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Abstract— We introduce a technique for synthesis of control
and communication strategies for a team of agents from a
global task specification given as a Linear Temporal Logic
(LTL) formula over a set of properties that can be satisfied by
the agents. We consider a purely discrete scenario, in which the
dynamics of each agent is modeled as a finite transition system.
The proposed computational framework consists of two main
steps. First, we extend results from concurrency theory to check
whether the specification is distributable among the agents.
Second, we generate individual control and communication
strategies by using ideas from LTL model checking. We apply
the method to automatically deploy a team of miniature cars
in our Robotic Urban-Like Environment.

I. INTRODUCTION

In control problems, “complex” models, such as systems
of differential equations, are usually checked against “sim-
ple” specifications, such as the stability of an equilibrium,
the invariance of a set, controllability, and observability.
In formal synthesis (verification), “rich” specifications such
as languages and formulas of temporal logics are checked
against “simple” models of software programs and digital
circuits, such as (finite) transition systems. Recent studies
show promising possibilities to bridge this gap by developing
theoretical frameworks and computational tools, which allow
one to synthesize controllers for continuous and hybrid
systems satisfying specifications in rich languages. Examples
include Linear Temporal Logic (LTL) [1], fragments of LTL
[2], Computation Tree Logic (CTL) [3], mu-calculus [4], and
regular expressions [5].

A fundamental challenge in this area is to construct
finite models that accurately capture behaviors of dynamical
systems. Recent approaches are based on the notion of
abstraction [6] and equivalence relations such as simulation
and bisimulation [7]. Enabled by recent developments in
hierarchical abstractions of dynamical systems [1], it is now
possible to model systems with linear dynamics [8], polyno-
mial dynamics [9], and nonholonomic (unicycle) dynamics
[10] as finite transition systems.

More recent work suggests that such hierarchical ab-
straction techniques for a single agent can be extended to
multi-agent systems, using parallel compositions [3], [11].
The two main limitations of this approach are the state
space explosion problem and the need for frequent agent
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Fig. 1. The topology of the Robotic Urban-Like Environment (RULE) and
the road, intersection, and parking lot labels.

synchronization. In [5], we addressed both of these limita-
tions with a “top-down” approach, by drawing inspirations
from distributed formal synthesis [12]. The main idea is to
decompose a global specification into local specifications,
which can then be used to synthesize controllers for the
individual agents. The top-down approach allows parallel ex-
ecution among the agents, while guaranteeing that the global
behavior of the team satisfies the global specification. This
cannot be achieved by modeling the agents as a synchronous
or asynchronous parallel composition and simply using a
regular LTL model checker to generate a solution. The main
drawback of the method in [5] is that the expressivity is
limited to regular languages.

In this paper, we address a purely discrete problem, in
which each agent is modeled as a finite transition system:
Given 1) a set of properties of interest that need to be satis-
fied, 2) a team of agents and their capacities and cooperation
requirements for satisfying properties, 3) a task specification
describing how the properties need to be satisfied subject to
some temporal and logical constraints in the form of an LTL
formula over the set of properties; Find provably-correct in-
dividual control and communication strategies for each agent
such that the task is accomplished. Drawing inspiration from
the areas of concurrency theory [13] and distributed formal
synthesis [12], we develop a top-down approach that allows
for the fully automatic synthesis of individual control and
communication schemes. This framework is quite general
and can be used in conjunction with abstraction techniques
to control multiple agents with continuous dynamics.

The contribution of this work is threefold. First, we
develop a computational framework to synthesize individual
control and communication strategies from global specifi-
cations given as LTL formulas over a set of interesting
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properties. This is a significant improvement over [5] by
increasing the expressivity of specifications. Second, we
extend the approach of checking closure properties of tem-
poral logic specifications in [14] to generate distributed
control and communication strategies for a team of agents
while considering their dynamics. Specifically, we show how
a satisfying distributed execution can be found when the
global specification is traced-closed. Third, we implement
and illustrate the computational framework in our Khepera-
based Robotic Urban-Like Environment (RULE) (Fig. 1). In
this experimental setup, robotic cars can be automatically
deployed from specifications given as LTL formulas to
service requests that occur at the different locations while
avoiding the unsafe regions.

