Synthesis of Hazard-Free Multilevel Logic Under
Multiple-Input Changes from Binary Decision
Diagrams

Bill Lin, Member, IEEE Srinivas Devadasviember, IEEE

Abstract—We describe a new method for directly synthesizing a hazard- the presence of slow inertial delays to insure correctness.

free multilevel logic implementation from a given logic specification. The _ PR .
method is based on free/ordered Binary Decision Diagrams (BDD’s), The two-level minimization versioaf the problem has been

and is naturally applicable to multiple-output logic functions. Given an addressed by a number of researchers in the past [25], [16], [10],
incompletely-specified (multiple-output) Boolean function, the method pro- [5], [3], [4], [11]. More recently, Nowick [22] has developed an
duce_s a_multllevel logic network that is haza_rd—free for a specified set of exact two-level minimizer that combines a number of previous
multiple-input changes. We assume an arbitrary (unbounded) gate and . . L .

wire delay model under a pure delay (PD) assumption, we permit multiple- 1d€@s on this problem. A limitation of the two-levelimplementa-
input changes, and we consider both static and dynamic hazards under the tion approach is that it is not always possible to find a two-level
fundamental-mode assumption. Our framework is thus general and power- coyer that can insure freedom fraai static and dynamic haz-

ful. While itis not always possible to generate hazard-free implementations . . .
using our technique, we show that in some cases hazard-free multilevel im- a“_’s even thoth a hazard-free multilevel lmplementatlon may

plementations can be generated when hazard-free two-level representations €XIST.
cannot be found. This problem is generally regarded as a difficult problem In this paper, we describe a new framework based on Binary

and it has important applications in the field of asynchronous design. The . . , .
method has been automated and applied to a number of examples. The Decision Diagrams (BDD's) fosynthesizing a hazard-free mul-

results we have obtained are very promising. tilevel logic implementation directly from a logic descriptioh
Binary decision diagram is @irected acyclic grapmepresenta-
|. INTRODUCTION tion of Boolean function. BDD’s have gained widespread use

_ o in the areas of formal verification and logic synthesis due to the

A_SYNCHRONOUS design styles are becoming increaganonical and easily manipulable nature of a class of BDD’s
: ingly popular because they offer the potentla_ll benefits ?f]_ Our framework is based on the use of bdtee as well
improved system performance, avoidance of clocking problemg,qeredBDD’s and is naturally applicable to multiple-output
low-power operation, and modular design [8], [17], [18], [14]qgic functions. We permit multiple-input changes, and we con-
[26], [19], [21], [28], [2], [12], [15], [6], [27], [1]. However, gider poth static and dynamic hazards, which means the result-
the design of correct asynchronous circuitry is a difficult tas,hg framework is general and powerful. In particular, we show
since an asynchronous circuit can malfunction (i.e. produce ypz; 5 multiplexor logic network derived from raducedfree
expected behavior) during. exeqution if_ it is not f_redqaf;ards_ or ordered BDD by replacing each node in the BDD by a two-
which correspond taindesiredglitches in a circuit. This is in jn5t multiplexor is free of all static logic hazards. For dynamic
contrast with synchronous design styles where the problemdﬁic hazards, we have developed ffiigger Signal Ordering
avoided by the use of a global clocking scheme that Coordi”aﬁ‘é'équiremen(or TSO-Requiremerior short) on the BDD vari-
and synchronizes all collective activities. able ordering that, if satisfied, will lead to a multiplexor logic

In this paper, we focus on a particular class of hazards npetwork that is also free of all dynamic logic hazards for the
namely hazards in combinational logic. Hazard-free combingyen set of allowable input transitions. The resulting multi-
tional logic is critical to the correctness of most asynchronoyfexor logic network is proved to be fully hazard-free under ar-
designs. Our goal in this work is to develop a method that C@frary gate and wire delays. While it is not always possible to
synthesize combinational logic that avoid8 combinational generate hazard-free implementations using our technique, even
hazards underspecifiecset of multiple-input changes. This is &t an implementation theoretically exists, in many cases we are
general combinational synthesis problem which arises in magyje to generate hazard-free multilevel implementations when
asynchronous sequential applications. For example, the praQzard-free two-level implementations cannot be found.

lem arises in the current synthesis trajectories for asynchronou§\/e have also developeife replacement strategiéisat can

f'g':::;itje v:/?ricshg;? h[i\}]e gft?i]t.ralrn ?é?aws?rl\(/\’/h\,i\i:i ﬁ:;rr?sevxtlr;% lace a multiplexor by a functional equivalenm-of-products
9 y yS, r Eresentation which preserves the hazard-free properties. We

not require bounded delay assumptions for correct operatio Povide a characterization on when such replacements are pos-
the use of delay elements to fix or filter out glitches. We also ble

sume zpure delay(PD) model, which means we do not assumﬁy e The part of the network that can be safely replaced

D- and OR- gates can be further optimized usimmn-

Manuscript received December 8, 1993; February 17, 1995. This paper MZard-llncreasmgoglc transformations, such as the ones dis-
recommended by Associate Editor K. Keutzer. cussed in [13].

B. Lin is with IMEC, B-3001 Leuven, Belgium. e} ; ; ; ; ; ;
ur combinational logic synthesis method can be applied di-

S. Devadas is with the Department of EECS, MIT, Cambridge, MA 02139 . 9 Y . PP
USA. rectly to the synthesis of hazard-free logic for asynchronous

IEEE Log Number 9412310. state machines that operate under the fundamental mode as-

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 14, NO. 8, AUGUST 1995 2

sumption [21], [28]. Further, it can be generalized to the eB. Modeling Delays
tended burst-mode state machine case [29]. We have automatev;i,e assume gates and wires in a combinational circuit can

our method and havg applied it to a ”“!’“.ber of examples. Tlt?g\/e arbitrary finite delays. Each gate is modelled as an instan-
results we have obtained are very promising. taneous Boolean operator with a delay element attached to its
output wire. This delay element describes the total gate delay.
Il. BACKGROUND Each wire is modelled as a connection with an attached delay
A. Basic Definitions element. This delay e!ement des'c.ribes the total .wire delay. The
delays may have arbitrary but finite values. Since delay ele-
To simplify the discussion, we will consider single-outpuinents are attached only to wires, this model has been called the
functions only with binary input and output variables. Exteninbounded wire delay modelVe assume aure delaymodel,
sion to multiple-output functions is straightforward. which means a pulse of any length can propagatelelay as-
Let {0,1}™ be a Boolean space. Each € {0,1}", cor- signments an assignment of fixed finite delay values to every
responding to a point in the Boolean space, is referred to agate and wire in a circuit.
minterm. It will also be referred to as anput state or simply
state C. Function Hazards
A Boolean function, f, of n variablesxy, zs, ..., z,, is de- A function f which does not change monotonically during an
fined as a mappingf : {0,1}" — {0,1,%}. TheON-setof a inputtransition is said to havefanction hazardn the transition.
function is the set of minterms for which the function has value
1. The OFF-setis the set of minterms for which the functionDefinition 1 (Static function hazard) A Boolean functionf
has value). TheDC-set(don't-care set) is the set of mintermscontains astatic function hazard for input transition fromA

for which the function has the value to C' iff:
A cube of a Boolean functionf is written asc¢ = 1. f(4) = f(C), and
[c1, -, ¢p]. Forl <i <m,c;is0if variablez; appears com- 2. there exists some statee [A, C] such thatf(A) # f(B).

plemented ir, ¢; is 1 if variablex; appears uncomplemented in
¢, andc; is — if z; does not appear ifn Thus, a cube is a set of Definition 2 (Dynamic function hazard) A Boolean function
minterms. f contains adynamic function hazard for input transition from

We will write ¢ € d, if cubec is such that for each position A to D iff:
in ¢ that has & the corresponding position in cubdehas a) or 1. f(A) # f(D), and
a —, and for each position in that has al the corresponding 2. there exists a pair of statd3 andC' (A # B,C # D) such
position ind has al or a—. that

The intersection of two cubesc andd is empty if there is (&) B € [4, D] andC € [B, D] and
a positioni wherec; = 0 andd; = 1 or vice versa. If the (b) f(B) = f(D)andf(A)= f(C).
intersection is not empty, then it can be computed as a new cub
e = cNd,wheree; = 1ifeitherc; = 1lord; = 1,¢e; = 0if
eitherc; = 0 ord; = 0, ande; = — otherwise.

