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Abstract. The implementation of software for embedded digital signal processing (DSP) applications is an ex-
tremely complex process. The complexity arises from escalating functionality in the applications; intense time-
to-market pressures; and stringent cost, power and speed constraints. To help cope with such complexity, DSP
system designers have increasingly been employing high-level, graphical design environments in which system
specification is based on hierarchical dataflow graphs. Consequently, a significant industry has emerged for the
development of data-flow-based DSP design environments. Leading products in this industry include SPW from
Cadence, COSSAP from Synopsys, ADS from Hewlett Packard, and DSP Station from Mentor Graphics. This
paper reviews a set of algorithms for compiling dataflow programs for embedded DSP applications into efficient
implementations on programmable digital signal processors. The algorithms focus primarily on the minimization of
code size, and the minimization of the memory required for the buffers that implement the communication channels
in the input dataflow graph. These are critical problems because programmable digital signal processors have very
limited amounts of on-chip memory, and the speed, power, and cost penalties for using off-chip memory are often
prohibitively high for embedded applications. Furthermore, memory demands of applications are increasing at a
significantly higher rate than the rate of increase in on-chip memory capacity offered by improved integrated circuit
technology.

1. Introduction

Numerous software design environments for digital
signal processing applications, such as those described
in [1–6], support code-generation for programmable
digital signal processors used in embedded systems.
Traditionally, programmable digital signal processors
have been programmed manually, in assembly lan-
guage, and this is a tedious, error-prone process at best.
Hence, generating code automatically is a desirable
goal. Since the amount of on-chip memory in pro-
grammable digital signal processors is severely limited,

it is imperative that the generated code be parsimo-
nious in its memory usage. Adding off-chip memory
is often highly unattractive due to increased cost, in-
creased power requirements, and a speed penalty that
will affect the feasibility of real-time implementations.

One approach to automatic code generation is to
specify the program in an imperative language such as
C, C++, or FORTRAN and use a good compiler. How-
ever, even the best compilers today produce inefficient
code [7], although a significant research community
is evolving to address the challenges of compiling im-
perative programming languages into implementations
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on embedded processors such as programmable digi-
tal signal processors [8]. In addition, specifications in
imperative languages are difficult to parallelize, are
difficult to change due to side effects, and offer few
chances for any formal verification of program proper-
ties. An alternative is to use a block diagram language
based on a model of computation with strong formal
properties such as synchronous dataflow [9] to specify
the system, and to perform code-generation starting
from this specification. One reason that a compiler for
a block diagram language is likely to deliver better per-
formance than a compiler for an imperative language is
that the underlying model of computation often exposes
restrictions on the control flow of the specification, and
this can be profitably exploited by the compiler.

Synchronous dataflow (SDF) [9] is a special case
of dataflow. In SDF, a program is represented by a di-
rected graph in which each vertex (actor) represents
a computation, an edge specifies a FIFO buffer, and
each actor produces (consumes) a fixed number of data
values (tokens) onto (from) each output (input) edge
per invocation. A parameter on each edge specifies the
number of initial tokens (calleddelays) residing on that
edge.

One code-generation strategy followed in many
block diagram programming environments is called
threading; in this method, the underlying model (in
this case, SDF) is scheduled to generate a sequence
of actor invocations (provided that the model can be
scheduled at compile time of-course). A code genera-
tor then steps through this schedule, and for each actor
encountered in the schedule, the code generator inserts
a code block that implements the computation specified
by the given actor. The individual code blocks, which
can be specifications in assembly language or any high
level language, are obtained from a predefined library
of actor code blocks. Typically, in block diagram de-
sign tools for DSP, assembly language (feasible since
the actors are usually small, modular components) or
C is used to specify the functionality of individual code
blocks. By “compiling an SDF graph”, we mean ex-
actly the strategy described above for generating a soft-
ware implementation from an SDF graph specification
of the system in a block diagram environment.

We also assume that the code-generator generates
inline code; this is because the alternative of using
subroutine calls can have unacceptable overhead, es-
pecially if there are many small tasks. A key problem
that arises with such an in-line code generation strat-
egy is code-size explosion. For example, if an actor

appears 20 times in the schedule, then there will be
20 code blocks in the generated code. Clearly, such
code duplication can consume enormous amounts of
memory, especially if high actor invocation counts are
involved.

Generally, the only mechanism to combat code size
explosion while maintaining inline code is the use of
loops in the target code. If an actor’s code block is en-
capsulated by a loop, then multiple invocations of that
actor can be carried out without any code duplication.
This paper is devoted to the construction of efficient
loop structures from SDF graphs to allow the advan-
tages of inline code generation under stringent memory
constraints.

As mentioned earlier, a compiler for an imperative
language cannot usually exploit the restrictions in the
overall control flow of a DSP application system. How-
ever, the individual actor code blocks within an actor
are usually much simpler, and may even correspond
to basic blocks that compilers are adept at handling.
Hence, for DSP design tools in which individual actors
can be programmed using high level languages, com-
piling an SDF graph using the methods we describe in
this paper does not preclude the use of or obviate the
need for a good imperative language compiler. On the
contrary, we believe that the most promising approach
is a strategy that combines powerful SDF optimiza-
tions at a coarse-grain level, with aggressive imperative
compiler technology applied to optimize the internals
of individual actor code blocks. We expect that as com-
piler technology improves, such a hybrid approach will
eventually produce code competitive to hand-written
code. However, in this paper, we only consider the code
and buffer memory optimization possible at the SDF
graph level. Issues relating to the interaction between
compilation at the SDF graph level, and the lower-level
compilation of individual actor code blocks form an
important direction for further study.

2. Synchronous Dataflow

Figure 1(a) shows a simple SDF graph. Each edge
is annotated with the number of tokens produced

Figure 1. Examples of SDF graphs.
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(consumed) by its source (sink) actor, and the “D” on
the edge from actorA to actorB specifies a unit delay.
Each unit of delay is implemented as an initial token on
the edge. Given an SDF edgee, we denote the source
actor, sink actor, and delay ofe by src(e), snk(e), and
d(e). Also, p(e) andc(e) denote the number of tokens
produced ontoe by src(e) and consumed frome by
snk(e).

