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Abstract: Fe2O3/Mn2O3 nanocomposites and impregnated porous silicates (Fe2O3/Mn2O3@SiO2

[FMS]) were prepared and investigated as catalytic adsorbents. The catalysts were applied for
cationic and anionic dye pollutants in the adsorption, Fenton reaction, and photocatalysis processes
at a pH of 7. Fe2O3/Mn2O3 nanoparticles (FM-NPs) were prepared using the co-precipitation
method and were impregnated in SiO2 by the sol–gel process. The synthesized materials were
characterized using various sophisticated techniques. Results indicated that the impregnation of
bi-metallic NPs in SiO2 increased the surface area, and the function of the adsorbent also improved.
FMS showed a significant adsorption effect, with 79.2% rhodamine B removal within 15 min. Fenton
and photocatalyst reaction showed removal rates of 85.3% and 97.9%, respectively, indicating that
negatively charged porous silicate attracts cationic pollutants. In the case of the anionic pollutant,
Congo red, the adsorption reaction of FMS did not occur, and the removal rate of the photocatalyst
reaction was 79%, indicating the repulsive force between the negatively charged silica and the anionic
dye. Simultaneously, bi-metal-bonded FM-NPs facilitated the photocatalytic reaction, reducing the
recombination of electron-hole pairs. This study provides new insights into the synthesis of FM-
NPs and FMS as photocatalytic adsorbents and their photocatalytic mechanisms based on reaction
conditions and contaminant characteristics. The developed materials have potential applications for
environmental mitigation.

Keywords: dye removal; environmental mitigation; Fenton reaction; nanocomposites; photocatalysis;
porous silicates

1. Introduction

With rapid industrial development, the magnitude of production of environmentally
hazardous pollutants has increased. Various physical and chemical techniques, such as
coagulation, adsorption, and chemical oxidation, are widely used to degrade contaminants
from wastewater [1]. However, the demand for advanced treatment methods is urgent
owing to the complex nature of generated pollutants [2]. Recently, advanced oxidation
processes (AOPs) and oxidation methods based on highly reactive species, such as hydroxyl
radicals, have been effectively used for the degradation of diverse toxic compounds in
water, including oxidants (H2O2 and ozone), energy sources (UV light, ultrasonic, and
heat), and catalysts (titanium dioxide, zinc oxide, and Fenton reagent) [3–6]. Among the
AOPs, nanoparticle-assisted photocatalytic degradation is an effective removal method
that occurs in the presence of reactive species [7–9].

Fe-based catalysts are mostly utilized for wastewater treatment in heterogeneous
photocatalysis due to their highly oxidizing properties, low cost, and low environmental
toxicity [10]. However, the main drawbacks of using iron as a photocatalyst are sludge for-
mation and narrow pH range [11]. To avoid this problem, bimetallic catalysts, including Cu,
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Mn, and Co as supports for Fe, have been explored for the synthesis of heterogeneous Fen-
ton catalysts [7,12]. When catalysts are combined, their properties create a synergistic effect,
which enhances the catalytic reaction and compensates for the limitations of iron [13,14].
Thus, recent studies have reported that bimetallic composites can reduce the dosage of
hydrogen peroxide, produce more reactive oxygen species, and promote Fe3+/Fe2+ redox
reactions [15]. Our previous study synthesized an Fe2O3/Mn2O3 photocatalyst, which
could remove 97% of organic dyes within 75 s at neutral pH [7]. Previous literature high-
lighted the role of bimetallic nanoparticles (NPs) to improve catalytic performance. For
instance, MnO2-Fe3O4/CuO hybrid catalysts enhance the decolorization reaction of the dye
because of their increased nanoparticle surface area and uniform pore-size compared with
Fe3O4/CuO [14]. Another study synthesized an MnO2/Fe3O4/diatomite nanocomposite
and showed almost 100% methylene blue (MB) degradation in 45 min at pH 4–8 [16].

