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Abstract—Efficiency and flexibility are critical, but often conflict-

ing, design goals in embedded system design. The recent emergence

of extensible processors promises a favorable tradeoff between effi-

ciency and flexibility, while keeping design turnaround times short.

Current extensible processor design flows automate several tedious

tasks, but typically require designers to manually select the parts

of the program that are to be implemented as custom instructions.

In this work, we describe an automatic methodology to select

custom instructions to augment an extensible processor, in order to

maximize its efficiency for a given application program. We demon-

strate that the number of custom instruction candidates grows

rapidly with program size, leading to a large design space, and

that the quality (speedup) of custom instructions varies significantly

across this space, motivating the need for the proposed flow. Our

methodology features cost functions to guide the custom instruction

selection process, as well as static and dynamic pruning techniques

to eliminate inferior parts of the design space from consideration.

Further, we employ a two-stage process, wherein a limited num-

ber of promising instruction candidates are first selected, and then

evaluated in more detail through cycle-accurate instruction set sim-

ulation and synthesis of the corresponding hardware, to identify the

custom instruction combinations that result in the highest program

speedup or maximize speedup under a given area constraint.

We have evaluated the proposed techniques using a state-of-the-

art extensible processor platform, in the context of a commercial

design flow. Experiments with several benchmark programs indi-

cate that custom processors synthesized using automatic custom

instruction selection can result in large improvements in perfor-

mance (upto 5.4X, average of 3.4X), energy (upto 4.5X, average of

3.2X), and energy-delay product (upto 24.2X, average of 12.6X),

while speeding up the design process significantly.

I. INTRODUCTION

Efficiency and flexibility are two of the most important driv-
ing factors in embedded system design. Efficient implementations
are required to meet the tight cost, timing and power constraints
present in embedded systems. Flexibility, albeit tough to quan-
tify, is equally important — it allows system designs to be easily
modified or enhanced in response to bugs, evolution of standards,
market shifts, or user requirements, during the design cycle and
even after production. Various implementation alternatives for a
given function, ranging from custom-designed hardware to soft-
ware running on embedded processors, provide a system designer
with differing degrees of efficiency and flexibility. Unfortunately, it
is often the case that these are conflicting design goals. While ef-
ficiency is obtained through custom hardwired implementations,
flexibility is best provided through programmable implementa-
tions. Hardware/software partitioning — separating a system’s
functionality into embedded software (running on programmable
processors), and custom hardware (implemented as co-processors
or peripheral units) — is one approach to achieve a good balance
between flexibility and efficiency [1]. However, the increasing scale
and complexity of embedded Systems-on-Chips (SOCs), together
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with decreasing market cycles, provide a constant push towards
increasing embedded software content.

While it is known that application-specific instruction set pro-
cessors (ASIPs) provide a good tradeoff between efficiency and
flexibility, their relatively large design turnaround times (com-
pared to software implemented on pre-designed and pre-verified
embedded processors) have, in part, prevented their wide use in
SOCs. The recent availability of configurable and extensible pro-
cessors 1 promises a favorable tradeoff between efficiency and flex-
ibility, while keeping design turnaround times short. The emer-
gence and success of companies that offer configurable and extensi-
ble embedded microprocessor and DSP cores as a primary product
(e.g., Xtensa from Tensilica [3], ARCtangent from ARC [4], Jazz
from Improv Systems [5], SP-5flex from 3DSP [6], Carmel DSP
from Siemens [7], etc.) testifies to the benefits of this approach.

Realizing the potential of extensible processors requires the de-
velopment of supporting tools and methodologies that enable sys-
tem designers to achieve design turnaround times that are com-
parable to all-software solutions. State-of-the-art extensible pro-
cessor design flows automate several tedious tasks and aid the de-
sign process by providing a high-level interface to perform proces-
sor customization, automatic generation of register-transfer level
(RTL) hardware descriptions, a re-targetable software tool chain
for the customized processor (including compilers, assemblers, de-
buggers, and binary utilities), and design automation scripts to
support verification, logic synthesis, and physical design. How-
ever, they require designers to manually select parts of the pro-
gram and design the custom instructions that implement them. As
shown in this paper, these are daunting tasks for large programs,
and are further complicated when performance improvements need
to be attained subject to other considerations such as constraints
on hardware area overheads and clock period. Our work addresses
the above need by providing a systematic methodology and au-
tomation algorithms for the application-specific customization of
extensible processors.

A. Related Work

We briefly trace related research work along the lines of ASIP ar-
chitectures and overall design methodologies, application-specific
instruction set selection, compilation techniques for ASIPs, and
low power ASIP design.

A good overview of the benefits and challenges involved in ASIP
design is contained in [8]. Early works on architectural synthesis
for ASIPs are contained in [9], [10]. In [11], a design system for
synthesizing simple pipelined ASIPs is described. The work in [12]
deals with the selection of intellectual property (IP) surrounding
an ASIP core to accelerate application programs. A method to de-
sign parallel and scalable ASIP architectures, suitable for reactive
systems, is presented in [13]. In [14], an early design space ex-
ploration methodology is given for clustered very long instruction
word (VLIW) data paths in the context of specific target appli-

1Following the terminology used in [2], a configurable processor offers the de-

signer the possibility to customize the basic processor architecture, while an exten-

sible processor allows the designer to extend the basic instruction set through the

addition of custom application-specific instructions.
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cations. Automatic architectural synthesis of VLIW processors is
targeted in [15]. Design of area-efficient hardware blocks of an
ASIP is tackled in [16], [17]. In [18], an ASIP design methodology
is given for customizing an existing processor instruction set and
architecture.