A scheduleis a sequence of actor firings. We compile
an SDF graph by first constructing avalid schedule—a
finite schedule that fires each actor at least once, does
not deadlock, and produces no net change in the number
of tokens queued on each edge. Corresponding to each
actor in the schedule, we instantiate a code block that
is obtained from a library of predefined actors. The re-
sulting sequence of code blocks is encapsulated within
an infinite loop to generate a software implementation
of the SDF graph.

SDF graphs for which valid schedules exist are called
consistentSDF graphs. In [9], efficient algorithms are
presented to determine whether or not a given SDF
graph is consistent, and to determine the minimum
number of times that each actor must be fired in a valid
schedule. We represent these minimum numbers of fir-
ings by a vectorqG, indexed by the actors inG (we
often suppress the subscript ifG is understood). These
minimum numbers of firings can be derived by finding
the minimum positive integer solution to thebalance
equationsfor G, which specify thatq must satisfy

q(src(e))× p(e) = q(snk(e))× c(e),

for every edgee in G. (1)

The vectorq, when it exists, is called therepetitions
vectorof G.

3. Constructing Memory-Efficient
Loop Structures

This section informally outlines the interaction be-
tween the construction of valid schedules for SDF
graphs and the memory requirements of the compiled
code.

To understand the problem of scheduling SDF
graphs to minimize memory requirements, it is useful
to examine closely the mechanism by which iteration
is specified in SDF. In an SDF graph, iteration of actors
in a valid schedule arises whenever the production and
consumption parameters along an edge in the graph dif-
fer. For example, consider the SDF graph in Fig. 2(a),

Figure 2. An example used to illustrate the interaction between
scheduling SDF graphs and the memory requirements of the gener-
ated code.

which contains three actors, labeledA, B andC. The
2-to-1 mismatch on the left edge implies that within
a valid schedule,B must be invoked twice for every
invocation ofA. Similarly, the mismatch on the right
edge implies that we must invokeC twice for every
invocation ofB.

Figure 2(b) shows four possible valid schedules that
we could use to implement Fig. 2(a). For example,
the first schedule specifies that first we are to invoke
A, followed by B, followed by C, followed by B
again, followed by three consecutive invocations of
C. The parenthesized terms in schedules 2, 3 and 4
are used to highlight repetitive invocation patterns in
these schedules. For example, the term (2BC) in sched-
ule 4 represents a loop whose iteration count is 2
and whose body is the invocation sequenceBC; thus,
(2BC) represents the firing sequenceBCBC. Similarly,
the term (2B(2C)) represents the invocation sequence
BCCBCC. Clearly, in addition to providing a conve-
nient shorthand, these parenthesized loop terms, called
schedule loops, present the code generator with oppor-
tunities to organize loops in the target program, and we
see that schedule 2 corresponds to a nested loop, while
schedules 3 and 4 correspond to cascades of loops.
For example, if each schedule loop is implemented as
a loop in the target program, the code generated from
schedule 4 would have the structure shown in Fig. 2(c).



154 Bhattacharyya, Murthy and Lee

We see that if each schedule loop is converted to a
loop in the target code, then each appearance of an ac-
tor in the schedule corresponds to a code block in the
target program. Thus, since actorC appears twice in
schedule 4 of Fig. 2(b), we must duplicate the code
block for C in the target program. Similarly, we see
that the implementation of schedule 1, which corres-
ponds to the same invocation sequence as schedule 4
with no looping applied, requires seven code blocks. In
contrast, in schedules 2 and 3, each actor appears only
once, and thus no code duplication is required across
multiple invocations of the same actor. We refer to such
schedules assingle appearanceschedules, and we see
that neglecting the code size overhead associated with
the loop control, any single appearance schedule yields
an optimally compact inline implementation of an SDF
graph with regard to code size. Typically the loop con-
trol overhead is small, particularly in programmable
digital signal processors, which usually have provi-
sions to manage loop indices and perform the loop test
in hardware, without explicit software control.

Scheduling can also have a significant impact on the
amount of memory required to implement the buffers
on the edges in an SDF graph. For example, in Fig. 2(b),
the buffering requirements for the four schedules, as-
suming that one separate buffer is implemented for each
edge, are 50, 40, 60, and 50 respectively.

Note that this model of buffering—maintaining a
separate memory buffer for each data flow edge—is
convenient and natural for code generation, and it is
the model used, for example, in the SDF-based code
generation environments described in [1, 2, 5]. More
technical advantages of this buffering model are elab-
orated on in [10].1

4. Relative Prioritization of Code and Data
Minimization Objectives

There are two natural angles for approaching the prob-
lem of joint minimization of code size and buffer mem-
ory requirements. The first approach is to study the
problem of constructing a minimum buffer memory
schedule, and then incorporate techniques for minimiz-
ing the code size into the approach that is developed
for minimizing buffer memory. Here, the objective is
to construct a minimum buffer memory implementa-
tion that has minimum code size over all minimum
buffer memory implementations. Conversely, first pri-
ority could be given to minimizing code size. This
would yield the goal of computing a minimum buffer

Figure 3. A comparison of the program and buffer memory require-
ments of various schedules for a sample rate conversion application.

memory schedule over all implementations that require
minimum code size. Once such a priority-based algo-
rithm is established, post-processing techniques can be
developed to balance the solutions computed by the
prioritybased algorithm according to the code size and
buffer memory capacities of the target implementation.

This paper focuses on the latter angle of attack—
assigning first priority to code size minimization, and
second priority to minimizing the buffer memory re-
quirement. This approach is preferable because for
practical synchronous dataflow graphs, giving first
priority to code size minimization typically yields a
significantly more favorable code size/buffer memory
trade-off than giving first priority to buffer memory
minimization.

An example of this phenomenon is shown in Fig. 3.
The top part of this figure depicts an SDF representa-
tion of a sample rate conversion system for interfacing
a compact disk player (44.1 kHz) to a digital audio
tape player (48 kHz). The sample rate conversion is
performed in four stages: 2 : 1, 4 : 3, 4 : 7, and 5 : 7. Ex-
plicit up samplers and down samplers are omitted, and
it is assumed that the FIR filters are general polyphase
filters [11].

