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Abstract. The implementation of software for embedded digital signal processing (DSP) applications is an ex-
tremely complex process. The complexity arises from escalating functionality in the applications; intense time-
to-market pressures; and stringent cost, power and speed constraints. To help cope with such complexity, DSP
system designers have increasingly been employing high-level, graphical design environments in which system
specification is based on hierarchical dataflow graphs. Consequently, a significant industry has emerged for the
development of data-flow-based DSP design environments. Leading products in this industry include SPW from
Cadence, COSSAP from Synopsys, ADS from Hewlett Packard, and DSP Station from Mentor Graphics. This
paper reviews a set of algorithms for compiling dataflow programs for embedded DSP applications into efficient
implementations on programmable digital signal processors. The algorithms focus primarily on the minimization of
code size, and the minimization of the memory required for the buffers that implement the communication channels
in the input dataflow graph. These are critical problems because programmable digital signal processors have very
limited amounts of on-chip memory, and the speed, power, and cost penalties for using off-chip memory are often
prohibitively high for embedded applications. Furthermore, memory demands of applications are increasing at a
significantly higher rate than the rate of increase in on-chip memory capacity offered by improved integrated circuit
technology.

1. Introduction it is imperative that the generated code be parsimo-
nious in its memory usage. Adding off-chip memory
Numerous software design environments for digital is often highly unattractive due to increased cost, in-
signal processing applications, such as those describeccreased power requirements, and a speed penalty that
in [1-6], support code-generation for programmable will affect the feasibility of real-time implementations.
digital signal processors used in embedded systems. One approach to automatic code generation is to
Traditionally, programmable digital signal processors specify the program in an imperative language such as
have been programmed manually, in assembly lan- C, C++, or FORTRAN and use a good compiler. How-
guage, and this is a tedious, error-prone process at bestever, even the best compilers today produce inefficient
Hence, generating code automatically is a desirable code [7], although a significant research community
goal. Since the amount of on-chip memory in pro- is evolving to address the challenges of compiling im-
grammable digital signal processorsis severely limited, perative programming languages into implementations
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on embedded processors such as programmable digi-appears 20 times in the schedule, then there will be
tal signal processors [8]. In addition, specifications in 20 code blocks in the generated code. Clearly, such
imperative languages are difficult to parallelize, are code duplication can consume enormous amounts of
difficult to change due to side effects, and offer few memory, especially if high actor invocation counts are
chances for any formal verification of program proper- involved.
ties. An alternative is to use a block diagram language  Generally, the only mechanism to combat code size
based on a model of computation with strong formal explosion while maintaining inline code is the use of
properties such as synchronous dataflow [9] to specify loops in the target code. If an actor’s code block is en-
the system, and to perform code-generation starting capsulated by a loop, then multiple invocations of that
from this specification. One reason that a compiler for actor can be carried out without any code duplication.
a block diagram language is likely to deliver better per- This paper is devoted to the construction of efficient
formance than a compiler for an imperative language is loop structures from SDF graphs to allow the advan-
thatthe underlying model of computation often exposes tages of inline code generation under stringent memory
restrictions on the control flow of the specification, and constraints.
this can be profitably exploited by the compiler. As mentioned earlier, a compiler for an imperative
Synchronous dataflow (SDF) [9] is a special case language cannot usually exploit the restrictions in the
of dataflow. In SDF, a program is represented by a di- overall control flow of a DSP application system. How-
rected graph in which each verteactor) represents  ever, the individual actor code blocks within an actor
a computation, an edge specifies a FIFO buffer, and are usually much simpler, and may even correspond
each actor produces (consumes) a fixed number of datato basic blocks that compilers are adept at handling.
values foken$ onto (from) each output (input) edge Hence, for DSP design tools in which individual actors
per invocation. A parameter on each edge specifies thecan be programmed using high level languages, com-
number of initial tokens (calledelay$ residing on that piling an SDF graph using the methods we describe in
edge. this paper does not preclude the use of or obviate the
One code-generation strategy followed in many need for a good imperative language compiler. On the
block diagram programming environments is called contrary, we believe that the most promising approach
threading in this method, the underlying model (in is a strategy that combines powerful SDF optimiza-
this case, SDF) is scheduled to generate a sequencdions at a coarse-grain level, with aggressive imperative
of actor invocations (provided that the model can be compiler technology applied to optimize the internals
scheduled at compile time of-course). A code genera- of individual actor code blocks. We expectthat as com-
tor then steps through this schedule, and for each actorpiler technology improves, such a hybrid approach will
encountered in the schedule, the code generator inserteventually produce code competitive to hand-written
acode block thatimplements the computation specified code. However, inthis paper, we only consider the code
by the given actor. The individual code blocks, which and buffer memory optimization possible at the SDF
can be specifications in assembly language or any highgraph level. Issues relating to the interaction between
level language, are obtained from a predefined library compilation at the SDF graph level, and the lower-level
of actor code blocks. Typically, in block diagram de- compilation of individual actor code blocks form an
sign tools for DSP, assembly language (feasible since important direction for further study.
the actors are usually small, modular components) or
C is used to specify the functionality of individual code 2. Synchronous Dataflow
blocks. By “compiling an SDF graph”, we mean ex-
actly the strategy described above for generating a soft- Figure 1(a) shows a simple SDF graph. Each edge
ware implementation from an SDF graph specification js annotated with the number of tokens produced
of the system in a block diagram environment.
We also assume that the code-generator generates =)
inline code; this is because the alternative of using (b) ®2 D '1\8/1 :>3©
subroutine calls can have unacceptable overhead, es-
pecially if there are many small tasks. A key problem (a) @2 D ﬁ@s ﬁ@
that arises with such an in-line code generation strat-
egy is code-size explosion. For example, if an actor Figure 1 Examples of SDF graphs.
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(consumed) by its source (sink) actor, and the “D” on
the edge from actoA to actorB specifies a unit delay. @ 20 10 20 10 O
Each unit of delay is implemented as an initial token on
the edge. Given an SDF edgewe denote the source
actor, sink actor, and delay efby src(e), snke), and
d(e). Also, p(e) andc(e) denote the number of tokens 1. ABCBCCC
produced ontee by src(e) and consumed frone by 2. A2B(2C)
ske. y B 3 AeBGEO)
A schedulés a sequence of actor firings. We compile
an SDF graph by first constructingalid schedule-a 4 ARBOCO
finite schedule that fires each actor at least once, does
notdeadlock, and produces no netchange inthe number