II. PRELIMINARIES

For a set Σ, we use |Σ|, 2Σ, Σ∗, and Σω to denote its
cardinality, power set, set of finite words, and set of infinite
words, respectively. We define Σ∞ = Σ∗ ∪ Σω and denote
the empty word by ε.

Definition 1 (transition system): A transition system
(TS) is a tuple T := (S, s0,→,Σ, h), consisting of (i) a
finite set of states S; (ii) an initial states s0 ∈ S; (iii) a
transition relation →⊆ S × S; (iv) a finite set of properties
Σ; and (v) an output map h : S → Σ.

A transition (s, s′) ∈→ is also denoted by s → s′.
Properties can be either true or false at each state of T . The
output map h(s), where s ∈ S, defines the property valid at
state s. A finite (infinite) trajectory of T is a finite sequence
rT = s(0)s(1) . . . s(n) (s(0)s(1) . . .) such that s(0) = s0

and s(i) → s(i + 1), ∀i ≥ 0. A finite or infinite trajectory
generates a finite or infinite word as a sequence of properties
valid at each state, respectively.

We employ Linear Temporal Logic (LTL) formulas to
express global tasks for a team of agents. Informally, LTL
formulas are built from a set of properties Σ, standard
Boolean operators ¬ (negation), ∨ (disjunction), ∧ (con-
junction), and temporal operators © (next), U (until), ♦
(eventually), � (always). The semantics of LTL formulas are
given over infinite words w over Σ, such as those generated
by a transition system defined in Def. 1. We say an infinite
trajectory rT of T satisfies an LTL formula φ iff the word
generated by rT satisfies φ.

A word satisfies an LTL formula φ if φ is true at the first
position of the word;©φ states that at the next state, an LTL
formula φ is true; ♦φ means that φ eventually becomes true
in the word; �φ means that φ is true at all positions of the
word; φ1 Uφ2 means φ2 eventually becomes true and φ1 is
true until this happens. More expressivity can be achieved
by combining the above temporal and Boolean operators,
e.g., �♦φ (φ is true infinitely often) and ♦φ1 ∧ �¬φ2 (φ1

eventually becomes true and φ2 is always avoided).
For every LTL formula φ, there exists a Büchi automaton

accepting all and only the words satisfying φ [15]. We refer
readers to [16] and references therein for efficient algorithms
and freely downloadable implementations to translate a LTL
formula φ to a corresponding Büchi automaton.

Definition 2 (Büchi automaton): A Büchi automaton
(BA) is a tuple B := (Q,Qin,Σ, δ, F ), consisting of
(i) a finite set of states Q; (ii) a set of initial states
Qin ⊆ Q; (iii) an input alphabet Σ; (iv) a transition function
δ : Q× Σ→ 2Q; (v) a set of accepting states F ⊆ Q.

A run of the Büchi automaton over an infinite word
w = w(0)w(1) . . . over Σ is a sequence rB = q(0)q(1) . . .,
such that q(0) ∈ Qin and q(i + 1) ∈ δ(q(i), w(i)). A
Büchi automaton accepts a word w iff ∃rB over w such
that inf(rB)∩F 6= ∅, where inf(rB) denotes the set of states
appearing infinitely often in run rB. The language accepted
by a Büchi automaton, denoted by L(B), is the set of all
infinite words accepted by B. We use Bφ to denote the Büchi
automaton accepting the language satisfying φ.

Remark 1: In LTL model checking [15], several properties
can be valid at one state of a transition system (also called
Kripke structure). The words produced by a transition system
and accepted by a Büchi automaton are over the power set
of propositions. In this paper, by allowing only one property
to be valid at a state, we consider a particular case where
we allow only one property to be valid at each state of a TS
by defining h as a mapping from S to Σ. As a consequence,
the words generated by T and accepted by B are over Σ.

Definition 3 (distribution): Given a set Σ, a collection of
subsets {Σi ⊆ Σ, i ∈ I} is called a distribution of Σ if
∪i∈IΣi = Σ, where I is an index set.

