplings and to the spurious couplings

in the implemented structure).

VI. CONCLUSION

We have presented, in this paper, an original approach to

the synthesis of microwave filters with frequency-dependent

couplings. As pointed out at the beginning of this paper, the

use of frequency-dependent couplings is convenient for reduc-

ing the overall size of filters maintaining the high selectivity

allowed by the presence of transmission zeros. To this regard,

this class of filters is of particular interest in applications,

where the miniaturization is a primary requirement.

To the best of our knowledge, it is the first time that

an explicit synthesis procedure, not exploiting optimization,

has been proposed for the design of filters with frequency-

dependent couplings. We have also introduced a new type

of canonical prototype with frequency-independent couplings

(the asymmetric lattice), demonstrating that this topology

degenerates into the cul-de-sac when the assigned reflection

zeros are para-conjugate (imaginary or in pairs with opposite

real part). The synthesized network with frequency-dependent

couplings exhibits a folded topology with cross couplings

linearly variable in the normalized frequency domain. We have

then discussed the denormalization problem, explaining how

to approach the dimensioning of the physical structures imple-

menting the frequency-dependent couplings. Finally, we have

verified the novel design approach by means of an experimen-

tal test device (diplexer for mobile communications).

Also the limitations of the considered class of filters

should be mentioned in these conclusions. In our opinion, the

main drawback is represented by the practical implementation

of couplings presenting the required frequency dependence.

In this paper, we have proposed a possible (approximate) solu-

tion in the case of coupled coaxial cavities. Other examples

are reported in the literature [8]–[13] but further research work

is needed to allow a wider practical use of these filters in the

future.
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