
  

Synthesis of High Performance Low Power Dynamic CMOS Circuits 
 

Debasis Samanta
†
, Nishant Sinha

‡
 and Ajit Pal

†
  

  
†
Department of Computer Science & Engineering                 

‡
Department of Electrical & Computer Engineering 

              Indian Institute of Technology Kharagpur                                        Carnegie Mellon University                               

                        West Bengal, India 721302                                                           Pittsburgh, PA 15213  

           apal@cse.iitkgp.ernet.in                  nishants@ece.cmu.edu  

  

 

Abstract 
This paper presents a novel approach for the synthesis of dynamic 

CMOS circuits using Domino and Nora styles. As these logic styles 

can implement only non-inverting logic, conventional logic design 

approaches cannot be used for Domino/Nora logic synthesis. To 

overcome this problem, we have used a new concept called unate 

decomposition of Boolean functions. The unate decomposition 

expresses a general Boolean function in terms of a minimum 

number of positive and negative unate functions, which can be 

readily mapped to a two-level network of Domino/Nora logic 

circuit. To deal with functions of very large number of variables, a 

function is first decomposed into sub-functions of not more than 15 

variables. Unate decomposition is efficiently performed for each of 

these sub-functions independently. However, two-level 

Domino/Nora realization for these functions are quite often not 

suitable for the realization of practical VLSI circuits having 

reasonable delay, because of the large number of series/parallel 

MOS transistors. To overcome this limitation, we have performed 

multilevel decomposition of each sub-function. The netlist produced 

by the multilevel decomposition directly maps (on-the-fly) to 

Domino/Nora cells.  In order to analyze the circuits synthesized by 

our approach, we have estimated the delay and power of the 

circuits based on the models presented in the paper. Our result is 

then compared with the static CMOS circuits synthesized by 

standard SIS tool. Our approach has been found to achieve better 

results with regard to area, delay and power consumption 

compared to the existing approaches. It is envisaged that the 

synthesized Domino/Nora circuits will be suitable for realizing 

high-performance and low power circuits. 

 

1. Introduction 
By combining the advantages of full-complementary CMOS 

circuits and pseudo-nMOS circuits, dynamic CMOS circuits are 

realized to provide a number of useful properties, such as lower 

transistor-count, higher speed, glitch-free operation, and lower 

switching threshold. These properties make dynamic circuits very 

attractive for the realization of high-performance systems. 

However, when several dynamic stages are cascaded, clock-skew 

problem arises.  To overcome the clock-skew problem, Domino [1] 

or Nora [2] logic styles have been invented. The Domino logic 

circuits suffer from the limitation that it can implement only non-

inverting logic functions. This necessitates the realization of the 

complements of internal signals through separate cones of logic 

using complements of the primary inputs resulting in significant 

area overhead. Therefore, the conventional synthesis paradigms 

used for static CMOS, which implicitly assume that the 

complement of any internal node is available using a single inverter 

cannot directly be applied to the synthesis of Domino (or Nora) 

CMOS circuits. This has motivated researchers in recent years to 

develop synthesis process taking into consideration the constraints 

and flexibilities of Domino logic [3], [4]. 

Most of the existing works start with a multilevel circuit 

in terms of standard gates realized using some standard tool, such 

as SIS. Then the circuit is manipulated to convert it into an unate 

circuit. This is followed by a technology-mapping step, which 

transforms the circuit in terms of Domino logic gates. We have 

adopted a radically different approach. Our starting point is the 

functional description of a Boolean function given in PLA/BLIF 

format. As our objective is to deal with digital circuits with large 

number of input variables, we partition the given circuit graph in 

terms of sub-graphs, each having not more than 15 input variables.  

This is done, so that the unate decomposition, which is the second 

step of our algorithm, can be performed efficiently. As this unate 

decomposition step is based on (minterm) canonical representation 

of Boolean functions, its complexity increases exponentially with 

the number of input variables. For functions of more than 15 

variables, it becomes computationally infeasible. In the unate 

decomposition step, each sub-function is expressed in terms of only 

positive and negative unate functions, which directly maps to a 

two-level Domino or Nora network. However, direct realization of 

this two-level network leads to MOS networks with large number 

of series/parallel transistors in each cell. To overcome this problem, 

we perform multilevel decomposition of each unate sub-function. 