The bottom part of Fig. 3 shows the code size and
buffer memory costs for various schedules when the
implementation target is a single Motorola 56000 pro-
grammable data signal processor. The first entry in this
table corresponds to a minimum buffer implementation
that does not incorporate any use of loops to reduce
the code size. This is theworstminimum buffer mem-
ory implementation. The second entry corresponds to
a minimum buffer memory implementation in which
looping is optimally employed to reduce code size.
This gives the memory costs for a minimum buffer
memory schedule that has minimum code size over all
minimum data schedules. The third entry shows the
memory costs for a minimum code size schedule that
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hasmaximumbuffer memory costs over all minimum
code size schedules. Finally, the fourth entry shows
the memory cost for a minimum code size schedule
that has minimum buffer memory cost over all mini-
mum code size schedules. Comparing the second and
fourth entries of the table in Fig. 3, we see that in most
implementation contexts, the optimal solution that re-
sults when we give first priority to code size minimiza-
tion is clearly preferable to the optimal solution that
results when we give first priority to buffer memory
minimization: the “best minimum code size schedule”
has a code size cost that is 55 times less than that of
the “best minimum buffer schedule,” while the buffer
memory cost of the best minimum code size schedule
is only 8 times larger; furthermore, the best minimum
code size schedule can be accommodated within the
on-chip memories of most programmable digital sig-
nal processors, while the 9400-word code size cost of
the best minimum buffer schedule is too large for many
processors.

5. Buffer Memory Metrics

Given an edgee in G, we define thetotal number of
samples exchangedone, denotedTNSE(e,G), or sim-
ply TNSE(e) if G is understood, by

TNSE(e) = qG(src(e))× p(e). (2)

Thus,TNSE(e) is the number of tokens produced onto
e in one period of a valid schedule. For example, in
Fig. 1(a),q(A, B,C) = (3,6,2), and thus,

TNSE((A, B)) = TNSE((B,C)) = 6.

Given an SDF graphG= (V, E), a valid scheduleS,
and an edgee in G, max tokens(e, S) denotes the max-
imum number of tokens that are queued oneduring an
execution ofS. For Fig. 1(a), if

S1 = (3A)(6B)(2C) and S2 = (3A(2B))(2C),

then max tokens((A, B), S1)=7 and max tokens
((A, B), S2) = 3.

We define thebuffer memory requirementof a sched-
ule Sby

buffer memory(S) ≡
∑
e∈E

max tokens(e, S). (3)

Thus,

buffer memory(S1) = 7+ 6= 13 and

buffer memory(S2) = 3+ 6= 9.

A valid single appearance schedule that minimizes
the buffer memory requirement over all valid single
appearance schedules is called abuffer memory optimal
schedule.

If Z is a subset of actors in a connected, consistent
SDF graphG,

ρG(Z) ≡ gcd({qG(A) | A ∈ Z}),2 (4)

and we refer to this quantity as therepetition countof Z.

6. Subindependence

Since valid single appearance schedules implement the
full repetition inherent in an SDF graph without re-
quiring subroutines or code duplication, it is useful to
examine the topological conditions required for such
schedules to exist. First, suppose thatG is a connec-
ted, consistent acyclic SDF graph containingn ac-
tors. Then we can take some root actorR1 of G and
fire all qG(R1) invocations ofR1 in succession. After
all invocations ofR1 have fired, we can removeR1

from G, pick a root actorR2 of the new acyclic SDF
graph, and schedule itsqG(R2) repetitions in succes-
sion. Clearly, we can repeat this process until no ac-
tors are left, to obtain the single appearance schedule
(qG(R1)R1)(qG(R2)R2) · · · (qG(Rn)Rn) for G. Thus,
we see that any consistent acyclic SDF graph has at
least one valid single appearance schedule.

The following result has been established concern-
ing the existence of single appearance schedules for
general SDF graph topologies (SDF graphs that are
not necessarily acyclic) [12].

Theorem 1.

• An SDF graph has a single appearance schedule if
and only if each strongly connected component has
a single appearance schedule.
• A strongly connected SDF graph has a single appear-

ance schedule only if we can partition the actors into
two subsets P1 and P2 such that P1 is precedence-
independent of P2 throughout a single schedule pe-
riod. That is, for each edgeα directed from a member
of P2 to a member of P1, d(α) ≥ q(snk(α)).
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This form of precedence-independence is referred to
as subindependence. Thus a strongly connected SDF
graph has a single appearance schedule only if its ac-
tors can be partitioned into subsetsP1 and P2 such
that P1 is subindependent ofP2. If such a partition
exists, the strongly connected SDF graph isloosely
interdependent, otherwise it istightly interdependent.
The following theorem relates the concept of loose in-
terdependence the existence of to single appearance
schedules [13]:

Theorem 2. A strongly connected, consistent SDF
graph G has a single appearance schedule if and only
if every strongly connected subgraph of G is loosely
interdependent.

Partitioning loosely interdependent SDF graphs
based on subindependence relationships defines a de-
composition process for hierarchically scheduling SDF
graphs. This decomposition process leads to single ap-
pearances schedules whenever they exist [13].

However, this method of decomposition is useful
even when single appearance schedules do not exist.
This is due to two key properties of tightly interdepen-
dent SDF graphs:

• Tight interdependence is“additive”: If Z1 and Z2

are two subsets of actors in an SDF graph such that
(Z1∩ Z2) is non-empty, and the subgraphs associ-
ated with Z1 and Z2 are both tightly interdependent,
then the subgraph associated with(Z1∪ Z2) is
tightly interdependent. Thus each SDF graph G has a
unique set of non-overlapping“maximal” tightly in-
terdependent subgraphs,which are called the tightly
interdependent components of G.
• Partitioning a loosely interdependent SDF graph

G based on subindependence cannot decompose a
tightly interdependent subgraph of G. Thus, if P1, P2

partition the actors of G such that P1 is subindepen-
dent of P2, and if T is a subset of actors whose cor-
responding subgraph is tightly interdependent, then
T ⊆ P1 or T ⊆ P2.

Thus, if a loosely interdependent SDF graph is recur-
sively decomposed based on subindependence, the de-
composition process will always terminate on the same
subgraphs—the tightly interdependent components.