Valid Schedules

of tokens queued on each edge. Corresponding to each code block for A
actor in the schedule, we instantiate a code block that for (i=0; i<2; i++) {
is obtained from a library of predefined actors. The re- code block for B
sulting sequence of code blocks is encapsulated within code block for C
an infinite loop to generate a software implementation oo
of the SDF graph. (@  forl=ti<xiii

code block for C

SDF graphs for which valid schedules exist are called }
consistenSDF graphs. In [9], efficient algorithms are
presented to determine whether or not a given SDF Figure 2 An example used to illustrate the interaction between
graph is consistent, and to determine the minimum scheduling SDF graphs and the memory requirements of the gener-
number of times that each actor must be fired in a valid 2 ©%
schedule. We represent these minimum numbers of fir- .
ings by a vectoxg, indexed by the actors i (we which contains three actors, IabeIA_dB gndC. Thg .
often suppress the subscrip@fis understood). These ~2-t0-1 mismatch on the left edge implies that within
minimum numbers of firings can be derived by finding & valid scheduleB must be invoked twice for every
the minimum positive integer solution to thalance invocation of A. Similarly, the mismatch on the right

equationgor G, which specify that] must satisfy edge implies that we must invoke twice for every
invocation ofB.

q(src(e)) x p(e) = q(snke)) x c(e), Figure 2(b) shows four possible valid schedules that
we could use to implement Fig. 2(a). For example,
the first schedule specifies that first we are to invoke
A, followed by B, followed by C, followed by B

again, followed by three consecutive invocations of

for every edgeein G. (1)

The vectorg, when it exists, is called theepetitions

vectorof G. C. The parenthesized terms in schedules 2, 3 and 4
are used to highlight repetitive invocation patterns in
3. Constructing Memory-Efficient these schedules. For example, the terBG@n sched-
Loop Structures ule 4 represents a loop whose iteration count is 2

and whose body is the invocation sequeB¢g thus,
This section informally outlines the interaction be- (2BC) represents the firing sequerBEBC Similarly,
tween the construction of valid schedules for SDF the term (B(2C)) represents the invocation sequence
graphs and the memory requirements of the compiled BCCBCC Clearly, in addition to providing a conve-
code. nient shorthand, these parenthesized loop terms, called

To understand the problem of scheduling SDF schedule loopgresent the code generator with oppor-

graphs to minimize memory requirements, it is useful tunities to organize loops in the target program, and we
to examine closely the mechanism by which iteration see that schedule 2 corresponds to a nested loop, while
is specified in SDF. In an SDF graph, iteration of actors schedules 3 and 4 correspond to cascades of loops.
in a valid schedule arises whenever the production and For example, if each schedule loop is implemented as
consumption parameters along an edge in the graph dif-a loop in the target program, the code generated from
fer. For example, consider the SDF graph in Fig. 2(a), schedule 4 would have the structure shown in Fig. 2(c).



154  Bhattacharyya, Murthy and Lee

We see that if each schedule loop is converted to a 1 1,~2 3, ~2 7—~8 7 ~05 1
loop in the target code, then each appearance ofanac- | * | e o o o F
tor in the schedule corresponds to a code block inthe —cp DAT
target program. Thus, since acf@@rappears twice in

schedule 4 of Fig. 2(b), we must duplicate the code

. Lo Code Data
block for_ C in the target program. S|m|larl)_/, we see e sPm =
that the |mplementqt|0n of'schedule 1, which corres-  \yimum buffer schedule, with looping 9400 a2
ponds to the same invocation sequence as schedule 4 worst minimum code size schedule 170 1021
with no looping applied, requires seven code blocks. In  Best minimum code size schedule 170 2t

contrast, in schedules 2 and 3, each actor appears only
once, and thus no code duplication is required across Figure3 A comparison of the program and buffer memory require-
multiple invocations of the same actor. We refer to such ments of various schedules for a sample rate conversion application.
schedules asingle appearancechedules, and we see ) ) .
that neglecting the code size overhead associated withMeémory schedule over allimplementations that require
the loop control, any single appearance schedule yieldsMinimum code size. Once such a priority-based algo-
an optimally compactinline implementation of an SDF rithm is established, post-proces_smg techniques can be
graph with regard to code size. Typically the loop con- developed to balance the solutions computed by the
trol overhead is small, particularly in programmable Prioritybased algorithm according to the code size and
digital signal processors, which usually have provi- buffermemory capacities of the target implementation.
sions to manage loop indices and perform the loop test  1his paper focuses on the latter angle of attack—
in hardware, without explicit software control. assigning first priority to code size minimization, and
Scheduling can also have a significant impact on the S€cond priority to minimizing the buffer memory re-
amount of memory required to implement the buffers duirement. This approach is preferable because for
onthe edgesinan SDF graph. Forexample, in Fig. 2(b), Practical synchronous dataflow graphs, giving first
the buffering requirements for the four schedules, as- Priority to code size minimization typically yields a
suming that one separate buffer isimplemented for each Significantly more favorable code size/buffer memory
edge, are 50, 40, 60, and 50 respectively. trade-off than giving first priority to buffer memory
Note that this model of buffering—maintaining a Minimization. _ _ o
separate memory buffer for each data flow edge—is _ An example of this phenomenon is shown in Fig. 3.
convenient and natural for code generation, and it is 1he top part of this figure depicts an SDF representa-
the model used, for example, in the SDF-based code tion of a sample rate conversion system for interfacing
generation environments described in [1, 2, 5]. More @ compact disk player (44.1 kHz) to a digital audio

technical advantages of this buffering model are elab- @p€ player (48 kHz). The sample rate conversion is
orated on in [10} performed in four stages: 2:1,4:3,4:7,and5:7. Ex-

plicit up samplers and down samplers are omitted, and

it is assumed that the FIR filters are general polyphase
4. Relative Prioritization of Code and Data filters [11].