The multilevel decomposition step produces final netlist of the 

synthesized network satisfying the length and width constraints 

required for realizing high-performance circuits. While doing the 

decomposition step, cells are created on-the-fly using the sub-

functions satisfying the constraints, thereby performing the crucial 

step of technology mapping. Instead of using standard cell-library, 

this on-the-fly cell generation approach helps to realize circuits 

with smaller number of levels having smaller delay. We have 

developed suitable models to estimate delay and power of the 

synthesized circuits.  

Efficacy in our approach has been tested with ISCAS and 

MCNC benchmark circuits having large number of inputs (as many 

as 233) and outputs (as many as 140). Our result is compared with 

that of the full complementary static CMOS circuits synthesized by 

the standard SIS tool. The synthesized Domino and Nora circuits 

are found to be superior in performance in terms of all the three 

important parameters; area, delay and power, compared to their 

static CMOS counterpart. This makes the Domino and Nora logic 

circuits suitable for high-performance and low-power applications.  

Basic approach of various steps of our algorithm, the 

partitioning, unate decomposition, technology mapping, delay 

estimation and power estimation techniques are introduced in Sec. 

2. Various algorithms based on these approaches are given in Sec. 

3. Section 4 presents  the  implementation  details  and   

experimental results. Finally, conclusions and future works are 

given in Sec. 5. 



  

2. Basic Approach 
Our synthesis process is visualized in Fig. 1. Basic approach of 

various steps of our algorithm is presented in the following 

subsections. 

 

2.1 Partitioning 
As  we mentioned in the previous section, we partition a large 

function into smaller sub-functions having not more than 15 input 

variables, and then process them independently. For this purpose, 

we have created a graph corresponding to a given circuit in BLIF 

format. The partitioning is done in two phases.   In the first phase, 

the entire graph is  traversed  in  a  breadth-first fashion and based 

on the maximum size (number of inputs) of a partition, the circuit 

graph is partitioned into smaller sub-graphs corresponding to 

smaller sub-circuits.  The first phase partitions the input graph into 

variable-size partitions. We usually end up with partitions having 

too few nodes, which can be merged with other partitions to form a 

partition with reasonably larger number of inputs. The second 

phase allows us to merge or refine those partitions. We move a 

node from its current position to the new one, if the number of 

edges connecting it to the new partition is more than the number of 

edges connecting to the earlier one. This is similar to the 

refinement phase in the standard Fiduccia-Mattheyses (FM) bi-

partitioning algorithm. We have observed that, by adopting this 

“divide-and-conquer” approach it is possible to handle VLSI 

circuits involving hundreds of input variables. The partitioning 

algorithm is presented in Sec. 3.1. 

 

2.2  Unate Decomposition 
To overcome the limitation due to only non-inverting logic, we 

have proposed a novel logic synthesis technique for the realization 

of Domino or Nora circuits, based on two-level unate 

decomposition. Our approach is to decompose any given Boolean 

function in terms of sub-functions, which are either positive or 

negative unate. Based on this decomposition, any function f can be 

expressed as a product of  k terms, 

∑
=

⋅=
k

i

ii PNf

1

 

 where Ni and Pi denote negative and positive unate functions, 

respectively. This decomposition of f leads directly to a two-level 

realization having a generic structure shown in Fig. 2(a) and 2(b) 

for Domino and Nora logic, respectively. The first level of this 

network consists of a number of blocks equal to the number of 

partitions (factors) in the decomposition; each block consists of a 

precharged n-block corresponding to each Pi. The outputs of these 

blocks are applied to the transistors in the second level, each of 

which is in series with an n or p sub-block corresponding to each Ni 

in the decomposition. If a factor consists of a single unate function 

(rather than the product of two unate functions), either the n-block 

in the first level or an n or p sub block in the second level will be 

absent. It has been shown [5] that the unate decomposition 

partitions a general Boolean function in terms of a minimum 

number of unate sub-functions. As a consequence, the  two-level  

realization  based  on this unate decomposition realizes a function 

with minimum number of  gates. 