The application of these materials as photocatalysts and adsorbents is being explored
because they cooperatively enhance the efficient degradation of organic pollutants from
water [17]. Thus, there are many approaches for an advanced catalyst to enhance catalytic
activity for environmental and economic benefit [6,18]. Efficient adsorption on the material
surface is an important process for achieving photocatalytic efficiency [19]. However, pho-
tocatalytic degradation cannot occur in the absence of adsorption [17]. In this regard, many
studies have applied photocatalytic adsorbents, such as carbon materials, mesoporous
silicon, and metal–organic frameworks, to promote adsorption capacity for pollutant re-
moval [20–22]. With the introduction of a mesoporous SiO2 support, the photocatalyst may
improve the dispersion of NPs, enhancing adsorption on the high surface area of SiO2 [23].
A previous study indicated that coupling semiconductor materials with mesoporous SiO2
induces more active sites at the interface, which is favorable for photocatalysis [7,24]. Re-
cent studies have reported that the SiO2 structure provides sites for the dispersion of NPs
and increase in surface area [25].

Many studies have reported the performances of photocatalytic adsorbents [17,19,22].
However, only a few studies have investigated the multi-functional photocatalyst by im-
parting high porosity adsorbents to the photocatalytic material. Thus, the degradation
performance and mechanisms of synthesized photocatalyst were studied on both cationic
and anionic molecules. In this context, with the development of bimetallic nanocomposites
that are impregnated with porous silicate, their multifunctional performances on both
cationic and anionic dye molecules were observed in aqueous solutions. This study aimed
to (1) develop bi-metal nanocomposites and porous materials impregnated with these
nanocomposites, (2) apply the developed photocatalytic material for the degradation of
cationic and anionic organic pollutants in water, and (3) study the pollutant degradation
mechanism of these synthesized materials. New Fe2O3/Mn2O3 and Fe2O3/Mn2O3@SiO2
(FMS) composites were synthesized. The structure and surface physicochemical charac-
terization of the synthesized materials were analyzed by field-emission scanning electron
microscopy (FESEM), high-resolution transmission electron microscopy (HRTEM) with en-
ergy dispersive spectroscopy (EDS), X-ray diffraction (XRD) analysis, and Fourier-transform
infrared spectroscopy (FTIR). The synthesized photocatalytic adsorbents were applied to
remove toxic organic dye pollutants in water under various processing conditions.

2. Results and Discussion
2.1. Characterization of Adsorbents
2.1.1. Scanning Electron Microscopy Energy Dispersive Spectroscopy (SEM-EDS) and
High-Resolution Transmission Electron Microscopy Energy Dispersive
Spectroscopy (HRTEM-EDS)

Morphologies and components of the synthesized photocatalytic adsorbents were
observed using FE-SEM and HRTEM-EDS (Figure 1). Figure 1a shows the synthesized
FM-NPs and FMS. FM-NPs have a crystalline coral-like shape, which can be ascribed
to the role of cetyltrimethylammonium bromide (CTAB) in the synthesis. EDS mapping
confirmed the presence of Fe, Mn, and O. SEM and HRTEM images of FMS (Figure 1b,c)
show highly aggregated spherical shapes, which is the general amorphous morphology of
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SiO2 [26,27]. SEM-EDS verified the existence of constituent elements (Si, Fe, Mn, and O) on
the synthesized photocatalyst surface. Thus, HRTEM-EDS (Figure 1c) characterized Si, O,
Fe, and Mn elements of FMS, and these components were present independently on the
surface of SiO2 and overlapped with each other. It is well known that unsupported metal
oxide nanoparticles aggregate owing to the nanosized particles and surface charge.
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Figure 1. Images for (a) SEM-EDS of Fe2O3/Mn2O3 nanoparticles (FM-NPs), (b) SEM-EDS of
Fe2O3/Mn2O3@SiO2 (FMS), and (c) HRTEM-EDS of FMS.

2.1.2. N2 Adsorption–Desorption Isotherm

BET specific surface area of porous materials on the synthesized FM-NPs and FMS
were analyzed using N2 adsorption–desorption isotherms (Figure 2, Table 1). The N2
isotherm of the FM-NPs indicated a hysteresis loop for type III nonporous materials, and
the estimated surface area was 15.5 m2/g. The N2 isotherm of FMS was of type IV, which
is typical for mesoporous materials. FMS shows an H2 type hysteresis loop, exhibiting
complex pore structures. The FMS hysteresis loop shows a similar shape to that of SiO2
silica, suggesting that it has very similar pore characteristics to that of SiO2. The surface
area FM-NPs on SiO2 increased marginally from 427.0 m2/g to 562.4 m2/g.
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Table 1. Surface area and porosity properties of synthesized materials.