Minimization Objectives The bottom part of Fig. 3 shows the code size and

buffer memory costs for various schedules when the
There are two natural angles for approaching the prob- implementation target is a single Motorola 56000 pro-
lem of joint minimization of code size and buffer mem- grammable data signal processor. The first entry in this
ory requirements. The first approach is to study the table corresponds to a minimum buffer implementation
problem of constructing a minimum buffer memory that does not incorporate any use of loops to reduce
schedule, and then incorporate techniques for minimiz- the code size. This is theorstminimum buffer mem-
ing the code size into the approach that is developed ory implementation. The second entry corresponds to
for minimizing buffer memory. Here, the objective is a minimum buffer memory implementation in which
to construct a minimum buffer memory implementa- looping is optimally employed to reduce code size.
tion that has minimum code size over all minimum This gives the memory costs for a minimum buffer
buffer memory implementations. Conversely, first pri- memory schedule that has minimum code size over all
ority could be given to minimizing code size. This minimum data schedules. The third entry shows the
would yield the goal of computing a minimum buffer memory costs for a minimum code size schedule that
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hasmaximumbuffer memory costs over all minimum  Thus,

code size schedules. Finally, the fourth entry shows

the memory cost for a minimum code size schedule buffermemoryS,) =7+6=13 and
that has minimum buffer memory cost over all mini- buffermemoryS,) = 3+ 6= 0.

mum code size schedules. Comparing the second and

fourth entrieg of the table in Fig. 3 we see t.hat inmost A valid single appearance schedule that minimizes
implementation contexts, the optimal solution that re- he puffer memory requirement over all valid single

sults when we give first priority to code size minimiza- appearance schedules is calléifer memory optimal
tion is clearly preferable to the optimal solution that gcphequle

results when we give first priority to buffer memory ¢ 7 is a subset of actors in a connected, consistent
minimization: the “best minimum code size schedule” gpg graphG,

has a code size cost that is 55 times less than that of

the “best minimum buffer schedule,” while the buffer p6(Z) = ged({ge(A) | A € Z}) 2 (4)
memory cost of the best minimum code size schedule

is only 8 times larger; furthermore, the best minimum 5,4 we refer to this quantity as trepetition counof Z.
code size schedule can be accommodated within the

on-chip memories of most programmable digital sig- .

nal processors, while the 9400-word code size cost of 6 Subindependence

the best minimum buffer schedule is too large for many o .
Processors. Since valid single appearance schedules implement the

full repetition inherent in an SDF graph without re-

quiring subroutines or code duplication, it is useful to
5. Buffer Memory Metrics examine the topological conditions required for such

schedules to exist. First, suppose tlats a connec-
Given an edge in G, we define theotal number of ted, consistent acyclic SDF graph containingac-

samples exchangexh e, denotedTNSEe, G), or sim- tors. Then we can take some root acRyrof G and
ply TNSEe) if G is understood, by fire all g (Ry) invocations ofR; in succession. After
all invocations ofR; have fired, we can removB;
TNSHe) = gg(src(e)) x p(e). 2) from G, pick a root actolR, of the new acyclic SDF

graph, and schedule itgs (Ry) repetitions in succes-

Thus, TNSEe) is the number of tokens produced onto sion. Clearly, we can repeat this process until no ac-
e in one period of a valid schedule. For example, in tors are left, to obtain the single appearance schedule

Fig. 1(a),q(A, B, C) = (3, 6, 2), and thus, (G (RIR)(Ac(R)R2) - - - (Aa (Rn) Ry) for G. Thus,
we see that any consistent acyclic SDF graph has at
least one valid single appearance schedule.
The following result has been established concern-
ing the existence of single appearance schedules for

Given an SDF grap® = (V, E), a valid schedulss, general SDF graph topologies (SDF graphs that are
and an edgein G, maxtokenge, S) denotes the max- ot necessarily acyclic) [12].

imum number of tokens that are queuedeaturing an

TNSE(A, B)) = TNSH(B, C)) = 6.

execution ofS. For Fig. 1(a), if Theorem 1.
S = @BA)(6B)(2C) and S = (3A(2B))(20), e An SDF graph has a single appearance schedule if
and only if each strongly connected component has
then maxtokeng(A, B), S))=7 and maxtokens a single appearance schedule.
(A, B), S) = 3. e Astrongly connected SDF graph has a single appear-
We define thduffer memory requiremenf a sched- ance schedule only if we can partition the actors into
ule Sby two subsets Pand B such that P is precedence-
independent of Pthroughout a single schedule pe-
buffer memoryS) = Z maxtokenge, S).  (3) riod. Thatis for each edge directed from a member

of P, to a member of B d(«) > q(snka)).