 

2.3 Multilevel Decomposition 
Two-level dynamic CMOS realization for functions of large 

number of variables using the unate decomposition approach 

outlined in the previous subsection is not suitable for practical 

implementation because of a large  number  of  transistors  in series  

and  parallel  in  each  gate.   To   realize   circuits  with reasonable 

delay, it in necessary to impose constraint on the length and width  

of a practical gate.  By  length  we  mean  the  maximum number of  

Partitioning

Two-level MUD

Multilevel decomposition

Input in PLA/BLIF form

Synthesized circuit in Netlist form

 
 

Fig. 1 Synthesis steps 

 

  

 series transistors in the gate. When the number of transistors in 

series increases (this is the case when a product term consists of a 

large number of variables), on-resistance of the gate increases and 

thereby affecting the delay of the gate.  Increase in (width) the 

number of transistors in parallel (this is the case when large number 

of product terms are there in the function) proportionally increases 

the drain capacitance of the gate, which in turn increases the delay 

time as well as the dynamic power consumption. As the delay 

increases rapidly with the number of transistors in series, this 

number is restricted to 4 to get reasonable delay.  Similarly, the 

number of transistors in parallel is restricted to 6 in order to check 

the delay as well as dynamic power consumption due to load 

capacitance.  

To satisfy the length and width constraints, we propose 

another decomposition step, where each node in the two-level 

decomposed circuit is further broken down into sub-structures and 

intermediate nodes till each node satisfies the length and width 

constraints. This decomposition is termed as multilevel 

decomposition. Multilevel decomposition can be achieved very 

efficiently by computing kernels in a network [6]. Kernel based 

multilevel decomposition is an algebraic manipulation of logic 

functions as illustrated in the following example.  

 

Example 1: Consider  the function f1, 

geddfggdegeacacfggacegeababfggabef ++++++++=1
, 

which has  33 literals. This can be written in factored form using 

only 9 literals as given below. 

( )( ) ( )( )efggedcbaf ++++=1
 

On decomposing the same function into smaller gates, as required 

during the technology mapping, the transistor count increases, but 

only slightly. For example, the following decomposition of f  has a 

total literal count of 12 instead of 33.  

( ) dcbaH ++= , ( )efgJ += , JgeI +=  

      IHf ⋅=1
 

Factored form helps us to find common sub-functions to 

several other functions and thus improves sharing. This not only 

reduces the complexity of the network but also leads to significant 

savings on transistor-count. 

 

2.4   Technology Mapping  
A conventional way of mapping the netlist into a circuit is to use a 

standard cell library. It is known that the quality of a circuit is 

greatly influenced by the number of gates in the library. Now, 

defining a standard cell library is another implementation issue. In 

our work, we have proposed the technology mapping with on-the-

fly cell generation, which does not use any standard cell library. In 

the netlist obtained from the multilevel decomposition, each node 

in  the  list  represents  a  logic  function  of  an  arbitrary  gate to be  



  

n-block

n-block

n-block

:

N N N1 2 k

:
:

cl

cl

cl

cl

cl

cl

cl

P

P

P

1

2

k

(a) Domino

f

n-block

n-block

n-block

n-block

:

N N N1 2 k

:
:

cl

cl

cl

cl

cl

cl

cl

P

P

P

1

2

k

(b) Nora

f

p-block

 
Fig. 2 Generic structure of 2-level dynamic Domino/Nora circuits 

 

realized. However, a node can be treated as a cell only when it 

satisfies the length and width constraints. If a node has the values of 

length and width more than the upper limits specified, then cell-

based multilevel decomposition is performed in order to satisfy the 

length and width constraints. The cell-based multilevel 

decomposition mechanism is illustrated with the help of the 

following example.  

 

Example 2: Consider the function 

11811110965298472918761243212 xxxxxxxxxxxxxxxxxxxxxxxxf ++++++=  

Further assume that the length and width constraints for 

our technology are 3 and 4, respectively. After the decomposition 

satisfying the length and width constraints, the netlist becomes: 

321  xxxA =        
652  xxxB =       

11109  xxxC =  

 
9847291876  xxxxxxxxxxD +++=  

11811242 .. xxxCBDxxAf +++=  

The objective of the technology mapping with cell-based 

decomposition is to decompose a node so that it can be realized 

with cells of permissible size. At the same time, in order to ensure 

lesser number of levels, we are to create intermediate nodes in 

terms   of   primary   inputs   as   far   as   possible.  In  practice,  the 

multilevel decomposition and technology mapping steps are 

combined into single a cell-based decomposition step. 