Definition 4 (projection): For a word w ∈ Σ∞ and a
subset S ⊆ Σ, we denote by w �S the projection of w onto S,
which is obtained by erasing all symbols σ in w that do not
belong to Σ. For a language L ⊆ Σ∞ and a subset S ⊆ Σ,
we denote by L�S the projection of L onto S, which is given
by L�S := {ω �S | ω ∈ L}.

Definition 5 (trace-closed language): Given a distribu-
tion {Σi ⊆ Σ, i ∈ I} and w,w′ ∈ Σ∞, we say that w
is trace-equivalent to w′ (w ∼ w′ 1 ) iff w �Σi= w′ �Σi ,
∀i ∈ I . We denote by [w] the trace-equivalence class of
w ∈ Σ∞, which is given by [w] := {w′ ∈ Σ∞ | w ∼ w′}.
A trace-closed language over a distribution {Σi ⊆ Σ, i ∈ I}
is a language L such that ∀w ∈ L, [w] ⊆ L.

Definition 6 (product of languages): Given a distribution
{Σi ⊆ Σ, i ∈ I}, the product of a set of languages Li over
Σi is denoted by ‖i∈I Li and defined as ‖i∈I Li := {w ∈
Σ∞ | w �Σi∈ Li for all i ∈ I}.

We refer to [13], [17] for more definitions and properties
in concurrency theory.

III. PROBLEM FORMULATION AND APPROACH

Assume we have a team of agents {i | i ∈ I}, where I is a
label set. We use an LTL formula over a set of properties Σ to
describe a global task for the team. We model the capabilities
of the agents to satisfy properties as a distribution {Σi ⊆
Σ, i ∈ I}, where Σi is the set of properties that can be
satisfied by agent i. A property can be shared or individual,
depending on whether it belongs to multiple agents or to a

1Note that the trace-equivalence relation ∼ and class [·] are based on the
given distribution {Σi ⊆ Σ, i ∈ I}. For simplicity of notation, we use ∼
and [·] without specifying the distribution when there is no ambiguity.
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single agent. Shared properties are properties that need to be
satisfied by several agents simultaneously.

We model each agent as a transition system:

Ti = (Si, s0i ,→i,Σi, hi), i ∈ I. (1)

In other words, the dynamics of agent i are restricted by
the transition relation →i. The output hi(si) represents the
property that is valid (true) at state si ∈ Si. An individual
property σ is said to be satisfied if and only if the agent
that owns σ reaches state si at which σ is valid (i.e., ,
hi(si) = σ). A shared property is said to be satisfied if
and only if all the agents sharing it enter the states where σ
is true simultaneously.

For example, Ti can be used to model the motion capabil-
ities of a robot (Khepera III miniature car) running in RULE
(Fig. 1), where Si is a set of labels for the roads, intersections
and parking lots and→i shows how these are connected (i.e.,
→i captures how robot i can move among adjacent regions).
Note that these transitions are, in reality, enabled by low-level
control primitives (see Sec. V). We assume that the selection
of a control primitive at a region uniquely determines the
next region. This corresponds to a deterministic (control)
transition system, in which each trajectory of Ti can be
implemented by the robot in the environment by using the
sequence of corresponding motion primitives. For simplicity
of notation, since the robot can deterministically choose a
transition, we omit the control inputs traditionally associated
with transitions. Furthermore, distribution {Σi ⊆ Σ, i ∈ I}
can be used to capture the capabilities of the robots to service
requests and task cooperation requirements (e.g., some of the
requests can be serviced by one robot, while others require
the collaboration of two or more robots). The output map
hi indicates the locations of the requests. A robot services a
request by visiting the region at which this request occurs. A
shared request occurring at a given location requires multiple
robots to be at this location at the same time.