ecE
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This form of precedence-independence is referred to scheduling framework is based on a class of uniproces-
as subindependence. Thus a strongly connected SDFsor scheduling algorithms thatwe dalbse interdepen-
graph has a single appearance schedule only if its ac-dence algorithmsA loose interdependence algorithm
tors can be partitioned into subsd® and P, such consists of three component algorithms, which we call
that P, is subindependent oP.. If such a partition theacyclic scheduling algorithpthesubindependence
exists, the strongly connected SDF grapHassely partitioning algorithm and thetight scheduling algo-
interdependentotherwise it istightly interdependent rithm. Theacyclic scheduling algorithris any algo-
The following theorem relates the concept of loose in- rithm for constructing single appearance schedules for
terdependence the existence of to single appearanceacyclic SDF graphs; theubindependence partitioning
schedules [13]: algorithmis any algorithm that determines whether a

strongly connected SDF graph is loosely interdepen-
Theorem 2. A strongly connectedconsistent SDF  dent and if so, finds a subindependent partition; and the
graph G has a single appearance schedule if and only tight scheduling algorithnis any algorithm that gener-
if every strongly connected subgraph of G is loosely ates a valid schedule for a tightly interdependent SDF
interdependent. graph. The precise manner in which the three compo-

Partitioning loosely interdependent SDF graphs nent sub-algorithms interact to define a loose interde-
based on subindependence relationships defines a dependence algorithm is specified in [13].
composition process for hierarchically scheduling SDF  The following useful properties of loose interdepen-

graphs. This decomposition process leads to single ap-dence algorithms are established in [13].
pearances schedules whenever they exist [13]

However, this method of decomposition is useful e Any loose interdependence algorithm constructs a
even when single appearance schedules do not exist. single appearance schedule when one exists.
This is due to two key properties of tightly interdepen- e If N is an actor in the input SDF graph ahbis not

dent SDF graphs: contained in a tightly interdependent component of
G, then any loose interdependence algorithm sched-
e Tight interdependence isadditive’: If Z; and % ulesG in such a way thaN appears only once.
are two subsets of actors in an SDF graph such that e If N is an actor within a tightly interdependent com-
(ZyN Z,) is non-emptyand the subgraphs associ- ponent of the input SDF graph, then the number of
ated with 4 and 2 are both tightly interdependent times thatN appears in the schedule generated by
then the subgraph associated witlZ; U Z;) is a loose interdependence algorithm is determined

tightly interdependent. Thus each SDFgraph G hasa  entirely by the tight scheduling algorithm.
unique set of non-overlappirfgnaximat tightly in-
terdependent subgraphshich are called the tightly The last property states that the effect of the tight
interdependent components of G. scheduling algorithm is independent of the subinde-
e Partitioning a loosely interdependent SDF graph pendence partitioning algorithm, and vice-versa. Any
G based on subindependence cannot decompose aubindependence partitioning algorithm guarantees
tightly interdependent subgraph of G. Thiid;, P, that there is only one appearance for each actor out-
partition the actors of G such that, s subindepen-  side the tightly interdependent components, and the
dent of B, and if T is a subset of actors whose cor- tight scheduling algorithm completely determines the
responding subgraph is tightly interdependehen number of appearances for actors inside the tightly in-
TCPhPorTCP.. terdependent components. For example, if we develop
a new subindependence partitioning algorithm that is
Thus, if aloosely interdependent SDF graphis recur- more efficient in some way (e.g., it is faster, or re-
sively decomposed based on subindependédheeale- duces buffering cost more), we can substitute it for any
composition process will always terminate on the same existing subindependence partitioning algorithm with-
subgraphs—the tightly interdependent components. out changing the compactness of the resulting looped
schedules. Similarly, if we develop a newtight schedul-
7. Loose Interdependence Algorithms ing algorithm that schedules any tightly interdependent
graph more compactly than the existing tight schedul-
This property of tightly interdependent subgraphs has ing algorithm, we are guaranteed that using the new
been applied to develop a flexible scheduling frame- algorithm instead of the old one will lead to more com-
work for optimized compilation of SDF graphs. The pact schedules overall.
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9. Minimizing Buffer Memory

In the scheduling framework above, the acyclic sche-
duling algorithm can be designed such that the total
buffer-memory requirement is minimized to a certain
extent (which we will elaborate on later). In this sec-
tion, we assume that the SDF graph is acyclic; the
non-acyclic case will be dealt with later.

It is shown in [10] that the buffer-memory mini-
mization problem is NP-complete, even for arbitrary,
acyclic homogenods SDF graphs. Two heuristics,
along with a post-processing algorithm have been de-

A B ¢ G H veloped; these two algorithms are complementary in
b the sense that one performs well on graphs having a

Figure4 (a) A block diagram of a modem application. (b) Acyclic ~ More regular topology and regular rate changes, while

graph after clustering the strongly connected componentsin (a).  the other performs well on graphs having irregular

topologies and irregular rate changes.

Essentially, for an acyclic graph, the problem of con-

8. Modem Example structing a buffer-memory optimal single appearance
schedule boils down to generating an appropriate topo-

Figure 4(a) shows an SDF implementation of a modem |ogical ordering of the vertices in the graph, and then

taken from [9]. The repetitions vector is given by generating an optimal loop hierarchy. The number of

topological sorts in an acyclic graph can be exponen-

q(A,B,...,P) tial in the size of the graph; for example, a complete
—[16,162,1,1,1,1,1,1,1,1,1,1,2, 1, 1]". bipartite graph with & actors hagn!)? possible topo-

logical sorts. Each topological sort gives a valid flat
single appearance schedule (i.e., a single appearance
schedule with no nested loops). The post-processing
step then computes a buffer-memory optimal loop hi-
erarchy. For example, the graph in Fig. 5 shows a
D,0,E. F I,JK,L MN,P. bipartite graph with 4 actors. The repetitions vector
for the graph is given by (12, 36, 9, 16)and there
This strongly connected component is clustered to give are 4 possible topological sorts for the graph. The
an acyclic graph as depicted in Fig. 4(b). A possible flat schedule corresponding to the topological sort
single appearance schedule for this clustered graph is ABCD is given by (12A)(36B)(9C)(16D). This can
be nested a$3(4A)(3(4B)C))(16D), and this sche-
(16A)(16B)(2C)Q21GH. (5) dule has a buffer memory requirement of 208. The
flat schedule corresponding to the topological sort
Now the strongly connected component has a sub- ABCD. when nested optimally, gives the schedule
independent partition given byD, 1} and {O, E, F, (4(3A)(9B)(4D))(9C), with a buffer memory require-
J, K, L, M, N, P}. Since the subgraphs correspond- ment of 120.
ing to these two subsets of actors are both acyclic, the
recursive application of a loose interdependence algo-
rithm terminates by applying the acyclic scheduling
algorithm to each of the partitions, yielding the sin-
gle appearance schedubJKLM(2N)OPPEfor this
strongly connected component. This schedule is then
substituted into the top-level schedule (5) to give a sin-
gle appearance schedule for the entire graph:

There is one strongly connected component, corre-
sponding to actors

Figure 5 A bipartite SDF graph to illustrate the different buffer
(16A)(16B)(2C)DIJKLM (2N)OPFEGH memory requirements possible with different topological sorts.
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The post-processing step of computing a loop hier- does not have a BMLB schedule. In contrast, for the
archy for a given actor ordering can be accomplished SDF graph in Fig. 1(b), it can easily be verified that
optimally for delayless graphs by using a dynamic the scheduléA(2B(3C)), which has a buffer memory
programming algorithm [10], called the dynamic pro- requirement of 3+ 3 = 6, is a BMLB schedule.
gramming post-optimization (DPPO) algorithm. An Although BMLB schedules do not exist for all SDF
extension of this algorithm, called generalized DPPO graphs, empirical observations suggest that many prac-
(GDPPO), has been developed to optimally handle ac- tical graphs have BMLB schedules [14].
tor orderings for SDF graphs that have delays and that
may contain cycles [14]. Given any consistent SDF
graphG, and an ordering. of the actors irG, GDPPO 11. Pairwise Grouping of Adjacent Nodes
computes a single appearance schedule that minimizes
the buffer memory requirement over all single appea- The first of the two heuristics that we discuss for gen-
rance schedules that have the given actor orderingerating topological orderings of acyclic SDF graphs
(assuming that at least one valid single appearancewith the objective of buffer memory minimization is a
schedule exists that has the given actor ordering). Here,bottom-up procedure callgktyclic Pairwise Grouping
by the actor ordering of a single appearance schedule,of Adjacent Node@APGAN). In this technique, a clus-
we mean the lexical order in which the actors appear— ter hierarchy is constructed by clustering exactly two
for example, the actor ordering associated with the adjacent vertices at each step. At each clusterization
schedulg4(3A)(9B)(4D))(9C) is (A, B, C, D). The step, a pair of adjacent actors is chosen that maximizes
running time of the GDPPO algorithm on sparse SDF pg over all adjacent pairs that actusterable which
graphs isO(]V %), whereV is the set of vertices. means that they do not introduce cycles in the graph
when clustered.

Figure 6 illustrates the operation of APGAN.
Figure 6(a) shows the input SDF graph. Hg(é\, B,
C,D,E)=(6,2,4,5,1), and fori=1,2 3 4,Q
represents theéth hierarchical actor instantiated by
APGAN. The repetition counts of the adjacent pairs

10. The Buffer Memory Lower Bound

In [15] the following lower bound omaxtokense, S)
is derived, given a consistent SDF graphan edgee
in G, and a valid single appearance schedile

are given by
Definition 1. The buffer memory lower bound
E)I?/MLB) of an SDF edge, denotedMLB(e), is given p({A, Bh) =p({A,.CH =p({B,CH =2, (8)
owae- (174 10100 o
where
p(e)c(e)

1®) = Ged(p@), c@

If G = (V, E) is an SDF graph, then

( > BMLB(e)) (7)

ecE

is called the BMLB ofG, and a valid single appear-
ance schedul8for G that satisfiemaxtokense, S) =
BMLB(e) forall e € E is called EBMLB scheduléor G.
Not all consistent SDF graphs have valid BMLB
schedules. For example the SDF graph of Fig. 1(a) Figure 6 Anillustration of APGAN.




and

p({C,D}) = p({E,D}) = p({B,Eh) =1. (9)
Thus, APGAN will select one of the three adjacent
pairs{A, B}, {A, C}, or {B, C} for its first clusteriza-
tion step. The adjacent pdiA, C} introduces a cycle
when clustered, while the other two adjacent pairs do
not introduce cycles. Thus, APGAN chooses arbitrar-
ily between{ A, B} and{B, C} as the first adjacent pair
to cluster.

Figure 6(b) shows the graph that results from clus-
tering {A, B} into the hierarchical actof2;. In this
graph,q(21,C, D, E) = (2,4,5,1), and it is easily
verified that{2;, C} uniquely maximizegp over all ad-
jacent pairs. Sincé&;, C} does not introduce a cycle,
APGAN selects this adjacent pair for its second clus-
terization step. Fig. 6(c) shows the resulting graph.

Figure 6(d) and (e) show the results of the remain-
ing two clusterizations in our illustration of APGAN.
We define thesubgraph corresponding Q; to be the
subgraph that is clustered in thé clusterization step.

A valid single appearance schedule for Fig. 6(a) can
easily be constructed by recursively traversing the hi-

erarchy induced by the subgraphs corresponding to 12.

the ©;s. We start by constructing a schedule for the
top-level subgraph, the subgraph correspondin@.o
This yields the “top-level” schedul@2,) 23 (we sup-
press loops that have an iteration count of one) for
the subgraph corresponding®. We continue in this
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the schedule corresponding to a recursive traversal of
the resulting cluster hierarchy.

Itis shownin [15] that APGAN is optimal for a class
of acyclic SDF graphs in the following sense:

Theorem 3. If G = (V, E) is a connectedacyclic
SDF graph that has a BMLB schedutie) < n(e) for
alle e E, and P isan APGAN instancthen the sched-
ule obtained by applying P to G is a BMLB schedule
for G.

