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Abstract—State-of-the-art synthesis methods for microwave
passive components suffer from the following drawbacks. They ei-
ther have good efficiency but highly depend on the accuracy of the
equivalent circuit models, which may fail the synthesis when the
frequency is high, or they fully depend on electromagnetic (EM)
simulations, with a high solution quality but are too time consum-
ing. To address the problem of combining high solution quality
and good efficiency, a new method, called memetic machine
learning-based differential evolution (MMLDE), is presented. The
key idea of MMLDE is the proposed online surrogate model-
based memetic evolutionary optimization mechanism, whose
training data are generated adaptively in the optimization pro-
cess. In particular, by using the differential evolution algorithm as
the optimization kernel and EM simulation as the performance
evaluation method, high-quality solutions can be obtained. By
using Gaussian process and artificial neural network in the
proposed search mechanism, surrogate models are constructed
online to predict the performances, saving a lot of expensive
EM simulations. Compared with available methods with the best
solution quality, MMLDE can obtain comparable results, and has
approximately a tenfold improvement in computational efficiency,
which makes the computational time for optimized component
synthesis acceptable. Moreover, unlike many available methods,
MMLDE does not need any equivalent circuit models or any
coarse-mesh EM models. Experiments of 60 GHz syntheses and
comparisons with the state-of-art methods provide evidence of
the important advantages of MMLDE.

Index Terms—Artificial neural network, differential evolution,
gaussian process, inductor synthesis, microwave components,
surrogate model, transformer synthesis.

I. Introduction

I
N RECENT years, design methodologies for high-

frequency microwave circuits have attracted a lot of

attention. In particular, research on RF building blocks for

40 GHz to 120 GHz and beyond is increasing drastically.

On-chip passive components, e.g., inductors and transformers,

are one of the major components of the RF IC that strongly

influence the circuit performances [1]. For example, the loss
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of a transformer has a large impact on the power-added

efficiency and the output power of a power amplifier.

Therefore, the synthesis of passive components, including

both the sizing and the layout optimization, is a critical

problem in high-frequency RF IC design automation. High-

frequency RF component synthesis faces two challenges.

First, accurate equivalent circuit models are often not available

in literatures at these frequencies. Some designers rely on

experience and simulation verification in their design work.

Another challenge is that the performance requirements of RF

ICs keep on increasing, and therefore powerful optimization

methods are needed. Hence, the “experience and trial” method

or local optimization is often not good enough for high-

frequency RF component design. This paper focuses on these

problems.

Most RF passive components synthesis can be naturally

expressed as a constrained optimization problem [2]: the

optimization of an objective (e.g., quality factor), usually

subject to some constraints (e.g., self-resonance frequency).

The special point is that in order to obtain an accurate

result, electromagnetic (EM) simulation of the component

structure is typically necessary, especially at high frequencies.

However, EM simulations are often very CPU time expensive

[3]. This fact highly increases the need of high efficiency

of the synthesis framework. Hence, most of the state-of-the-

art methodologies [1]–[9] focus on the tradeoff between the

solution quality and the efficiency.

In this paper, we propose a new framework, the memetic

machine learning-based differential evolution (MMLDE)

method, focusing on optimized RF passive component syn-

thesis at high frequencies. Compared to available methods

with the best solution quality, MMLDE can obtain comparable

results, but has approximately a tenfold improvement in com-

putational efficiency. A high-performance passive component

for RF ICs can be synthesized in a very reasonable time, which

is in the order of a few hours clock time on a single CPU

node.

The remainder of this paper is organized as follows.

Section II reviews the related works and motivates the strategy

of MMLDE. Section III introduces the components and the

general framework of MMLDE. Section IV tests MMLDE on

practical examples at 60 GHz. Comparisons with the state-of-

the-art methods are also performed. Concluding remarks are

presented in Section V.

0278-0070/$26.00 c© 2011 IEEE
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II. Related Works and Motivations

The available computer-aided design optimization method-

ologies for microwave components can be classified into four

categories: 1) equivalent circuit model and global optimization

algorithm based (ECGO) methods [4], [5]; 2) EM-simulation

and global optimization algorithm based (EMGO) methods

[1]; 3) off-line surrogate model, EM-simulation and global

optimization algorithm based (SEMGO) methods [2]; and

4) surrogate model and local optimization algorithm based

(SMLO) methods [3], [6]–[9]. These will now be described

in more detail.