Definition 7 (cc-strategy): A finite (infinite) trajectory
rci = si(0)si(1) . . . si(n) (si(0)si(1) . . .) of Ti defines a
control and communication (cc) strategy for agent i in the
following sense: (i) si(0) = s0i

, (ii) an entry si(k) means
that state si(k) should be visited, (iii) an entry si(k), where
hi(si(k)) is a shared property, triggers a communication
protocol: while at state si(k), agent i broadcasts the property
hi(si(k)) and listens for broadcasts of hi(si(k)) from all
other agents that share the property with it; when they are
all received, hi(si(k)) is satisfied and then agent i transits
to the next state.

Because of the possible parallel satisfaction of individual
properties, and because the durations of the transitions are
not known, a set of cc-strategies can produce multiple se-
quences of properties satisfied by the team. We use products
of languages to capture all the possible behaviors of the team.

Definition 8 (global behavior of the team): Given a set
of cc-strategies {rci , i ∈ I}, we denote Lteam({rci , i ∈ I}) :=
‖i∈I {wi} as the set of all possible sequences of properties
satisfied by the team while the agents follow their individual
cc-strategies rci , where wi is the word of Ti generated by rci .

For simplicity of notation, we usually denote Lteam({rci ,
i ∈ I}) as Lteam when there is no ambiguity.

Definition 9 (satisfying set of cc-strategies): A set of cc-
strategies {rci , i ∈ I} satisfies a specification given as an LTL
formula φ iff Lteam 6= ∅ and Lteam ⊆ L(Bφ).

Remark 2: For a set of cc-strategies, the corresponding
Lteam could be an empty set by the definition of product of
languages. In practice, this case corresponds to a deadlock
scenario where one (or more) agent waits indefinitely for
others to enter the states at which a shared property σ is true.
For example, if one of these agents is not going to broadcast
σ but some other agents are waiting for the broadcasts of σ,
then all those agents will be stuck in a deadlock state and
wait indefinitely. When such a deadlock scenario occurs, the
behaviors of the team do not satisfy the specification.

We are now ready to formulate the main problem:
Problem 1: Given a team of agents represented by Ti, i ∈

I , a global specification φ in the form of an LTL formula
over Σ, and a distribution {Σi ⊆ Σ, i ∈ I}, find a satisfying
set of individual cc-strategies {rci , i ∈ I}.

Our approach can be divided into two major parts : check-
ing distributability and ensuring implementability. Specif-
ically, we (i) check whether the global specification can
be distributed among the agents while accounting for their
capabilities to satisfy properties, and (ii) make sure that
the individual cc-strategies are feasible for the agents. For
(i), we make the connection between distributability of
global specifications and closure properties of temporal logic
formulas [14]. Specifically, we check whether the language
satisfying the global specification φ is trace-closed; if yes,
then it is distributable; otherwise, our approach cannot find a
solution, even though one may exist (Sec. IV-A). Therefore,
our approach is conservative, in the sense that we might not
find a solution even if one exists. For (ii), we construct
an implementable automaton by adapting automata-based
techniques [18], [19] to obtain all the possible sequences
of properties that could be satisfied by the team, while
considering the dynamics and capabilities of the agents
(Sec. IV-B and IV-C). Finally, an arbitrary word from the
intersection of the trace-closed language satisfying φ and
the language of the implementable automaton is selected to
synthesize the individual cc-strategies for the agents.

IV. SYNTHESIS OF INDIVIDUAL CC-STRATEGIES

We omit all the proofs due to space limitations. They are
available in [20].

A. Checking Distributability

We begin with the conversion of the global specification φ
over Σ to a Büchi automaton (BA) Bφ = (Q,Qin,Σ, δ, F ),
which accepts exactly the language satisfying φ (using
LTL2BA [16]). We aim to find a local word wi for each
agent such that all possible sequences of properties satisfied
by the team while each agent executes its local word satisfy
the global specification φ.

Given φ and the distribution {Σi ⊆ Σ, i ∈ I}, we make
the important observation that a trace-closed language (Def.
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5) is sufficient to find a set of local words satisfying the
condition. Formally, we have:

Proposition 1: Given a language L ⊂ Σ∞ and a distribu-
tion {Σi ⊆ Σ, i ∈ I}, if L is a trace-closed language, then
∀w ∈ L, we have ‖i {w �Σi} ⊆ L.