A transition cube is a cube with astart point and anend
point. Given input statest and B, the transition cubéA, B]
from A to B has start pointl and end poin3 and contains all p, | ogic Hazards
minterms that can be reached during a transition frbio B.

It can be represented by temallestcube that contains both If fis freg of function hazards for a transition from inplito
andB. B, it may still have hazards due to possible delays in the actual

logic realization.

ﬁ‘ a transition has a function hazar implementation of the
function can avoid a glitch on the transition, assuming arbitrary
gate and wire delays [10], [5]. Therefore, we consider only tran-
sitions which are free of function hazards (see [10], [4], [3]).

Theopen transition cube[A, B) from A to B is defined as

4, B] - B. Definition 3 (Static logic hazards) A combinational circuit for

A multiple-input change or input transition from input f :
. . " . nction ntain ic logic hazardfor the in ransi-
state A to B is described by transition culjel, B]. We will ﬁi‘orl:ffotr?u{tgoBt;r- s astatic logic hazardfor the input trans

use the notatioll = B to denote the the input transition from _f(A) = f(B)
éqtgi \/Bélégﬁyts\iﬁg:?;;i ti,r(ranZf/sbuemsii\}voegge:ggfa‘:illr;ggmf:gé-y.For some delay assignment, the circuit’s output changes mo-
: ' . X ?nentarily during the transition interval.

lays, inputs can be assumed to change monotonically in any or-

der and at any time. Once a multiple-input change occurs, TRis means that we have one orméres 1 — 0 (or1 — 0 —

further input changes may occur until the circuit has stabilized) transitions while the specified behavior is a stét{or a static
An input transition from statel to B for a Boolean function 1).

fis astatic transition if f(A4) = f(B); itis adynamic transi-

tionif f(A) # f(B). Definition 4 (Dynamic logic hazards) A combinational cir-
In the case of an incompletely specified function, we assurogit for a functionf contains adynamic logic hazardfor the

that f is fully defined for every specified static and dynamimput transition fromA to B iff:

transition; that is, for evenX € [A, B], f(X) € {0,1}. 1. f(A) # f(B)

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 14, NO. 8, AUGUST 1995 3

2. For some delay assignment, the circuit’s output is not moneaveindexz(v) < index(low(v)); and if high(v) is also a non-
tonic during the transition interval. terminal, then we must havedex (v) < index(high(v)).

. A reduced free Binary Decision Diagram(or simply free
This means that we havela— 1 = 0 = 1(orl1 = 0—=1— gpp)js a BDD where we require that we encounter each vari-
0) transitions while the specified behavior is a single+ 1 gpje at most once in any path in the BDD and that the BDD is
transition (orl — 0 transition). reduced, but do not require a strict variable ordering restrictions
on BDD’s. That s, different paths may have a different variable
ordering as long as each variable is encountered at most once
along any path.

I1l. BINARY DECISION DIAGRAMS AND DERIVED
MULTIPLEXOR NETWORKS

A. Binary Decision Diagrams

In this section, we will restate from [7] the definitions for fred- Deriving a Multilevel Multiplexor Logic Network

Binary Decision Diagrams and reduced ordered Binary Deci-A multilevel logic network can be derived directly from a
sion Diagrams. We will then indicate how a multiplexor-baseBDD by replacing each BDD vertex with &vo-input MUX -
multilevel logic network can be derived from them. ELEMENT. An example is shown in Figure 1. A BDD and
Given a Boolean function, the function resulting when somg corresponding derived multiplexor multilevel network are
argumentz; of the functionf is replaced by a constahnt € shown in Figure 1(a) and (b), respectively. The multiplexor net-

{0,1} is called acofactor of the function with respect to; = work can be simplified by means obnstant propagationThat
b, and this is denoted af|,,—;. That is, for any argumentsis, themux-ELEMENTS can be replaced by simpler gates if one
T1yeey Tny or more of its inputs is a constant. This propagation can be car-
ried out topologically from inputs to outputs. The simplified
flei=o(@1, .- 2n) = f(@1,. o @1, 0, Tig1, -0, Th) network is shown in Figure 1(c).

Using this notation, th&hannon expansiorof a function with
respect to a variable; is given by:

=% fle;=0 + 2i - fle;=1

Definition 5 (BDD) A Binary Decision Diagram is a rooted,
directed acyclic graph with vertex s&t containing two types
of vertices. Anon-terminal vertexv has as attributes an
argument indexindexz(v) € {1,...,n} and two children

. . b
low(v), high(v) € V. Aterminal vertexv has as attribute a ¢
valuevalue(v) € {0,1}.

The correspondence between BDD’s and Boolean functions is @ ®) ©

defined as follows: Fig. 1. (a) A BDD. (b) The derived multiplexor multilevel network. (c) Simpli-
fication of multiplexors by constant propagation.
Definition 6 A Binary Decision Diagrant? having root vertex
v denotes a functiorf,, defined recursively as:
1. Ifvis a terminal vertex: IV. STATIC HAZARD-FREE SYNTHESIS FROMBDD’s
(@) If value(v) = 1, thenf, = 1.
(b) If value(v) = 0, thenf, = 0.
2. If v is a non-terminal vertex withndexz(v) = i, thenf, is
the function:

The hazard-free synthesis problem can be stated as follows.
Given: A (possibly incompletely specified) Boolean function
f, and a set] of specifiedunction-hazard-free (both static and
dynamic) input transitions of .
. Find: A multilevel logic implementation that is free of logic
’ ”)nazards for every input transitiagne 7.
z; is called thedecision variablefor vertexuv. In this paper, we propose synthesis procedures from BDD's that
can produce hazard-free multilevel logic implementations. Let
We require the following additional properties in Binary Decius first consider a simple procedure that transform an incom-
sion Diagrams: pletely specified functiorf to a multiplexor network. If the
1. When traversing any path from a terminal vertex to the rofainction is incompletely specified, then some preprocessing is
vertex we can encounter each decision variable at most oncerequired as follows: in the case of an incompletely specified
2. AreducedBDD is one in whichow(v) # high(v) for any function, thedon't-careminterms contained inside some speci-
vertexv and no two subgraphs in the BDD are identical. fied transitiont € T' must be assigned properly so that no func-
From Definition 5, a canonical form calledraduced ordered tional hazards can occur. The other don’t care minterms can be
Binary Decision Diagram[7] (or simply ordered BDD) can be used for optimization, for example using techniques described
derived if the following restrictions are imposed: for any norin [9], [24] (cf. therestrict and thegeneralized cofactooper-
terminal vertew, if low(v) is also a non-terminal, then we musttors). So for all practical purposes, we only need to consider