1) The ECGO methods [4], [5] depend on the equivalent

circuit model to obtain the performances of the

microwave structure. Their advantage is high efficiency.

The synthesis of a 5 GHz inductor considering

process variations, which requires many performance

evaluations, has been achieved successfully and

efficiently by ECGO [4]. On the other hand, when the

frequency is high, equivalent circuit models available in

the microwave area are typically not accurate enough or

difficult to find. Hence, even with global optimization

algorithms, the synthesis of high-frequency components

may also fail as the used equivalent circuit models may

not reflect well the performances of the microwave

structures.

2) The EMGO methods [1] can provide an accurate

performance analysis of the microwave structure

because they use EM simulations. Combined with global

optimization algorithms, the quality of the solution is

the best among all the available methods, especially in

high-frequency RF component synthesis. However, its

major bottleneck is the high computational cost of the

EM simulations limiting their use in practice [3].

3) Reference [2] represented a surrogate-model EMGO

(SEMGO), which is an important progress of EMGO.

SEMGO uses an off-line artificial neural network (ANN)

model to enhance the speed of the standard EMGO. In

[2], the surrogate model is first trained to approximate

the performance of the microwave structure before opti-

mization. Then, the optimization algorithm uses this sur-

rogate model as the performance evaluator to find the op-

timal design. The training data are generated uniformly

in the design space and the corresponding performances

are obtained by EM simulations. When combined with

global optimization algorithms, this method has the

ability of global search. However, the training data gen-

eration process in this method is expensive and we found

that the constructed ANN model is not always reliable in

our 60 GHz inductor synthesis example (see Section IV).

4) The SMLO methods [3], [6]–[9] combine the efficiency

of ECGO with the accuracy of the EM simulations from

EMGO. Fig. 1 shows the general flow. First, a coarse

model, either an equivalent circuit model or a model

evaluated by EM simulation but with coarse meshes, is

constructed and optimized. Then, some base vectors in

the vicinity of the optimal point of the coarse model are

selected as the base points to train a surrogate model,

Fig. 1. Flow of the SMLO methods.

whose purpose is to predict the performances of the

microwave structure. At last, the surrogate model is used

to optimize the microwave component, whose result is

verified by the fine model using expensive high-fidelity

EM simulations. The data received by the fine simula-

tions will update the surrogate model to make it more ac-

curate. In the development of the SMLO methods, some

works have been presented focusing on selecting the

coarse model [3], [7] and the surrogate model [3], [8].

SMLO, however, highly depends on the accuracy of the

coarse model, which leads to two significant challenges

for high-frequency RF passive component synthesis.

First, the optimal solution of the coarse model defines

the search space and the constructed surrogate model is

only accurate in that space, because the base points are

selected around it [3]. The success of SMLO comes from

the basic assumption that the optimal point of the coarse

and fine models are not far away in the design space, as

shown in [3] and [6]–[9]. However, this assumption only

holds when the coarse model is accurate enough. Al-

though it has been shown that SMLO can solve RF com-

ponent synthesis well at comparatively low frequencies

[3], [6]–[9] (e.g., 10 GHz), for passive components in

high-frequency RF ICs (e.g., 60 GHz), this assumption is

often not true. In many cases, a workable equivalent cir-

cuit model is even difficult to find, and the mesh density

of the coarse-mesh EM model is difficult to decide. The

second challenge is that SMLO can only do local search,

which is not suited for synthesis with strong require-

ments. This is not only because of the fact that the cur-

rent SMLO methods use local optimization algorithms,

but also because of the fact that the search space is

decided first by the coarse model [3], [6]–[9]. Therefore,

using global optimization algorithms makes little sense.

In summary, ECGO and SMLO work well in comparatively

low-frequency RF component synthesis, but their high depen-

dence on the accuracy of the equivalent circuit or coarse model

limits their use for the synthesis of high-frequency microwave

structures. EMGO can provide high-quality results even when

the frequency is high, but is too CPU time intensive. Although

SEMGO [2] makes a great progress on EMGO, to the best

of our knowledge, the development of sufficiently effective

and efficient synthesis methods for high-frequency microwave

components is still in great need.