7. Loose Interdependence Algorithms

This property of tightly interdependent subgraphs has
been applied to develop a flexible scheduling frame-
work for optimized compilation of SDF graphs. The

scheduling framework is based on a class of uniproces-
sor scheduling algorithms that we callloose interdepen-
dence algorithms. A loose interdependence algorithm
consists of three component algorithms, which we call
theacyclic scheduling algorithm, thesubindependence
partitioning algorithm, and thetight scheduling algo-
rithm. Theacyclic scheduling algorithmis any algo-
rithm for constructing single appearance schedules for
acyclic SDF graphs; thesubindependence partitioning
algorithm is any algorithm that determines whether a
strongly connected SDF graph is loosely interdepen-
dent and if so, finds a subindependent partition; and the
tight scheduling algorithmis any algorithm that gener-
ates a valid schedule for a tightly interdependent SDF
graph. The precise manner in which the three compo-
nent sub-algorithms interact to define a loose interde-
pendence algorithm is specified in [13].

The following useful properties of loose interdepen-
dence algorithms are established in [13].

• Any loose interdependence algorithm constructs a
single appearance schedule when one exists.
• If N is an actor in the input SDF graph andN is not

contained in a tightly interdependent component of
G, then any loose interdependence algorithm sched-
ulesG in such a way thatN appears only once.
• If N is an actor within a tightly interdependent com-

ponent of the input SDF graph, then the number of
times thatN appears in the schedule generated by
a loose interdependence algorithm is determined
entirely by the tight scheduling algorithm.

The last property states that the effect of the tight
scheduling algorithm is independent of the subinde-
pendence partitioning algorithm, and vice-versa. Any
subindependence partitioning algorithm guarantees
that there is only one appearance for each actor out-
side the tightly interdependent components, and the
tight scheduling algorithm completely determines the
number of appearances for actors inside the tightly in-
terdependent components. For example, if we develop
a new subindependence partitioning algorithm that is
more efficient in some way (e.g., it is faster, or re-
duces buffering cost more), we can substitute it for any
existing subindependence partitioning algorithm with-
out changing the compactness of the resulting looped
schedules. Similarly, if we develop a new tight schedul-
ing algorithm that schedules any tightly interdependent
graph more compactly than the existing tight schedul-
ing algorithm, we are guaranteed that using the new
algorithm instead of the old one will lead to more com-
pact schedules overall.
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Figure 4. (a) A block diagram of a modem application. (b) Acyclic
graph after clustering the strongly connected components in (a).

8. Modem Example

Figure 4(a) shows an SDF implementation of a modem
taken from [9]. The repetitions vector is given by

q(A, B, . . . , P)

= [16,16,2,1,1,1,1,1,1,1,1,1,1,2,1,1]T .

There is one strongly connected component, corre-
sponding to actors

D,O, E, F, I , J, K , L ,M, N, P.

This strongly connected component is clustered to give
an acyclic graph as depicted in Fig. 4(b). A possible
single appearance schedule for this clustered graph is

(16A)(16B)(2C)Ä1GH. (5)

Now the strongly connected component has a sub-
independent partition given by{D, I } and {O, E, F,
J, K , L ,M, N, P}. Since the subgraphs correspond-
ing to these two subsets of actors are both acyclic, the
recursive application of a loose interdependence algo-
rithm terminates by applying the acyclic scheduling
algorithm to each of the partitions, yielding the sin-
gle appearance scheduleDIJKLM(2N)OPPE for this
strongly connected component. This schedule is then
substituted into the top-level schedule (5) to give a sin-
gle appearance schedule for the entire graph:

(16A)(16B)(2C)DIJKLM(2N)OPFEGH.

9. Minimizing Buffer Memory

In the scheduling framework above, the acyclic sche-
duling algorithm can be designed such that the total
buffer-memory requirement is minimized to a certain
extent (which we will elaborate on later). In this sec-
tion, we assume that the SDF graph is acyclic; the
non-acyclic case will be dealt with later.

It is shown in [10] that the buffer-memory mini-
mization problem is NP-complete, even for arbitrary,
acyclic homogenous3 SDF graphs. Two heuristics,
along with a post-processing algorithm have been de-
veloped; these two algorithms are complementary in
the sense that one performs well on graphs having a
more regular topology and regular rate changes, while
the other performs well on graphs having irregular
topologies and irregular rate changes.

Essentially, for an acyclic graph, the problem of con-
structing a buffer-memory optimal single appearance
schedule boils down to generating an appropriate topo-
logical ordering of the vertices in the graph, and then
generating an optimal loop hierarchy. The number of
topological sorts in an acyclic graph can be exponen-
tial in the size of the graph; for example, a complete
bipartite graph with 2n actors has(n!)2 possible topo-
logical sorts. Each topological sort gives a valid flat
single appearance schedule (i.e., a single appearance
schedule with no nested loops). The post-processing
step then computes a buffer-memory optimal loop hi-
erarchy. For example, the graph in Fig. 5 shows a
bipartite graph with 4 actors. The repetitions vector
for the graph is given by (12, 36, 9, 16)T , and there
are 4 possible topological sorts for the graph. The
flat schedule corresponding to the topological sort
ABCD is given by(12A)(36B)(9C)(16D). This can
be nested as(3(4A)(3(4B)C))(16D), and this sche-
dule has a buffer memory requirement of 208. The
flat schedule corresponding to the topological sort
ABCD, when nested optimally, gives the schedule
(4(3A)(9B)(4D))(9C), with a buffer memory require-
ment of 120.

Figure 5. A bipartite SDF graph to illustrate the different buffer
memory requirements possible with different topological sorts.
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The post-processing step of computing a loop hier-
archy for a given actor ordering can be accomplished
optimally for delayless graphs by using a dynamic
programming algorithm [10], called the dynamic pro-
gramming post-optimization (DPPO) algorithm. An
extension of this algorithm, called generalized DPPO
(GDPPO), has been developed to optimally handle ac-
tor orderings for SDF graphs that have delays and that
may contain cycles [14]. Given any consistent SDF
graphG, and an orderingL of the actors inG, GDPPO
computes a single appearance schedule that minimizes
the buffer memory requirement over all single appea-
rance schedules that have the given actor ordering
(assuming that at least one valid single appearance
schedule exists that has the given actor ordering). Here,
by the actor ordering of a single appearance schedule,
we mean the lexical order in which the actors appear—
for example, the actor ordering associated with the
schedule(4(3A)(9B)(4D))(9C) is (A, B,C, D). The
running time of the GDPPO algorithm on sparse SDF
graphs isO(|V |3), whereV is the set of vertices.