Instruction set selection refers to the problem of defining a cus-
tom instruction set that will result in the most efficient processing
for a given application or domain. The work in [19] presents a tech-
nique to generate multi-cycle application specific instructions for
DSP applications. Instruction set design and selection are treated
as a scheduling problem in [20], and as a module selection or op-
eration coupling problem in [11], [21]. ASIP instruction set op-
timization under functional unit sharing constraints is addressed
in [22]. A hardware-software co-design approach for instruction
set selection is proposed in [23]. A method to automatically de-
tect recurring operation patterns to obtain custom instructions is
presented in [24].

Efficient retargetable compilers and software tool chains are nec-
essary to enable the use of ASIPs. These are discussed in [25].

Recent work has also focused on reducing power consumption in
ASIPs. A concept of instruction sub-setting is introduced in [26]
to create an ASIP from a more general processor, such as a DSP.
In [27], a low power ASIP is synthesized from a customized ASIC
using power estimation techniques derived from high-level syn-
thesis. Synthesis of power-efficient hypermedia processors is ad-
dressed in [28]. Case studies of power optimization of ASIP cores
are presented in [29], [30].

B. Paper Overview and Contributions

The contributions of this work include:
• Instead of designing an entire instruction set, we propose an
automatic methodology for the selection of custom instructions to
augment an extensible processor in order to maximize its efficiency
for a given application program 2.
• We demonstrate the need for such a methodology by illustrating
the size and complexity of the custom instruction design space,
and present an analysis of the issues and tradeoffs involved in
instruction set extension.
• We develop cost functions and pruning techniques to guide the
custom instruction selection process.
• Unlike most previous work, our methodology involves actual
logic synthesis and cycle-accurate instruction set simulation of
promising candidate custom instructions to accurately estimate
performance benefits and hardware overheads.
• We not only consider every custom instruction independently,
but also consider combinations of custom instructions, and choose
a combination that can maximize performance under area con-
straints.
• We have performed experiments, in the context of a commer-
cial design flow (using Tensilica’s Xtensa), indicating that custom
processors generated through the proposed methodology result in
significant improvements in performance, energy, and energy-delay
product. Our results are derived from post-synthesis technology-
mapped netlists of the entire original and optimized processor
cores.

II. MOTIVATION

Current extensible processor flows typically require designers to
manually design the custom instructions that are used to augment
the base processor platform. Given an application program, this
involves profiling of the program source code on the base processor,
identification of the most performance-critical sections of the pro-
gram (the “hot spots”), formulating custom instructions by spec-
ifying new hardware resources and the operations they perform,
and re-writing the source code of the program 3 to directly invoke

2Although we directly target performance improvements, we demonstrate that

energy and energy-delay product are also significantly reduced.
3While it is conceivable that a compiler could automatically identify portions of

the program to map to the new instructions, in practice, this is difficult for highly

complex instructions, requiring manual re-writing or annotation of source code.

the custom instruction. While these steps are somewhat simpli-
fied by profiling tools, and through the specification of the custom
instruction hardware at a high level of abstraction, they are still
daunting tasks for large programs, and are further complicated
when performance needs to be optimized subject to constraints on
hardware overhead.

/* This function swaps the order of bytes in s if
 * argument do_swap is non-zero
 */
static unsigned 
BYTESWAP(unsigned s, unsigned char do_swap)
{
    unsigned ss, s1, s2, s3, s4,
             s5, s6, s7, s8, result;

    s1 = s<<24;
    s2 = s<<8;
    s4 = s>>8;
    s6 = s>>24;
    s3 = s2 & 0xff0000;
    s5 = s4 & 0xff00;
    s7 = s1 | s3;
    s8 = s5 | s6;
    ss = s7 | s8;
    /*Global count of #words processed*/
    if(do_swap) SWAPPED_COUNT++;
    result = do_swap ? ss : s;

    return result;
}

Fig. 1. An example function used to demonstrate the size and complexity

of the custom instruction design space

The number of candidate custom instructions for a given pro-
gram grows exponentially with the program size. It is not uncom-
mon for functions with a few tens of operations to contain several
hundred instruction candidates. We used the tools developed in
our paper to identify all possible (unique) instruction candidates
for a C function BYTESWAP() derived from the Tensilica training
kit, which is shown in Fig. 1. As the name indicates, this function
swaps the order of bytes in a word (e.g., for endian conversion).
The function, although quite small, contains 482 potential custom
instructions! Most realistic programs contain a function hierarchy
with a large number of functions. In well-optimized software, it is
also often the case that there are several “critical” functions, i.e.,
no single or small set of functions is responsible for a large fraction
of the total program execution time [31]. In such scenarios, a com-
bination of several custom instructions may be necessary to achieve
the desired performance. Two custom instructions that appear to
lead to the same speedups may result in hardware that impacts
the critical path (and hence the clock period) to different extents.
If the addition of a custom instruction causes a violation of the
original processor’s clock period, the designer can choose one of
the following options: (i) reduce the amount of computation per-
formed in the instruction, (ii) split it into multiple instructions,
(iii) multi-cycle the execution of the instruction, or (iv) simply ac-
cept the clock period penalty. Different choices may be optimal,
depending on various factors.

