
Synthesis of Hazard-Free Multilevel Logic Under
Multiple-Input Changes from Binary Decision

Diagrams
Bill Lin, Member, IEEE, Srinivas Devadas,Member, IEEE

Abstract—We describe a new method for directly synthesizing a hazard-
free multilevel logic implementation from a given logic specification. The
method is based on free/ordered Binary Decision Diagrams (BDD’s),
and is naturally applicable to multiple-output logic functions. Given an
incompletely-specified (multiple-output) Boolean function, the method pro-
duces a multilevel logic network that is hazard-free for a specified set of
multiple-input changes. We assume an arbitrary (unbounded) gate and
wire delay model under a pure delay (PD) assumption, we permit multiple-
input changes, and we consider both static and dynamic hazards under the
fundamental-mode assumption. Our framework is thus general and power-
ful. While it is not always possible to generate hazard-free implementations
using our technique, we show that in some cases hazard-free multilevel im-
plementations can be generated when hazard-free two-level representations
cannot be found. This problem is generally regarded as a difficult problem
and it has important applications in the field of asynchronous design. The
method has been automated and applied to a number of examples. The
results we have obtained are very promising.

I. I NTRODUCTION

A
SYNCHRONOUS design styles are becoming increas-
ingly popular because they offer the potential benefits of

improved system performance, avoidance of clocking problems,
low-power operation, and modular design [8], [17], [18], [14],
[26], [19], [21], [28], [2], [12], [15], [6], [27], [1]. However,
the design of correct asynchronous circuitry is a difficult task
since an asynchronous circuit can malfunction (i.e. produce un-
expected behavior) during execution if it is not free ofhazards,
which correspond toundesiredglitches in a circuit. This is in
contrast with synchronous design styles where the problem is
avoided by the use of a global clocking scheme that coordinates
and synchronizes all collective activities.

In this paper, we focus on a particular class of hazards —
namely hazards in combinational logic. Hazard-free combina-
tional logic is critical to the correctness of most asynchronous
designs. Our goal in this work is to develop a method that can
synthesize combinational logic that avoidsall combinational
hazards under aspecifiedset of multiple-input changes. This is a
general combinational synthesis problem which arises in many
asynchronous sequential applications. For example, the prob-
lem arises in the current synthesis trajectories for asynchronous
finite state machines [21], [28]. In this work, we assume that
gates and wires can have arbitrary delays, which means we do
not require bounded delay assumptions for correct operation or
the use of delay elements to fix or filter out glitches. We also as-
sume apure delay(PD) model, which means we do not assume

Manuscript received December 8, 1993; February 17, 1995. This paper was
recommended by Associate Editor K. Keutzer.

B. Lin is with IMEC, B-3001 Leuven, Belgium.
S. Devadas is with the Department of EECS, MIT, Cambridge, MA 02139

USA.
IEEE Log Number 9412310.

the presence of slow inertial delays to insure correctness.

The two-level minimization versionof the problem has been
addressed by a number of researchers in the past [25], [16], [10],
[5], [3], [4], [11]. More recently, Nowick [22] has developed an
exact two-level minimizer that combines a number of previous
ideas on this problem. A limitation of the two-level implementa-
tion approach is that it is not always possible to find a two-level
cover that can insure freedom fromall static and dynamic haz-
ards even though a hazard-free multilevel implementation may
exist.

In this paper, we describe a new framework based on Binary
Decision Diagrams (BDD’s) forsynthesizing a hazard-free mul-
tilevel logic implementation directly from a logic description. A
Binary decision diagram is adirected acyclic graphrepresenta-
tion of Boolean function. BDD’s have gained widespread use
in the areas of formal verification and logic synthesis due to the
canonical and easily manipulable nature of a class of BDD’s
[7]. Our framework is based on the use of bothfree as well
asorderedBDD’s and is naturally applicable to multiple-output
logic functions. We permit multiple-input changes, and we con-
sider both static and dynamic hazards, which means the result-
ing framework is general and powerful. In particular, we show
that a multiplexor logic network derived from areducedfree
or ordered BDD by replacing each node in the BDD by a two-
input multiplexor is free of all static logic hazards. For dynamic
logic hazards, we have developed theTrigger Signal Ordering
Requirement(or TSO-Requirementfor short) on the BDD vari-
able ordering that, if satisfied, will lead to a multiplexor logic
network that is also free of all dynamic logic hazards for the
given set of allowable input transitions. The resulting multi-
plexor logic network is proved to be fully hazard-free under ar-
bitrary gate and wire delays. While it is not always possible to
generate hazard-free implementations using our technique, even
if an implementation theoretically exists, in many cases we are
able to generate hazard-free multilevel implementations when
hazard-free two-level implementations cannot be found.

We have also developedsafe replacement strategiesthat can
replace a multiplexor by a functional equivalentsum-of-products
representation which preserves the hazard-free properties. We
provide a characterization on when such replacements are pos-
sible. The part of the network that can be safely replaced
by AND- and OR- gates can be further optimized usingnon-
hazard-increasinglogic transformations, such as the ones dis-
cussed in [13].

Our combinational logic synthesis method can be applied di-
rectly to the synthesis of hazard-free logic for asynchronous
state machines that operate under the fundamental mode as-

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 14, NO. 8, AUGUST 1995 2

sumption [21], [28]. Further, it can be generalized to the ex-
tended burst-mode state machine case [29]. We have automated
our method and have applied it to a number of examples. The
results we have obtained are very promising.

II. BACKGROUND

A. Basic Definitions

To simplify the discussion, we will consider single-output
functions only with binary input and output variables. Exten-
sion to multiple-output functions is straightforward.

Let f0; 1gn be a Boolean space. EachA 2 f0; 1gn, cor-
responding to a point in the Boolean space, is referred to as a
minterm . It will also be referred to as aninput state or simply
state.

A Boolean function, f , of n variables,x1; x2; : : : ; xn, is de-
fined as a mapping:f : f0; 1gn ! f0; 1; �g. TheON-setof a
function is the set of minterms for which the function has value
1. TheOFF-set is the set of minterms for which the function
has value0. TheDC-set (don’t-care set) is the set of minterms
for which the function has the value�.

A cube of a Boolean functionf is written as c =

[c1; � � � ; cn]. For1 � i � n, ci is 0 if variablexi appears com-
plemented inc, ci is 1 if variablexi appears uncomplemented in
c, andci is� if xi does not appear inc. Thus, a cube is a set of
minterms.

We will write c 2 d, if cubec is such that for each position
in c that has a0 the corresponding position in cubed has a0 or
a�, and for each position inc that has a1 the corresponding
position ind has a1 or a�.

The intersection of two cubesc andd is empty if there is
a positioni whereci = 0 anddi = 1 or vice versa. If the
intersection is not empty, then it can be computed as a new cube
e = c \ d, whereei = 1 if either ci = 1 or di = 1, ei = 0 if
eitherci = 0 or di = 0, andei = � otherwise.

A transition cube is a cube with astart point and anend
point. Given input statesA andB, the transition cube[A;B]

fromA to B has start pointA and end pointB and contains all
minterms that can be reached during a transition fromA to B.
It can be represented by thesmallestcube that contains bothA
andB.

Theopen transition cube[A;B) from A to B is defined as
[A;B]�B.

A multiple-input change or input transition from input
stateA to B is described by transition cube[A;B]. We will
use the notationA) B to denote the the input transition from
A to B. Input variables are assumed to change simultaneously.
Equivalently, since inputs may be skewed arbitrarily by wire de-
lays, inputs can be assumed to change monotonically in any or-
der and at any time. Once a multiple-input change occurs, no
further input changes may occur until the circuit has stabilized.