BET Surface Area
(m2/g)

Pore Volume
(cm3·g−1)

Pore Diameter
(nm)

Fe2O3/Mn2O3 (FM-NPs) 15.6 0.12 3.4
Fe2O3/Mn2O3@SiO2

(FMS) 562.4 0.54 3.8

SiO2 427.0 0.56 3.0

2.1.3. X-ray Diffraction (XRD) Analysis

High-resolution X-ray diffraction (XRD) was used to determine the composition and
phase structure of the synthesized materials. The diffraction profiles of the materials are
shown in Figure 3. The XRD pattern of the FM-NPs matched the peaks of rhombohedral
α-Fe2O3 (JCPDS #33-0664) and cubic α-Mn2O3 (JCPDS #24-0508) [7]. Peakless spectra for
bare SiO2 and FMS exhibit a broad diffraction peak centered at approximately 22.6◦, which
is assigned to amorphous SiO2. The diffraction peaks observed in the XRD patterns of
FM-NPs were not detected in the FMS, indicating that the FM-NPs were incorporated
into the SiO2. This suggests that the FM-NPs were successfully synthesized in the SiO2
structure, with low Fe and Mn contents in the nanocomposites.
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Figure 3. X-ray diffraction (XRD) patterns of synthesized photocatalyst; Fe2O3/Mn2O3 nanoparticles
(FM-NPs), Fe2O3/Mn2O3@SiO2 (FMS), and bare SiO2.

ESR spectrum of photocatalyst was recorded at 298 K (Figure 4). The ESR spectrum
is a superposition of two signals: one broad signal with a Lorentzian line shape and one
well-defined sextet. The high-intensity signal at g = 1.98 was attributed to Fe3+ ions in
the Fe2O3 nanoparticles [28]. The sextet observed was the six-line hyperfine splitting
characteristic of Mn2+ ions with a nuclear spin I = 5/2 (−5/2 ≤ m ≤ +5/2, ∆m = 0;
m(a) = +5/2, m(f ) = −5/2) [29]. The absence of peaks corresponding to MnOx and FeOx in
the XRD pattern could be due to the limitation of the XRD sensitivity. However, the ESR
results confirmed that in the synthesized photocatalyst, MnOx and FeOx existed with Mn2+

and Fe3+ state, respectively, in the silica matrix.
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Figure 4. ESR spectrum of synthesized photocatalyst Fe2O3/Mn2O3@SiO2 (FMS).

2.1.4. Fourier Transform Infrared (FTIR) Spectroscopy

FTIR spectra of the FM-NPs, SiO2, and FMS are shown in Figure 5. In all the curves in
Figure 5, the band at approximately 1635 cm−1 can be allocated to the H-O-H stretching
and the adsorbed water at 3420 cm−1. For FM-NPs, metal oxide bonds were assigned
at 473 cm−1 for Mn-O of Mn2O3 and 541 cm−1 for Fe-O of Fe2O3 bonds which is MO4
tetrahedron and MO6 octahedron each. In the FTIR spectrum of SiO2 and FMS, the absorp-
tion bands were assigned to Si-O-Si at 1074 cm−1, 806 cm−1, and Si-O at 461 cm−1 [30,31].
The presence of abundant OH groups and H2O on the surfaces of FMS can play a key
role in bonding metal ions from the suspended colloid. In the sol–gel process of FMS,
homogeneously distributed Fe2+ and Mn2+ are absorbed on to the surfaces of spherical
silica particles by physical and chemical interactions. Therefore, it is not difficult to find
any alterations between bare SiO2 and FMS because the peak density of the fine FM-NPs is
negligible due to its low concentration compared to SiO2.
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2.1.5. X-ray Photoelectron Spectroscopy (XPS)