10. The Buffer Memory Lower Bound

In [15] the following lower bound onmax tokens(e, S)
is derived, given a consistent SDF graphG, an edgee
in G, and a valid single appearance scheduleS.

Definition 1. The buffer memory lower bound
(BMLB) of an SDF edgee, denotedBMLB(e), is given
by

BMLB(e) =
{
(η(e)+ d(e)) if (d(e) < η(e))

d(e) if (d(e) ≥ η(e)) (6)

where

η(e) = p(e)c(e)

gcd({p(e), c(e)}) .

If G = (V, E) is an SDF graph, then(∑
e∈E

BMLB(e)

)
(7)

is called the BMLB ofG, and a valid single appear-
ance scheduleSfor G that satisfiesmax tokens(e, S) =
BMLB(e) for all e∈ E is called aBMLB schedulefor G.

Not all consistent SDF graphs have valid BMLB
schedules. For example the SDF graph of Fig. 1(a)

does not have a BMLB schedule. In contrast, for the
SDF graph in Fig. 1(b), it can easily be verified that
the scheduleA(2B(3C)), which has a buffer memory
requirement of 3+ 3= 6, is a BMLB schedule.

Although BMLB schedules do not exist for all SDF
graphs, empirical observations suggest that many prac-
tical graphs have BMLB schedules [14].

11. Pairwise Grouping of Adjacent Nodes

The first of the two heuristics that we discuss for gen-
erating topological orderings of acyclic SDF graphs
with the objective of buffer memory minimization is a
bottom-up procedure calledAcyclic Pairwise Grouping
of Adjacent Nodes(APGAN). In this technique, a clus-
ter hierarchy is constructed by clustering exactly two
adjacent vertices at each step. At each clusterization
step, a pair of adjacent actors is chosen that maximizes
ρG over all adjacent pairs that areclusterable, which
means that they do not introduce cycles in the graph
when clustered.

Figure 6 illustrates the operation of APGAN.
Figure 6(a) shows the input SDF graph. Hereq(A, B,
C, D, E)= (6,2,4,5,1), and for i =1,2,3,4, Äi

represents thei th hierarchical actor instantiated by
APGAN. The repetition counts of the adjacent pairs
are given by

ρ({A, B}) = ρ({A,C}) = ρ({B,C}) = 2, (8)

Figure 6. An illustration of APGAN.
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and

ρ({C, D}) = ρ({E, D}) = ρ({B, E}) = 1. (9)

Thus, APGAN will select one of the three adjacent
pairs{A, B}, {A,C}, or {B,C} for its first clusteriza-
tion step. The adjacent pair{A,C} introduces a cycle
when clustered, while the other two adjacent pairs do
not introduce cycles. Thus, APGAN chooses arbitrar-
ily between{A, B} and{B,C} as the first adjacent pair
to cluster.

Figure 6(b) shows the graph that results from clus-
tering {A, B} into the hierarchical actorÄ1. In this
graph,q(Ä1,C, D, E) = (2,4,5,1), and it is easily
verified that{Ä1,C} uniquely maximizesρ over all ad-
jacent pairs. Since{Ä1,C} does not introduce a cycle,
APGAN selects this adjacent pair for its second clus-
terization step. Fig. 6(c) shows the resulting graph.

Figure 6(d) and (e) show the results of the remain-
ing two clusterizations in our illustration of APGAN.
We define thesubgraph corresponding toÄi to be the
subgraph that is clustered in thei th clusterization step.
A valid single appearance schedule for Fig. 6(a) can
easily be constructed by recursively traversing the hi-
erarchy induced by the subgraphs corresponding to
theÄi s. We start by constructing a schedule for the
top-level subgraph, the subgraph corresponding toÄ4.
This yields the “top-level” schedule(2Ä2)Ä3 (we sup-
press loops that have an iteration count of one) for
the subgraph corresponding toÄ4. We continue in this
manner to yield the valid single appearance schedule
Sp ≡ (2(3A)B(2C))(5D)E for Fig. 6(a).

From Sp and Fig. 6(a) it is easily verified that
buffer memory(Sp) and(

∑
e∈E BMLB(e)), whereE is

the set of edges in Fig. 6(a), are identically equal to
43, and thus in the execution of APGAN illustrated in
Fig. 6, a BMLB schedule is returned.

The APGAN approach, as we have defined it here,
does not uniquely specify the sequence of clusteriza-
tions that will be performed. The APGAN technique
together with an unambiguous protocol for deciding
between adjacent pairs that are tied for the highest rep-
etition count form anAPGAN instance, which gener-
ates a unique schedule for a given graph. We say that
an adjacent pair is anAPGAN candidateif it does not
introduce a cycle, and its repetition count is greater
than or equal to that of all other adjacent pairs that do
not introduce cycles. Thus, an APGAN instance is any
algorithm that takes a consistent, acyclic SDF graph, re-
peatedly clusters APGAN candidates, and then outputs

the schedule corresponding to a recursive traversal of
the resulting cluster hierarchy.

It is shown in [15] that APGAN is optimal for a class
of acyclic SDF graphs in the following sense:

Theorem 3. If G = (V, E) is a connected, acyclic
SDF graph that has a BMLB schedule, d(e)< η(e) for
all e∈ E,and P is an APGAN instance, then the sched-
ule obtained by applying P to G is a BMLB schedule
for G.

Hence, whenever the achievable lower bound on the
buffer memory (that is, the buffer memory require-
ment of the single appearance schedule having the
lowest possible buffer memory requirement) coincides
with the BMLB, and the inequality in the statement of
Theorem 3 holds, APGAN will always find a BMLB
schedule. If the achievable lower bound is greater than
the BMLB, then the schedule returned by APGAN
could have a buffer memory requirement greater than
the achievable lower bound.

Many practical systems, such as QMF filter banks,
fall into the category of SDF graphs that satisfy the
conditions of Theorem 3 [15].