An input transition from stateA to B for a Boolean function
f is astatic transition if f(A) = f(B); it is adynamic transi-
tion if f(A) 6= f(B).

In the case of an incompletely specified function, we assume
that f is fully defined for every specified static and dynamic
transition; that is, for everyX 2 [A;B], f(X) 2 f0; 1g.

B. Modeling Delays

We assume gates and wires in a combinational circuit can
have arbitrary finite delays. Each gate is modelled as an instan-
taneous Boolean operator with a delay element attached to its
output wire. This delay element describes the total gate delay.
Each wire is modelled as a connection with an attached delay
element. This delay element describes the total wire delay. The
delays may have arbitrary but finite values. Since delay ele-
ments are attached only to wires, this model has been called the
unbounded wire delay model. We assume apure delaymodel,
which means a pulse of any length can propagate. Adelay as-
signmentis an assignment of fixed finite delay values to every
gate and wire in a circuit.

C. Function Hazards

A functionf which does not change monotonically during an
input transition is said to have afunction hazardin the transition.

Definition 1 (Static function hazard) A Boolean functionf
contains astatic function hazard for input transition fromA

toC iff:
1. f(A) = f(C), and
2. there exists some stateB 2 [A;C] such thatf(A) 6= f(B).

Definition 2 (Dynamic function hazard) A Boolean function
f contains adynamic function hazard for input transition from
A toD iff:
1. f(A) 6= f(D), and
2. there exists a pair of statesB andC (A 6= B;C 6= D) such
that
(a) B 2 [A;D] andC 2 [B;D] and
(b) f(B) = f(D) andf(A) = f(C).

If a transition has a function hazard,no implementation of the
function can avoid a glitch on the transition, assuming arbitrary
gate and wire delays [10], [5]. Therefore, we consider only tran-
sitions which are free of function hazards (see [10], [4], [3]).

D. Logic Hazards

If f is free of function hazards for a transition from inputA to
B, it may still have hazards due to possible delays in the actual
logic realization.

Definition 3 (Static logic hazards) A combinational circuit for
a functionf contains astatic logic hazardfor the input transi-
tion fromA toB iff:
1. f(A) = f(B)

2. For some delay assignment, the circuit’s output changes mo-
mentarily during the transition interval.

This means that we have one or more0! 1! 0 (or 1! 0!

1) transitions while the specified behavior is a static0 (or a static
1).

Definition 4 (Dynamic logic hazards) A combinational cir-
cuit for a functionf contains adynamic logic hazard for the
input transition fromA toB iff:
1. f(A) 6= f(B)

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 14, NO. 8, AUGUST 1995 3

2. For some delay assignment, the circuit’s output is not mono-
tonic during the transition interval.

This means that we have a0 ! 1 ! 0 ! 1 (or 1 ! 0 ! 1 !

0) transitions while the specified behavior is a single0 ! 1

transition (or1! 0 transition).

III. B INARY DECISION DIAGRAMS AND DERIVED

MULTIPLEXOR NETWORKS

A. Binary Decision Diagrams

In this section, we will restate from [7] the definitions for free
Binary Decision Diagrams and reduced ordered Binary Deci-
sion Diagrams. We will then indicate how a multiplexor-based
multilevel logic network can be derived from them.

Given a Boolean function, the function resulting when some
argumentxi of the functionf is replaced by a constantb 2
f0; 1g is called acofactor of the function with respect toxi =
b, and this is denoted asf jxi=b. That is, for any arguments
x1; : : : ; xn,

f jxi=b(x1; : : : ; xn) = f(x1; : : : ; xi�1; b; xi+1; : : : ; xn)

Using this notation, theShannon expansionof a function with
respect to a variablexi is given by:

f = xi � f jxi=0 + xi � f jxi=1

Definition 5 (BDD) A Binary Decision Diagram is a rooted,
directed acyclic graph with vertex setV containing two types
of vertices. Anon-terminal vertex v has as attributes an
argument indexindex(v) 2 f1; : : : ; ng and two children
low(v); high(v) 2 V . A terminal vertexv has as attribute a
valuevalue(v) 2 f0; 1g.

The correspondence between BDD’s and Boolean functions is
defined as follows:

Definition 6 A Binary Decision DiagramG having root vertex
v denotes a functionfv defined recursively as:
1. If v is a terminal vertex:
(a) If value(v) = 1, thenfv = 1.
(b) If value(v) = 0, thenfv = 0.

2. If v is a non-terminal vertex withindex(v) = i, thenfv is
the function:

fv(x1; : : : ; xn) = xi�flow(v)(x1; : : : ; xn)+xi�fhigh(v)(x1; : : : ; xn)

xi is called thedecision variablefor vertexv.

We require the following additional properties in Binary Deci-
sion Diagrams:
1. When traversing any path from a terminal vertex to the root
vertex we can encounter each decision variable at most once.
2. A reducedBDD is one in whichlow(v) 6= high(v) for any
vertexv and no two subgraphs in the BDD are identical.
From Definition 5, a canonical form called areduced ordered
Binary Decision Diagram [7] (or simply ordered BDD) can be
derived if the following restrictions are imposed: for any non-
terminal vertexv, if low(v) is also a non-terminal, then we must

haveindex(v) < index(low(v)); and ifhigh(v) is also a non-
terminal, then we must haveindex(v) < index(high(v)).

A reduced free Binary Decision Diagram(or simply free
BDD) is a BDD where we require that we encounter each vari-
able at most once in any path in the BDD and that the BDD is
reduced, but do not require a strict variable ordering restrictions
on BDD’s. That is, different paths may have a different variable
ordering as long as each variable is encountered at most once
along any path.

B. Deriving a Multilevel Multiplexor Logic Network

A multilevel logic network can be derived directly from a
BDD by replacing each BDD vertex with atwo-input MUX -
ELEMENT. An example is shown in Figure 1. A BDD and
its corresponding derived multiplexor multilevel network are
shown in Figure 1(a) and (b), respectively. The multiplexor net-
work can be simplified by means ofconstant propagation. That
is, theMUX -ELEMENTs can be replaced by simpler gates if one
or more of its inputs is a constant. This propagation can be car-
ried out topologically from inputs to outputs. The simplified
network is shown in Figure 1(c).

a

b

c c

01

1

1

1 1

0

0 0

0

f

a

b

c

f

c

01 0 1

0

a

f

c

b c

(a) (b) (c)

Fig. 1. (a) A BDD. (b) The derived multiplexor multilevel network. (c) Simpli-
fication of multiplexors by constant propagation.

IV. STATIC HAZARD-FREE SYNTHESIS FROMBDD’ S

The hazard-free synthesis problem can be stated as follows.
Given: A (possibly incompletely specified) Boolean function
f , and a set,T of specifiedfunction-hazard-free (both static and
dynamic) input transitions off .
Find: A multilevel logic implementation that is free of logic

hazards for every input transitiont 2 T .
In this paper, we propose synthesis procedures from BDD’s that
can produce hazard-free multilevel logic implementations. Let
us first consider a simple procedure that transform an incom-
pletely specified functionf to a multiplexor network. If the
function is incompletely specified, then some preprocessing is
required as follows: in the case of an incompletely specified
function, thedon’t-careminterms contained inside some speci-
fied transitiont 2 T must be assigned properly so that no func-
tional hazards can occur. The other don’t care minterms can be
used for optimization, for example using techniques described
in [9], [24] (cf. the restrict and thegeneralized cofactoroper-
ators). So for all practical purposes, we only need to consider

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 14, NO. 8, AUGUST 1995 4

completely specified functions. Once this preprocessing step is
performed, the synthesis procedure is as follows:
1. Construct a BDDG for the Boolean functionf . The BDD
here is meant to be either anorderedor a free reduced BDD,
where each variable can appear at most once along any path.
2. Generate a multilevel circuitC by replacing each BDD node
with a two-inputMUX -ELEMENT.