fv(mla v 7-Tn) = m_i'flow(v) (1'1, s ,xn)_'_mi'fhigh(v) (mla K

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 14, NO. 8, AUGUST 1995 4

completely specified functions. Once this preprocessing steqitis inputa is at a constarit. Clearly, ifa is al, f will be free of
performed, the synthesis procedure is as follows: static hazards if, remains at a constahtand is free of hazards.
1. Construct a BDDOZ for the Boolean functiorf. The BDD We know thatf,(4) = 1 andf,(B) = 1. Further we know that
here is meant to be either amderedor afree reduced BDD, Vm € [4, B], f.(m) = 1. Otherwise, it implies that there is
where each variable can appear at most once along any patha function hazard associated wifh Since f, can only make a
2. Generate a multilevel circulf by replacing each BDD node static transition ind = B, clearly f will be free of static haz-
with a two-inputMUX -ELEMENT. ards if f, is free of static hazards. One can recursively apply the
For the hazard analysis in this section, we will first assunagalysis above tg, to show that it is free of static hazards. We
that themuXx -ELEMENT is anatomic gatewith no internal haz- will finally reach the base case where the control variable to the
ards, and that thetux-ELEMENT and the wires connecting muliplexor isz and both the data inputs are constants. If both
them can have arbitrary delays. An implementation of a hazathta inputs are the same, then this multiplexor will not exist in
free multiplexor is shown in Figure 2. The only constraint othe BDD or the circuitC by the reduction rules of BDDs. Other-
the layout of the gate is that tithfferencein the delays of the wise, this multiplexor reduces to either the literal functioor
two paths from the control input that pass through the bufferits negatiorz. Then the input is assumed to remain at constant
and the inverter should be smaller than the inertial delay cornein the case of: and at constarii in the case off. Otherwise,

sponding to a transistor turning on or off. there is a function hazard associated wfith
In the case when the inputis at a constan, then f will be
a free of static hazards ifz is free of hazards. This follows from

similar arguments as above.

Next consider the case when the inputakes a0 — 1
transition or al — 0 transition corresponding tel = B.
|_<, Clearly f will be free of static hazards if botlfz and f, are

free of hazards. We claim that bofg(A) = fz(B) = 1 and
fo(4) = f.(B) = 1. Further we claim thatm € [A, B,
)o— fz(m) = f.(m) = 1. Therefore, bottfz and f, can only make
f, a static transition ild = B. Thus, it is sufficient to show that
they are free of static hazards. Again, this argument can be re-
Fig. 2. A transistor-level implementation of a hazard-free multiplexor. ~ cursively applied tgfz and f, with the same base case as above.
Since bothfz and f, remain at constarit and are hazard free,

The logical function implemented by the gatefis= a- f,+a- only the control variable can change at the multiplexor associ-
fa. This function is free of all dynamic hazards, but has a poteated at the output of. By the assumption that the multiplexor
tial static logic hazard on theé— 1 transition ona with f, and is an atomic gate and is internally hazard-free, tfiémalso free
fz constant al. However, if the path balancing criterion statedf static hazards for the static transitiph, B].
above is met, then the implementation of thex-ELEMENT The proof for the case whefimakes a statié — 0 transition
will not have a static hazard. follows similarly. [|

We will first analyzestatic hazard propertie®f such net- Theorem 1 states that the derived circuit is free of static haz-
works assuming thelux-ELEMENT as a basic hazard-free el-ards forany input transition that does not cause a function haz-
ement. We will defer to Section VI the discussion regarding thgd. So we now say that a multiplexor implementation from
replacement oMUX-ELEMENTS with basic gates, the constankither a free or an ordered BDD is free of all function hazards
propagation issue, and possible simplification and resynthegj§ definition) and free of all static logic hazards. An important
steps. corollary is as follows.

[\

Theorem 1 (Static logic hazard-freeness).et C be a circuit Corollary 1 The static hazard-freeness @fis independent of

e ot o o1 oo ot a1 Vaibie orderng hosen for e BTD Further, (e 80D
b b (G can be a free BDD with different orderings along different

under any multiple-input change that does not correspond to %ths
function hazard. P :

Proof: Without loss of generality we will assume a single Proof: Follows from Theorem 1. _ u
specified static transitiod = B. The circuitC implements hiS means that there am® restrictions on the variable order-
the Boolean functiorf which is free of function hazards for theind for static hazards. This is howewveot always the case for
specified input transitiod = B. Further the circui€’ has been dynamic logic hazards, as will be described next.
derived using the synthesis procedure outlined.

Assume that the multiplexor driving the output@fhasa as
its control variable. The data inputs to the multiplexor corre- While a multiplexor implementation derived from a reduced
sponds to functiong, and fz, the Shannon cofactors gfwith BDD is guaranteed to be free of static logic hazards, it is not nec-
respect tax anda. essarily free of dynamic logic hazards. In this section, we will

Assume thatf is to make a statid — 1 transition,i.e. first characterize the problem. Then we will present a method
f(A) = 1andf(B) = 1. We will first consider the case whenthat will ensure the non-existence of dynamic hazards as well.

V. DYNAMIC HAZARD-FREE SYNTHESIS FROMBDD’s

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 14, NO. 8, AUGUST 1995 5

A. The Problem a+ occurs first, nothing changes. Then whien occurs,T'1

Let us consider an example shown in Figure 3. Let us coWill change, which will causé” to change, buf” only changes
onc

sider thedynamicinput transition L . . .
Now consider instead an alternative BDD implementation us-

0%0x0= 110,wheref(000) = 1 andf(110) = 0. ing variable orderingsd < a < corc < b < a, shown in Figure

. - .) .5 (a) and (b), respectively.
We will use” x ” to indicate that the corresponding signal is

excitedto change. In this case, the signalandb areexcitedto f f
make thetransitionsa+ andb+. The correspondingansition

cubeis

T1 T1

[000,110] = — = 0.
Now suppose we implement an ordered BDD with the variable
orderinga < b < ¢. The corresponding BDD is shown in Figure
4,

T2 T2

(A) b<a<c (B) c<b<a

Fig. 5. BDD implementation with orderings (&)< a < cand (b)c < b < a.

Let us first consider a multiplexor implementation translated
from the BDD shown in Figure 5 (a). This multiplexor im-
plementation is free of dynamic hazards under the transition
000 = 110. The analysis is as follows.

1. Initially,a = 0,b =0, ¢ = 0. This impliesT1 = 1,72 = 0,
andF = 1.

2. If b+ happens first, the®” will changel — 0. Then when

a+ occurs, nothing else changes. Hence there is no dynamic
hazard.

3. If a+ happens first, nothing happens. Then wheroccurs,

F changes froml — 0. Again no dynamic hazard occurs.

Let us now consider a multiplexor implementation translated
from the BDD shown in Figure 5 (b). This multiplexor im-
plementation is free of dynamic hazards under the transition

Fig. 4. BDD implementation with ordering < b < c. 000 = 110. The analysis is as follows.
1. Initially,a = 0,b =0,c¢ = 0. This impliesT1 =1,72 =1,

Let us consider a multiplexor implementation translated frogdF = 1.
this BDD. This multiplexor implementation can exhibit a dy2- If b+ happens first, thef” will changel — 0. Then when
namic hazard as follows: a+ occurs, nothing else changes. Hence no dynamic hazard
1. Initially,a = 0,5 = 0, ¢ = 0. This impliesT'l1 = 1, T2 = OCCUrs.