 

2.5   Delay Estimation 
In order to calculate the delay of a dynamic CMOS circuit, we 

propose an estimation model to calculate the delay of a dynamic 

CMOS cell. Let us assume that the logic of a cell is represented by 

mmnmmmnn xxxxxxxxxxxxX ......... 32122322211131211 21
+++=  

The structure of such a dynamic cell is shown in Fig. 3.  Let us 

assume the following: 

 m = width of the cell i.e. the number of parallel paths 

 n = length of the cell i.e. the number of transistors in the 

                      longest chain 

Cx

Cx

C
x

C
x

Cx

Cx

C
x

C
x

Cx

Cx

C
x

C
x

CP

C
L

tPLH t
1

t2

 

 

Fig. 3 Structure of a dynamic cell 

 

 Rp = On-resistance of pMOS transistor, where 

( )











−−

+
−

=

2
2

)( 2
dd

ddTpddp

dd

Tpddp

dd
p

V
VVVk

V

VVk

V
R α

      (1) 

Rn = On-resistance of nMOS transistor, where  

( )











−−

+
−

=

2
2

)( 2
dd

ddTnddn

dd

Tnddn

dd
n

V
VVVk

V

VVk

V
R α

          (2) 

Here, kp, kn are the gain factor of pMOS and nMOS transistors, 

respectively and 
TpV and 

TnV are the threshold voltage of pMOS and 

nMOS transistors, respectively. The constant α is 2 and 1.3 for long 

channel and short channel MOSFETs, respectively. 

  Cdp = drain capacitance of pMOS 

Cdn = drain capacitance of nMOS 

Cgp = gate capacitance of pMOS 

Cgn = gate capacitance of nMOS 

Cint = interconnect capacitance. 

.  

The delay of dynamic CMOS cell then can be given as  

2

PHLPLH
d

tt
t

+
=            (3) 

where, PLHt  = charging time of the load capacitance CL  

and PHLt  = discharging time of the pull-down network. 

Now,  the charging time of the load capacitance is given by 

PLHt =  
Lp CR ..69.0            (4) 

where, the load capacitance CL can be expressed as 

 ( )gngpdndpL CCCCmCC ++++= int.           (5) 

Similarly, the discharge time of the pull-down network is given by 

 
PHLt  = t1 + t2             

where, t1 = discharge time of CL through the longest path in the 

pull-down network, and t2 = discharge time of CP . Thus,    

 tPHL = ( ) ( )











++++ ∑

−

=

1

1

..2.1..169.0

n

i

PnxxxL CRRCiRCn     (6) 

Here, Rx = Rn  and Cx = Cdn, if the pull-down network is a network 

of nMOS transistors and Rx = Rp and Cx = Cdp, if the pull-down 

network is of pMOS transistors, and dnxP CCmC += . . 

 

2.6   Power Estimation 
As switching power is the most dominant source of power 

dissipation in dynamic CMOS circuits, we have considered only 

the switching power in our power estimation. For a given dynamic 

cell there are several points where power dissipation occurs. Figure 



  

4 shows a dynamic cell and various power consuming points in it.  

Here, P1 = power to charge and discharge CL1, P2 = power to 

charge and discharge CP, P3 = power to charge and discharge all 

internal capacitances, and P4 = power at inverter output i.e. at CL2. 

 

Switching power at CL1 

Switching power at 1LC  occurs due to charging (precharge) and 

discharging (evaluation) the load capacitance 1LC  . The switching 

power at 1LC  can be given as 

 1P = fVCXE ddL ⋅2
1

0 .).(            (7) 

here, )(0 XE  being the probability that the output of logic X is 0. 