Hence, whenever the achievable lower bound on the
buffer memory (that is, the buffer memory require-
ment of the single appearance schedule having the
lowest possible buffer memory requirement) coincides
with the BMLB, and the inequality in the statement of
Theorem 3 holds, APGAN will always find a BMLB
schedule. If the achievable lower bound is greater than
the BMLB, then the schedule returned by APGAN
could have a buffer memory requirement greater than
the achievable lower bound.

Many practical systems, such as QMF filter banks,
fall into the category of SDF graphs that satisfy the
conditions of Theorem 3 [15].

Recursive Partitioning by Minimum Cuts

APGAN constructs a single appearance schedule in a
bottom-up fashion by starting with the innermost loops
and working outward. An alternative approach, called
Recursive Partitioning by Minimum Cut&kPMC),

manner to yield the valid single appearance schedule computes a schedule by recursively partitioning the

Sy = (2(3A)B(2C))(5D)E for Fig. 6(a).
From S, and Fig. 6(a) it is easily verified that
buffermemoryS;) and(} ", BMLB(e)), whereE is

SDF graph in such a way that outer loops are con-
structed before the inner loops. Each patrtition is con-
structed by finding the cut (partition of the set of actors)

the set of edges in Fig. 6(a), are identically equal to across which the minimum amount of data is trans-
43, and thus in the execution of APGAN illustrated in ferred. The cut thatis produced must have the property
Fig. 6, a BMLB schedule is returned. that all edges that cross the cut have the same direction.
The APGAN approach, as we have defined it here, This is to ensure that all actors on the left side of the
does not uniquely specify the sequence of clusteriza- partition can be scheduled before any on the right side
tions that will be performed. The APGAN technique are scheduled. A constraint that the partition be evenly
together with an unambiguous protocol for deciding sized is also imposed. This is to increase the possibil-
between adjacent pairs that are tied for the highest rep-ity of having gcd’s that are greater than unity for the
etition count form amAPGAN instancewhich gener- repetitions of the actors in the subsets produced by the
ates a unique schedule for a given graph. We say thatpartition, thus reducing the buffer memory requirement
an adjacent pair is aBAPGAN candidatéf it does not [10].
introduce a cycle, and its repetition count is greater  Suppose that = (V, E) is a connected, consistent
than or equal to that of all other adjacent pairs that do SDF graph. Acut of G is a partition of the actor set
not introduce cycles. Thus, an APGAN instance is any V into two disjoint sets/, andVg. The cut islegal if
algorithm that takes a consistent, acyclic SDF graph, re- for all edgese crossing the cut (that is, all edges that
peatedly clusters APGAN candidates, and then outputs have one incident actor i, and the other iVg), we
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havesrc(e) € V| andsnkle) € Vg. Given a bounding  and the total weight of output edgessofWe then move
constantk < |V|, the cut results in bounded sets if it those actors across that reduce the cost. We apply this
satisfies optimization step for all cuts of the for(ancgv) U {v})
and(desqgv) U {v}) for each actor in the graph and take
VRl < K. VL] =K. (10) the best one as the minimum cut. Since there|¥ie
actors in the graph,|¥ | cuts are examined. Moreover,
the cut produced will have bounded sets since cuts that

The weight of edge is defined asv(e) = TNSHe). .
produce unbounded sets are discarded.

The weight of the cut is the total weight of all the S
edges crossing the cut. The problem then is to find the RPMC now proceeds by partitioning the graph by
minimum weight legal cut into bounded sets for the COMPUting the legal minimum cut and forming the
graph. This problem is believed to be NP-complete, al- Schedule(ps (V1) S) (06 (VR)SR), where S, Sg are
though a proof has not been discovered [10]. Kernighan Schedules foiG, and Gr respectively that are ob-
and Lin [16] devised a heuristic procedure for comput- tained recursively by pqrﬂﬂqmn@._ andG. It can
ing cuts into bounded sets but they considered only P€ Shown that the running time of RPMC for sparse
undirected graphs. Methods based on network flows SPF gr%phs, including post-optimization by GDPPO,
[17] do not work because the minimum cut given by is O(IVF) [10].
the max-flow-min-cut theorem may not be legal and
may not be bounded [10]. Hence, a heuristic solution
is needed for finding legal minimum cuts into bounded
sets.

One technique is to use the max-flow-min-cut theo-
rem [17] to generate a minimum cut. Legality can be

13. Application to General SDF Topologies

The APGAN and RPMC algorithms work on acyclic
SDF graphs, and thus are suitable for use as the acyclic
; scheduling algorithm in the scheduling framework de-
ensured by adding reverse edgesu) for each edge scribed in Section 7. In this manner, we can obtain

(U, v). The capacities of the reverse edges are set o in'sin le appearance schedules for cyclic graphs that min-
finity, ensuring that any edge that crosses the cutin the . gle app yclcgrap

NN S ; imize buffer memory costs to a limited extent. In par-
reverse direction is an edge of infinite capacity [18]. . . . .
) ticular, if buffer-memory considerations are not taken
However, this cut may not be bounded. One way to

. : . into account in either the subindependence partitioning
make this cut bounded would be to simply examine ac- : . . : )
. : algorithm or the tight scheduling algorithm, there is no
tors on the side with the larger number of actors, and

. . uarantee that the resulting schedule will be optimal
move those over to the other side that increase the cos : .
. . o or even near-optimal with respect to the buffer mem-
the least, until the bound is satisfied.