1,73 = 0, andF = 1, where theTi’s are the output of the 3. If a+ happens first, nothing happens. Then wheroccurs,
multiplexors andF is the output of the circuit. F changes fronl — 0. Again no dynamic hazard occurs.

2. In the transitior)00 = 110, both ana+ and ab+ can occur From this informal intrOdUCtion, we will show that theri-
concurrently. Recall that under the unbounded gate/wire deRife orderingin fact plays a very important role in guaranteeing

assumption, either+ can occur first ob+ can occur first, but freedom from dynamic hazards. Recall that we have already
we must consider both transition Orderings_ Let us asskine stated that BDD implementations are free of static hazards. The

occurs first and makesa— 1 transition. removal of dynamic hazards is addressed next.
3. ThenT'2 makes a — 0 transition, bufl'1 is slowto change.
F makes a — 0 transition.

T1

B. Conditions for Dynamic Hazard-Freeness

4. Then leta+ happen, making & — 1 transition, butT'1 is In this section, we will consider the requirements on the BDD
still slow to change td®, meaning it is still at valué. This will synthesis procedure in order to produce a multiplexor imple-
causeF’ to change — 1 back tol. mentation free of dynamic logic hazards. We will first consider

5. Finally, 71 changes fromi — 0. This caused” to change this requirement with respect to amderedBDD implementa-

1 — 0 back to0. Thus, the transition sequente+ 0 — 1 — 0 tion. We will defer to Section V-E the discussion regarding the
has occurred o', a dynamic hazard has been manifested. employment ofreeor unordered BDD’s to satisfy the same re-
However, whema+ occurs first, the dynamic transition takegjuirement.

place without any dynamic logic hazards. This is because wherThe key to the analysis is the conceptridger signals.

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 14, NO. 8, AUGUST 1995 6

Definition 7 (Context signal) Given an input transitiord = 1. For every trigger statéX € [A, B], the trigger signal vari-

B, asignalg is said to be aontextsignal if it changes its value ables in X appear in the variable orderindgpefore the non-

acrossA and B. If it remains at a constant value iA and B, trigger signal variables.

then it is said to be aon-contextsignal. 2. For every trigger state&X’ € [A, B] with multiple trigger sig-
.) . . nals, the trigger signal variables iX all appear before each

By the definition of input transition (cf. Section II-A), a contexiy the quiescent signal variabless, all appear after each of the

signal can only monotonically change once duringd a= B quiescent signal variables.

transition. The BDDG is said to satisfy the TSO-requiremegibbally if

o) _)) and only if its variable ordering satisfies the TSO-requirement

input transitionA = B, a context signa4 is said to beexcited

in X if and only if its value inX is equal to its value im. The second condition ensures that there is no quiescent signal
“in between” any trigger signals during any specified transition.
Definition 9 (Quiescent signal)Given a stateX € [A, B] in If a strict variable ordering can be found that can satisfy

the input transitiond = B, a context signaf is said to be a the TSO-requirement globally, then the derived multiplexor net-
quiescent signalin X if its value in X is equal to its value in work is also free of dynamic hazards.
B.

Theorem 2 (Dynamic logic hazard-freedom)Let C be a cir-

In the example shown in Figure 3, signaleindb are “con- cuit derived from a BDDG by replacing each node i with
text” signals in the transitiof00 = 110 bcause both are en-a hazard-free multiplexorC is free of dynamic hazards for all
abled to change values, wheregis a “non-context” signal in specified dynamic transitions, if the TSO-requirement is satisfied
this transition. Signals andb are “excited” in stat®@00 because globally.

both signals can change. In the stai@, only b is “excited”; the
signala is “quiescent” in statd 00. Proof: Without loss of generality we will assume a single

specified dynamic transitioA = B. The circuitC' implements

Definition 10 (Trigger state, signal, transition) A state X e the Boolean functiorf which is free of function hazards for the

[A, B] in a dynamic input transitiord = B is said to be a SPecified inputtransitiod = B. Further the circuit’ has been

trigger state for A = B if and only if there is an excited signalderived using the synthesis procedure outlined.

¢ (g+ or g—) such that the stat® € [A, B] reached by chang- Assume that the multiplexor driving the output@fhasa as

ing ¢ has a different output value frof: i.e., f(X) # f(v). its control variable. The data inputs to the multiplexor corre-
The signalg is called atrigger signal of X in A = B, and Spond to functiong, and fz, the Shannon cofactors gfwith

the corresponding transition, either+ or ¢—, is called atrig- r€Spect tax anda.

ger transition of X in 4 = B. In a given trigger state, an Assume thaff is to make & — 1 transition,i.e. f(4) =0

excited signal that will not cause the output to change is réndf(B) = 1.

ferred to as anon-trigger signal. Its corresponding transition 1. We will first consider the case when the inpuis at a con-
is referred to as aon-trigger transition . stantl. Clearly, ifa is al, f will be free of dynamic hazards if

fa is free of dynamic hazards.
Referring again to Figure 3, state80 and stated00 are “trig- 2. If ¢ is a constand, f will be free of dynamic hazards jf; is
ger states” sincg (000) and f(100) are both equal to “1”, but free of dynamic hazards.
there exists a signal transition from either state that will cause Next consider the case when the inpumakes a0 — 1
the output to change to “0”. transition corresponding td = B.

In the case 0000, botha andb are “excited” to change. (a) Consider the case whefp(4) = 0 andf,(B) = 1. We
Changing will cause the output to change to “0”. In this caseglaim that fz(A4) = fz(B) = 0. Supposefz(4) = 1. Then,
bis a “trigger signal” and+ is a “trigger transition”. Changing clearly, f(A) # 0. Therefore fz(A4) = 0. Supposefz(B) = 1.

a first will not cause the output to change (it requires changifihere exists a cuba € [A, B] such thatfz(m) = 1. Clearly
b also). In this caseq is a “non-trigger signal” and+ is a the cuben does not contain the literalor @ since the cofactor
“non-trigger transition”. fz is not dependent on. There are two possibilities. In the

Informally, the basic idea here is to construct a BDD such thitst casef,(m) = 0. If there is such a cube, then we have a
“trigger signals” areordered before“non-trigger signals”. That function hazard oryf, on the path in the transition culhd, B|
is, for every trigger state for givendynamic input transition correspondingtol = @-m = a-m = B, becausg(A) = 0,

A = B, the BDD variable ordering must be such that the trigggi(a - m) = 1, f(a-m) =0, andf(B) = 1.

signals appear in the variable ordering before the non-triggetie second case corresponds{¢m) = 1. Consider the path

signals. This is formalized in the following requirement. in the transition cubel = @-m = a-m = B. We claim
thata is a non-trigger signal in staté. If a is a trigger signal

Definition 11 (Trigger signal ordering (TSO-) requirement) in state A, then whena goesO0 — 1 so doesf. This means

Given a functiory, an ordered BDO~ for f is said to satisfy the that f,(4) = 1. Obviously sincef(B) = 1 anda is making

Trigger Signal Ordering (TSO-) Requirement for a dynamic a0 — 1 transition, f,(B) = 1. Case b below corresponds to

input transition A = B in T if and only if the following two f,(A) = f,(B) = 1.

conditions hold: Therefore, in statel the signal is a non-trigger signal. If only

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 14, NO. 8, AUGUST 1995 7

a single signal, call it, changes fromi toa-m, thens is clearly follows similarly. |

a trigger signal ird. We clearly have a violation of Condition 1 As we have shown already that a BDD implementation is free of
of the TSO-requirement with a non-trigger signdleing before static logic hazards and is free of function hazards by the prob-
the trigger signak in the ordering. lem definition, therC' derived using the above proceduréLilly
Multiple signals could change from to @ - m. Without loss of hazard-fredor all hazards under the specified input transitions.
generality consider the case where two sigralands, change
from A toa-m. We have two paths correspondingstochanging
first ands, changing first. Denote these paths= @ - m; =
a-mandA = a-my=a-m. If f(@a-my)=1(f(a-ms) =1)
thens; (s2) is a trigger signal in statel. Sincea is a non-
trigger signal in stated we have violated Condition 1 of the Proof: Function hazard-freedom is immediate from the

Theorem 3 (Complete hazard-freedom)C' is free of static
and dynamic hazards, both function and logical, for all speci-
fied input transitions.