When constraints on hardware overheads are present (which is
frequently the case), the designer needs to judiciously select the
hardware resources employed. In fact, given a set of operations to
be performed by a custom instruction, there exists an area-delay
tradeoff based on the number of resources used. Similar arguments
apply to storage resources (registers, lookup tables, etc.) used in
custom instructions. When multiple instructions need to be selected
from a large set of candidates, the tradeoffs involved are complex,
and can be difficult to identify manually, leading to a need for
methodologies such as the one proposed in this paper.

Example 1: In order to illustrate the variation of speedup over
the set of all candidate instructions (the “design space”), we
generated and evaluated all possible custom instructions for the
BYTESWAP() function. The function iterates 10,000 times and con-
sumes 130K cycles on the base processor core. Fig. 2 plots the
execution cycle savings resulting from each of the 482 candidate
instructions. The instructions are ordered according to their size,
location in the source code, and relative importance in the profile
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Fig. 2. Performance variation across the custom instruction design space

for the BYTESWAP() example

- metrics that a designer would typically use to examine candidate
custom instructions. Fig. 2 indicates that there is a large varia-
tion in quality across the custom instruction design space. Some
custom instructions even increase the number of cycles. The fig-
ure shows that the nature of the design space is quite complex,
underlining the need for automatic exploration techniques.

Although manual creation of custom instructions allows for hu-
man ingenuity to be applied to create high-quality hardware, con-
sidering the large and complex design space of custom instructions,
designers can benefit significantly from tools and methodologies to
explore this design space automatically. The proposed methodol-
ogy could be used to explore the large design space and short-list
the most promising instruction candidates, which human designers
can further refine.

III. BACKGROUND

We chose Tensilica’s Xtensa [3] as our target platform, since its
architecture was designed from scratch to be customizable, allow-
ing it to be efficiently tailored to target applications, to obtain
SOCs with optimized performance, power, code size and die size.
Its key features are as follows:
• The Xtensa processor provides the means to select a wide
range of architectural parameters in the base processor core,
e.g., whether to include generic instructions (e.g., multiply-
accumulate), floating point co-processors, configure the register
file and memory/cache architecture, configure exception/interrupt
mechanisms, and include test and debugging support.
• The designer can extend the base processor by designing custom
instructions for application-specific computations.
• A GNU-based software tool suite is automatically generated to
match the exact configuration specified in the processor generator,
including a GNU C/C++ compiler, assembler, linker, debugger,
diagnostics, reference test benches, cycle-accurate instruction set
simulator (ISS), and standard libraries. This enables rapid design,
verification, and integration of application-specific hardware and
software, and removes a major bottleneck that has prevented con-
sideration of ASIPs as the processing element of choice in SOC
design.

Designers use the Tensilica Instruction Extension (TIE) lan-
guage [2] to define custom instructions. The instructions can be
either single-cycle or multi-cycled. Instead of invoking custom in-
structions at the assembly level, calls to TIE instructions can be
directly inserted into high-level language (e.g., C, C++) descrip-
tions of the application program. This eases designers’ burden so
that they can put more emphasis on the functionality of the pro-
gram and select the best instructions. The Xtensa instruction set
defines a limited opcode range and encoding formats for custom
instructions. TIE instructions can have at most two input and
one output operand fields in the instruction. If a custom instruc-
tion needs additional inputs and/or outputs, it can implicitly read
them from or write them to some internal state registers, which

are defined in the TIE specification.

IV. METHODOLOGY AND ALGORITHMS

In this section, we describe our design methodology for automat-
ically generating custom instructions to get performance improve-
ments and/or energy reductions. We first provide an overview and
then describe the important steps in detail.

A. Overview

Fig. 3 outlines the design flow of automatic custom instruction
generation. It takes as input the application program to be op-
timized (in C), and outputs the selected custom instructions and
modified C program. Given a C program as input, step 1 gen-
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Fig. 3. Automatic custom instruction generation flow

erates the program dependence graphs [32], which include: (i) the
control dependence graph to identify the control blocks of the pro-
gram, (ii) the data dependence graph to get data predecessor and
successor information, and (iii) the control flow graph to indicate
how control flows through the application. At the same time, the
program is simulated and then profiled both at the function level
and line level, to determine where the hot spots are (step 2). Step
3 ranks the control blocks of the program in descending order of



potential for improvement. The ranking criteria may include per-
formance (from a profiler), energy (from an energy estimator) or
energy-delay product (from both), depending on the optimization
objective. In this work, we focus on performance as the metric
to drive custom instruction selection. However, our results (Sec-
tion V) show that energy and energy-delay product are also sig-
nificantly reduced in the process. A control block is a sequence
of program statements or control blocks that can be executed se-
quentially. It is different from a basic block in that a control block
can recursively contain other control blocks, while a basic block
cannot contain other basic blocks. In our work, custom instruc-
tions are selected inside control blocks. However, it is possible to
cross control block boundaries in the case of conditional statements
that can be transformed to equivalent arithmetic/logic expressions
(e.g., if and case statements that can be translated into “?” and
“:” operators).