12. Recursive Partitioning by Minimum Cuts

APGAN constructs a single appearance schedule in a
bottom-up fashion by starting with the innermost loops
and working outward. An alternative approach, called
Recursive Partitioning by Minimum Cuts(RPMC),
computes a schedule by recursively partitioning the
SDF graph in such a way that outer loops are con-
structed before the inner loops. Each partition is con-
structed by finding the cut (partition of the set of actors)
across which the minimum amount of data is trans-
ferred. The cut that is produced must have the property
that all edges that cross the cut have the same direction.
This is to ensure that all actors on the left side of the
partition can be scheduled before any on the right side
are scheduled. A constraint that the partition be evenly
sized is also imposed. This is to increase the possibil-
ity of having gcd’s that are greater than unity for the
repetitions of the actors in the subsets produced by the
partition, thus reducing the buffer memory requirement
[10].

Suppose thatG = (V, E) is a connected, consistent
SDF graph. Acut of G is a partition of the actor set
V into two disjoint setsVL andVR. The cut islegal if
for all edgese crossing the cut (that is, all edges that
have one incident actor inVL and the other inVR), we
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havesrc(e) ∈ VL andsnk(e) ∈ VR. Given a bounding
constantK ≤ |V |, the cut results in bounded sets if it
satisfies

|VR| ≤ K . |VL | ≤ K . (10)

The weight of edgee is defined asw(e) ≡ TNSE(e).
The weight of the cut is the total weight of all the

edges crossing the cut. The problem then is to find the
minimum weight legal cut into bounded sets for the
graph. This problem is believed to be NP-complete, al-
though a proof has not been discovered [10]. Kernighan
and Lin [16] devised a heuristic procedure for comput-
ing cuts into bounded sets but they considered only
undirected graphs. Methods based on network flows
[17] do not work because the minimum cut given by
the max-flow-min-cut theorem may not be legal and
may not be bounded [10]. Hence, a heuristic solution
is needed for finding legal minimum cuts into bounded
sets.

One technique is to use the max-flow-min-cut theo-
rem [17] to generate a minimum cut. Legality can be
ensured by adding reverse edges(v,u) for each edge
(u, v). The capacities of the reverse edges are set to in-
finity, ensuring that any edge that crosses the cut in the
reverse direction is an edge of infinite capacity [18].
However, this cut may not be bounded. One way to
make this cut bounded would be to simply examine ac-
tors on the side with the larger number of actors, and
move those over to the other side that increase the cost
the least, until the bound is satisfied.

Another technique for constructing legal minimum
cuts into bounded sets is to examine the set of cuts
produced by taking an actor and all of its descendants
as the actor setVR and the set of cuts produced by
taking an actor and all of its ancestors as the setVL .
For each such cut, an optimization step is applied that
attempts to improve the cost of the cut. Consider a cut
produced by setting

VL = (ancs(v) ∪ {v}), VR = V\VL (11)

for some actorv, and letTR(v) be the set of indepen-
dent,boundary actorsof v in VR. A boundaryactor in
VR is an actor that is not the predecessor of any other ac-
tor in VR. Following Kernighan and Lin [16], for each
of these actors, we can compute the cost difference
that results if the actor is moved intoVL . This cost
difference for an actora in TR(v) is defined to be the dif-
ference between the total weight of all input edges ofa

and the total weight of output edges ofa. We then move
those actors across that reduce the cost. We apply this
optimization step for all cuts of the form(ancs(v)∪ {v})
and(desc(v)∪{v}) for each actor in the graph and take
the best one as the minimum cut. Since there are|V |
actors in the graph, 2|V | cuts are examined. Moreover,
the cut produced will have bounded sets since cuts that
produce unbounded sets are discarded.

RPMC now proceeds by partitioning the graph by
computing the legal minimum cut and forming the
schedule(ρG(VL)SL)(ρG(VR)SR), where SL , SR are
schedules forGL and GR respectively that are ob-
tained recursively by partitioningGL andGR. It can
be shown that the running time of RPMC for sparse
SDF graphs, including post-optimization by GDPPO,
is O(|V |3) [10].

13. Application to General SDF Topologies

The APGAN and RPMC algorithms work on acyclic
SDF graphs, and thus are suitable for use as the acyclic
scheduling algorithm in the scheduling framework de-
scribed in Section 7. In this manner, we can obtain
single appearance schedules for cyclic graphs that min-
imize buffer memory costs to a limited extent. In par-
ticular, if buffer-memory considerations are not taken
into account in either the subindependence partitioning
algorithm or the tight scheduling algorithm, there is no
guarantee that the resulting schedule will be optimal
or even near-optimal with respect to the buffer mem-
ory requirement. Combining buffer-memory consider-
ations into the latter two components of the scheduling
framework is an important topic for future work.

14. Experimental Observations

APGAN and RPMC (with the second of the two legal
bounded cut heuristics mentioned) have been tested
on many practical examples, as well as randomly gen-
erated graphs. Many practical systems, such as QMF
filter banks fall into the category of SDF graphs having
BMLB schedules; hence, on these APGAN performs
optimally. It is interesting to note that on non-uniform
filter bank structures, the BMLB cannot be achieved,
and on such structures, RPMC gives significantly bet-
ter schedules than APGAN. Also, RPMC outperforms
APGAN by almost 2 to 1 on random SDF graphs. De-
tails of these experiments can be found in [15, 19]. It
would be interesting to see the impact of using the first
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heuristic (based on the network flow formulation) for
generating legal minimum cuts into bounded sets on
RPMC performance; we have not done these experi-
ments yet.

15. Application to Multidimensional
SDF Graphs

The synchronous dataflow model suffers from the
limitation that its streams are one-dimensional. For
multidimensional signal processing algorithms, it is
necessary to have a model in which this restriction is not
present, so that effective use can be made of the inherent
data-parallelism that exists in such systems. As for one-
dimensional systems, the specification model for mul-
tidimensional systems should expose to the compiler
or hardware synthesis tool as much static information
as possible so that run-time decision making is avoided
as much as possible, and so that effective use can be
made of both functional and data parallelism. Most
multidimensional signal processing systems also have
a predictable flow of control, like one-dimensional sys-
tems, and for this reason, an extension of SDF, called
multidimensional synchronous dataflow was proposed
in [20].