TSO-requirement. B B _ problem definition; static logic hazard-freedom is guaranteed by
Therefore, we requirg(a - my) = f(@-msz) = 0. If ais @ Theorem 1; and dynamic logic hazard-freedom is guaranteed by
non-trigger signal in either state- m; or statea - m», then we Thegrem 2. m

again have a violation of Condition 1 of the TSO-requirement,
sincess; ands; are, respectively, trigger signals in statesn
anda - mo.

Thereforega is a trigger signal in both states m; anda - m.. . .
Now, in statea - m1, we have two trigger signals, namelyand der all single-input changes.
s, and a quiescent signg. Similarly, in statez - m», we have
two trigger signals, namely ands; and a quiescent signaj.
The orderings: < s1 < sy 0ra < sy < s; Will both cause a

Corollary 2 (Hazard-freedom under single-input changes)A
BDD-based circuitC' under any ordering is free of hazards un-

Proof: Function hazard-freedom is immediate from the
problem definition; static logic hazard-freedom is guaranteed by

Theorem 1; and dynamic logic hazard-freedom under single-

Z:OIna;'IO; Ofeggqii'zoe?wzegztmozﬁoﬁZlij'f;?se;‘t' (A qwesce%put changes is guaranteed by Theorem 2 since no ordering
9 P . rgger sig o constraints can exist for single-input changes. |
In all cases, the ordering requirement imposed in the construc-

tion of C has been violated. Therefofe(4) = fz(B) = 0.
Since f5 is itself a circuit derived from a BDD, by Theorem 1,Corollary 3 (Hazard-freedom under multiple-input dy-
fE is free of static hazards and will stay at a Steadhrough_ namic tranSitionS) A Circuit C derived from a BDDG is
out A = B. fz cannot have function hazards since that woul#gzard-free to all multiple-input dynamic transitions = B
imply a dynamic function hazard ifion A = B. as long as eitheVX € (A, B], f(X) is a constant oW.X €
(b) Consider the case whefy(4) = f.(B) = 1. Sincef, [4,B), f(X)isa constant.
itself is a circuit obtained from a BDD, it is free of static hazards
by Theorem 1. Further, if, has a function hazard o = B,)
then f would have a function hazard. Therefgigis function [, B) corresponds t¢A, B] — B. For both cases, i.evX €
hazard-free oml = B. If f, is constant at &, then by the above (4: B f(X) is constant ov X' € [4, B) f(X) is a constant,
argumentf,- would be free of static hazards as well. This mear@" €ach trigger state we have only two possibilities: (1) all the
 would be free of dynamic and static hazards f4fmakes a e?<C|ted S|gnals in thg tngger state are trlgg.er S|gnals or (2) the
0 — 1 transition ond = B then f will be dynamic hazard- _smgle excited signal in a trigger §tate is atrl_gger signal. Hence,
free if f is dynamic hazard-free. If either makes & — 1 in elthgrcase, there are no qrdermg constraml@ampoged by
transition or if £, makes & — 1 transition thenf follows and Condition 1 ofthe TSO r(_eqwrem_ent. In case (1), the trigger state
stays atd. must beA.' Hencg, there'ls no quiescent S|gqal. In case (2_), there
Therefore in all cases, if eithef, or /. is free of dynamic haz- 1S only a single trigger signal and all other signals are quiescent.

ards in its) — 1 transition thenf will be free of dynamic haz- Hence, in either case, there are no ordering constrainis on
ards. imposed by Condition 2 of the TSO requirement. Therefore,

4. A similar argument can be made for thes 0 transition on dynamic logic hazard-freedom is guaranteed by Theorerli2.

ain A = B to show thatf is dynamic hazard-free if; or f, is Note that this corollary shows that there will no ordering con-
dynamic hazard-free. straints generated on “burst-mode” transitions.

Proof: Recall that(A4, B] corresponds t¢4, B] — A and

For each of the four poss?bilities correspondinggt'm A= C. Finding a Variable Order
B, we are guaranteed that if at most onefgfor f; is free of
dynamic hazards then so fs We also know that in each case We now give a systematic procedure for finding a variable
the particularf, or fz will be free of function hazards oA = ordering, if one exists, that satisfies the TSO-requirement:
B. Further the trigger signal ordering requirement is a global Letl’ = (V, E) be adirected graphwhere the each vertex
imposition onC, and the change ifi is caused by the particularv € V represents a unique variable, and each edge y €
f. or fz corresponding to each case. Therefore, one can applyneans that signat must appeabefore the signaly in the
the arguments above at any levelGh We will finally reach variable order (i.e.index(z) < indexz(y)). If there is apath
the primary inputs which are dynamic hazard-free by definitiog. (£ y in T, then it also means must appeabefore y in the
Therefore,f is dynamic hazard-free. variable order.

The proof for the case whefi makes al — 0 transition 2. Initialize " with V" as the set of variables aré= ().

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 14, NO. 8, AUGUST 1995 8

3. For each dynamic input transitich=- B, add the following Karnaugh map of the example is shown in Figure 6. For this
constraints to satisfy condition 1 of the TSO-requirement (cfxample, this is a set of fowspecifiedinput transitions” =

Definition 11): {t1,t2,t3,t4}. These transitions are:

(a) For each trigger stat& € [A, B] (cf. Definition 10), de- t; 10%01x = 1100 1-1 static input changes
termine the set of trigger signats and the set of non-trigger transition {b+,d—}
signalsSyr.] t, 1010%« = 1011 0-0 static input changes

(b) For eache € St andy € Syr, add the directed edge transition {d+}

T ylok. . _ t3 01 %00 = 0001 1-0 dynamic input changes
4. Check if the grapli is still acyclic. If yes, proceed; other- transition {b—,d+}

wise, abort because no solution exists. _ ty 0x1x11x= 1010 1-0dynamic inputchanges
5. For each dynamic input transitioh=- B, add the following transition {a+,b—,d—}

constraints to satisfy condition 2 of the TSO-requirement:

(a) For each trigger stat® € [A, B], determine the set of ab

trigger signalsSt and the set of quiescent signéfg in that od 00 01 11 10
state.]