Thus, our approach aims to check whether L(Bφ) is trace-
closed. If the answer is positive, by Prop. 1, an arbitrary
word from L(Bφ) can be used to generate the suitable set of
local words by projecting this word onto Σi. The algorithm
(adapted from [14]) to check if L(Bφ) is trace-closed can
be viewed as a process to construct a BA A, such that each
word accepted by A represents a pair of words w and w′,
such that w ∈ L(Bφ), w′ /∈ L(Bφ), and w ∼ w′ (i.e., w is
trace-equivalent to w′). Thus, if A has a non-empty language,
L(Bφ) is not trace-closed (see [14]).

To obtain A, we first construct a BA, denoted by C, to
capture all pairs of trace-equivalent infinite words over Σ.
Given the distribution {Σi ⊆ Σ, i ∈ I}, we define a relation
I such that (σ, σ′) ∈ I if Σi, i ∈ I such that σ, σ′ ∈ Σi.
Formally, C is defined as

C = (QC , {qC0},ΣC , δC , FC), (2)

where ΣC = I ∪ {(σ, σ) | σ ∈ Σ} and FC = {qC0}. The
transition function δC is defined as 1) ∀σ ∈ Σ, ∃qC0 =
δC(qC0 , (σ, σ)), and 2) ∀(σ, σ′) ∈ I, ∃qC 6= qC0 such that
qC = δC(qC0 , (σ, σ

′)) and qC0 = δC(qC , (σ
′, σ)).

Next, we construct a BA A1 to accommodate words
from L(Bφ). A word wA1

accepted by A1 is a sequence
(σ1, σ

′
1)(σ2, σ

′
2) . . .. We use wA1

|1 and wA1
|2 to denote the

sequence σ1σ2 . . . and σ′1σ
′
2 . . ., respectively. For each word

wA1 accepted by A1, we have wA1 |1 ∈ L(Bφ) and wA1 |2 ∈
Σω . Similarly, we construct another BA A2 to capture words
that do not belong to L(Bφ), i.e., ∀wA2

∈ L(A2), we have
wA2
|1 ∈ Σω and wA2

|2 /∈ L(Bφ).
Finally, we produce A such that L(A) = L(C)∩L(A1)∩

L(A2) by taking the intersections of C, A1 and A2 (see
[21]). L(Bφ) is trace-closed iff L(A) = ∅. We summarize
this procedure in Alg. 1.

Algorithm 1 : Check if L(B) is trace-closed

Input: A BA B = (Q,Qin,Σ, δ, F ) and {Σi ⊆ Σ, i ∈ I}
Output: Yes or No

1: Construct C as defined in (2)
2: Construct A1 = (Q,Qin,ΣA1

, δA1
, F ), where ΣA1

⊆
Σ × Σ and δA1

: Q × ΣA1
→ 2Q is defined as q′ ∈

δA1
(q, (σ1, σ2)) iff q′ ∈ δ(q, σ1)

3: Construct A2 = (Q,Qin,ΣA2 , δA2 , F ), where ΣA2 ⊆
Σ × Σ and δA2 : Q × ΣA2 → 2Q is defined as q′ ∈
δA2

(q, (σ1, σ2)) iff q′ ∈ δ(q, σ2).
4: Construct A such that L(A) = L(C) ∩ L(A1) ∩ L(A2)
5: if L(A) = ∅ return Yes else return No

B. Implementable Local Specification
In the case that L(Bφ) is trace-closed, the global specifi-

cation is distributable among the agents. We call L(Bφ) �Σi

the “local” specification for agent i because of Prop. 2.

Proposition 2: If a set of cc-strategies {rci , i ∈ I} is a
solution to Prob. 1, then the corresponding local words wci
are included in L(Bφ) �Σi , ∀i ∈ I .

Given the agent model Ti, some of the local words might
not be feasible for the agent. Therefore, we aim to con-
struct the “implementable local” specification for each agent;
namely, it captures all the words of L(Bφ) �Σi that can be
implemented by the agent. To achieve this, we first produce
an automaton that accepts exactly the local specification.