The elemental oxidation of FMS surface was analyzed using X-ray photoelectron
spectroscopy (XPS). High energy scans of the full spectrum of elements, O 1s spectrum,
Fe 2p spectrum, and Mn 2p spectrum are shown in Figure 6. The O 1s spectrum using
Gaussian–Lorentzian distribution shows four different bound state of O, which correspond
to the Metal-O at 531.45 eV, Si-O-Si bond at 532.42 eV, O-H at 533.51 eV, and H2O on
the material surface at 534.7 eV (Figure 6b). The formation of Fe2O3 and Mn2O3 can be
confirmed in Figure 6c,d [32]. The spectra of the Fe of FMS were deconvoluted into Fe 2p3/2
peak at 711.02 eV, and Fe 2p1/2 peak at 724.98 eV respectively along with two satellite peaks
at 718.31 and 732.05 eV. The Fe 2p peak of Fe2O3 has been investigated by many researchers,
indicating values of between 710.6 and 711.2 eV [33,34]. The satellite peak of Fe2O3 is
located about 8 eV higher than the Fe 2p3/2 peak, while Fe3O4 does not have a satellite
peak. Similar, Mn peaks show Mn 2p3/2 peak at 641.48 eV and Mn 2p1/2 peak at 653.34 eV,
respectively, implying the spin energy separation of 11.86 eV, which is a demonstration of
Mn3+ in Mn2O3 oxidation state [35].
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2.2. Removal of Dyes of Fe2O3/Mn2O3 Nanoparticles and Fe2O3/Mn2O3@SiO2
2.2.1. Degradation Performance for Cationic Dye

RhB, a basic cationic dye, was chosen as a model compound to assess the photocatalytic
performance of the synthesized materials. The absorption peak of RhB using UV–Vis
spectrophotometry was at 558 nm and it was used to measure the degradation rate (C/C0)
of the reaction performance. Figure 7 shows the degradation of RhB by the FM-NPs and
FMS under different reaction conditions. The adsorption experiment was first conducted in
the dark with FM-NPs and FMS at an initial pH of 7. Figure 6a shows the degradation of
RhB via the adsorption reaction, indicating that the positively charged RhB adsorbs on to
the surface of synthesized FMS, showing 84.2% degradation due to the charge interaction.
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However, the RhB degradation for FM-NPs is up to 35.8% at 120 min, which is much
lower than that of FMS (84.2%). This indicates that FM-NPs display negligible adsorption
removal, given that the removal rate at 60 min was 6.3%. The inactivity of FM-NPs is due
to the lack of a negatively charged surface of materials causing binding between them
and the anionic or neutral dye [36]. Another study synthesized different types of Fe-metal
oxide nanoparticles for dye degradation. Fe-MnOX showed the elevated reactivity for dye
degradation because of the hindrance in electron-hole pair recombination compared to
other Fe bi-metals [36]. As shown in the BET results, FMS exhibits significant adsorption
efficiency compared to FM-NPs, which may be attributed to its larger surface area and pore
structure. Thus, sufficient surface exposure of O atoms from SiO2 enables strong adsorption
on positively charged dyes, according to the XPS results shown above [37].
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Figure 7. Degradation of rhodamine B (RhB) with Fe2O3/Mn2O3 nanoparticles (FM-NPs),
Fe2O3/Mn2O3@SiO2 (FMS) under different conditions; (a) Only adsorption (without UV + H2O2),
(b) Fenton reaction with H2O2 (without UV), (c) Photo-Fenton reaction with UV + H2O2 (reaction
conditions: catalyst dose = 1 g/L, initial concentration of RhB = 10 mg/L, initial pH = 7), and
(d) comparison of degradation performance with FMS under different reaction conditions.