(b) For eachy € Sg, check if there already exists a path 033 | ! /1 1\ 1‘ ! 1 a
x; +*— y from y to somez; € Sy in [and if there already o1 ; o 1 ; L DN
exists a pathy «— x; from somez; € Srtoyin[. ==== —3=—— 15

i. If no such path exists, then eithfar all z;, € Sy, add the RIS o
directed edges; < vy, Vy to E, orfor all 2, € Sr, add the t4 | |]‘; f
directed edgeg + zi, Yy to E. 10 || 1 1o | o

ii. Ifthere are only paths; +2— y from somey to somez; € —
St in T, thenfor all z;, € S, add the directed edgas. « Fig. 6. Another dynamic hazard example.
y, Vyto E.

iii. If there are only pathg & xz; from somez; € Sr to The input transit!qns are indigated in Figure 6. '_I'he star.ti.ng
somey in T, thenfor all z;, € Sy, add the directed edggs«— point _of each_transmon is desc_rlbed by a dot, and its transition
zr, Yy to E. cube is described by a dotted qrcle. o .

iv. Otherwise, backtrack to the most recently made decision af "om Theorem 1, the BDD implementation is free of static
step (i) and change the set of directed edges addEd tback- Nazards, so transitiong andz, will not cause a problem. _
tracking is not possible, then abort because no solution exists. FOr dynamic transitions, andt,, we need to analyze the vari-

6. Find a BDD variable ordering, such thét + y € £ : able or_der!ng requirements to guarantee that the BDD |mpIe_-

index(z) < index(y). If there choices select one arbitrarily. mentationis dynamlc_hazard—freg for these two speuﬂed transi-

7. Construct the BDD with the chosen variable ordering. Derif@ns- Indeed, the variable ordering< b < ¢ < d will ensure

a multiplexor networlC'. the satisfaction of the TSO-requirements for dynamic transitions
t3 andt,. Therefore, the resulting BDD implementation is also

Theorem 4 (Strict variable ordering) A strict variable order- free of dynamic hazards. The BDD is shown in Figure 7.
ing can be derived if and only if an acyclic graph can be derived.

Proof:

Necessity:If T" contains a cycle betweanandy, it means we
require bothindex(z) < index(y) andindex(y) < index(x).
This is not possible with a strict BDD variable ordering.
Sufficiency:If T' does not contain a cycle betweerandy, it
means either we have onty <~ y, which can be satisfied by
index(x) < index(y), or we have only «*— z, which can be
satisfied byindez(y) < index(x). |
In essence, the resulting directed acylic graph (DAGEpre-
sents goartial order. Any strict BDD variable ordering that sat-
isfies this partial order can be used. One can be chosen to mini-
mize the resulting BDD size. When an acyclic graph cannot be
found, then it means no strict BDD variable ordering exists. In
this case, we can make use of free BDD’s. This discussion will
be deferred to Section V-E.

We now illustrate the ideas with an example.

Fig. 7. Dynamic hazard free BDD implementation with ordering b < ¢ <
D. An Example

To illustrate the ideas, we have an example from Nowick It has been shown that it is not always possible to produce a
[20] that was used to illustrate his two-level minimizer. Thaazard-free two-level SOP cover. For example, if we add the

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 14, NO. 8, AUGUST 1995 9

following specified transition to the above example (shown tannot find such a variable, we cannot resolve the conflict using
Figure 6), then it can be shown thab hazard-free two-level free BDD’s with the given set of 1, (V, E)’'s and we exit the
SOP cover exists procedure.

The reason why no SOP solution exists is the following: iB. We choose: = 0, and group the specified transitions for
order to eliminate static logic hazards for the static transitjon which z = 0 in a setGo. G will containT;. Similarly, we
110x1 = 1111, the SOP solution must contain at least one cubgroup the specified transitions for whieh= 1 in a setG;. G,
called arequired-cubethat contains the transition culié — will containT}. If z changes in &} then theT; can be grouped
1. However, this required-cube conflicts with requirements fam either set.
eliminating dynamic logic hazards for the dynamic transitiors Go to Step 1, recurring with = G.—o andG = G._;.
ty : 0x 1x 11x = 1011. Specifically, the transition cukid = 7. Generate the ordering f@¥, or for G.—o andG.—;. Add
11 — 1 intersects the transition cube#f = [0111,1011], butit =z to the top of both these orderings with the appropriate value.
does not contain the start stétel 1, which is a dynamic hazard Exit the procedure.
violation. See [11], [4], [22] for more details. If the procedure completes successfully, we will obtain a set
of orderings of the input variables each tagged with an input
combination. For example, we may obtain for the function
f(a,b,c,d, e), the orderings:

However, with the BDD approach, the above BDD implemen-
tation is also free of hazards for this transition (since it is a static a=0,cb,d,e
transition), as well as the other specified transitions.

ts 110x1 = 1111 1-1static inputchanges
transition {c+}

a=1,b=0,d,c,e
E. Synthesis from Free BDD’s
a=1,b=1e,c,d

Although in the example shown in Section V-D we can find
a variable ordering that satisfied all ordering requirements, it 1§ implies that in the free BDDy is the variable closest to the
not always possible to find suctstrict variable ordering in the Output. Thea = 0 input of the root multiplexor is connected
general case. to an ordered BDD with ordering b, d,e. Thea = 1 input is

It is possible to havécyclic” ordering constraints that can-connected to a multiplexor withas its control variable. Thie=
not be satisfied using a strict variable ordering. For exampfiinputis connected to an ordered BDD with orderihg, ¢ and
it could be that in one specified dynamic input transitioris theb = 1 input is connected to an ordered BDD with ordering
required to appear beforg but in another specified dynamicé; & d.
input transition,y is required to appear before In this case, 10 obtain a circuitC’y corresponding to the above ordering,
we have a cyclic constraint. cofactor the given functiorf with respect taz = 0 anda = 1.

Cyclic constraints can frequently be resolved by udieg Create an ordered BDD under the specified ordering afd, e
BDD's wheredifferentvariable orderings may be used alonder fa- Cofactorf, with respecttd = 0 andb = 1to obtainf, 3
different paths. (Note that a free BDD still has the constraiff'd.fas- Create ordered BDD's under the specified ordering for
of a variable appearing at most once along any path.) the cofactors.

Recall that each “path” in a reduced BDD corresponds to a
“cube” in a disjoint cover. In this sense, a “pattdversa set of Theorem 5 (Dynamic logic hazard-freedom in a free BDD)C
states contained in the cube. Intuitively, we can derive “locaB free of dynamic hazards for all specified dynamic transitions.
ordering requirements for each specified dynamic input transi-
tion A = B separately. Then we derive a free BDD where th
ordering constraints are respected for each dynamic input tr%ellf’}t

Proof: For any given input transitiofi;, C'y does not vi-
e the ordering requirement. Therefore, by Theorefiy 2s

sition 4 = B ynamic hazard-free fdF;. |
The augmented procedure is as follows. _ VI. REPLACEMENT STRATEGIES AND RESYNTHESIS

1. For each specified dynamic transitidiy € G, obtain o

1. (V, E) as described earlier. A. Replacement Circuits

2. Attempt to construct a global ordering that satisfies |t is worthwhile to replace the multiplexors with primitive
I'7,(V, E) forall T; € G. If this is possible go to Step 7. If this gates so non-hazard-increasing logic transformations (e.g., [13])
is not possible, identifgonflict tuples{z, y, T}, T} }, where for can be applied on the network to further reduce the area or im-
transition; = appears beforg, and for transitior}, y appears prove the performance.

beforez. (Note that there may be multiple conflicts for the same Eachmux-ELEMENT f = a - f, + @ - f= in the synthesized
pair of variabless andy resulting in multiple conflict tuples.) circuit C will have the following conditions at its inputs by The-

3. In the transition cubf4;, B;] for eachT; find the set of vari- orem 2.

ablesS; that are constant ator 1. Call this assignment of valuesy . |fthe control inputis constant &f f, andf; canbothchange

to S; the cube;. 0—1orl—0.