In the above expressions, the load capacitance CL1 can be 

calculated as follows: 

( )gngpdndpL CCCCmCC ++++= int1 .          (8) 

The  switching activity of a logic X can be calculated as below:  

Let the Boolean function X is in SOP forms with n product terms as 

nXXXXX ++++= ...321
 

Here, a product term 
iX  is given by, 

 imiiii xxxxX ...321 ⋅⋅⋅=  

Now, 11110 ...1)(
321 imiii xxxxi ppppXE ⋅⋅⋅−=           (9) 

where, 
1

ijxp indicates the probability of input signal ijx being at 

‘1’. With this, we have, 

 )(...)()()()( 0
3

0
2

0
1

00
nXEXEXEXEXE ⋅⋅⋅=           (10) 

 )(1)( 01 XEXE −=           (11) 

Probability of a transition at output is 

)()()()( 101001 XEXEXEXE ⋅== →→        (12) 

 

Switching power at CP 

It can be noted that the capacitance at node 2 (Fig. 4) will be 

charged and discharged at every clock cycles. Hence, it is 

independent on switching activity. It can be expressed as given 

below: 

f.VCP ddP ⋅= 2
2    

 

Internal switching power 

There is a source of power consumption due to charge and 

discharge the internal node capacitances inside the logic cell. The 

total dynamic power consumed internally is : 

( ) f.VVV.CP ddTxdd

m

i

p ath i#Trans. in

j

xij ⋅−













⋅= ∑ ∑

=

−

=1

1

1

3 2α        (13) 

where, VTx = VTp if the transistor is in  p-network else it is VTn, and 

ijα is the switching activity of the internal node xij. 

Switching power consumption at static CMOS buffer node 2LC  

can be expresses as given below: 

( ) fVCXEXEP ddL ⋅⋅= 2
2

01
4 ..)()(         (14) 

where, )(2 gngpoutdndpL CCfCCC +++= , fout being the fanout of 

the cell under consideration. 

As the Nora circuits are inverter free, this component is 

not present for the Nora logic circuits. 

 

3.   Algorithms 
Our synthesis procedure comprises with the following steps: 

1. Partitioning a BLIF circuit into subcircuits 

2. Minimum unate decomposition of each subcircuit 

3. Multilevel cell-based decomposition for technology 

mapping 

3

C
L1

C
L2

C
P

1

2

4

3

 
 

Fig. 4   Various power consuming nodes in a dynamic cell 

 

The algorithms implementing these tasks are given in the following 

sub-sections. 

 

 3.1   Partitioning 
With the partitioning, we are to decompose a graph (which is in 

BLIF form) into a number of partitions so that the number of inputs 

of a partition does not exceed a certain upper limit. We have 

proposed the algorithm K_PARTITION for partitioning any BLIF 

circuit into k partitions, k ≥ 1 is given as below. 

 

Algorithm  K_PARTITION 

Input: An acyclic graph G for a input BLIF circuit. 

Output: k partitions of G = {P1, P2, …, Pk}, where k ≥ 1 

 

Step 1.   Creation of initial partitions 

Let the number of inputs in each partition be less than 

the some upper limit, say δ. 

Push all outputs node in a queue Q; 

    i = 0;  #Pi = 0; // #Pi is the number of primary input 

            While (Q is not empty ) do 

             Pop a node n from Q; 

   i++; 

            Create_Partition (n, Pi);   

     EndWhile 

        Create_Partition( n, Pi) 

   Push n and all its successors in BFS fashion  in  q; 

 While (  #Pi  δ≤ or q is not empty) do  

   Pop a node m from q; 

     If ( inclusion of m does not exceed #Pi  by δ) then 

           Add m into Pi 

                           #Pi  +=  number of inputs in m;   

      Else 
           Break the loop;      

     EndIf    

                EndWhile 
               While ( q is not empty) do    

       Pop a node x from q; 

       Push x into Q; 

               EndWhile 
Step 2.  Refinement of partitions 

In this step, we are to refine the partitioned graph so that 

total number of partitions can be reduced. 