In the following Fenton reaction (Figure 7b), the addition of H2O2 improved the
degradation efficiency of both FM-NPs and FMS over RhB. The FMS exhibited a significant
increase in the removal rate from 6.3% to 40.3% in 60 min, which was mainly ascribed to
the generation of radicals. The Fenton reaction reports the generation of hydroxide (OH−)
and hydroxyl radicals by the response between iron (Fe2+) and H2O2 [38]. Additionally,
the FMS showed a better RhB removal performance as it increased from 84.2% to 92.6%
of degradation efficiency, which is attributed to its large surface area and abundant active
sites on both FM-NPs. In the presence of H2O2, the subsequent catalytic performance
of metal oxide NPs can induce a synergistic catalyst combination because a bi-metal
(Fe2O3/Mn2O3) can induce slower electron-hole recombination than a single metal [39,40].
To investigate the subsequent catalytic reaction of Fe2+ and Mn2+ on FM-NPs, the same
Fenton reaction experiment was conducted with the synthesized Fe2O3@SiO2 material



Catalysts 2022, 12, 1045 8 of 15

(Figure 7b). Compared to Fe2O3@SiO2, FMS had a better degradation efficiency, proving
that the Fe2O3/Mn2O3 pair is a synergistic catalyst for the Fenton reaction.

The photocatalytic performance was examined in the presence of UV light and H2O2,
and the results are shown in Figure 7c. For the photocatalytic reaction, the FM-NPs and
FMS showed excellent removal rate of almost 100% in 15 min. In addition to the adsorption
and Fenton reactions, the enhanced photocatalytic performance was highly influential
in the degradation of RhB. For the photocatalytic reduction of dye molecules, pH, UV
light intensity, and H2O2 concentration are critical. The zeta potential of the catalyst was
analyzed to investigate the point of zero charge value of FMS. As shown in Figure 8, the
point of zero charge of FMS was pH 6, and it had a negative charge at pH 7, which is
an experimental condition. In our previous study, we synthesized Mn2O3-Fe2O3@SiO2
nanocomposites with the addition of urea as a fuel and tested the effect of the zeta potential
on UV intensity and H2O2 concentration [7]. The zero-point charge of the synthesized
materials was at pH 6, which means that the surface of the material was negatively charged
at pH 7. Li et al. conducted a catalytic reaction over MnO2/Fe4O4/diatomite NPs by
varying the pH of the RhB solution ranging from 4 to 8, and the results showed that the
removal rates of the dyes under different pH state were almost the same. These results
suggest that negatively charged materials can attract organic molecules (RhB), which
are cationic dyes They also showed that dye degradation increased with an addition in
UV light intensity in the range of 8–32 W, and the excessive H2O2 decreased the organic
oxidation process owing to the self-quenching of the OH radical [16]. The overdosed H2O2
is catalyzed to produce more hydroxyl radicals and increase the collision of free radicals to
inhibit its decomposition. SiO2 adsorbents covered by FM-NPs, which enhance the catalytic
function, have chains of a silica hydrogel network (Si-O-Si). This hydrophilic property can
hold a large number of O− sites and induce strong van der Waals interactions with the dye
surface [41].
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The degradation performance of RhB dye of a synthesized photocatalyst adsorbent,
FMS, was evaluated and compared under different reaction conditions. Figure 7d shows
the degradation of RhB using four methods: UV (photolysis), adsorption, Fenton, and
photo-Fenton. FMS (100 mg) was added to 100 mL of RhB solution at a concentration of
10 ppm over a 2 h reaction time to evaluate its performance under different conditions.
Figure 7d clearly shows adsorption indicating the impact of FMS on the removal of RhB,
resulting in 84.2% removal of the RhB aqueous solution. Interestingly, photolysis (UV
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only) showed 42% removal of dye by photons. In photolysis, the H2O cleaved by UV
light generate hydroxyl radicals and interact with target molecule of dye [42]. Fenton and
photo-Fenton reactions degraded 94.2% and 99.5% of RhB dye molecules within 60 min,
respectively. Interestingly, the RhB dye was quickly removed by adsorption in the first
5 min, and the addition of H2O2 (Fenton) enhanced the degradation of the dye. Thus, in the
photo-Fenton reaction with added UV, in addition to the Fenton reaction, the degradation
of RhB dye was even higher because the Fe2O3/Mn2O3 nanocomposite in the FMS acts as
an effective catalyst under H2O2 and UV light (Equations (1)–(4)):

Fe2+ + H2O2 → Fe3+ + OH + OH− (1)

Fe3+ + H2O2 → Fe2+ + OOH + H+ (2)