4. Choose a conflict tuple. Given a conflict tuple that relatgs |fthe control input is constant @t f, andfz canbothchange

T; to T}, check ifc; N ¢, = ¢. If so, we find a variable in g 5 10or1 — 0.

the ¢; andc,, cubes that has different values and further does |f makes a transition, we have at most ong06r f= mak-

not appear as g in any edger <~ y in I'7,(V,E). If we ing a transition.

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 14, NO. 8, AUGUST 1995 10

We consider the characteristics of three primitive gate reeurse, given that we have violated the TSO ordering require-
placement circuits for theUX -ELEMENT. ment, the resulting network is not necessarily hazard-free. (Itis
A f=a - fota- fz possible that the resulting network obtained under the smaller
This circuit has a static logic hazard on the» 1 transition on set of constraints is hazard-free because the TSO-requirementis
a with f, and fz constant ai. It is free of all dynamic hazards. a sufficient, and not necessary, condition for hazard freedom.)
B: f=(a+fa) fatT-fz In some cases, it is possible to simplify multiplexors to make
This is free of all static hazards but has dynamic hazards the network hazard-free. In particular, we check for the follow-
the case where = 0, and f, and fz make opposite polarity ing cases:
transitions. 1. Adynamic hazard is caused at a multiplexor because its con-
C.f=afo+(@+f)-fa trol input a, and data inputg, and fz all make0 — 1 tran-

This is free of all static hazards but has dynamic hazards fitions. We check if the logical functiong, and f;z are such
the case where = 1, and f, and fz make opposite polarity that f; = 1 = f, = 1. If so, we replace the multiplexor

transitions. f=a-fot+a- fgwith f = a- f, + fz. This eliminates the
Our replacement strategy is as follows: dynamic hazard, since whefg goes0 — 1 the outputf goes

« If the MUX-ELEMENT has the conditions 1) and/or 2) at it§) — 1, and bothz and f, have to ga) — 1 for the output to go

inputs, but not 3), we use replacement circit 0— 1.

. If the MUX-ELEMENT has the conditio_ns }) and/or 3) at it2, A dynamic hazard is caused at a multiplexor because its con-

inputs, but not 2), we use replacement cirduit trol inputa makes a — 0 transition, and data input, and f

« If the MUX-ELEMENT has the conditions 2) and/or 3) at itymake0 — 1 transitions. We check if, = 1 = fz = 1. If so,

inputs, but not 1), we use replacement circLit we replace the multiplexor witlf = f, + @ - fz. Again, this

o If the MUX-ELEMENT has the conditions 1), 2) and 3) at itssliminates the dynamic hazard.

inputs, we do not replace it. 3. Same as Case 1 except thaf, and f; makel — 0 transi-

In the majority of the cases, the multiplexor circuit can bgons.
transformed into one consisting entirely of primitive gates. The Same as Case 2 except thahakes & — 1 transition, and
transformation depends on the input conditions at each mulfi- and f; makel — 0 transitions.
plexor in the network. Note that if we are successful in re-
placing all multiplexors with the primitive gate implementation VII. EXPERIMENTAL RESULTS

A, then we can cpn_vert the network into a d|sp|nt two-level We have implemented the techniques described in this paper
cover that also satisfies the hazard freedom requirements. H id have tested them on a number of examples. The software

ever, the two-level network may be considerably larger than t &5 been implemented using the BDD package in SIS [23]

multiplexor-based network. We present a set of results using benchmarks from the asyn-
chronous design benchmark set. The results in Table | corre-
) spond to a direct comparison with the two-level hazard-free syn-
Since some of thetuX -ELEMENTS are connected to constaninesis procedure of [22]. Hazard-free two-level and BDD-based
0 and1 values, they can be simplified. This simplification doggycyits were synthesized using the specified set of static and
not change the hazard characteristics of the circuit. After iggnamic transitions for the benchmark examples given in [22].
placement, the primitive gate circuits can be simplified if thg¥y, the BDD-based circuits. a hazard-freex -ELEMENT re-
have constantinputs. For example the primitive gate circuit qiring four literals was assumed. The two-level circuits con-
F=(a+fs) fata-fa tain some very large fanin gates, however, we have reported
@l “ the literal counts prior to decomposition (which would increase
simplifies to literal count). Note that hazard nonincreasing transformations
f=a-fz can be applied tboththe BDD-based and the two-level circuits
improving their area characteristics. The literal counts for the
BDD-based realizations compare favorably to the two-level re-
alizations in most examples.
_)]) More substantial improvements over two-level solutions can
In some cases, when cyclic ordering constraints exist that c@@-optained using the BDD-based method in a sequential synthe-
not be satisfied even using a free BDD implementation it may BR trajectory such as that described in [29]. The BDD solution
possible to simplify certain multiplexorsin the circuit to producfas |ess restrictions on state assignment and state minimization,
a hazard-free realization. _ . so better results can be obtained. For instance, fewer state vari-
Assume that the TSO ordering requirement produces a cycligies are required in many cases, resulting in fewer inputs and
ordering graph. We discard a minimal number of constraints §giputs in the hazard-free combinational logic. The interested
asto produce an acyclic ordering graph. In particular, we discggdqer is referred to [29] for a more comprehensive set of re-
constraints generated by Condition 2 of the TSO-requiremegtyis.
Then, we generate a BDD and a multiplexor-based network uspyr BpD-based realizations under any ordering are guaran-
ing an ordering that satisfies the acylcic set of constraints. Q&4 to be hazard-free fall static transitions by Theorem 1.
LA disjoint cover is one in which each cube in the cover does not intersect aﬂ?wever* this isottrue of the t_NO'l_eveI realizations of Ta_‘ble l.
other cube. In order to make a two-level circuit hazard-free for static tran-

B. Constant Propagation

if f, is connected to logical.

C. Handling Cyclic Constraints Using Replacement

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 14, NO. 8, AUGUST 1995 11

TABLE |
COMPARISON BETWEEN TWGLEVEL AND MULTILEVEL REALIZATIONS
WHEN HAZARD-FREEDOM IS REQUIRED UNDER A SPECIFIED SET OF
MULTIPLE-INPUT STATIC AND DYNAMIC TRANSITIONS.

structive comments, and helping with the proof of Theorem 5.1.
Thanks to Ken Yun and Dave Dill for pointing out the applica-
bility of BDD-based networks to extended burst-mode FSMs.

Specification Total REFERENCES
States/ | Primary literals [1] V. Akella and G. Gopalakrishnan. Shilpa: a high-level synthesis system
Transitions | In [Out [2-level [BDD for self-timed circuits. INCCAD-1992
q42 4 41 2 2 27 15 [21 P.A. Beerel and T. Meng. Automatic gate-level synthesis of speed-
ring-counter 8 8| 1 2 45 68 independent circuits. ICCAD-1992
binary-counter 32 321 1 4 94 70 [3] J.Beister. A unified approach to combinational hazal®&EE Transac-
binary-cqunter-co 32 32 1 5 104 80 tions on ComputersC-23(6), 1974.
pe-send-ifc 1 14| 5 3 90 88 [4] J.G. Bredeson. Synthesis of multiple input-change hazard-free combina-
cache-ctrl 38 49 | 16 | 19 704 | 1231 tional switching circuits without feedbachnt. J. Electronics 39(6):615—
tsend 22 30 7 4 328 511 624, 1975.
tsend-bm 1 141 6 4 96 90 [5] J.G.Bredeson and P.T. Hulina. Elimination of static and dynamic hazards
isend-bm 12 151 6 4 177 88 for multiple input changes in combinational switching circuitsforma-
abcs 23 33 9 7 199 271 tion and Contro} 20:114-224, 1972.
stetson-pl 31 38| 13| 14 376 | 455 [6] E. Brunvand and R. F. Sproull. Translating concurrent programs into
stetson-p2 25 27| 8| 12 178 | 195 delay-insensitive circuits. ICCAD-1989
biu-fifo2dma 1 13| 5 2 125 119 [7] R.E.Bryant. Graph-based algorithms for boolean function manipulation.
fifocellctrl 3 3| 2 2 16 14 IEEE Transactions on Computer§-35(8):677-691, August 1986.
scsi-targ-send 7 8| 4 2 53 57 [8] T.-A. Chu. Synthesis of self-timed VLSI circuits from graph-theoretic
scsi-init-send 7 8| 4 2 31 43 specifications. Technical Report MIT-LCS-TR-393, Massachusetts Insti-
scsi-init-rcv-sync 4 5 3 1 20 21 tute of Technology, 1987.