        For all nodes n ∈ G  

                        For all adjacent partitions of n 

             Find a partition P with maximum edges of n in it;   

                                Move n from its current partition to destination  

                                partition P Such that #P δ≤  

 

3.2   Minimum Unate Decomposition 
Based on the theory of two-level unate decomposition presented in 

[5], algorithm for minimum unate decomposition which 

decomposes a given function in terms of minimum numbers of 

unate functions is outlined below: 



  

Algorithm MUD 

Input: A Boolean function f as a sum of product form. 

Output: ⋅⋅⋅+⋅+⋅+⋅= 543210 GGGGGGf , where iG , i = 0, 2, 4, 

… are the positive unate functions and  iG , i =1, 3, 5, … are the 

negative unate functions. 

 

Step 1. Tabularize the Boolean function f. 

Tabularize the given function f based on its true and false 

sets and the weight of the minterms. 

Step 2. Obtain the Initial Unate Decomposition (IUD). 
         Obtain a decomposition table, so that no minterm covers 

any minterms in left columns.  

Step 3. Obtain the Minimal Unate Decomposition (MUD) table. 
Update IUD table, so that no minterm covers any minterms 

in right columns. 

Step 4. Obtain two-level decomposed form of  

 ⋅⋅⋅+⋅+⋅+⋅= 543210 GGGGGGf  

 

Example 3:  Let us consider the case of a Boolean function f3.  

 

 

Two-level minimum unate decomposed form of  f3  can be obtained 

as: 

 
4130  x  x  x +=G  

 1341 x x  x  +=G  

 
234122 xx x x  x +=G  

 1 3 =G  

 
3.3   Algorithm for Multilevel Unate Decomposition 
Following is the algorithm to define the multilevel decomposition 

of a unate function:  

 

Algorithm MLUD 

Input: UDN = a set of netlist after unate decompsition of the entire 

circuit (f1, f2, ...fn) 

Output: MDN = a set of netlist after multilevel unate 

decomposition. 

Step 1.   Remove duplicated unate blocks from the list of blocks. 
Let UDN = {G1_0, G1_1, …G1_x,  G2  _0,G2_1 …G2_y,… 

Gn_0, Gn_1,…Gn_z} 

 If 
ljkijljkiljki GGfGfGUDNGG ___i___  and  and ) and ( =∈∈∈∃  then 

        Remove 
ljG _
 from the netlist UDN  

        Update the function definition 

              Endif 
Step 2.  Decompose each unate block in multilevel.  

  MDN = φ      

  Forall UDNG ji ∈_
 do 

       Simplify the node jiG _    

       Let }{ _ jiGL =     

       N = Decompose(L)   

       Forall Nn ∈  do 

             If  !Constraint(n) then   

         'n = Split(n)     

         Upgrade N with 'n  

  Endif 
       Endfor 
      NMDNMDN ∪=       

EndFor 

 

Procedures those are referred in Algorithm MLUD is defined as 

below: 

 

Decompose(L) 

Step 1.   Computation of all kernels 
        Compute all kernels K of netlist L 
Step 2.   Selection of best decomposition 

       Pmin = ∞   

       Dmin = L      

       If  #K > 0 then     

        Forall Kk ∈ do 

        If Constraint(k) then   

        
'L = Factored(L, k)   

         D = Decompose(
'L )   

         P = EstimatePower(D)  
          If (P < Pmin) then 

              Dmin = D    

         Endif 
             Endif 
      Endfor 
           Endif 

           Return(Dmin) 
 

Split(n) 

Let λ = length constraint and ω = width constraint 

Step 1.   Split a product term in n to satisfy length constraint 

        For each np ∈  do    

              If  Length(p) > λ then       

              Break p with minimum possible intermediates 

        Endif 
               Endfor 
Step 2.   Split n to satisfy width constraint 

 If Width(n) > ω  then 

        Break n with minimum number of intermediates;  

       Each intermediate is as far as possible in terms of 

primary inputs. 

Endif 

 

4.    Implementation and Experimental Results 
We have implemented our entire synthesis method on SUN Ultra 
Sparc 10 systems and using C++ programming embedding with 

STL and GTL of ATT. We have tested our implementation with 

ISCAS benchmarks. Value of transistor’s parameters are extracted 

using BSIM4 model and for 0.18µ technology as a particular 

instance.   