Mn2+ + H2O2 →Mn3+ + OH + OH− (3)

Mn3+ + H2O2 →Mn2+ + OOH + H+ (4)

2.2.2. Degradation Performance for Anionic Dye

To compare the degradation capacity of the synthesized photocatalytic adsorbents
according to their pollutant properties, Congo red (CR), a benzidine-based anionic, was
selected as a model dye molecule. Figure 9 shows CR degradation by FM-NPs and FMS
under different reaction conditions. First, dye adsorption with the synthesized material
under no UV shows that CR molecules can be marginally adsorbed on to the surface of FMS
with Fe2+ and Mn2+ contents. In contrast, the adsorbents with SiO2 as the platform showed
no adsorption effect (Figure 9a). There is a strong repulsive force between the negatively
charged CR and the SiO2 surface, which supports the ability of SiO2 in the FMS to strongly
adsorb positively charged contaminants (Figure 9b). In the Fenton reaction, which appears
when H2O2 is injected into the reaction, it can be seen that the catalytic reaction of FM-
NPs increased significantly from 12% to 66%. The silica-based material containing metal
oxide nanoparticles showed a similar low efficiency in the H2O2 reaction, suggesting the
presence of an electrostatic attraction reaction between silica and contaminants, which
serves as a platform and acts as an important mechanism for reducing pollutants [43]. In the
photocatalytic reaction in Figure 9c, a high removal rate (C/C0) was achieved by FM-NPs
and FMS, i.e., almost 100% removal in 15 min. However, the photocatalytic performances
of FMS and Fe2O3@SiO2 showed an unstable degradation reaction over 120 min, which is
attributed to the continuous generation of repulsive forces between the negatively charged
silica and anionic dye. In contrast, the photocatalyst, particularly in the case of bi-metal-
bonded NPs, indicated that the photocatalytic effect was more stable than in the case of
single Fe NPs. This result supports the synergistic effect of the bi-metal discussed above.
The degradation performance of the synthesized photocatalyst, FM-NPs, for CR dye was
evaluated and compared under different reaction conditions (Figure 9d). UV light had a
decomposition effect, which was improved by increasing the reaction time. However, the
reaction efficiency and time were lower than those of the Fenton oxidation or photocatalytic
reaction. In the case of anionic dye decomposition, FM-NPs did not have a significant
adsorption effect on a low specific surface area. However, the effect of the catalyst was
significant, and oxidation of the contaminant was ensured in the presence of a UV source.
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Fe2O3/Mn2O3@SiO2 (FMS) under different conditions; (a) Only adsorption (without UV + H2O2),
(b) Fenton reaction with H2O2 (without UV), and (c) Photo-Fenton reaction with UV + H2O2 (reac-
tion conditions: catalyst dose = 1 g/L, initial concentration of CR = 10 mg/L, initial pH = 7), and
(d) comparison of degradation performance with FM-NPs under different reaction conditions.

2.2.3. Possible Degradation Mechanism of Photocatalytic Adsorbent

As mentioned in previous results, the dye degradation mechanism of photocatalytic
adsorbents is complicated because the removal process may be coupled with adsorption,
Fenton reaction, and photocatalytic reaction. UV light can activate Fe and Mn contents in the
FMS for the photocatalytic reaction and separate electron-hole pairs (Equations (5) and (6)).
Subsequently, the separated electrons in the conduction band (CB) might directly reduce
H2O2 and O2 at the surface of the FMS, while the hole derives oxidation on the surface
hydroxyl or adsorbed water to produce hydroxyl radicals (Equations (7) and (8)). This
consecutive release of reactive oxygen species can effectively degrade the dye molecules in
the liquid phase.