Steps 4 and 5 generate and select custom instruction templates,
respectively. Although these two steps are explained separately for
the sake of clarity, their implementation may be combined for the
sake of efficiency. A template is a set of program statements that
is a candidate for implementation as a custom instruction. Since
the number of templates grows exponentially with program size,
it is necessary to prune the search space. Our pruning techniques
are explained in detail in Sections IV-B.1 and IV-B.2.

Each promising candidate selected in step 5 is extracted from
the C program (step 6), and transformed to a format (TIE) that
describes the opcode, operand, states, user-registers, computa-
tions, etc. (step 7). It is then compiled (using Tensilica’s TIE
compiler [3]) to get the Verilog RTL description of the additional
hardware that will augment the base processor (step 8). The RTL
description is synthesized (using Synopsys Design Compiler [33])
to get the timing and area information (step 9). If the new instruc-
tion cannot be fit in the base processor core’s clock period, either
the number of cycles used by the new instruction is increased,
or the clock period is increased, and the custom instruction gen-
eration phase is repeated (step 11). Hence, for a single custom
instruction template, there may be several versions with varying
clock period and number of cycles. At the same time, the origi-
nal C code is transformed by replacing the appropriate statements
with a call to the custom instruction (step 10). Then, for each
version of the custom instruction, the new C program is compiled
and profiled using a cycle-accurate ISS to get the performance im-
provement (step 12). Steps 5 through 12 are iterated for every
selected template.

After each individual custom instruction has been verified, a
subset (combination) of instructions is chosen to get the maxi-
mum performance improvement under the given area constraint,
depending on the selection criteria (step 14). This step is described
in further detail in Section IV-B.4. The hardware corresponding
to the selected custom instruction combination is built and synthe-
sized (steps 15 and 16). If the timing and/or area constraint is not
satisfied, the next best custom instruction combination is selected
(step 17). Otherwise, the modified C program is compiled and
profiled again to get the final performance improvement and/or
energy reduction (step 18). After having selected the custom in-
struction combination, the whole processor is built and synthesized
(steps 19 and 20).

B. Details

In this section, we describe in detail the important steps of
our algorithm. Section IV-B.1 describes the template generation
method, Section IV-B.2 describes the template selection algorithm,
Section IV-B.3 describes the instrumentation of the program to in-
voke the custom instructions, and Section IV-B.4 details the cus-
tom instruction combination selection method.

B.1 Template generation

Although template generation and selection are represented as
distinct steps in Fig. 3, in our implementation, they are interleaved
in order to improve efficiency. In the generation phase, some tem-
plates, which have low potential for performance improvement, are

not generated. We refer to this as a static pruning technique.
We propose to generate templates in three phases. In the first

phase, we can generate basic templates. A basic template consists
of a single node in the program dependence graphs that satisfies
the given selection (pruning) criteria. In the second phase, we gen-
erate dependent templates. A dependent template is a fully con-
nected sub-graph of the data dependence graph. Hence, each node
of a dependent template is connected to some other node in the
template through a variable. Dependent templates are generated
by using a basic template as a seed, checking data dependencies
of the basic template, and including combinations of data depen-
dence predecessors and successors if they satisfy the selection cri-
teria. In the third phase, we generate independent templates. In
this step, we use both basic and dependent templates as seeds,
and add nodes that are independent of the seed template. The
following example illustrates the template generation process.
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Fig. 4. Illustration of the template generation process: (a) code fragment

and its data dependence graph, and (b) generated templates

Example 2: Fig. 4(a) shows a small fragment of C code corre-
sponding to a single control block, and its data dependence graph.
Each node represents a single statement in the C program. Each
node also has a weight that represents the fraction of the total
program execution time spent in that node. The dotted lines in
Fig. 4(a) indicate data dependencies with operations that belong
to other control blocks. Fig. 4(b) shows all possible templates that
can be generated from this graph. Nodes 1, 2, 3, and 4 form basic
templates. Templates 5, 6, and 7 are generated in the dependent
template generation phase. The independent template generation
phase generates templates 8 through 13. It combines every basic
or dependent template with templates they are independent of,
i.e., template 4.

Note that nodes 1 and 3 cannot be combined to form a tem-
plate. To explain that, we need to consider the fact that all the
statements corresponding to a template will be replaced by a single
statement (call to the custom instruction) in the optimized C pro-
gram, i.e., they are merged into a single node in the dependence
graph. In that case, node 2 will be the data predecessor of the new
node (since it generates data that is used by node 3), as well as its
data successor (since it uses data generated by node 1). That will
introduce a data dependence cycle inside a control block, which is
illegal, since it changes the program’s functionality.