. . - ory requirement. Combining buffer-memory consider-
Another technique for constructing legal minimum ~ __: g .
) . . ations into the latter two components of the scheduling
cuts into bounded sets is to examine the set of cuts

produced by taking an actor and all of its descendants framework is an important topic for future work.
as the actor setr and the set of cuts produced by
taking an actor and all of its ancestors as the\4et
For each such cut, an optimization step is applied that

attempts to improve the cost of the cut. Consider a cut ApcAN and RPMC (with the second of the two legal
produced by setting bounded cut heuristics mentioned) have been tested
on many practical examples, as well as randomly gen-
VL = (ancgv) U{v}), Vr=V\VL (11) erated graphs. Many practical systems, such as QMF
filter banks fall into the category of SDF graphs having
for some actow, and letTr(v) be the set of indepen- BMLB schedules; hence, on these APGAN performs
dent,boundary actorof vin Vg. A boundaryactor in optimally. Itis interesting to note that on non-uniform
Vrisanactorthatis notthe predecessor of any other ac-filter bank structures, the BMLB cannot be achieved,
tor in Vr. Following Kernighan and Lin [16], for each  and on such structures, RPMC gives significantly bet-
of these actors, we can compute the cost difference ter schedules than APGAN. Also, RPMC outperforms
that results if the actor is moved ind . This cost APGAN by almost 2 to 1 on random SDF graphs. De-
difference foran actain Tgr(v) isdefinedto be the dif-  tails of these experiments can be found in [15, 19]. It
ference between the total weight of all input edges of  would be interesting to see the impact of using the first

Experimental Observations
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heuristic (based on the network flow formulation) for (40,48) (8,8) (8, 8)
generating legal minimum cuts into bounded sets on A :@—b
RPMC performance; we have not done these experi- dimension 2

ments yet.

15. Application to Multidimensional
SDF Graphs

dimension 1

The synchronous dataflow model suffers from the Figure 8 Animage processing application in MD-SDF.
limitation that its streams are one-dimensional. For

multidimensional signal processing algorithms, it is

necessary to have a modelin which this restriction is not pixel image and divides it into 8 8 blocks on which it
present, so that effective use can be made of the inherenccomputes a DCT. At the top level of the hierarchy, the
data-parallelism that exists in such systems. As for one- dataflow graph is shown in Fig. 8. The solution to the
dimensional systems, the specification model for mul- balance equations is given by

tidimensional systems should expose to the compiler
or hardware synthesis tool as much static information
as possible so that run-time decision making is avoided
as much as possible, and so that effective use can b
made of both functional and data parallelism. Most
multidimensional signal processing systems also have
a predictable flow of control, like one-dimensional sys-
tems, and for this reason, an extension of SDF, called
multidimensional synchronous dataflow was proposed
in [20].

Although a multidimensional stream can be embed-
ded within a one dimensional stream, it may be awk-
ward to do so[21]. In particular, compile-time informa-
tion about the flow of control may not be immediately
evident. The multidimensional SDF (MDSDF) model shown in Fig. 7. It can be interpreted as specifying

is a straightforward extension of one-dimensional SDF. boundary conditions on the index space. Thus, for 2D-

Figure 7 shows a trivially simple two-dimensional SDF SDF, as shown in the figure, it specifies the number of
graph. The numbers of tokens produced and consumed.

. initial rows and columns. It can also be interpreted as
are now given abl-tuples. Instead of one balance equa- specifying the direction in the index space of a depen-
tion for each edge, there are ndiv The balance equa- P 9 P P

tions for Eia. 7 are dence between two single assignment variables, much
g as done in reduced dependence graphs [22].
All of the scheduling techniques discussed in the ear-
lier sections of this paper extend to the MDSDF model.
These equations should be solved for the smallest in- 1h€ extension of RPMC and GDPPO can be handled

tegersrx i, which then give the number of repetitions N @ straightforward manner by simply changing the

ranr=ra2=1 rpcr1=5 Trpcr2=6. (13)

A segment of the index space for the stream on the
edge connecting actor A to the DCT is shown in the
figure. The segment corresponds to one firing of ac-
tor A. The space is divided into regions of tokens that
are consumed on each of the five vertical firings of
each of the 6 horizontal firings. The precedence graph
constructed automatically from this shows that the 30
firings of the DCT are independent of one another, and
hence can proceed in parallel. Distribution of data to
these independent firings can be automated.
A delay in MD-SDF is associated with a tuple as

ra10a1=reile1, ra20a2=rg2lg2 (12)

of each actoiX in each dimension. buffer cost formulation appropriately [19]. In the re-
As a simple application of MDSDF, consider a por- mainder of this section, we define an extension of the
tion of an image coding system that takes a-4@8 buffer memory lower bound to multidimensional sys-

tems, and we present a multidimensional version of the
APGAN algorithm along with its associated optimal-

(04,1 04,2) Up,1015,2) ity result (i.e., the MDSDF version of Theorem 3). In
A > » g this discussion, we assume 2 dimensions for notational
(dl, dz) simplicity, unless otherwise stated. We use the nota-

tion Aji jj to mean the(i, j)th invocation of actorA
Figure 7. A simple MD-SDF graph. in a complete valid schedule. In an MDSDF schedule,
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a single appearance schedule suct(4s2) A(6, 4)B)
corresponds to a loop structure of the form:

forx =0t0 3
fory=0to1l
fire A[X,y]
end fory, for x
forx =0to 5
fory=0to3
fire B[X,y]

end fory, for x.

15.1. The Buffer Memory Lower Bound (BMLB)
for MDSDF Graphs

The BMLB of an MDSDF graph can be computed in a
manner similar to the SDF BMLB computation. First,
we define

X(AB) = __Iar Al
gedras,res)

" (14)
Y(AB) = A2 Opa

gcd(raz, re2)

for an edge(A, B) with (d;, dy) delays. Then, the
BMLB for the edge(A, B) can be expressed as [19]

BMLB(AB)
B { (X(AB) +d)(y(AB)+dy) di<xVvda<y
| didy di>XAXG>Y

(15)

15.2. APGAN for MDSDF Graphs

APGAN can be applied to acyclic MDSDF graphs in
the following manner [19]. First, define the following

(1,3) (4.2)

Figure 9 An MDSDF graph that has a BMLB schedule.

two quantities:

p1({A, B}) =gcdras,re1) and

p2({A, B}) = gcd(raz, rs2). (16)

The clustering function is a tuple and is then given by

p({A, B}) = (n1({A, BY), p2({A, B})).  (17)

At each step in the algorithm, we cluster the adjacent
pair A, B that maximizes ({A, B}) component-wise.
This means that for any other adjacent clusterable pair
XY} with o/ (X, YD = (pi(1X, YD, p5({X, Y1)
we should have; > p;, p2 > p5. If such a pair does
not exist, we pick the adjacent clusterable gair V}
that maximizesp1({U, V}) p2({U, V}).