For the hazard analysis in this section, we will first assume
that theMUX -ELEMENT is anatomic gatewith no internal haz-
ards, and that theMUX -ELEMENT and the wires connecting
them can have arbitrary delays. An implementation of a hazard-
free multiplexor is shown in Figure 2. The only constraint on
the layout of the gate is that thedifferencein the delays of the
two paths from the control inputa that pass through the buffer
and the inverter should be smaller than the inertial delay corre-
sponding to a transistor turning on or off.

a

fa

f

af

Fig. 2. A transistor-level implementation of a hazard-free multiplexor.

The logical function implemented by the gate isf = a�fa+a�

fa. This function is free of all dynamic hazards, but has a poten-
tial static logic hazard on the0! 1 transition ona with fa and
fa constant at1. However, if the path balancing criterion stated
above is met, then the implementation of theMUX -ELEMENT

will not have a static hazard.
We will first analyzestatic hazard propertiesof such net-

works assuming theMUX -ELEMENT as a basic hazard-free el-
ement. We will defer to Section VI the discussion regarding the
replacement ofMUX -ELEMENTs with basic gates, the constant
propagation issue, and possible simplification and resynthesis
steps.

Theorem 1 (Static logic hazard-freeness)Let C be a circuit
derived from a BDDG by replacing each node inG with a
hazard-free multiplexor.C is free of all possible static hazards
under any multiple-input change that does not correspond to a
function hazard.

Proof: Without loss of generality we will assume a single
specified static transitionA) B. The circuitC implements
the Boolean functionf which is free of function hazards for the
specified input transitionA) B. Further the circuitC has been
derived using the synthesis procedure outlined.

Assume that the multiplexor driving the output ofC hasa as
its control variable. The data inputs to the multiplexor corre-
sponds to functionsfa andfa, the Shannon cofactors off with
respect toa anda.

Assume thatf is to make a static1 ! 1 transition, i.e.
f(A) = 1 andf(B) = 1. We will first consider the case when

the inputa is at a constant1. Clearly, ifa is a1, f will be free of
static hazards iffa remains at a constant1 and is free of hazards.
We know thatfa(A) = 1 andfa(B) = 1. Further we know that
8m 2 [A;B], fa(m) = 1. Otherwise, it implies that there is
a function hazard associated withf . Sincefa can only make a
static transition inA) B, clearlyf will be free of static haz-
ards iffa is free of static hazards. One can recursively apply the
analysis above tofa to show that it is free of static hazards. We
will finally reach the base case where the control variable to the
muliplexor isx and both the data inputs are constants. If both
data inputs are the same, then this multiplexor will not exist in
the BDD or the circuitC by the reduction rules of BDDs. Other-
wise, this multiplexor reduces to either the literal functionx or
its negationx. Then the inputx is assumed to remain at constant
1 in the case ofx and at constant0 in the case ofx. Otherwise,
there is a function hazard associated withf .

In the case when the inputa is at a constant0, thenf will be
free of static hazards iffa is free of hazards. This follows from
similar arguments as above.

Next consider the case when the inputa makes a0 ! 1

transition or a1 ! 0 transition corresponding toA) B.
Clearly f will be free of static hazards if bothfa andfa are
free of hazards. We claim that bothfa(A) = fa(B) = 1 and
fa(A) = fa(B) = 1. Further we claim that8m 2 [A;B],
fa(m) = fa(m) = 1. Therefore, bothfa andfa can only make
a static transition inA) B. Thus, it is sufficient to show that
they are free of static hazards. Again, this argument can be re-
cursively applied tofa andfa with the same base case as above.
Since bothfa andfa remain at constant1 and are hazard free,
only the control variablea can change at the multiplexor associ-
ated at the output off . By the assumption that the multiplexor
is an atomic gate and is internally hazard-free, thenf is also free
of static hazards for the static transition[A;B].

The proof for the case whenf makes a static0! 0 transition
follows similarly.

Theorem 1 states that the derived circuit is free of static haz-
ards forany input transition that does not cause a function haz-
ard. So we now say that a multiplexor implementation from
either a free or an ordered BDD is free of all function hazards
(by definition) and free of all static logic hazards. An important
corollary is as follows.

Corollary 1 The static hazard-freeness ofC is independent of
the variable ordering chosen for the BDDG. Further, the BDD
G can be a free BDD with different orderings along different
paths.

Proof: Follows from Theorem 1.
This means that there areno restrictions on the variable order-
ing for static hazards. This is howevernot always the case for
dynamic logic hazards, as will be described next.

V. DYNAMIC HAZARD-FREE SYNTHESIS FROMBDD’ S

While a multiplexor implementation derived from a reduced
BDD is guaranteed to be free of static logic hazards, it is not nec-
essarily free of dynamic logic hazards. In this section, we will
first characterize the problem. Then we will present a method
that will ensure the non-existence of dynamic hazards as well.

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 14, NO. 8, AUGUST 1995 5

A. The Problem

Let us consider an example shown in Figure 3. Let us con-
sider thedynamicinput transition

0 � 0 � 0) 110;wheref(000) = 1 andf(110) = 0:

We will use " � " to indicate that the corresponding signal is
excitedto change. In this case, the signalsa andb areexcitedto
make thetransitionsa+ andb+. The correspondingtransition
cubeis

[000; 110] = �� 0:

Now suppose we implement an ordered BDD with the variable
orderinga < b < c. The corresponding BDD is shown in Figure
4.

1

1 0

0

0 0

11

a

bc
00 10 11 01

0

1

010

000

100

110

011

111

101

001

Fig. 3. Dynamic-hazard example.

a

b

c

b

c

01

1

1

1 1

1

0

0 0

0

0

f

T2
T1

T3

a

b

T1

T2

f

c = 0

Fig. 4. BDD implementation with orderinga < b < c.

Let us consider a multiplexor implementation translated from
this BDD. This multiplexor implementation can exhibit a dy-
namic hazard as follows:
1. Initially, a = 0, b = 0, c = 0. This impliesT1 = 1, T2 =

1, T3 = 0, andF = 1, where theT i’s are the output of the
multiplexors andF is the output of the circuit.
2. In the transition000) 110, both ana+ and ab+ can occur
concurrently. Recall that under the unbounded gate/wire delay
assumption, eithera+ can occur first orb+ can occur first, but
we must consider both transition orderings. Let us assumeb+

occurs first and makes a0! 1 transition.
3. ThenT2 makes a1! 0 transition, butT1 is slowto change.
F makes a1! 0 transition.
4. Then leta+ happen, making a0 ! 1 transition, butT1 is
still slow to change to0, meaning it is still at value1. This will
causeF to change0! 1 back to1.
5. Finally,T1 changes from1 ! 0. This causesF to change
1! 0 back to0. Thus, the transition sequence1! 0! 1! 0

has occurred onF , a dynamic hazard has been manifested.
However, whena+ occurs first, the dynamic transition takes
place without any dynamic logic hazards. This is because when

a+ occurs first, nothing changes. Then whenb+ occurs,T1
will change, which will causeF to change, butF only changes
once.

Now consider instead an alternative BDD implementation us-
ing variable orderingsb < a < c or c < b < a, shown in Figure
5 (a) and (b), respectively.

0

a

b

c

c

01

1

1

1
1

1

0

00

f

T2
T1

a

0

0

ab

01

1

1
1

0
0

f

T2
T1 c

(A) b < a < c (B) c < b < a

Fig. 5. BDD implementation with orderings (a)b < a < c and (b)c < b < a.