In Example 2, we enumerated all possible templates for the sake
of clarity. In practice, the number of candidate templates may po-
tentially be very large, even for programs of moderate size. Hence,
it is necessary to use pruning criteria to select good templates while
discarding less promising ones. Any metric to evaluate the tem-
plates should consider the following factors:
• Amdahl’s law [34] suggests that the fraction of the original pro-
gram’s execution time that a template accounts for presents a
bound on the performance improvement achievable when it is con-
verted into a custom instruction. Hence, templates that have a
larger cumulative weight are more desirable.
• Blindly applying the first criterion would result in the degener-
ate solution where the largest possible template is always chosen.
However, it is often the case that the largest template does not



result in the best speedup. That is in part because each template
has an inherently different scope for optimization, i.e., template
efficiency when implemented as a custom instruction. Given two
templates that account for the same fraction of total execution
time on the original processor, the number of cycles required to
execute them when implemented as a custom instruction is an
indicator of their optimization potential.
• Many extensible processors, including the Xtensa processor, im-
pose a limit on the number of operand fields that can be specified
in the instruction format. Also, the general-purpose register file in
the processor has a specific number of read and write ports, im-
posing a limit on the number of general-purpose registers that can
be used in a custom instruction. This bottleneck can be overcome
by defining custom registers (called state or user-defined registers)
whose use is hardwired into the instruction. However, the use of
state registers imposes an additional overhead. When other com-
putations generate (or use) data that are used (or generated) by
the custom instruction, the contents of the state registers need
to be written to or read from either memory or the processor’s
general-purpose registers. The overhead for data transfer is deter-
mined by the number of “excess” input and output variables of a
given instruction template.

Considering all the above factors, we use the following equation
to rank candidate templates:

Priority =
OriginalT ime

max(In − α, 0) + max(Out − β, 0) + γ
(1)

In the above equation, OriginalT ime is the fraction of the total
execution time of the original program spent in the template, In
and Out are the number of inputs and outputs of the template,
respectively, α is the number of inputs that can be encoded in the
instruction, β is the number of outputs that can be encoded, and
γ is the number of cycles required by the template when imple-
mented as a custom instruction. The numerator in Equation (1) is
automatically computed from the line-by-line profile information.
The denominator is an estimate of the number of cycles required
by the custom instruction in each invocation. Since one instruction
can have at most α inputs and β outputs specified in the instruc-
tion (the exact values of α and β are dependent on the processor
architecture), if the number of inputs is greater than α, a cycle is
needed for each additional input to load it into a user-defined state
register. If the number of inputs is less than α, this term is zero.
A similar explanation holds for the number of additional outputs.

It bears mentioning that the Priority metric presented in Equa-
tion (1) is a coarse-grained metric, because it does not consider
detailed architectural effects such as pipeline stalls. Depending
on the program structure, compiler, and base processor architec-
ture, some templates may cause pipeline delays, while others may
not. Also, because of pipeline stalls, the time spent in storing
values to state registers or reading values from state registers can
be masked in some templates but not in others, resulting in vari-
ations in the speedup obtained by seemingly similar templates.
Estimating pipeline stalls at the C program level is quite diffi-
cult, since it requires a lot of information regarding the proces-
sor’s micro-architecture and compiler optimizations. However, for
our purpose, an approximate metric suffices, since we employ it
only as a pruning criterion, and to identify groups of promising
templates. As indicated in Fig. 3, we actually evaluate the most
promising templates using a cycle-accurate ISS and synthesis of
the additional hardware, and select the best from among them.

Since templates having higher values of the Priority metric are
likely to get more performance speedup or energy reduction, we
first consider those templates as seeds when generating new tem-
plates. In order to achieve this, we preserve a ranked index of the
templates, and traverse the list in decreasing order of Priority
when choosing a seed. Further, we set a Priority threshold to
determine the templates considered for further analysis, those
below the threshold being discarded. For the sake of computa-
tional efficiency, the threshold mechanism is dynamically enforced
during template creation itself (rather than as a post-processing
step). While generating templates, we preserve the highest priority

(Priorityhighest) seen thus far. After we generate a new template,

we compute its priority and compute the ratio Prioritycurrent

Priorityhighest
. If

the ratio is below the threshold, we do not add it to the template
list. Fig. 5 shows the relationship between the threshold ratio
and the number of templates generated for an example program,
RGBtoCMYK, which performs pixel color conversion. The number of
templates displays a sharp decrease if the threshold ratio is above
0.2. If the threshold ratio is set too high, the searched design space
is limited and the solution may be trapped into local optima. On
the other hand, if the threshold ratio is set too low, not many
templates are pruned out. In our experiments, we found that set-
ting the threshold ratio between 0.1 and 0.15 achieved reasonable
reductions in the number of templates generated, with negligible
or no impact on quality.
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B.2 Template selection

After all the templates in a control block have been generated,
the template selection step separates those templates into several
groups based on ranges of the Priority values (e.g., all templates
having Priority within 5% of Priorityhighest form the first group,
etc.). This “binning” is performed because, as mentioned earlier,
the Priority metric is only a coarse-grained indicator of the actual
performance improvement, and hence more detailed evaluation is
necessary to discern the best template from a group of templates
with similar Priority values. We examine templates group-by-
group, and all the templates within a group are evaluated in detail
(using the ISS and hardware synthesis), without regard to their
exact Priority value. We first attempt to generate custom in-
structions from all templates in the highest priority group (steps
6 to 12 of Fig. 3). If all templates from a group fail to generate a
custom instruction (e.g., because of timing and area constraint vio-
lations), we move to the next best group. This procedure continues
until at least one template from a group succeeds in generating a
custom instruction, or all groups have been tried.