Note that the projection of the language satisfying the
global specification that includes only infinite words on a
local alphabet Σi might contain finite words. Therefore, the
local specification for each agent might have both finite and
infinite words. To address this, we employ a mixed Büchi
automaton introduced in [19]. The mixed Büchi automaton
is similar to the standard BA defined in Def. 2, except for
it has two different types of accepting states: finitary and
infinitary accepting states. Formally, we define the mixed
Büchi automaton as

BM := (Q,Qin,Σ, δ, F, F fin) (3)

where F stands for the set of infinitary accepting states
and F fin represents the set of finitary accepting states.
The mixed Büchi automaton accepts infinite words by us-
ing the set of infinitary accepting states, with the same
acceptance condition as defined in Def. 2. A finite run
rfin = q(0)q(1) . . . q(n) of BM over a finite word wfin =
w(0)w(1) . . . w(n) satisfies q(0) ∈ Qin and q(i + 1) ∈
δ(q(i), w(i)), ∀0 ≤ i < n. BM accepts a finite word wfin

iff the finite run rfin over wfin satisfying q(n) ∈ F fin. An
algorithm to Bi accepting L(Bφ) �Σi

can be found in [20].
Inspired from LTL model checking [18], we define the

following product automaton to obtain the implementable
local specification. This automaton captures all the words in
L(Bi) that can be generated by agent i.

Definition 10: The product automaton Ei = Ti ⊗ Bi
between a TS Ti = (Si, s0i

,→i,Σ, hi) and a mixed
BA Bi = (Qi, Q

in
i ,ΣBi

, δi, Fi, F
fin
i ), is a mixed BA

Ei = (QEi , Q
in
Ei
,ΣEi , δEi , FEi , F

fin
Ei

) consisting of (i) a
set of states QEi

= Si × Qi; (ii) a set of initial states
QinEi

= {Start} × Qini ; (iii) a set of inputs ΣEi
=

ΣBi
; (iv) a transition function δEi

defined as (s0i
, q′) ∈

δEi
((Start, q), hi(s0i

)) iff q′ ∈ δi(q, hi(s0i
)) and (s′, q′) ∈

δEi((s, q), hi(s
′)) iff s →i s

′ and q′ ∈ δi(q, hi(s
′)); (v) a

set of infinitary accepting states FEi = Si×Fi; (vi) a set of
finitary accepting states F finEi

= Si × F fini .
We add a dummy initial state Start in order to capture

the property satisfied at state s0i . We modify the traditional
definition of product automata [15] to accommodate the
finitary accepting states. Prop. 3 shows that L(Ei) is exactly
the implementable local specification for agent i.

Proposition 3: Given any w ∈ L(Bi), there exist at least
one trajectory of Ti generating w iff w ∈ L(Ei).

C. Implementable Global Behaviors

To solve Prob. 1, we need to select a word w satisfying
the global specification and also guarantee that wi = w �Σi
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is executable for all the agents. Such a word can be obtained
from the intersection of the global specification and the
implementable global behaviors of the team, which can be
modeled by the synchronous product of Ei.

Definition 11 ( [19]): The synchronous product of n
mixed Büchi automata Ei = (QEi , Q

in
Ei
,ΣEi , δEi , FEi ,

F finEi
), denoted by ‖ni=1 Ei, is an automaton P = (QP , Q

in
P ,

ΣP , δP), consisting of a set of states QP = QE1
×. . .×QEn

;
a set of initial states QinP = QinE1

× . . . × QinEn
; a set of

inputs ΣP = ∪ni=1ΣEi
; a transition function δP : QP ×

ΣP → 2QP defined as q′ ∈ δP(q, σ) such that if i ∈ Iσ ,
q′[i] ∈ δi(q[i], σ), otherwise q[i] = q′[i], where Iσ = {i ∈
{1, . . . , n} | σ ∈ Σi} and q[i] is the ith component of q.