Let us first consider a multiplexor implementation translated
from the BDD shown in Figure 5 (a). This multiplexor im-
plementation is free of dynamic hazards under the transition
000) 110. The analysis is as follows.
1. Initially, a = 0, b = 0, c = 0. This impliesT1 = 1, T2 = 0,
andF = 1.
2. If b+ happens first, thenF will change1 ! 0. Then when
a+ occurs, nothing else changes. Hence there is no dynamic
hazard.
3. If a+ happens first, nothing happens. Then whenb+ occurs,
F changes from1! 0. Again no dynamic hazard occurs.

Let us now consider a multiplexor implementation translated
from the BDD shown in Figure 5 (b). This multiplexor im-
plementation is free of dynamic hazards under the transition
000) 110. The analysis is as follows.
1. Initially, a = 0, b = 0, c = 0. This impliesT1 = 1, T2 = 1,
andF = 1.
2. If b+ happens first, thenF will change1 ! 0. Then when
a+ occurs, nothing else changes. Hence no dynamic hazard
occurs.
3. If a+ happens first, nothing happens. Then whenb+ occurs,
F changes from1! 0. Again no dynamic hazard occurs.

From this informal introduction, we will show that thevari-
able orderingin fact plays a very important role in guaranteeing
freedom from dynamic hazards. Recall that we have already
stated that BDD implementations are free of static hazards. The
removal of dynamic hazards is addressed next.

B. Conditions for Dynamic Hazard-Freeness

In this section, we will consider the requirements on the BDD
synthesis procedure in order to produce a multiplexor imple-
mentation free of dynamic logic hazards. We will first consider
this requirement with respect to anorderedBDD implementa-
tion. We will defer to Section V-E the discussion regarding the
employment offreeor unordered BDD’s to satisfy the same re-
quirement.

The key to the analysis is the concept oftrigger signals.

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 14, NO. 8, AUGUST 1995 6

Definition 7 (Context signal) Given an input transitionA)
B, a signalq is said to be acontextsignal if it changes its value
acrossA andB. If it remains at a constant value inA andB,
then it is said to be anon-contextsignal.

By the definition of input transition (cf. Section II-A), a context
signal can only monotonically change once during aA) B

transition.

Definition 8 (Excited signal) Given a stateX 2 [A;B] in the
input transitionA) B, a context signalq is said to beexcited
in X if and only if its value inX is equal to its value inA.

Definition 9 (Quiescent signal)Given a stateX 2 [A;B] in
the input transitionA) B, a context signalq is said to be a
quiescent signalin X if its value inX is equal to its value in
B.

In the example shown in Figure 3, signalsa andb are “con-
text” signals in the transition000) 110 bcause both are en-
abled to change values, whereasc is a “non-context” signal in
this transition. Signalsa andb are “excited” in state000 because
both signals can change. In the state100, onlyb is “excited”; the
signala is “quiescent” in state100.

Definition 10 (Trigger state, signal, transition) A stateX 2

[A;B] in a dynamic input transitionA) B is said to be a
trigger state for A) B if and only if there is an excited signal
q (q+ or q�) such that the stateY 2 [A;B] reached by chang-
ing q has a different output value fromX : i.e.,f(X) 6= f(Y).

The signalq is called atrigger signal of X in A) B, and
the corresponding transition, eitherq+ or q�, is called atrig-
ger transition of X in A) B. In a given trigger state, an
excited signal that will not cause the output to change is re-
ferred to as anon-trigger signal. Its corresponding transition
is referred to as anon-trigger transition .

Referring again to Figure 3, states000 and states100 are “trig-
ger states” sincef(000) andf(100) are both equal to “1”, but
there exists a signal transition from either state that will cause
the output to change to “0”.

In the case of000, both a and b are “excited” to change.
Changingb will cause the output to change to “0”. In this case,
b is a “trigger signal” andb+ is a “trigger transition”. Changing
a first will not cause the output to change (it requires changing
b also). In this case,a is a “non-trigger signal” anda+ is a
“non-trigger transition”.

Informally, the basic idea here is to construct a BDD such that
“trigger signals” areordered before“non-trigger signals”. That
is, for every trigger state for agivendynamic input transition
A) B, the BDD variable ordering must be such that the trigger
signals appear in the variable ordering before the non-trigger
signals. This is formalized in the following requirement.

Definition 11 (Trigger signal ordering (TSO-) requirement)
Given a functionf , an ordered BDDG for f is said to satisfy the
Trigger Signal Ordering (TSO-) Requirement for a dynamic
input transitionA) B in T if and only if the following two
conditions hold:

1. For every trigger stateX 2 [A;B], the trigger signal vari-
ables inX appear in the variable orderingbefore the non-
trigger signal variables.
2. For every trigger stateX 2 [A;B] with multiple trigger sig-
nals, the trigger signal variables inX all appear before each
of the quiescent signal variables,or all appear after each of the
quiescent signal variables.
The BDDG is said to satisfy the TSO-requirementglobally if
and only if its variable ordering satisfies the TSO-requirement
for every specified dynamic input transition.

The second condition ensures that there is no quiescent signal
“in between” any trigger signals during any specified transition.

If a strict variable ordering can be found that can satisfy
the TSO-requirement globally, then the derived multiplexor net-
work is also free of dynamic hazards.

Theorem 2 (Dynamic logic hazard-freedom)Let C be a cir-
cuit derived from a BDDG by replacing each node inG with
a hazard-free multiplexor.C is free of dynamic hazards for all
specified dynamic transitions, if the TSO-requirement is satisfied
globally.

Proof: Without loss of generality we will assume a single
specified dynamic transitionA) B. The circuitC implements
the Boolean functionf which is free of function hazards for the
specified input transitionA) B. Further the circuitC has been
derived using the synthesis procedure outlined.

Assume that the multiplexor driving the output ofC hasa as
its control variable. The data inputs to the multiplexor corre-
spond to functionsfa andfa, the Shannon cofactors off with
respect toa anda.

Assume thatf is to make a0 ! 1 transition,i.e. f(A) = 0

andf(B) = 1.
1. We will first consider the case when the inputa is at a con-
stant1. Clearly, ifa is a1, f will be free of dynamic hazards if
fa is free of dynamic hazards.
2. If a is a constant0, f will be free of dynamic hazards iffa is
free of dynamic hazards.
3. Next consider the case when the inputa makes a0 ! 1

transition corresponding toA) B.
(a) Consider the case whenfa(A) = 0 andfa(B) = 1. We

claim thatfa(A) = fa(B) = 0. Supposefa(A) = 1. Then,
clearly,f(A) 6= 0. Therefore,fa(A) = 0. Supposefa(B) = 1.
There exists a cubem 2 [A;B] such thatfa(m) = 1. Clearly
the cubem does not contain the literala or a since the cofactor
fa is not dependent ona. There are two possibilities. In the
first casefa(m) = 0. If there is such a cube, then we have a
function hazard onf , on the path in the transition cube[A;B]

corresponding toA) a �m) a �m) B, becausef(A) = 0,
f(a �m) = 1, f(a �m) = 0, andf(B) = 1.
The second case corresponds tofa(m) = 1. Consider the path
in the transition cubeA) a � m) a � m) B. We claim
thata is a non-trigger signal in stateA. If a is a trigger signal
in stateA, then whena goes0 ! 1 so doesf . This means
that fa(A) = 1. Obviously sincef(B) = 1 anda is making
a 0 ! 1 transition,fa(B) = 1. Case b below corresponds to
fa(A) = fa(B) = 1.
Therefore, in stateA the signala is a non-trigger signal. If only