Ideally, the custom instruction should fit in one cycle at the
original processor core’s clock period. However, sometimes the
additional hardware required to implement the custom instruc-
tion results in an increase in the critical path and violates the
original clock period constraint. In such situations, our tool tries
two options: (i) increasing the clock period (this is equivalent to
slowing down all the instructions), and (ii) increasing the number
of cycles for the custom instruction until the original clock period
constraint is satisfied. Specifically, we first generate the custom in-
struction as a single-cycle instruction, and find the smallest clock
period it can be synthesized to fit in. If the clock period thus ob-
tained is greater than the base processor core’s clock period, we
iteratively increase the number of cycles of the custom instruction
until increasing cycle count further does not help reduce the crit-
ical path. For each number of cycles, we find the shortest clock
period that can accommodate the custom instruction. Hence, each
selected template may result in several different versions of a cus-



tom instruction, each having a different clock period and number
of cycles.

For each control block in the application program, all success-
fully generated custom instructions are compared in terms of their
actual speedup and area, and the ones that best fit the selection
criteria are chosen and passed on to the subsequent phase in which
instruction combinations are selected. If we only consider the num-
ber of execution cycles as the objective (without regard to area or
clock period), it is only necessary to preserve disjoint templates
that result in the best speedup. However, if we also consider area
and clock period as constraints or objectives, we can apply the
notion of Pareto optimality [35] to remove inferior or dominated
templates from further consideration. For example, suppose that
execution cycles and clock period are the only parameters of inter-
est. Consider two templates, A and B, where the set of nodes that
constitute A is a superset of those that constitute B. If both A
and B can be implemented without increasing the base processor
core’s clock period, we retain A and discard B. Naturally, as more
dimensions (area, energy, etc.) are added, Pareto optimality trans-
lates into stronger conditions that need to be satisfied to discard a
candidate, resulting in a larger number of candidate instructions
being passed on to the subsequent phase.

B.3 Custom instruction insertion

When a template is selected and needs to be evaluated in de-
tail using an ISS, a call to the custom instruction needs to be
inserted back into the original C program (step 10 of Fig. 3). In
this process, care must be taken to preserve the functionality of
the original program. A conservative approach is to place the call
to the new instruction such that all control and data dependencies
of the original program are satisfied. In other words, the new in-
struction is placed after the position of the latest data dependence
predecessor, and before the position of the earliest data depen-
dence successor. However, for some templates, no proper location
for insertion can be found using only the above method, as illus-
trated in the following example.

Example 3: Fig. 6(a) shows an example code fragment, and its
data dependence graph. As can be seen from the code, the control
flow dependencies are 1 → 2 → 3 → 4 → 5. Suppose that the
template under consideration is {1, 2, 5}. Note that the template
becomes a single node in the modified data dependence graph.
Node 3 is the data dependence successor of the new node, and
node 4 is its data dependence predecessor. In other words, the
data flow after insertion of the custom instruction would be 4 →
{1, 2, 5} → 3, which is in contradiction with the control flow of the
original program. However, if nodes 3 and 4 are independent, it
does not matter which one executes first. If we can exchange the
order of nodes 3 and 4, we find that the template can be inserted
back into the C program without affecting functional correctness,
as shown in Fig. 6(b). In the modified C code, one output is
implicitly written to a state register. The statement t=RUR(0) in
Fig. 6(b) assigns the value from state register 0 to variable t.

The above example illustrated that the insertion of calls to a
custom instruction may require the re-ordering of other program
statements that are not part of the template itself. This requires
that the data dependence information inside a control block be
complete and exact. In practice, it is known that exact data de-
pendence graph extraction is difficult when array or pointer ac-
cesses are present [36]. One solution is to have a pre-processing
step, which adds code (i) at the beginning of a set of compu-
tations involving arrays and pointers, to read all required values
into temporary scalar variables, and (ii) at the end, to write back
temporary scalar variables into arrays or pointer contents. If the
compiler is smart enough, the penalty of introducing the additional
variables can be reduced to a minimum.

If the template requires state or user-defined registers, reads
from and writes to state registers need to be performed explic-
itly in the application program. This code is also automatically
generated by our tool as part of the custom instruction insertion
step. A typical solution is to write program variable values into
state registers before computation, and read state register contents
into variables after computation. This scheme minimally interferes

1

4

3

5

2

3

4

1,2,5

(a) (b)

t = s >> 24; // 1
r = t & 0xff; // 2
a[5] = t; // 3
m = b[0]; // 4
y = r + m; // 5

m = b[0]; // 4
y = CustomInstr(s,m); //1,2,5
t = RUR(0); //1,2,5
a[5] = t; // 3

Fig. 6. Illustration of template insertion: (a) original code fragment and its

data dependence graph, and (b) modified program to enable insertion

with the register assignment for general-purpose registers, which
is performed by the compiler. However, the overhead associated
with transfer of data to/from state registers can be minimized if
we carefully select the variables that are put into state registers.
We illustrate this through the following example.