To address these problems, we propose a new framework,

the MMLDE method. The key idea of MMLDE is the

proposed online surrogate-model-based memetic evolutionary

optimization mechanism, whose training data are generated

adaptively in the optimization process. The efficiency versus

quality targets aimed at with MMLDE are shown in Fig. 2.
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Fig. 2. Review of the available methods in HIGH-FREQUENCY component
synthesis and the targets of MMLDE.

In addition, MMLDE does not need any coarse model nor the

complex tuning of the parameters.

III. The MMLDE Algorithm

A. Key Ideas of MMLDE

Two conclusions can be drawn from the available methods:

1) global optimization and EM simulations are the keys to

obtain high-quality solutions, and 2) machine learning tech-

niques, or the surrogate model in this application, are the keys

to enhance the efficiency.

Hence, the question becomes: how to integrate the machine

learning techniques with the global optimization and the

EM simulation-based algorithm? The answer, however, is not

trivial. In the literature, there are mainly two kinds of methods

that use surrogate models in the synthesis of RF components.

The first one is the method used in SMLO. The second one is

the off-line surrogate model in SEMGO [2]. More information

of these two methods has been presented in Section II.

In MMLDE we propose a new framework. After a small

Latin-hypercube sampling (LHS) of the design space and

using EM simulations to evaluate these samples, we train

the initial surrogate model as a rough estimation of the

performances of the microwave structure. Then, we use our

online surrogate-model-based evolutionary algorithm. In each

iteration, the candidate solutions are generated by the memetic

evolutionary computation algorithm, whose performances are

evaluated by the surrogate model. We perform EM simulation

to the candidate solution with the possible best potential

to improve the objective function. Note that the candidate

solution with the best potential is not simply the one with the

best predicted value, like SMLO. In MMLDE, the potential

is calculated based on the used machine learning technique

and the corresponding potential measurement method. We then

update the surrogate model by including the new candidate

with EM simulation result. There is only one EM simulation

in each iteration.

The MMLDE mechanism is different from the mechanism

of SEMGO [2]. SEMGO first constructs a good surrogate

model which covers the whole design space and then uses

it. In the optimization process, there are no EM simulations

and updating. To obtain a reliable surrogate model, the training

data need to cover the whole design space with a reasonably

high density. Hence, a lot of EM simulations are necessary.

On the other hand, only a small part of the design space is

useful in the optimization. The reason is that the optimization

algorithm in [2] is not based on enumeration, but based on

iteration, so many of these expensive EM simulations are

wasted. In contrast, MMLDE holds to the idea of “in the

deep darkness of the design space, there is no need to lighten

the whole world but rather the close vicinity of the path to

the destination.” MMLDE, therefore, first constructs a very

rough surrogate model, and then improves it online but only

in the necessary area of the design space, which is determined

by the optimization algorithm and the updating technique.

Consequently, MMLDE is more efficient in terms of the

number of EM simulations than SEMGO. Moreover, because

all the performances that have potential to be used as the final

result are evaluated by EM simulations, rather than by the

surrogate model, MMLDE is also more accurate.

Although there also exists an updating process in SMLO,

this updating in MMLDE is largely different from the updating

in SMLO. The main purpose of the updating in SMLO is

to improve the local accuracy and to help local search. One

reason is that the search space is defined by the optimal

point of the coarse model and the surrogate model is only

accurate in the vicinity of that point. Moreover, even when

the coarse model is accurate and the global optimal point

is included in the newly defined search space, the updating

which only considering the predicted value also causes a

low probability to achieve global optimization [10], [11]. The

reason is that the updating mechanism only using the predicted

value puts too much emphasis on exploiting the predictor

and no emphasis on exploring points where we are uncertain.

In contrast, the updating in MMLDE can both guide the

global and local search, which is achieved by the memetic

evolutionary algorithm and the method to decide the candidate

with the possible best potential. For the Gaussian process-

based surrogate model, we use the expected improvement (EI)

[10] to measure the potential of the candidate. For the ANN-

based surrogate model, we directly use the predicted value to

measure the potential. The EI measurement has the ability to

judge the potential for global search for a candidate because

the uncertainty of the Gaussian process prediction is consid-

ered. Hence, the quality of a candidate point is considered in a

global picture. When combined with evolutionary algorithms,

global optimization can therefore be achieved. On the other

hand, the potential measurement used for the ANN surrogate

model is more powerful in local refinement compared with

the EI measurement. Hence, we combine the two machine

learning and potential measurement techniques to construct a

memetic evolutionary algorithm with enhanced search ability

and efficiency.