The synthesis of dynamic CMOS circuits starts with 

partitioning an input circuit in BLIF format resulting smaller sub-

circuits. Each sub-circuit is then transformed into PLA form (in 

terms of minterms) and disjoint decomposition is carried out to 

contain non-overlapping minterms only. After preprocessing the 

input, our tool decomposes a Boolean function into a set of positive 

and negative unate sub-functions based on the algorithm MUD. It 

should be noted that, algorithm MUD can handle a single logic 

function at a time, whereas a circuit is in general multi-output in 

nature. This problem has been sorted out by extracting one function 

at a time in a partition and then obtaining its unate decomposed 

version (in the form of a netlist) and storing the result in a 

temporary file. This process is to be repeated for all functions in the 

partition and finally giving the netlist for a partition. Our tool then 

performs cell-based multilevel decomposition for nodes in the 

netlist in order to satisfy the length and width constraints. After this 

multilevel decomposition is over, our tool produces final netlist of 

synthesized circuit.  

( )∑= 15,14,12,11,8,7,5,33f



  

In order to realize static CMOS circuits, we have used the 

Berkeley SIS tools. The netlist is optimized with the script.rugged 

command in SIS. Technology mapping is performed using 44-

2.genlib and with the option of minimum area. The result of the 

static CMOS circuits for ISCAS benchmarks is shown in Table 1. 

Results of Domino and Nora circuits for ISCAS 

benchmarks are shown in Table 2. During the multilevel 

decomposition, for the constraints of a cell, we have chosen length 

= 4 and width = 6. In order to compare the power consumption for 

three classes of circuits, operating frequency for a given circuit is 

chosen as the minimum frequency among the circuits with three 

different techniques. For power estimation, we have considered 

only the switching power consumption, because the static power 

consumption is usually two orders of magnitude smaller in 

comparison to the switching power. 

Experimental results show that dynamic circuits are 

faster, Domino realizations provide   44% lesser delay compared to 

their static counterparts. However, the delay in Nora circuits is 

slightly higher than Domino circuits.  Transistor counts (a measure 

of area) of both the Domino and Nora circuits are on the average 

35% and 44% less, respectively compared to the static CMOS 

circuits. Domino circuits consume 63% and Nora circuits require 

58% lesser energy than the static CMOS circuits, which are 

superior to the existing results.  

 

6.   Conclusions and Future Works 
In this paper, we have proposed a novel logic design approach for 

the synthesis of large dynamic CMOS circuits. As Domino/Nora 

logic styles can implement only non-inverting logic, we have 

overcome this problem by using unate decomposition. This also 

makes Nora circuits are completely inverter free. ‘On-the fly’ cell 

generation approach adopted in the synthesis process helps to 

realize circuits with lesser number of levels. The synthesized 

circuits are found to be superior in terms of area, delay and energy 

requirement compared to their static counterparts and better than 

the reported results. 

 In our work, we have concentrated only on the dynamic 

power consumption, which is the most dominant component in case 

of dynamic circuits. But, for battery-operated hand held portable 

VLSI circuits based on deep sub-micron technology, leakage power 

is another important source of power consumption, which should 

not be ignored. Also we have not taken into consideration charge 

sharing and charge leakage problems, which may be overcome by 

incorporating weak pMOS devices in the pull-up network. In the 

Domino logic style, the inverter may be replaced by more complex 

static gates [7]. We propose to extend our work in these directions. 

 

Table 1: Static CMOS Circuits 
Bench 
marks 

PI/PO 
f in 

MHz 
Delay 
(ns) 

#Tran 
sistor 

Le 
vel 

Power 

(µW) 

Energy 
(fJ) 

C432 36/7 125 7.98 592 24 466.36  3721.55 

C499 41/32 190 5.25 1880 21 1410.21 7403.60 

C880 60/26 192 5.19 1412 34 1193.19 6192.65 

C1355 41/32 163 6.11 1880 20 1318.66 8057.01 

C1908 33/25 149 6.67 1756 34 1331.38 8880.30 

C2670 233/140 145 6.89 3453 19 1872.61 12902.28 

C3540 50/22 92 10.79 3878 38 1487.14 16046.24 

C5315 178/123 116 8.59 6058 42 3413.30 29320.25 

C6288 32/33 107 9.32 11222 35 4061.67 37854.76 

C7552 207/108 145 6.86 8214 38 6262.47 42960.54 

        40345                     

 