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 14, NO. 8, AUGUST 1995 7

a single signal, call its, changes fromA toa�m, thens is clearly
a trigger signal inA. We clearly have a violation of Condition 1
of the TSO-requirement with a non-trigger signala being before
the trigger signals in the ordering.
Multiple signals could change fromA to a �m. Without loss of
generality consider the case where two signalss1 ands2 change
fromA toa�m. We have two paths corresponding tos1 changing
first ands2 changing first. Denote these pathsA) a � m1)

a �m andA) a �m2) a �m. If f(a �m1) = 1 (f(a �m2) = 1)
then s1 (s2) is a trigger signal in stateA. Sincea is a non-
trigger signal in stateA we have violated Condition 1 of the
TSO-requirement.
Therefore, we requiref(a � m1) = f(a � m2) = 0. If a is a
non-trigger signal in either statea �m1 or statea �m2, then we
again have a violation of Condition 1 of the TSO-requirement,
sinces2 ands1 are, respectively, trigger signals in statesa �m1

anda �m2.
Therefore,a is a trigger signal in both statesa �m1 anda �m2.
Now, in statea �m1, we have two trigger signals, namelya and
s2 and a quiescent signals1. Similarly, in statea �m2, we have
two trigger signals, namelya ands1 and a quiescent signals2.
The orderingsa < s1 < s2 or a < s2 < s1 will both cause a
violation of Condition 2 of the TSO-requirement. (A quiescent
signal appears in between two trigger signals.)
In all cases, the ordering requirement imposed in the construc-
tion of C has been violated. Thereforefa(A) = fa(B) = 0.
Sincefa is itself a circuit derived from a BDD, by Theorem 1,
fa is free of static hazards and will stay at a steady0 through-
outA) B. fa cannot have function hazards since that would
imply a dynamic function hazard inf onA) B.
(b) Consider the case whenfa(A) = fa(B) = 1. Sincefa

itself is a circuit obtained from a BDD, it is free of static hazards
by Theorem 1. Further, iffa has a function hazard onA) B,
thenf would have a function hazard. Thereforefa is function
hazard-free onA) B. If fa is constant at a0, then by the above
argumentfa would be free of static hazards as well. This means
f would be free of dynamic and static hazards. Iffa makes a
0 ! 1 transition onA) B thenf will be dynamic hazard-
free if fa is dynamic hazard-free. If eithera makes a0 ! 1

transition or iffa makes a0 ! 1 transition thenf follows and
stays at a1.
Therefore in all cases, if eitherfa or fa is free of dynamic haz-
ards in its0 ! 1 transition thenf will be free of dynamic haz-
ards.
4. A similar argument can be made for the1 ! 0 transition on
a in A) B to show thatf is dynamic hazard-free iffa or fa is
dynamic hazard-free.

For each of the four possibilities corresponding toa in A)

B, we are guaranteed that if at most one offa or fa is free of
dynamic hazards then so isf . We also know that in each case
the particularfa or fa will be free of function hazards onA)
B. Further the trigger signal ordering requirement is a global
imposition onC, and the change inf is caused by the particular
fa or fa corresponding to each case. Therefore, one can apply
the arguments above at any level inC. We will finally reach
the primary inputs which are dynamic hazard-free by definition.
Therefore,f is dynamic hazard-free.

The proof for the case whenf makes a1 ! 0 transition

follows similarly.
As we have shown already that a BDD implementation is free of
static logic hazards and is free of function hazards by the prob-
lem definition, thenC derived using the above procedure isfully
hazard-freefor all hazards under the specified input transitions.

Theorem 3 (Complete hazard-freedom)C is free of static
and dynamic hazards, both function and logical, for all speci-
fied input transitions.

Proof: Function hazard-freedom is immediate from the
problem definition; static logic hazard-freedom is guaranteed by
Theorem 1; and dynamic logic hazard-freedom is guaranteed by
Theorem 2.

Corollary 2 (Hazard-freedom under single-input changes)A
BDD-based circuitC under any ordering is free of hazards un-
der all single-input changes.

Proof: Function hazard-freedom is immediate from the
problem definition; static logic hazard-freedom is guaranteed by
Theorem 1; and dynamic logic hazard-freedom under single-
input changes is guaranteed by Theorem 2 since no ordering
constraints can exist for single-input changes.

Corollary 3 (Hazard-freedom under multiple-input dy-
namic transitions) A Circuit C derived from a BDDG is
hazard-free to all multiple-input dynamic transitionsA) B

as long as either8X 2 (A;B], f(X) is a constant or8X 2
[A;B), f(X) is a constant.

Proof: Recall that(A;B] corresponds to[A;B] � A and
[A;B) corresponds to[A;B] � B. For both cases, i.e.,8X 2
(A;B] f(X) is constant or8X 2 [A;B) f(X) is a constant,
for each trigger state we have only two possibilities: (1) all the
excited signals in the trigger state are trigger signals or (2) the
single excited signal in a trigger state is a trigger signal. Hence,
in either case, there are no ordering constraints onG imposed by
Condition 1 of the TSO requirement. In case (1), the trigger state
must beA. Hence, there is no quiescent signal. In case (2), there
is only a single trigger signal and all other signals are quiescent.
Hence, in either case, there are no ordering constraints onG

imposed by Condition 2 of the TSO requirement. Therefore,
dynamic logic hazard-freedom is guaranteed by Theorem 2.
Note that this corollary shows that there will no ordering con-
straints generated on “burst-mode” transitions.

C. Finding a Variable Order

We now give a systematic procedure for finding a variable
ordering, if one exists, that satisfies the TSO-requirement:
1. Let� = (V;E) be adirected graphwhere the each vertex
v 2 V represents a unique variable, and each edgex y 2

E means that signalx must appearbefore the signaly in the
variable order (i.e.,index(x) < index(y)). If there is apath
x

p
 � y in �, then it also meansx must appearbeforey in the

variable order.
2. Initialize� with V as the set of variables andE = ;.

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 14, NO. 8, AUGUST 1995 8

3. For each dynamic input transitionA) B, add the following
constraints to satisfy condition 1 of the TSO-requirement (cf.
Definition 11):
(a) For each trigger stateX 2 [A;B] (cf. Definition 10), de-

termine the set of trigger signalsST and the set of non-trigger
signalsSNT .
(b) For eachx 2 ST andy 2 SNT , add the directed edge
x y toE.
4. Check if the graph� is still acyclic. If yes, proceed; other-
wise, abort because no solution exists.
5. For each dynamic input transitionA) B, add the following
constraints to satisfy condition 2 of the TSO-requirement:
(a) For each trigger stateX 2 [A;B], determine the set of

trigger signalsST and the set of quiescent signalsSQ in that
state.
(b) For eachy 2 SQ, check if there already exists a path

xi
p
 � y from y to somexi 2 ST in � and if there already

exists a pathy
p
 � xj from somexj 2 ST to y in �.

i. If no such path exists, then eitherfor all xk 2 ST , add the
directed edgesxk y; 8y to E, or for all xk 2 ST , add the
directed edgesy xk; 8y toE.
ii. If there are only pathsxi

p
 � y from somey to somexi 2

ST in �, thenfor all xk 2 ST , add the directed edgesxk
y; 8y toE.
iii. If there are only pathsy

p
 � xj from somexj 2 ST to

somey in �, thenfor all xk 2 ST , add the directed edgesy
xk; 8y toE.
iv. Otherwise, backtrack to the most recently made decision at

step (i) and change the set of directed edges added toE. If back-
tracking is not possible, then abort because no solution exists.
6. Find a BDD variable ordering, such that8x y 2 E :

index(x) < index(y). If there choices select one arbitrarily.
7. Construct the BDD with the chosen variable ordering. Derive
a multiplexor networkC.