Fe2O3 + hv→ Fe2O3 (e− + h+) (5)

Mn2O3 + hv→Mn2O3 (e− + h+) (6)

e− + H2O2 → OH + OH− (7)

h+ + H2O2 → OH + H+ (8)

In the case of FMS, rapid decolonization can occur through the subsequent electron
transfer of the Fe2O3/Mn2O3 nanocomposite on the surface of the catalyst. The XRD
pattern confirmed that the Fe2O3/Mn2O3 nanocomposites consisted of α-Fe2O3 and α-
Mn2O3. As shown in the schematic diagram of the photocatalytic degradation (Figure 10),
the behavior of the Fe2O3/Mn2O3 nanocomposites can be explained as type-I (straddling
gap) heterojunction photocatalysis, given that the CB and valence band (VB) of Mn2O3
are in between those of Fe2O3 [44]. The bandgap energy was calculated for NPs using
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UV–visible optical spectroscopy and it was found to be 1.9 eV for α-Fe2O3 and 1.3 eV
for α-Mn2O3 in the literature [5,45]. Because the band edge of α-Fe2O3 exists above α-
Mn2O3, photogenerated holes at the low-energy level would quickly move to the VB of
α-Mn2O3, and high-energy electrons are transferred to the CB of α-Fe2O3 [46–48]. This
can lead to prolonged catalytic separation and improved catalyst lifetime by hindering the
recombination of electron-hole pairs. The excited electrons or holes react with molecular
oxygen on the surface of the FM-NPs, and dyes can be decomposed by OH radicals and
converted into CO2, and H2O.

Meanwhile, physical and chemical adsorption could contribute to the enhanced ad-
sorption of cationic organic pollutants onto FMS. From previous results, SiO2 in FMS can
chain a hydrogel network (Si-O-Si), which has hydrophilic properties. Given that the
surface charge of RhB is highly negative, colloidal interactions between the silica hydrogel
and the dye can hold strong van der Waals interactions. Thus, a previous study stated
that high-energy electrons potentially transfer from excited nanoparticles to the empty
state of the nearby SiO2 [34]. Under light sources, electron transfer occurring between the
SiO2 and bi-metal impregnates the surface of SiO2. Another possibility is the formation of
hydrogen bonding forces between the FMS and cationic dye molecules, as stated above.
The possible interactions of FMS are shown in Figure 10, which shows the behavior of RhB
dye adsorption onto FMS. FTIR analysis showed hydrogen-bonding donors and acceptors
on the FMS surface, and the RhB molecule had hydrogen-bonding groups.
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3. Materials and Methods
3.1. Chemicals

Mn(NO3)2·4H2O (>98%) and Cetyltrimethylammonium chloride (CTAC) solution
(25 wt.%) were purchased from Sigma-Aldrich (MO, USA). Fe(NO3)3·9H2O and 95% of
Tetraethyl orthosilicate (TEOS) were supplied by Samchun Pure Chemicals (Pyeongtaek-
si, Korea). H2O2 (28%) solution and NaOH (1N) were supplied by Daejung Chemicals
(Seoul, Korea).
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3.2. Synthesis of Catalyst-Doped Adsorbents

Fe2O3/Mn2O3: Fe2O3 and Mn2O3 were synthesized using a sonication-assisted co-
precipitation method. First, 16.16 g of Fe(NO3)3·9H2O and 5.0 g and Mn(NO3)2·4H2O as
precursors were dissolved in 600 mL of DI water and warmed up to 65 ◦C for 30 min.
Then, 1 g of surfactant cetyltrimethylammonium bromide (CTAB) was added to the above
solution and mixed for 120 min at 60 ◦C, before 2.0 mol L−1 of NaOH solution was added as
a precipitation agent under sonication until a pH 12 was achieved. The precipitate sample
was washed with DI water, dehydrated at 100 ◦C for 24 h, and calcined at 700 ◦C for 7 h.

Fe2O3/Mn2O3 @SiO2: The obtained nanoparticles were homogenized (PREMIX Model
2.5) with 6000 rpm for 8 h. Next, 0.4 g of Fe2O3/Mn2O3 nanoparticles (FM-NPs) were
mixed with 40 mL of CTAC for 30 min at 40 ◦C, and 40 mL of TEOS was added to the
mixture and converted to a black colored gel immediately. The obtained gel was incubated
for 24 h at 50 ◦C under 200 rpm stirrer, then calcinated in a furnace at an increasing rate of
2 ◦C/min until 550 ◦C, which was continued for 6 h.