 

Table 2: Dynamic CMOS Circuits 
Domino Circuits Nora Circuits 

Bench 
mark 

f 
in  

MHz 
#Tran 
sistor 

#Le 
vel 

Delay 
(ns) 

% ȹt 
Power 

(µW) 

Energy 
(fJ) 

% 
ȹE 

#Tran 
sistor 

#Le
vel 

Delay 
(ns) 

% ȹt 
Power 

(µW) 

Energy 
(fJ) 

% 
ȹE 

C432 125 575 10 3.08  61.4 419.62  1292.4 65.3 479 7 3.31  58.5 438.29  1450.7 61.0 

C499 190 1707 11  3.87 26.3  927.84 3590.7 51.5 1601 8  4.14 21.1  951.07 3937.4 46.8 

C880 192 961 14  4.04 22.1  568.33 2296.0 62.9 801 10  4.32 16.8  607.19 2623.1 57.6 

C1355 163 1183 14  3.16 48.3  734.05 2319.6 71.2 1044 10  3.38 44.7  787.14 2660.5 66.9 

C1908 149 1498 16  3.63 45.6  977.62 3548.8 60.0 1404 11  3.88 41.8 1023.1 3969.7 55.3 

C2670 145 2538 16  3.71 46.1 1390.5 5158.9 60.0 2474 11  3.84 44.3 1566.0 6013.4 53.4 

C3540 92 3584 25  4.69 56.5 1070.6  5021.2 68.7 3309 18  4.42 59.0 1113.2 4920.5 69.3 

C5315 116 5733  30  6.29 26.8 2026.5 12746.8 56.5 4587 22  6.74 21.5 2201.6 14839.2 49.4 

C6288 107 2699  12  3.58 61.6 3307.3 11840.8 68.7 2159 8  3.74 59.9 3518.2 13157.9 65.2 

C7552 145 5824  18  3.78 44.9 4090.4  15461.9 64.0 4932 12  3.91 43.0 4524.1 17689.2 58.8 

                 26302              43.9%       31.5%                     62.9%   22790                               41.1%       26.9%           58.4% 

 

 

Acknowledgement 
This work was supported by Intel Corporation, USA, grant #7310. 

We are thankfull to James W. Tschanz of  Intel Corporation for his 

valuable comments and suggestions. 

 

References 
1. R. H. Krambeck, C. M. Lee and H. S. Law, “High-Speed 

Compact Circuits with CMOS”, in IEEE Journal of Solid State 

Circuits, pp. 614-619, Vol. SC-17, No. 3, June 1982. 

2. N. F. Goncalves and H. J. De Man, “NORA: A Race free 
Dynamic CMOS Technique for Pipelined Logic Structures”,  

in IEEE Journal of Solid State Circuits, pp. 261-266, Vol. 18, 

No. 3, June 1983. 

3. M. R. Prasad, D. Kirkpatrick and R. K. Brayton, “Domino 
Logic Synthesis and Technology Mapping”, in International 

Workshop on Logic Synthesis, May 1987. 

 

 

 

4. Min Zhao and Sachin S. Sapatnekar, “Technology Mapping 
for Domino Logic”, in IEEE/ACM Proc. of Design 

Automation Conference, pp.  248-251, 1998. 

5. A. Pal and A. Mukherjee, “Synthesis of Two-level Dynamic 

CMOS Circuits”, in IEEE Proc. of International Workshop on 

Logic Synthesis, May 1999. 

6. R. K. Brayton, R. L. Rudell and A. L. Sangiovanni-

Vincentelli, “MIS: A Multiple-Level Logic Optimization 
System”, in IEEE Trans. on Computer Aided Design, pp. 

1062-1081, Vol. 6, No. 6, 1987. 

7. Tyler Thorp Gin Yee and Carl Sechan., “Domino Logic 
Synthesis Using Complex Static Gates”, in IEEE/ACM Proc. 

of International Conference on Computer Aided Design, pp. 

242-247, 1998. 

 

 