Theorem 4 (Strict variable ordering) A strict variable order-
ing can be derived if and only if an acyclic graph can be derived.

Proof:
Necessity:If � contains a cycle betweenx andy, it means we
require bothindex(x) < index(y) andindex(y) < index(x).
This is not possible with a strict BDD variable ordering.
Sufficiency:If � does not contain a cycle betweenx andy, it
means either we have onlyx

p
 � y, which can be satisfied by

index(x) < index(y), or we have onlyy
p
 � x, which can be

satisfied byindex(y) < index(x).
In essence, the resulting directed acylic graph (DAG)� repre-
sents apartial order. Any strict BDD variable ordering that sat-
isfies this partial order can be used. One can be chosen to mini-
mize the resulting BDD size. When an acyclic graph cannot be
found, then it means no strict BDD variable ordering exists. In
this case, we can make use of free BDD’s. This discussion will
be deferred to Section V-E.

We now illustrate the ideas with an example.

D. An Example

To illustrate the ideas, we have an example from Nowick
[20] that was used to illustrate his two-level minimizer. The

Karnaugh map of the example is shown in Figure 6. For this
example, this is a set of fourspecifiedinput transitionsT =

ft1; t2; t3; t4g. These transitions are:

t1 10 � 01�) 1100 1-1 static input changes
transition fb+; d�g

t2 1010�) 1011 0-0 static input changes
transition fd+g

t3 01 � 00�) 0001 1-0 dynamic input changes
transition fb�; d+g

t4 0 � 1 � 11�) 1010 1-0 dynamic input changes
transition fa+; b�; d�g

0

1 110

1000 1101

1 1 11

1

1 0 0

1

00

01

11

10

cd

ab

1

1

t1t3

t4

t2

t5

Fig. 6. Another dynamic hazard example.

The input transitions are indicated in Figure 6. The starting
point of each transition is described by a dot, and its transition
cube is described by a dotted circle.

From Theorem 1, the BDD implementation is free of static
hazards, so transitionst1 andt2 will not cause a problem.

For dynamic transitionst3 andt4, we need to analyze the vari-
able ordering requirements to guarantee that the BDD imple-
mentation is dynamic hazard-free for these two specified transi-
tions. Indeed, the variable orderinga < b < c < d will ensure
the satisfaction of the TSO-requirements for dynamic transitions
t3 andt4. Therefore, the resulting BDD implementation is also
free of dynamic hazards. The BDD is shown in Figure 7.

a

0 1

1

1

1
1

1

0

0 0

0

0

f

b b

cc

1
0

d

10

d

1 0

c

Fig. 7. Dynamic hazard free BDD implementation with orderinga < b < c <

d.

It has been shown that it is not always possible to produce a
hazard-free two-level SOP cover. For example, if we add the

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 14, NO. 8, AUGUST 1995 9

following specified transition to the above example (shown in
Figure 6), then it can be shown thatno hazard-free two-level
SOP cover exists.

The reason why no SOP solution exists is the following: in
order to eliminate static logic hazards for the static transitiont5 :

110�1) 1111, the SOP solution must contain at least one cube,
called arequired-cube, that contains the transition cube11 �
1. However, this required-cube conflicts with requirements for
eliminating dynamic logic hazards for the dynamic transitions
t4 : 0 � 1 � 11�) 1011. Specifically, the transition cubet5 =

11� 1 intersects the transition cube oft4 = [0111; 1011], but it
does not contain the start state0111, which is a dynamic hazard
violation. See [11], [4], [22] for more details.

t5 110 � 1) 1111 1-1 static input changes
transition fc+g

However, with the BDD approach, the above BDD implemen-
tation is also free of hazards for this transition (since it is a static
transition), as well as the other specified transitions.

E. Synthesis from Free BDD’s

Although in the example shown in Section V-D we can find
a variable ordering that satisfied all ordering requirements, it is
not always possible to find such astrict variable ordering in the
general case.

It is possible to have“cyclic” ordering constraints that can-
not be satisfied using a strict variable ordering. For example,
it could be that in one specified dynamic input transition,x is
required to appear beforey; but in another specified dynamic
input transition,y is required to appear beforex. In this case,
we have a cyclic constraint.

Cyclic constraints can frequently be resolved by usingfree
BDD’s wheredifferent variable orderings may be used along
different paths. (Note that a free BDD still has the constraint
of a variable appearing at most once along any path.)

Recall that each “path” in a reduced BDD corresponds to a
“cube” in a disjoint cover. In this sense, a “path”coversa set of
states contained in the cube. Intuitively, we can derive “local”
ordering requirements for each specified dynamic input transi-
tion A) B separately. Then we derive a free BDD where the
ordering constraints are respected for each dynamic input tran-
sitionA) B.

The augmented procedure is as follows.
1. For each specified dynamic transitionTi 2 G, obtain
�Ti

(V;E) as described earlier.
2. Attempt to construct a global ordering that satisfies
�Ti

(V;E) for all Ti 2 G. If this is possible go to Step 7. If this
is not possible, identifyconflict tuplesfx; y; Tj ; Tkg, where for
transitionTj x appears beforey, and for transitionTk y appears
beforex. (Note that there may be multiple conflicts for the same
pair of variablesx andy resulting in multiple conflict tuples.)
3. In the transition cube[Ai; Bi] for eachTi find the set of vari-
ablesSi that are constant at0 or1. Call this assignment of values
to Si the cubeci.
4. Choose a conflict tuple. Given a conflict tuple that relates
Tj to Tk, check ifcj \ ck = �. If so, we find a variablez in
the cj and ck cubes that has different values and further does

not appear as ay in any edgex
p
 � y in �Ti

(V;E). If we

cannot find such a variable, we cannot resolve the conflict using
free BDD’s with the given set of�Ti

(V;E)’s and we exit the
procedure.
5. We choosez = 0, and group the specified transitions for
which z = 0 in a setG0. G0 will contain Tj . Similarly, we
group the specified transitions for whichz = 1 in a setG1. G1

will containTk. If z changes in aTi then theTi can be grouped
in either set.
6. Go to Step 1, recurring withG = Gz=0 andG = Gz=1.
7. Generate the ordering forG, or for Gz=0 andGz=1. Add
z to the top of both these orderings with the appropriate value.
Exit the procedure.

If the procedure completes successfully, we will obtain a set
of orderings of the input variables each tagged with an input
combination. For example, we may obtain for the function
f(a; b; c; d; e), the orderings:

a = 0; c; b; d; e

a = 1; b = 0; d; c; e

a = 1; b = 1; e; c; d

This implies that in the free BDD,a is the variable closest to the
output. Thea = 0 input of the root multiplexor is connected
to an ordered BDD with orderingc; b; d; e. Thea = 1 input is
connected to a multiplexor withb as its control variable. Theb =
0 input is connected to an ordered BDD with orderingd; c; e and
theb = 1 input is connected to an ordered BDD with ordering
e; c; d.

To obtain a circuitCf corresponding to the above ordering,
cofactor the given functionf with respect toa = 0 anda = 1.
Create an ordered BDD under the specified ordering ofc; b; d; e

for fa. Cofactorfa with respect tob = 0 andb = 1 to obtainf
a�b

andfa�b. Create ordered BDD’s under the specified ordering for
the cofactors.

Theorem 5 (Dynamic logic hazard-freedom in a free BDD)Cf

is free of dynamic hazards for all specified dynamic transitions.

Proof: For any given input transitionTi, Cf does not vi-
olate the ordering requirement. Therefore, by Theorem 2Cf is
dynamic hazard-free forTi.