Although a multidimensional stream can be embed-
ded within a one dimensional stream, it may be awk-
ward to do so [21]. In particular, compile-time informa-
tion about the flow of control may not be immediately
evident. The multidimensional SDF (MDSDF) model
is a straightforward extension of one-dimensional SDF.
Figure 7 shows a trivially simple two-dimensional SDF
graph. The numbers of tokens produced and consumed
are now given asM-tuples. Instead of one balance equa-
tion for each edge, there are nowM . The balance equa-
tions for Fig. 7 are

r A,1OA,1 = r B,1I B,1, r A,2OA,2 = r B,2I B,2 (12)

These equations should be solved for the smallest in-
tegersr X,i , which then give the number of repetitions
of each actorX in each dimensioni .

As a simple application of MDSDF, consider a por-
tion of an image coding system that takes a 40× 48

Figure 7. A simple MD-SDF graph.

Figure 8. An image processing application in MD-SDF.

pixel image and divides it into 8×8 blocks on which it
computes a DCT. At the top level of the hierarchy, the
dataflow graph is shown in Fig. 8. The solution to the
balance equations is given by

r A,1 = r A,2 = 1, rDCT,1 = 5, rDCT,2 = 6. (13)

A segment of the index space for the stream on the
edge connecting actor A to the DCT is shown in the
figure. The segment corresponds to one firing of ac-
tor A. The space is divided into regions of tokens that
are consumed on each of the five vertical firings of
each of the 6 horizontal firings. The precedence graph
constructed automatically from this shows that the 30
firings of the DCT are independent of one another, and
hence can proceed in parallel. Distribution of data to
these independent firings can be automated.

A delay in MD-SDF is associated with a tuple as
shown in Fig. 7. It can be interpreted as specifying
boundary conditions on the index space. Thus, for 2D-
SDF, as shown in the figure, it specifies the number of
initial rows and columns. It can also be interpreted as
specifying the direction in the index space of a depen-
dence between two single assignment variables, much
as done in reduced dependence graphs [22].

All of the scheduling techniques discussed in the ear-
lier sections of this paper extend to the MDSDF model.
The extension of RPMC and GDPPO can be handled
in a straightforward manner by simply changing the
buffer cost formulation appropriately [19]. In the re-
mainder of this section, we define an extension of the
buffer memory lower bound to multidimensional sys-
tems, and we present a multidimensional version of the
APGAN algorithm along with its associated optimal-
ity result (i.e., the MDSDF version of Theorem 3). In
this discussion, we assume 2 dimensions for notational
simplicity, unless otherwise stated. We use the nota-
tion A[i, j ] to mean the(i, j )th invocation of actorA
in a complete valid schedule. In an MDSDF schedule,
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a single appearance schedule such as((4,2)A(6,4)B)
corresponds to a loop structure of the form:

for x = 0 to 3

for y = 0 to 1

fire A[x,y]

end fory, for x

for x = 0 to 5

for y = 0 to 3

fire B[x,y]

end fory, for x.

15.1. The Buffer Memory Lower Bound (BMLB)
for MDSDF Graphs

The BMLB of an MDSDF graph can be computed in a
manner similar to the SDF BMLB computation. First,
we define

x(AB) = r A,1

gcd(r A,1, r B,1)
OA,1,

y(AB) = r A,2

gcd(r A,2, r B,2)
OA,2,

(14)

for an edge(A, B) with (d1,d2) delays. Then, the
BMLB for the edge(A, B) can be expressed as [19]

BMLB(AB)

=
{
(x(AB)+d1)(y(AB)+d2) d1< x∨d2< y

d1d2 d1≥ x∧ xd2≥ y

(15)

15.2. APGAN for MDSDF Graphs

APGAN can be applied to acyclic MDSDF graphs in
the following manner [19]. First, define the following

Figure 9. An MDSDF graph that has a BMLB schedule.

two quantities:

ρ1({A, B}) = gcd(r A,1, r B,1) and

ρ2({A, B}) = gcd(r A,2, r B,2). (16)

The clustering function is a tuple and is then given by

ρ({A, B}) ≡ (ρ1({A, B}), ρ2({A, B})). (17)

At each step in the algorithm, we cluster the adjacent
pair A, B that maximizesρ({A, B}) component-wise.
This means that for any other adjacent clusterable pair
{X,Y}, with ρ ′({X,Y})= (ρ ′1({X,Y}), ρ ′2({X,Y}))
we should haveρ1 ≥ ρ ′1, ρ2 ≥ ρ ′2. If such a pair does
not exist, we pick the adjacent clusterable pair{U,V}
that maximizesρ1({U,V})ρ2({U,V}).

The following result extends the “APGAN optimal-
ity property” of Theorem 3 to the MDSDF version of
APGAN defined above.

Theorem 4. When applied to a consistent MDSDF
graph,APGAN will return a BMLB schedule whenever
one exists,provided that the delay(d1,d2)on each edge
(A, B) satisfies:

d1 < x ∨ d2 < y

where

x = r A,1

gcd(r A,1, r B,1)
OA,1, y = r A,2

gcd(r A,2, r B,2)
OA,2.

15.3. MDSDF APGAN Example

Consider the example graph shown in Fig. 9. The
repetitions vector is given byr (A, B,C, D)={(2,8),
(6,4), (4,2), (1,3)}. The clusterable pairs are{A, B},
{B,C}, and {C, D}. The clustering function values
are ρ({A, B})= (2,4), ρ({B,C})= (2,2), and
ρ({C, D})= (1,1). Hence,{A, B} is the pair chosen
for clustering since its clustering function has maxi-
mum component-wise value over the three clusterable
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Figure 10. An example of a graph that does not have a BMLB
schedule.

pairs. Similarly, at the next step, there are two clus-
terable pairs,{W1,C} and {C, D}, and the clus-
tering function values areρ({W1,C})= (2,2) and
ρ({C, D})= (1,1). So{W1,C} is clustered next, and
the final schedule is(2,2)((1,2)((1,2)A(3,1)B)
(2,1)C) (1,3)D. It can be verified that this is indeed a
BMLB schedule.