[9] O. Coudert and J.C. Madre. A unified framework for the formal verifi-
cation of sequential circuits. IICCAD-9Q pages 126-129, November
1990.
sitions, all the prime implicants of the logic function have t6L0] E.B. Eichelberger. Hazard detection in combinational and sequential
be included in the realization. This can resuit in a substantially switching circuits.|BM J. Res. Develop9(2):90-99, 1965.
. 1] J. Frackowiak. Methoden der analyse und synthese von hasardarmen
greater number of literals. schaltnetzen mit minimalen kosten Elektronische Informationsverar-
By Corollary 2, BDD-based realizations (under any ordering) beitung und KybernetjkL0(2/3):149-187, 1974.
are hazard-free undeil single-input dynamic transitions. Inl12] A. Kondratyev, M. Kishinevsky, B. Lin, P. Vanbekbergen, and

. . . A. Yakovlev. On the conditions for gate-level speed-independence of asyn-
order to ensure hazard-freedom under all single-input dynamic chronous circuits. ITAU-1993

transitions a significant number of additional prime implican{$3] D.S. Kung. Hazard-non-increasing gate-level optimization algorithms. In
have to be added to the two-level circuits of Table I.) o _ _
[14] L. Lavagno, K. Keutzer, and A. Sangiovanni-Vincentelli. Algorithms for
synthesis of hazard-free asynchronous circuitDAC-91
VIIl. CONCLUSIONS [15] Alain J. Martin. Compiling communicating processes into delay-
. . . insensitive VLSI circuits Distributed Computingl:226—234, 1986.
In this paper, we have d_escnbed _a_ new_ SyntheSIS metf’t%i E.J. McCluskey. Introduction to the Theory of Switching Circuits

based on ordered and free Binary Decision Diagrams for synthe- mcGraw-Hill, 1965.

sizing hazard-free multilevel logic implementations. Method&7] Teresa H.-Y. Meng, Robert W. Brodersen, and David G. Messerschmitt.

; _ ini ; ; Automatic synthesis of asynchronous circuits from high-level specifica-
for p_rod_ucmg hazar_d free IOQIC |mplemenat|qns have |mp0r§ant tions. IEEE Transactions on CAB(11):1185-1205, November 1989.
applications in the field of asynchronous design. We have givgB; c.w. Moon, P.R. Stephan, and RK. Brayton. Synthesis of hazard-free

automated synthesis procedures that can produce circuits that asynchronous circuits from graphical specificationsld6AD-1991
are free of both static and dynamic hazards for a given setl&fl C. Myers and T. Meng. Synthesis of timed asynchronous circuits. In

L o : ICCD-1992
multiple-input changes. The circuits produced using our meth g] S. Nowick 1993. Private communication

remain hazard-free under any arbitrary gate or Wire de_lays. f] S.M. Nowick and D.L. Dill. Automatic synthesis of locally-clocked asyn-
method is based on pure delay model assumption, which means chronous state machines. IBCAD-1991 S
we do not need to rely on potentially slow inertial delays to filtdg2l S-M. Nowick and D.L. Dill. Exact two-level minimization of hazard-free

. L. . logic with multiple-input changes. IN'CCAD-1992
out unexpected spurious transitions. The method has been 59 E'gM. Semovic'?] K.pl Singhg C. Moon, H. Savoj, R. K. Brayton, and

plemented and its effectiveness has been shown on a number of A. Sangiovanni-Vincentelli. Sequential Circuit Design Using Synthesis
examples. and Optimization. IfProceedings of the Int'l Conference on Computer De-
. . . sign: VLSI in Computers and Processopgges 328-333, October 1992.
. We behgve ou_rframe\{vork is quite general and powerful. $4] H. J. Touati, H. Savoj, B. Lin, R. K. Brayton, and A. Sangiovanni-
indicated in Section VII, it has been used to handle the synthesis Vincentelli. Implicit state enumeration of finite state machines using
problems arising in extended burst-mode asynchronous circuits BDD'S. InICCAD-9Q pages 130133, November 1990.
[29] [25] S.H. Unger. Asynchronous Sequential Switching Circuitdlew York:
) Wiley-Interscience, 1969.
[26] P. Vanbekbergen, B. Lin, G. Goossens, and H. De Man. A generalized
ACKNOWLEDGEMENTS state assignment theory for transformations on signal transition graphs. In
ICCAD-1992
The authors would like to thank Steve Nowick of Columbig7] m.L. Yu and P.A. Subrahmanyam. A path-oriented approach for reducing

University and Peter Vanbekbergen of Synopsys for a number hazards in asynchronous designsDiC-1992

i i i _ 3] K. Y. Yunand D. L. Dill. Unifying Asynchronous/Synchronous State Ma-
O.f very Telpfm dIfSCUShSIOHS C%ncer;:mg the Ihazarg frie Symﬁ%g chine Synthesis. [ICCAD-93 pages 255-260, November 1993.
sis problem and for the benchmar examp es. T anks to K K. Y. Yun, B. Lin, D. L. Dill, and S. Devadas. Performance-Driven Syn-
neth Yun and Alex Kondratyev for providing detailed and con- thesis of Asynchronous Controllers. IBCAD-94 November 1994.

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 14, NO. 8, AUGUST 1995

Bill Lin received the B.Sc., the M.S., and the Ph.D
degrees in Electrical Engineering and Computer Sci-
ences from the University of California, Berkeley, in
1985, 1988, and 1991, respectively. Since graduat-
ing from Berkeley, he has been with the VLSI Sys-
tems Design Methodologies division of the Interuni-
versity Micro-Electronics Center (IMEC) in Leuven,
Belgium. He is currently heading the System Control
and Communications group at IMEC, which is work-

ing on various aspects of system-level design tech-
nology. His current research interests include hard-
ware/software co-design, design of telecom applications, and synthesis of asyn-
chronous circuits and interface modules. He has previously been with the
Hewlett Packard Corporation, the Hughes Aircraft Company, and the Western
Digital Corporation. Dr. Lin received the Best Paper Award at the 24th Design
Automation Conference in Miami, FL, in 1997. In 1989 and 1990, respectively,
he received a distinguished paper citation at the IFIP VLSI conference in Mu-
nich, Germany, and a distinguished paper citation at the ICCAD conference in
Santa Clara, CA. In 1994, he received a best paper nomination at the European
Design and Test Conference in Paris, France, and a best paper nomination at the
ACM Design Automation Conference in San Diego, CA.

Srinivas Devadas (S'87-M'88), for a photograph and
biography, see p. 95 of the January 1995 issue of this
TRANSACTIONS.

12