VI. REPLACEMENT STRATEGIES AND RESYNTHESIS

A. Replacement Circuits

It is worthwhile to replace the multiplexors with primitive
gates so non-hazard-increasing logic transformations (e.g., [13])
can be applied on the network to further reduce the area or im-
prove the performance.

EachMUX -ELEMENT f = a � fa + a � fa in the synthesized
circuitC will have the following conditions at its inputs by The-
orem 2.
1. If the control input is constant at1, fa andfa canbothchange
0! 1 or 1! 0.
2. If the control input is constant at0, fa andfa canbothchange
0! 1 or 1! 0.
3. If a makes a transition, we have at most one offa or fa mak-
ing a transition.

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 14, NO. 8, AUGUST 1995 10

We consider the characteristics of three primitive gate re-
placement circuits for theMUX -ELEMENT.
A: f = a � fa + a � fa
This circuit has a static logic hazard on the0 ! 1 transition on
a with fa andfa constant at1. It is free of all dynamic hazards.
B: f = (a+ fa) � fa + a � fa
This is free of all static hazards but has dynamic hazards for
the case wherea = 0, andfa andfa make opposite polarity
transitions.
C: f = a � fa + (a+ fa) � fa
This is free of all static hazards but has dynamic hazards for
the case wherea = 1, andfa andfa make opposite polarity
transitions.

Our replacement strategy is as follows:
� If the MUX -ELEMENT has the conditions 1) and/or 2) at its
inputs, but not 3), we use replacement circuitA.
� If the MUX -ELEMENT has the conditions 1) and/or 3) at its
inputs, but not 2), we use replacement circuitB.
� If the MUX -ELEMENT has the conditions 2) and/or 3) at its
inputs, but not 1), we use replacement circuitC.
� If the MUX -ELEMENT has the conditions 1), 2) and 3) at its
inputs, we do not replace it.

In the majority of the cases, the multiplexor circuit can be
transformed into one consisting entirely of primitive gates. The
transformation depends on the input conditions at each multi-
plexor in the network. Note that if we are successful in re-
placing all multiplexors with the primitive gate implementation
A, then we can convert the network into a disjoint two-level
cover1 that also satisfies the hazard freedom requirements. How-
ever, the two-level network may be considerably larger than the
multiplexor-based network.

B. Constant Propagation

Since some of theMUX -ELEMENTs are connected to constant
0 and1 values, they can be simplified. This simplification does
not change the hazard characteristics of the circuit. After re-
placement, the primitive gate circuits can be simplified if they
have constant inputs. For example the primitive gate circuit

f = (a+ fa) � fa + a � fa

simplifies to
f = a � fa

if fa is connected to logical0.

C. Handling Cyclic Constraints Using Replacement

In some cases, when cyclic ordering constraints exist that can-
not be satisfied even using a free BDD implementation it may be
possible to simplify certain multiplexors in the circuit to produce
a hazard-free realization.

Assume that the TSO ordering requirement produces a cyclic
ordering graph. We discard a minimal number of constraints so
as to produce an acyclic ordering graph. In particular, we discard
constraints generated by Condition 2 of the TSO-requirement.
Then, we generate a BDD and a multiplexor-based network us-
ing an ordering that satisfies the acylcic set of constraints. Of

1A disjoint cover is one in which each cube in the cover does not intersect any
other cube.

course, given that we have violated the TSO ordering require-
ment, the resulting network is not necessarily hazard-free. (It is
possible that the resulting network obtained under the smaller
set of constraints is hazard-free because the TSO-requirement is
a sufficient, and not necessary, condition for hazard freedom.)

In some cases, it is possible to simplify multiplexors to make
the network hazard-free. In particular, we check for the follow-
ing cases:
1. A dynamic hazard is caused at a multiplexor because its con-
trol input a, and data inputsfa andfa all make0 ! 1 tran-
sitions. We check if the logical functionsfa andfa are such
that fa = 1) fa = 1. If so, we replace the multiplexor
f = a � fa + a � fa with f = a � fa + fa. This eliminates the
dynamic hazard, since whenfa goes0 ! 1 the outputf goes
0! 1, and botha andfa have to go0! 1 for the output to go
0! 1.
2. A dynamic hazard is caused at a multiplexor because its con-
trol inputa makes a1! 0 transition, and data inputsfa andfa
make0 ! 1 transitions. We check iffa = 1) fa = 1. If so,
we replace the multiplexor withf = fa + a � fa. Again, this
eliminates the dynamic hazard.
3. Same as Case 1 except thata, fa andfa make1! 0 transi-
tions.
4. Same as Case 2 except thata makes a0 ! 1 transition, and
fa andfa make1! 0 transitions.

VII. E XPERIMENTAL RESULTS

We have implemented the techniques described in this paper
and have tested them on a number of examples. The software
has been implemented using the BDD package in SIS [23].

We present a set of results using benchmarks from the asyn-
chronous design benchmark set. The results in Table I corre-
spond to a direct comparison with the two-level hazard-free syn-
thesis procedure of [22]. Hazard-free two-level and BDD-based
circuits were synthesized using the specified set of static and
dynamic transitions for the benchmark examples given in [22].
For the BDD-based circuits, a hazard-freeMUX -ELEMENT re-
quiring four literals was assumed. The two-level circuits con-
tain some very large fanin gates, however, we have reported
the literal counts prior to decomposition (which would increase
literal count). Note that hazard nonincreasing transformations
can be applied toboththe BDD-based and the two-level circuits
improving their area characteristics. The literal counts for the
BDD-based realizations compare favorably to the two-level re-
alizations in most examples.

More substantial improvements over two-level solutions can
be obtained using the BDD-based method in a sequential synthe-
sis trajectory such as that described in [29]. The BDD solution
has less restrictions on state assignment and state minimization,
so better results can be obtained. For instance, fewer state vari-
ables are required in many cases, resulting in fewer inputs and
outputs in the hazard-free combinational logic. The interested
reader is referred to [29] for a more comprehensive set of re-
sults.

Our BDD-based realizations under any ordering are guaran-
teed to be hazard-free forall static transitions by Theorem 1.
However, this isnot true of the two-level realizations of Table I.
In order to make a two-level circuit hazard-free for static tran-

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 14, NO. 8, AUGUST 1995 11

TABLE I

COMPARISON BETWEEN TWO-LEVEL AND MULTILEVEL REALIZATIONS

WHEN HAZARD-FREEDOM IS REQUIRED UNDER A SPECIFIED SET OF

MULTIPLE-INPUT STATIC AND DYNAMIC TRANSITIONS.

Specification Total
States / Primary literals

Transitions In Out 2-level BDD

q42 4 4 2 2 27 15
ring-counter 8 8 1 2 45 68
binary-counter 32 32 1 4 94 70
binary-counter-co 32 32 1 5 104 80
pe-send-ifc 11 14 5 3 90 88
cache-ctrl 38 49 16 19 704 1231
tsend 22 30 7 4 328 511
tsend-bm 11 14 6 4 96 90
isend-bm 12 15 6 4 177 88
abcs 23 33 9 7 199 271
stetson-p1 31 38 13 14 376 455
stetson-p2 25 27 8 12 178 195
biu-fifo2dma 11 13 5 2 125 119
fifocellctrl 3 3 2 2 16 14
scsi-targ-send 7 8 4 2 53 57
scsi-init-send 7 8 4 2 31 43
scsi-init-rcv-sync 4 5 3 1 20 21

sitions, all the prime implicants of the logic function have to
be included in the realization. This can result in a substantially
greater number of literals.

By Corollary 2, BDD-based realizations (under any ordering)
are hazard-free underall single-input dynamic transitions. In
order to ensure hazard-freedom under all single-input dynamic
transitions a significant number of additional prime implicants
have to be added to the two-level circuits of Table I.