The graph in Fig. 10 shows an example where
there is no adjacent pair whose clustering function
has the maximum-componentwise value. Hence, the
graph does not have a BMLB schedule either, as is
verified by looking at the two possible nested single
appearance schedules. The repetitions vector is given
by {(4,5), (6,15), (9,3)}. The clustering function val-
ues for the two clusterable pairs areρ({A, B}) = (2,5)
andρ({B,C}) = (3,3). The two possible nested single
appearance schedules are

(2,5)((2,1)A(3,3)B) (9,3)C and

(4,5)A (3,3)((2,5)B (3,1)C).

Neither of these is a BMLB schedule. The APGAN
algorithm in this case will choose to cluster{A, B}
first because 2× 5 > 3× 3; this results in the first of
the two schedules given above. The first schedule has
higher buffering requirements than the second; hence,
APGAN is not optimal when the graph does not have
a BMLB schedule.

16. Alternative Approaches for Scheduling
SDF Graphs

The techniques in this paper focus on compiling SDF
graphs to minimize the code size and data memory size.
At the Aachen University of Technology, as part of
the COSSAP software synthesis environment for DSP,
Ritz et al. have investigated the minimization of code
size in conjunction with a different secondary opti-
mization criterion: minimization of the context-switch
overhead, or the average rate at whichactor activations
occur [23]. An actor activation occurs whenever two
distinct actors are invoked in succession; for example,

the schedule(2(2B))(5C) results in five activations per
schedule period.

In multiprocessor computers, different iterations of
a loop can be executed in parallel on different proces-
sors. To achieve this, the code for the loop is repli-
cated across the processors. This is in contrast to our
problem, which involves a uniprocessor implementa-
tion target, and in which there are no explicitly speci-
fied loops (within the schedule period). We would like
to detect the opportunity to construct multiple invoca-
tions of the same firing sequence, and we wish to group
these invocations successively in time so that they form
successive iterations of a single loop.

Loop distribution and loop fusion [24] can be used
to improve data locality for looped schedules of SDF
graphs. Also, the use of iteration space tiling, as dis-
cussed in [24, 25], can be used to improve locality
for code synthesized for a looped schedule of an SDF
graph. However, each loop transformation and sched-
ule rearrangement applies to a localized section of the
target code. The scheduling techniques described in
this paper use dataflow properties to guide a sched-
uler to more efficient solutions; loop transformations
can then be applied to refine the resulting schedules.
We believe that this will be more efficient than con-
structing naive schedules, and relying solely on loop
transformations to achieve adequate data locality.

Ade et al. develop upper bounds on the minimum
buffer memory requirement for certain classes of SDF
graphs [26]. Since these bounds attempt to minimize
over all valid schedules, and since single appearance
schedules generally have much larger buffer mem-
ory requirements than schedules that are optimized
for minimum buffer memory only, these bounds can-
not consistently give close estimates of the mini-
mum buffer memory requirement for single appearance
schedules.

Lauwereins et al. present a generalization of SDF
called cyclostatic dataflow [27]. A major advantage
of cyclo-static dataflow is that it can eliminate large
amounts of token traffic arising from the need to gen-
erate dummy tokens in corresponding (pure) SDF rep-
resentations. Although cyclostatic dataflow can reduce
the amount of buffering for graphs having certain mul-
tirate actors like explicit downsamplers, it is not clear
whether this model can in general be used to derive
schedules that are as compact as single appearance
schedules for pure SDF graphs but have lower buffer-
ing requirements than those arising from the techniques
discussed in this paper.
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A linear programming framework for minimizing
the memory requirement of a synchronous dataflow
graph in a parallel processing context is explored by
Govindarajan and Gao in [28]. Here the goal is to min-
imize the buffer cost without sacrificing throughput—
just as one of the goals in this paper is to minimize
buffering cost without sacrificing code compactness.

17. Summary

This paper has reviewed a set of techniques for mapping
SDF programs for embedded digital signal process-
ing applications into efficient implementations on pro-
grammable processors. The techniques have focused on
the minimization of code size, and the minimization of
the memory required for the buffers that implement the
edges in the input dataflow graph. Even though some
of the associated problems have been shown to be NP-
complete, we have described algorithms that solve sub-
sets of these problems optimally, and have described a
framework in which these algorithms can be combined
with heuristics to give a comprehensive solution.

There are two central themes that underlie the tech-
niques discussed in this paper. These themes are based
on the concept of single appearance schedules, which
is a class of code-size-minimizing schedules for SDF
programs. The first theme is a uniprocessor schedul-
ing framework that operates by decomposing the in-
put SDF graph into a hierarchy of acyclic subgraphs.
The scheduling framework constructs single appear-
ance schedules whenever they exist, and when single
appearance schedules do not exist, the framework gua-
rantees optimal code size for all actors that are not
contained in a certain type of subgraph called tightly
independent subgraphs. The second theme involves a
pair of complementary algorithms that construct sin-
gle appearance schedules for acyclic SDF graphs that
minimize the buffer memory requirement. These com-
plementary algorithms can easily be incorporated into
the scheduling framework to handle the acyclic graphs
that result from the decomposition process.

These techniques have all been implemented in the
Ptolemy software environment [1]. Additionally, AP-
GAN, DPPO, and the scheduling framework based on
loose interdependence algorithms have been imple-
mented by the Alta Group of Cadence in the Signal
Processing Worksystem, a widely-used design envi-
ronment for DSP applications. A detailed, comprehen-
sive treatment of the techniques discussed in this paper,

including complete pseudocode specifications of the
algorithms, can be found in [14].
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Notes

1. Note that scheduling techniques that employ this buffering model
do not preclude the sharing of memory locations across multiple,
non-interfering edges (edges whose lifetimes do not overlap): the
resulting schedules can be post-processed by any general tech-
nique for array memory allocation, such as the well-known first-
fit or best-fit algorithms. In this case, the scheduling techniques,
which attempt to minimize the sum of the individual buffer sizes,
employ a buffer memory metric that is an upper bound approxi-
mation to the final buffer memory cost.

2. The greatest common divisor is denoted bygcd.
3. A homogenous SDF graph hasp(e) = c(e) = 1 for all edgese.
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