The synchronous product composes n components, each
of which represents the implementable local specification Ei
for agent i. The synchronous product captures the synchro-
nization among the agents as well as their parallel executions.
Informally, a word w is accepted by P if and only if for each
i ∈ I , w �Σi is accepted by the corresponding component Ei.
A method to find an accepted word of P is given in [19].
Note that L(P) is equal to the product of the languages of Ei
(i.e., ‖i∈I L(Ei)). In other words, L(P) captures all possible
global words that can be implemented by the team.

Finally, we can produce the solution to Prob. 1 by selecting
an arbitrary word w from L(P)∩L(Bφ), obtaining the local
word wi = w �Σi and generating the corresponding cc-
strategy rci for each agent. The overall approach is summa-
rized in Alg. 2. The following theorem shows that the output
of Alg. 2 is indeed the solution to Prob. 1.

Algorithm 2 : Cc-strategies synthesis
Input: φ over Σ, {Σi ⊆ Σ, i ∈ I}, and {Ti, i ∈ I}
Output: A set of cc-strategies {rci , i ∈ I}

1: Convert φ to a Büchi automaton Bφ using LTL2BA [16]
2: if L(Bφ) is trace-closed (Alg. 1) then
3: Construct Bi , Ei = Ti⊗Bi, P , and then an automaton

accepting L(P) ∩ L(Bφ)
4: if L(P) ∩ L(Bφ) 6= ∅ then
5: Obtain w ∈ L(P) ∩ L(Bφ), a set of local words

{wi = w �Σi
, i ∈ I}, and then construct a set of

automata {Bci , i ∈ I}, where L(Bci ) = wi.
6: Construct Eci = Bci ⊗Ti, find an accepted run ri of

Eci , and project ri on Ti to obtain rci , ∀i ∈ I .
7: return {rci , i ∈ I}
8: end if
9: end if

10: return solution not found

Theorem 1: If L(Bφ) is trace-closed, the set of cc-
strategies {rci ,∈ I} obtained by Alg. 2 satisfies ‖i∈I {wi} 6=
∅ and ‖i∈I {wi} ⊆ L(Bφ), where wi is the corresponding
word of Ti generated by rci .

Remark 3 (Completeness): In the case that L(Bφ) is
trace-closed, our approach is complete in the sense that we
find a solution to Prob. 1 if one exists. This follows directly
from Prop. 3 and the fact that L(P) =‖i∈I L(Ei). If L(Bφ)

is not trace-closed, a complete solution to Prob. 1 requires
one to find a non-empty trace-closed subset of L(Bφ) if
one exists. This problem is not considered in this paper.
Therefore, our overall approach to Prob. 1 is not complete.

Remark 4 (Complexity): From a computational complex-
ity point of view, the bottlenecks of the presented approach
are the computations relating to P , because |QP | is bounded
above by

∏
i∈I |QEi

| and the upper bound of |QEi
| is O(|Q|·

|Si|). For most robotic applications, the size of the task
specification (i.e., |Q|) is usually much smaller comparing to
the size of the agent model (i.e., |Si|). Therefore, if we can
shrink the size of QEi by removing the information about
the agent model from Ei, we can reduce the complexity
significantly. Such reduction can be achieved by using LTL
without the next operator and taking a stutter closure of Ei.
This will be addressed in our future work.

V. AUTOMATIC DEPLOYMENT IN RULE

In this section, we show how our method can be used
to deploy a team of robots (Khepera III) in our Robotic
Urban-Like Environment (Fig. 1). The platform consists of
a collection of roads, intersections, and parking lots. Each
intersection has traffic lights. All the robots can communicate
through Wi-Fi with a desktop computer, which is used as
an interface to the user and to perform all the computation
necessary to generate the individual cc-strategies. Once com-
puted, these are sent to the robots, which execute the task
autonomously by interacting with the environment and by
communicating with each other, if necessary. We assume that
inter-robot communication is always possible.