VIII. C ONCLUSIONS

In this paper, we have described a new synthesis method
based on ordered and free Binary Decision Diagrams for synthe-
sizing hazard-free multilevel logic implementations. Methods
for producing hazard-free logic implemenations have important
applications in the field of asynchronous design. We have given
automated synthesis procedures that can produce circuits that
are free of both static and dynamic hazards for a given set of
multiple-input changes. The circuits produced using our method
remain hazard-free under any arbitrary gate or wire delays. Our
method is based on pure delay model assumption, which means
we do not need to rely on potentially slow inertial delays to filter
out unexpected spurious transitions. The method has been im-
plemented and its effectiveness has been shown on a number of
examples.

We believe our framework is quite general and powerful. As
indicated in Section VII, it has been used to handle the synthesis
problems arising in extended burst-mode asynchronous circuits
[29].

ACKNOWLEDGEMENTS

The authors would like to thank Steve Nowick of Columbia
University and Peter Vanbekbergen of Synopsys for a number
of very helpful discussions concerning the hazard-free synthe-
sis problem and for the benchmark examples. Thanks to Ken-
neth Yun and Alex Kondratyev for providing detailed and con-

structive comments, and helping with the proof of Theorem 5.1.
Thanks to Ken Yun and Dave Dill for pointing out the applica-
bility of BDD-based networks to extended burst-mode FSMs.

REFERENCES

[1] V. Akella and G. Gopalakrishnan. Shilpa: a high-level synthesis system
for self-timed circuits. InICCAD-1992.

[2] P.A. Beerel and T. Meng. Automatic gate-level synthesis of speed-
independent circuits. InICCAD-1992.

[3] J. Beister. A unified approach to combinational hazards.IEEE Transac-
tions on Computers, C-23(6), 1974.

[4] J.G. Bredeson. Synthesis of multiple input-change hazard-free combina-
tional switching circuits without feedback.Int. J. Electronics, 39(6):615–
624, 1975.

[5] J.G. Bredeson and P.T. Hulina. Elimination of static and dynamic hazards
for multiple input changes in combinational switching circuits.Informa-
tion and Control, 20:114–224, 1972.

[6] E. Brunvand and R. F. Sproull. Translating concurrent programs into
delay-insensitive circuits. InICCAD-1989.

[7] R. E. Bryant. Graph-based algorithms for boolean function manipulation.
IEEE Transactions on Computers, C-35(8):677–691, August 1986.

[8] T.-A. Chu. Synthesis of self-timed VLSI circuits from graph-theoretic
specifications. Technical Report MIT-LCS-TR-393, Massachusetts Insti-
tute of Technology, 1987.

[9] O. Coudert and J.C. Madre. A unified framework for the formal verifi-
cation of sequential circuits. InICCAD-90, pages 126–129, November
1990.

[10] E.B. Eichelberger. Hazard detection in combinational and sequential
switching circuits.IBM J. Res. Develop., 9(2):90–99, 1965.

[11] J. Frackowiak. Methoden der analyse und synthese von hasardarmen
schaltnetzen mit minimalen kosten I.Elektronische Informationsverar-
beitung und Kybernetik, 10(2/3):149–187, 1974.

[12] A. Kondratyev, M. Kishinevsky, B. Lin, P. Vanbekbergen, and
A. Yakovlev. On the conditions for gate-level speed-independence of asyn-
chronous circuits. InTAU-1993.

[13] D.S. Kung. Hazard-non-increasing gate-level optimization algorithms. In
ICCAD-1992.

[14] L. Lavagno, K. Keutzer, and A. Sangiovanni-Vincentelli. Algorithms for
synthesis of hazard-free asynchronous circuits. InDAC-91.

[15] Alain J. Martin. Compiling communicating processes into delay-
insensitive VLSI circuits.Distributed Computing, 1:226–234, 1986.

[16] E.J. McCluskey. Introduction to the Theory of Switching Circuits.
McGraw-Hill, 1965.

[17] Teresa H.-Y. Meng, Robert W. Brodersen, and David G. Messerschmitt.
Automatic synthesis of asynchronous circuits from high-level specifica-
tions. IEEE Transactions on CAD, 8(11):1185–1205, November 1989.

[18] C.W. Moon, P.R. Stephan, and R.K. Brayton. Synthesis of hazard-free
asynchronous circuits from graphical specifications. InICCAD-1991.

[19] C. Myers and T. Meng. Synthesis of timed asynchronous circuits. In
ICCD-1992.

[20] S. Nowick, 1993. Private communication.
[21] S.M. Nowick and D.L. Dill. Automatic synthesis of locally-clocked asyn-

chronous state machines. InICCAD-1991.
[22] S.M. Nowick and D.L. Dill. Exact two-level minimization of hazard-free

logic with multiple-input changes. InICCAD-1992.
[23] E. M. Sentovich, K. J. Singh, C. Moon, H. Savoj, R. K. Brayton, and

A. Sangiovanni-Vincentelli. Sequential Circuit Design Using Synthesis
and Optimization. InProceedings of the Int’l Conference on Computer De-
sign: VLSI in Computers and Processors, pages 328–333, October 1992.

[24] H. J. Touati, H. Savoj, B. Lin, R. K. Brayton, and A. Sangiovanni-
Vincentelli. Implicit state enumeration of finite state machines using
BDD’s. In ICCAD-90, pages 130–133, November 1990.

[25] S.H. Unger. Asynchronous Sequential Switching Circuits. New York:
Wiley-Interscience, 1969.

[26] P. Vanbekbergen, B. Lin, G. Goossens, and H. De Man. A generalized
state assignment theory for transformations on signal transition graphs. In
ICCAD-1992.

[27] M.L. Yu and P.A. Subrahmanyam. A path-oriented approach for reducing
hazards in asynchronous designs. InDAC-1992.

[28] K. Y. Yun and D. L. Dill. Unifying Asynchronous/Synchronous State Ma-
chine Synthesis. InICCAD-93, pages 255–260, November 1993.

[29] K. Y. Yun, B. Lin, D. L. Dill, and S. Devadas. Performance-Driven Syn-
thesis of Asynchronous Controllers. InICCAD-94, November 1994.

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 14, NO. 8, AUGUST 1995 12

Bill Lin received the B.Sc., the M.S., and the Ph.D
degrees in Electrical Engineering and Computer Sci-
ences from the University of California, Berkeley, in
1985, 1988, and 1991, respectively. Since graduat-
ing from Berkeley, he has been with the VLSI Sys-
tems Design Methodologies division of the Interuni-
versity Micro-Electronics Center (IMEC) in Leuven,
Belgium. He is currently heading the System Control
and Communications group at IMEC, which is work-
ing on various aspects of system-level design tech-
nology. His current research interests include hard-

ware/software co-design, design of telecom applications, and synthesis of asyn-
chronous circuits and interface modules. He has previously been with the
Hewlett Packard Corporation, the Hughes Aircraft Company, and the Western
Digital Corporation. Dr. Lin received the Best Paper Award at the 24th Design
Automation Conference in Miami, FL, in 1997. In 1989 and 1990, respectively,
he received a distinguished paper citation at the IFIP VLSI conference in Mu-
nich, Germany, and a distinguished paper citation at the ICCAD conference in
Santa Clara, CA. In 1994, he received a best paper nomination at the European
Design and Test Conference in Paris, France, and a best paper nomination at the
ACM Design Automation Conference in San Diego, CA.

Srinivas Devadas (S’87-M’88), for a photograph and
biography, see p. 95 of the January 1995 issue of this
TRANSACTIONS.