Example 4: Fig. 7(a) shows a fragment of C code. Note that
variable offset is assigned a value before the loop and is not
changed during the loop. Fig. 7(b) shows the modified pro-
gram after a custom instruction is inserted to perform the com-
putation offset + i*j. This expression requires three input
operands (offset, i, j), while only two operands can be read at
a time from general-purpose registers. Hence, an additional (user-
defined) state register is created to store one of the operands. We
have three natural choices that follow. Fig. 7(b) illustrates the
case where we choose to store variable offset in the state regis-
ter. The statement WUR(offset,0) in Fig. 7(b) stores the value
of variable offset in state register 0. It is better to put offset
in the state register (and not i or j), because the value of both
i and j are changed inside the loop, while offset is not. Most
compilers can detect that the WUR operation is loop-invariant, and
move it outside the loop. As a result, the cycle count associated
with the custom instruction is reduced from two to one. A simi-
lar argument holds for the assignment of output variables to state
registers.

· · · · · ·

offset = t + 1; offset = t + 1;

for(i=0;i<100;i++) for(i=0;i<100;i++)

{
.
.
. {

.

.

.

j = · · · j = · · ·

.

.

.

.

.

.

.

.

. WUR(offset,0);

result = offset + i * j; result = CustomInstr(i,j);

} }

· · · · · ·

(a) (b)

Fig. 7. Illustration of the issues involved in data transfers to/from user-

defined registers: (a) a fragment of C code, and (b) modified C code with

custom instruction

B.4 Custom instruction combination selection

After template selection, there may still be several custom in-
struction candidates in the program, with each candidate having



several versions (due to variations in clock period and number of
clock cycles). The next step is to select a subset (or combination)
of custom instruction candidates that best satisfies the perfor-
mance, area and energy requirements. The inclusion of one custom
instruction could either reduce or enhance the performance/energy
benefits of another custom instruction. Thus, the custom instruc-
tion candidates that have survived scrutiny so far also need to
be evaluated considering their inter-dependencies. Clearly, this
search space is large. Hence, methods to efficiently explore the
search space need to be employed. If all the selected custom in-
structions are non-overlapping, and if the optimization criterion
is maximizing performance under an area constraint, the selection
problem can be stated as follows:

Problem 1: Given a set of non-overlapping custom instructions,
with each instruction having several versions (not selecting the
instruction can also be considered as a degenerate version with
zero area overhead and no performance benefit), find a version
for each instruction such that the performance is maximized while
area is under a certain threshold.

A more mathematical representation is as follows:
Problem 2: Given n non-overlapping custom instructions, cus-

tom instruction i (1 ≤ i ≤ n) has mi + 1 versions, version j of
instruction i (0 ≤ j ≤ mi) has the following attributes: number of
cycles SCij , clock period CPij , area overhead CAij , and cycles re-
duction CRij . Not selecting the instruction is assigned to version
0, with SCi0 = 0, CPi0 = CPorig, CAi0 = 0, and CRi0 = 0. Find
an assignment of values to variables xij for all i, j, to minimize the
following cost function:

f =

(Cyclesorig −
n

∑

i=1

mi
∑

j=0

xijCRij) max
1≤i≤n,0≤j≤mi

xijCPij

CyclesorigCPorig

(2)

subject to:
mi
∑

j=0

xij = 1, 1 ≤ i ≤ n, (3)

n
∑

i=1

mi
∑

j=0

xijCAij ≤ AREA, (4)

xij is 0 or 1, 1 ≤ i ≤ n, 0 ≤ j ≤ mi (5)

In the above equations, Cyclesorig is the number of cycles of the
original program running on the base (unaugmented) processor
core. AREA is the maximum total area allowed for the custom
instruction hardware.

Equation (3) ensures that exactly one version of each custom
instruction is chosen. Equation (4) makes sure that the area of
the selected custom instructions does not exceed the maximum
area constraint. The cost function (Equation (2)) is the ratio of
the execution time of the program with custom instructions to the
execution time of the original program. The first factor in the
numerator is the number of cycles of the program with custom
instructions, and the second factor is the clock period of the new
processor.

Note that the above formulation is only an approximation, and
makes certain assumptions about how the area overheads and clock
period will behave when combinations of custom instructions are
included. Specifically, we assume that the area overhead will be-
have in an additive manner (we can also consider additive behav-
ior with a constant shared overhead), and that the clock period is
governed by a max-function. Since this approximation may intro-
duce some error, we find not just the best solution, but the best
k ones, using a branch-and-bound algorithm, and evaluate all of
them through logic synthesis.

The branch-and-bound algorithm for custom instruction combi-
nation selection works as follows. First, all custom instructions are

sorted in descending order of the metric maxj

(

CRij

CAij

)

. The order

computed above is used for branching, i.e., we make branching de-
cisions on instructions strictly in the above order. Each branching
decision consists of choosing a specific version of the instruction un-
der consideration. At each point visited in the branch-and-bound
decision tree, we compute three values: (i) the current cost func-
tion f , (ii) a lower bound of the cost function flo, which is the
cost function obtained by including all custom instructions that
have not been visited yet, while the maximum clock period re-
mains as the current clock period, and (iii) total area of already
selected custom instructions CA. We pop the next custom instruc-
tion from the sorted list, go through each version and compute the
same three values again. If CA is greater than the maximum area
constraint, we bound. If the lower bound flo is worse than the
best k solutions, we bound, otherwise, we consider the next cus-
tom instruction in the sorted list for branching. If the current f
is within the k best solutions seen thus far, the current solution is
stored in the result array.