We model the motion of each robot in the platform using
a transition system, as shown in Fig. 2. The set of states
Si is the set of labels assigned to roads, intersections and
parking lots (see Fig. 1) and the relation →i shows how
these are connected. We distinguish one bound of a road
from the other since the parking lots can only be located
on one side of each road. For example, we use R1r and
R1l to denote the two bounds of road R1. Each state of Ti
is associated with a set of motion primitives. For example,
at region R1r, which corresponds to the access point for
parking lot P1 (see Fig. 2), the robot can choose between two
motion primitives: follow road and park, which allow
the robot to stay on the road or turn right into P1. If the robot
follows the road, it reaches the vertex I2, where three motion
primitives are available: U turn, turn right int and
go straight int, which allow the robot to make a U-
turn, turn right or go straight through the intersection. It
can be seen that, by selecting a motion primitive available
at a region, the robot can correctly execute a trajectory of
Ti, given that it is initialized at a vertex of Ti. The choice
of a motion primitive uniquely determines the next vertex.
In other words, a set of cc-strategies defined in Sec. III
and obtained as described in Sec. IV can be immediately
implemented by the team.

Assume that service requests, denoted by H1, H2, L1, L2

and L3, occur at parking lots P1, P2, P4, P5 and P3, respec-
tively. “H” stands for “heavy” requests requiring the efforts
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Fig. 2. Transition system T1 for robot 1 in RULE (Fig. 1). The output h1
captures the locations of the unsafe regions and the requests. The dummy
request $1 and the initial state are omitted in this figure.

of multiple robots while “L” represents “light” requests that
only need one robot. We also consider some regions to be
unsafe. In this example, we assume that intersection I3 is
unsafe for all robots before H1 is serviced. We use the output
map hi of Ti to capture the locations of requests and unsafe
regions. A “dummy request” $i is assigned to all the other
regions. We use a special semantics for $i: a robot does not
service any request when visiting a region where $i occurs.

We model the capabilities of the robots to service requests
while considering unsafe regions as a distribution: Σ1 =
{H1, H2, L1, I

1
3 , $1},Σ2 = {H1, H2, L2, I

2
3 , $2} and Σ3 =

{H1, L3, I
3
3 , $3}. Note that we treat the unsafe region I3

as an independent property assigned to each robot since it
does not require the cooperation of the robots. The global
specification φ is the conjunction of the following LTL
formulas: 1) Request H2 is serviced infinitely often: �♦H2;
2) First service request H1, then service request L1 and L2

regardless of the order or request L3: ♦(H1∧ (♦(L1∧L2)∨
♦L3)); 3) Do not visit intersection I3 until H1 is serviced:
¬(I1

3 ∨ I2
3 ∨ I3

3 ) U H1.
By applying Alg. 2, we first learn that the language satis-

fying φ is trace-closed. Then, we obtain the implementable
automaton ‖i∈I Ei as described in Sec. IV-B and IV-C.
Finally, we choose a word w ∈ L(Bφ) ∩ L(‖i∈I Ei) and
project w on the local alphabets Σi, i ∈ {1, 2, 3} to obtain
the local words, which lead to the following cc-strategies:

rc1 = R1rI2R2rI1R1rP1R1rI2R3rI3R4rI4R5rP2P2 . . . ,
rc2 = R5rI4R1rP1R1rI2R2rI1R5lI4R5rP2P2 . . . ,
rc3 = R2rI1R1rP1R1rI2R1lP3.

The synchronization is only triggered when the robots are
about to service shared requests, i.e., when at P1 and P2.
Besides these synchronization moments, the robots follow
their cc-strategies and execute their individual tasks in par-
allel, which speed up the process of accomplishing the global
task. The movie of the deployment in the RULE platform is
available at http://hyness.bu.edu/CDC2011.

VI. CONCLUSIONS AND FUTURE WORKS

We present an algorithmic framework to deploy a team
of agents from a task specification given as an LTL formula

over a set of properties. Given the agent capabilities to satisfy
the properties, and the possible cooperation requirements
for the shared properties, we find individual control and
communication strategies such that the global behavior of
the system satisfies the given specification. We illustrate
the proposed method with experimental results in RULE.
For future work we are looking at ways to reduce the
computational complexity. Another interesting direction is
the extension to more realistic models of agents that can
capture uncertainty and noise in the system, such as Markov
Decision Processes.
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