The following result extends the “APGAN optimal-
ity property” of Theorem 3 to the MDSDF version of
APGAN defined above.

Theorem 4. When applied to a consistent MDSDF
graph APGAN will return a BMLB schedule whenever
one existsprovided that the delagd;, d») on each edge
(A, B) satisfies

d <xvdy<y

where

_ a2
gcd(ra 2, re,2)

_ a1
gcd(ra i, re1)

x

Oa1, Y A2

15.3. MDSDF APGAN Example

Consider the example graph shown in Fig. 9. The
repetitions vector is given hy(A, B, C, D) ={(2, 8),
(6,4), (4,2), (1, 3)}. The clusterable pairs afé\,, B},
{B,C}, and {C, D}. The clustering function values
are p(fA,Bh)=(24, p({B,CH=(22, and
p({C, D})=(1, 1). Hence,{A, B} is the pair chosen
for clustering since its clustering function has maxi-
mum component-wise value over the three clusterable

. 2.3) (4,2).
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° a e the schedulé2(2B))(5C) results in five activations per
‘—"—" schedule period.
(3.3) 2,1 G.D 25 In multiprocessor computers, different iterations of

Figure 10 An example of a graph that does not have a BMLB a loop can be_ execu_ted in parallel on dlfferent_procefs-
schedule. sors. To achieve this, the code for the loop is repli-
cated across the processors. This is in contrast to our
problem, which involves a uniprocessor implementa-
pairs. Similarly, at the next step, there are two clus- tion target, and in which there are no explicitly speci-
terable pairs,{W1, C} and {C, D}, and the clus- fied loops (within the schedule period). We would like
tering function values are@(fW1,C})=(2,2) and to detect the opportunity to construct multiple invoca-
p({C,D})=(1,1). So{W1, C} is clustered next, and  tions of the same firing sequence, and we wish to group

the final schedule is(2,2)((1,2)((1,2)A(3, 1)B) these invocations successively in time so that they form
(2, 1)C) (1, 3)D. It can be verified that this isindeed a  successive iterations of a single loop.
BMLB schedule. Loop distribution and loop fusion [24] can be used

The graph in Fig. 10 shows an example where to improve data locality for looped schedules of SDF
there is no adjacent pair whose clustering function graphs. Also, the use of iteration space tiling, as dis-
has the maximum-componentwise value. Hence, the cussed in [24, 25], can be used to improve locality
graph does not have a BMLB schedule either, as is for code synthesized for a looped schedule of an SDF
verified by looking at the two possible nested single graph. However, each loop transformation and sched-
appearance schedules. The repetitions vector is givenule rearrangement applies to a localized section of the
by{(4,5), (6,15, (9, 3)}. Theclustering functionval-  target code. The scheduling techniques described in

ues for the two clusterable pairs ar§ A, B}) = (2, 5) this paper use dataflow properties to guide a sched-
andp({B, C}) = (3, 3). The two possible nested single uler to more efficient solutions; loop transformations
appearance schedules are can then be applied to refine the resulting schedules.
We believe that this will be more efficient than con-
(2,9((2,1)AG,3)B) (9,3C and structing naive schedules, and relying solely on loop
(4,5)A (3, 3)((2,5)B (3, 1)C). transformations to achieve adequate data locality.

Ade et al. develop upper bounds on the minimum
Neither of these is a BMLB schedule. The APGAN buffer memory requirement for certain classes of SDF
algorithm in this case will choose to clustef, B} graphs [26]. Since these bounds attempt to minimize
first because % 5 > 3 x 3: this results in the first of ~ OVver all valid schedules, and since single appearance
the two schedules given above. The first schedule hasSchedules generally have much larger buffer mem-
higher buffering requirements than the second; hence, ©fY requirements than schedules that are optimized
APGAN is not optimal when the graph does not have for minimum buffer memory only, these bounds can-

a BMLB schedule. not consistently give close estimates of the mini-
mum buffer memory requirement for single appearance
schedules.

16. Alternative Approaches for Scheduling Lauwereins et al. present a generalization of SDF

SDF Graphs called cyclostatic dataflow [27]. A major advantage

of cyclo-static dataflow is that it can eliminate large
The techniques in this paper focus on compiling SDF amounts of token traffic arising from the need to gen-
graphs to minimize the code size and data memory size. erate dummy tokens in corresponding (pure) SDF rep-
At the Aachen University of Technology, as part of resentations. Although cyclostatic dataflow can reduce
the COSSAP software synthesis environment for DSP, the amount of buffering for graphs having certain mul-
Ritz et al. have investigated the minimization of code tirate actors like explicit downsamplers, it is not clear
size in conjunction with a different secondary opti- whether this model can in general be used to derive
mization criterion: minimization of the context-switch  schedules that are as compact as single appearance
overhead, or the average rate at whactor activations schedules for pure SDF graphs but have lower buffer-
occur [23]. An actor activation occurs whenever two ing requirements than those arising from the techniques
distinct actors are invoked in succession; for example, discussed in this paper.
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A linear programming framework for minimizing including complete pseudocode specifications of the
the memory requirement of a synchronous dataflow algorithms, can be found in [14].
graph in a parallel processing context is explored by
Govindarajan and Gao in [28]. Here the goal is to min- Acknowledgments
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17. Summary

Note that scheduling techniques that employ this buffering model
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