3.3. Characterization

The surface characterization of synthesized photocatalytic adsorbent was analyzed
using scanning electron microscopy (SEM) (JEOL-7800F, Tokyo, Japan). Hence, 2D el-
emental mapping was analyzed by using energy-dispersive X-ray spectroscopy (EDS).
Transmission electron microscopy (TEM) images were analyzed using a Philips CM200
(Amsterdam, The Netherlands), and EDS DX-4 (EDAX) was used for element mapping.
N2 adsorption–desorption isotherms were measured for Brunauer–Emmett–Teller (BET)
analysis to investigate porosity properties and specific surface area of synthesized materi-
als, using a Gemini series Micromeritics 2360 instrument (Norcross, GA, USA). The X-ray
diffraction pattern was analyzed to investigate the composition and phase structure of
the synthesized material composites using a Rigaku D/Max-2500 X-ray (Tokyo, Japan)
diffractometer, and FTIR spectra (Vertex 70, Bruker, MA, USA) of the samples were ana-
lyzed to measure the vibrations and rotations of molecular functional groups. Electron
spin resonance (ESR) spectrometer was applied to analyze oxidation state of metal com-
plexes using a JEOL JES-FE1C X-band spectrometer (Tokyo, Japan). X-ray photoelectron
spectroscopy (XPS) analysis was carried out to investigate the elemental oxidation state of
synthesized material (K-alpha, London, Thermo UK) and deconvoluted with Fityk software.
UV–Vis spectroscopy (LAMBDA 365 UV–Vis Spectro-photometer, Perkin Elmer, MA, USA)
measured the sample solution to detect dye concentration before and after treatment.

3.4. Dye Degradation Procedure

The performance of FMS as a photocatalytic adsorbent was tested for the removal of
cationic and anionic dyes under different reaction conditions including adsorption, the
Fenton reaction, and photocatalysis. Rhodamine B (RhB, >95%, Sigma-Aldrich, MO, USA)
and Congo red (CR, >97%, Sigma-Aldrich, MO, USA) were selected as the cationic and
anionic dye removal indicators, respectively, for the photocatalytic experiment. For the
photocatalytic test, an acryl reactor with UV lamps (8 W, 254 nm, Philips, The Netherlands)
was fitted, and 100 mg of photocatalytic adsorbent and 100 mL of dye solution with a
concentration of 10 mg/L were injected into a quartz cell tube. Different experimental
conditions, such as adsorption without UV, H2O2 addition without UV (Fenton), and H2O2
addition under UV (photocatalytic reaction), were operated at 22 ± 2 ◦C and pH around 7.
Samples were collected at 0, 5, 15, 30, 60, and 120 min using a syringe filter (0.45 µm) to
separate the photocatalytic adsorbent and they were analyzed using UV–Vis spectroscopy
to measure the dye concentration before and after the reaction by the following Equation (9)

Dye removal e f f iciency (%) = (
C0 − Ct

C0
) × 100 (9)



Catalysts 2022, 12, 1045 13 of 15

where C0 is the initial concentration of dye solution and Ct is the final concentration of dye
at a reaction time. All dye degradation experiments were performed in a duplicate, and the
results represent an average value.

4. Conclusions

Results indicate that the degradation of dyes is a photocatalytic adsorption-driven
process, and the charge properties of the target pollutants are important. RhB, a repre-
sentative cationic molecule, showed excellent reduction by adsorption with FMS, and the
reduction efficiency was greatly increased in the presence of H2O2 and UV, mainly because
the adsorption by the negatively charged silica supports the mitigation of electron-hole
recombination from the photocatalyst. This is also revealed through the CR adsorption
experiment, which is an anionic molecule, and it was found that the reduction efficiency
was significantly lower than that of RhB owing to the electro-repulsion effect between
the silica surface and CR. However, in this case, it was found that the reduction by the
bimetallic FM-NPs catalyst was effective under the photocatalytic process. The generation
of the reactive oxygen species can be attributed to the creation of photo-induced charge
carriers by bi-metal NPs and their interactions with oxygen and water molecules on the
surface of the particles. A synergistic effect of the additional impregnation of SiO2 on the
FM-NPs was observed, leading to photocatalytic adsorption.
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