The above procedure can be easily extended as follows to the
case when candidate custom instructions are generated from over-
lapping templates. Suppose that, at a given point in the decision
tree, a custom instruction (say, instruction i) is chosen. We find all
the other custom instructions that have overlap with instruction i,
and force the procedure to avoid choosing them. If we backtrack
to a different part of the decision tree and reverse the decision to
include instruction i, these constraints are removed.

V. EXPERIMENTAL RESULTS

We have implemented the flow described in Section IV by inte-
grating several commercial and public-domain tools with our cus-
tom tools. Our tool takes a C program as input and outputs
custom instructions and the modified C program. The data be-
tween commercial tools and our program are exchanged through
files and scripts. The GNU-based compiler, simulator, and profiler
tools provided by Tensilica are used to simulate the program and
gather information about execution cycles (steps 2, 12, and 18
in Fig. 3). We use the Aristotle analysis system [32] to generate
the program dependence graphs (step 1 in Fig. 3). The program
dependence graphs are generated at the source code level. Hence,
it is easy to back-annotate to the original C program.

After a promising new instruction or instruction combination
is identified, our tool automatically outputs them in TIE format,
and invokes Tensilica’s TIE compiler to transform the instruction
specification to RTL Verilog code (steps 7 and 15 in Fig. 3). We
then use Synopsys Design Compiler [33] to synthesize the RTL cir-
cuit and map it to NEC’s commercial 0.18µ technology library [37]
(steps 9 and 16 in Fig. 3). The area and clock period information
extracted from the synthesized, mapped netlists are used to drive
the selection of the final instruction combination that is used to
augment the processor.

We evaluated the proposed techniques using six example bench-
marks. BYTESWAP is a function to swap the order of bytes in a
word. It is mostly used for little-endian to big-endian conversion
and vice versa. Add4 adds the value of four bytes in one word
and returns the sum. RGBtoCMYK is a color conversion program.
Alphablend blends two 24-bit pixels. PopCount implements the
population count function, which counts the number of 1’s in a
word. Rand is a function for ISAAC (indirection, shift, accumu-
late, add, and count), which is used as a fast cryptographic random
number generator. Our experiments are run on a 440 MHz SUN
Ultra10 workstation with 1 GB main memory. Area constraint is
set to 10% of the original processor’s total area in all experiments.

The time to completely generate and select custom instructions
from original C programs (steps 1 to 18 in Fig. 3) varies from
less than an hour to over six hours, depending on the number of
iterations. Most of the time in the design flow is spent in synthesis
(Design Compiler [33]: steps 9 and 16 in Fig. 3), simulation (xt-
run [3]) and profiling (xt-gprof [3]: steps 2, 12, and 18 in Fig. 3)4.

Table I summarizes the results of our experiments. It compares
the execution time, energy, and energy-delay product of the bench-

4The CPU times are quite reasonable considering that we are not only performing

instruction selection, but also a complete synthesis of the optimized processor.



TABLE I

Area, performance and energy results for processors generated by the proposed tool

Original New
Program Time Energy Energy·Delay Area Time Energy Energy·Delay Area Speedup Energy·Delay

(ms) (µJ) (ms · µJ) (grids) (ms) (µJ) (ms · µJ) (grids) reduction
BYTESWAP 0.958 101.5 97.2 435347 0.397 42.1 16.7 432496 2.4X 5.8X
Add4 0.532 63.8 33.9 -do- 0.327 35.0 11.4 445216 1.6X 3.0X

RGBtoCMYK 2.073 193.0 400.1 -do- 0.387 42.6 16.5 446314 5.4X 24.2X
Alphablend 2.728 298.4 814.0 -do- 0.531 73.4 39.0 458953 5.1X 20.9X
PopCount 0.901 90.1 81.2 -do- 0.217 20.0 4.3 438346 4.2X 18.9X
Rand 2.063 253.7 523.4 -do- 1.277 159.6 203.8 436995 1.6X 2.6X

mark programs, running on a base processor (without any TIE ex-
tensions), and on the customized processors generated by our tool.
We also report the area overheads incurred due to the addition of
extra hardware to the processor. Note that the only difference
between the two processor versions used for each program is the
presence of custom instructions - all other processor parameters are
kept unchanged. The results in Table I are based on: (i) execution
cycles reported by the cycle-accurate ISS, (ii) clock period and
area information derived from the synthesized, mapped netlists of
the complete processor cores, and (iii) power estimates provided
by running the commercial tool WattWatcher from Sente Inc. [38].
The results indicate that processors customized using instructions
automatically generated by our tool can achieve a performance im-
provement of upto 5.4X (average of 3.4X) over the base processor
cores. Energy consumption is reduced by upto 4.5X (average of
3.2X), energy-delay product is reduced by upto 24.2X (average of
12.6X), while average area increase is only 1.8%.

VI. CONCLUSIONS

Current design flows based on extensible processors require de-
signers to manually identify and design custom instructions to ac-
celerate parts of the application program. In this work, we have
developed an automatic flow to generate custom instructions or
instruction combinations that maximize the performance improve-
ment for a given program, under constraints on the overhead due
to the additional hardware. We have implemented this flow using
a combination of commercial and public-domain tools, and our
own in-house tools. Our experiments thus far have demonstrated
promising results, indicating that automatic generation of custom
instructions can result in large improvements in performance, en-
ergy, and energy-delay product, while significantly reducing design
turnaround time.
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