In the following, the basic components of MMLDE will be

introduced first. The key techniques and the general framework

will be presented afterward.

B. Using Gaussian Process in MMLDE

Gaussian process (GP) machine learning [12]–[14] is one

of the chief techniques to construct the surrogate model

in MMLDE. GP machine learning not only has very good
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prediction ability, but also can provide a meaningful un-

certainty measurement for a prediction. This is very impor-

tant when combined with optimization. For online surrogate-

model-based optimization, the accuracy and reliability of the

GP model is improved gradually in the process of optimiza-

tion, as more additional training data are provided throughout

the optimization process. This leads to a problem that some

data predicted by the GP model may have large differences

compared with the real EM simulation results, especially when

the training data are not sufficient. Hence, if we only use

the predicted values, it is very easy to be trapped in a local

optimum. To prevent this, we use the EI measurement [10] to

call for a balance between exploration and exploitation, which

are computed by the predicted value and the standard error

(uncertainty measurement).

Here, we provide an intuitive introduction and the main

formulas for the technique of GP machine learning [15].

GP predicts a function value y(x) at some design point x

by modeling y(x) as a stochastic variable with mean μ and

variance σ. If the function is continuous, the function values

of two points xi and xj should be close if they are highly

correlated. In this paper, we use the Gaussian correlation

function to describe the correlation between two variables

Corr(xi, xj) = exp(−
d

∑

l=1

θl|xil − xjl|2) (1)

where d is the dimension of x and θl is the correlation

parameter which determines how fast the correlation decreases

when xil moves in the l direction. The formulas to decide θl

can be found in [16]. The values of μ, σ and θ are determined

by maximizing the likelihood function of the observed data.

Suppose that there are n observed data x = (x1, x2 · · · , xn), and

their corresponding function values are y = (y1, y2 · · · , yn),

then the optimal values of μ and σ can be found by setting

the derivatives of the likelihood function (2) to 0

h =
1

(2π)n/2(σ2)n/2|R|1/2
exp(−

1

2σ2

(y − Iμ)T R−1(y − Iμ))

(2)

where I is a n × 1 vector of ones, R is the correlation matrix

and

Ri,j = Corr(xi, xj), i, j = 1, 2, · · · n. (3)

By solving the equations, the μ̂ and σ̂2 are as follows:

μ̂ = (IT R−1I)−1IT R−1y (4)

σ̂2 = (y − Iμ̂)T R−1(y − Iμ̂)n−1. (5)

Using the GP model, the function value y(x∗) at a new point

x∗ can be predicted as (x∗ should be added in R, r)

ŷ(x∗) = μ̂ + rT R−1(y − Iμ̂) (6)

where

r = [Corr(x∗, x1), Corr(x∗, x2), · · · , Corr(x∗, xn)]T . (7)

Fig. 3. Solid line represents an objective function that has been sampled at
the five points shown as dots. The dotted line is a DACE predictor fit to these
points (from [10]).

The measurement of the uncertainty of the prediction, i.e.,

the mean square error (MSE), which is used to assess the

model accuracy, can be described as

MSE(x∗) = σ̂2[I − rT R−1r + (I − rT R−1r)2(IT R−1I)−1]. (8)

In this paper, we use the DACE toolbox [16] to implement

the Gaussian process machine learning.

Besides the above basic principles from GP machine learn-

ing, we introduce another important concept, the expected

improvement EI [10], which is calculated as

E[I(x)] = (fmin − y(x))�(
fmin − y(x)
√

MSE(x)
)

+
√

MSE(x)φ(
fmin − y(x)
√

MSE(x)
)

(9)

where fmin is the current best function value in the population

(the population with EM simulation results, not the generated

population after evolutionary operators). φ(·) is the standard

normal density function, and �(·) is the standard normal

distribution function. I(x) is the improvement of f .

EI measures the potential of a candidate solution in

MMLDE, which considers both global search and local search.

EI is the part of the curve of the standard error in the model

that lies below the best function value sampled so far. Figs. 3

and 4 provide an example. As shown in Fig. 3, the function

value of x = 8 is better than that of x = 3, but x = 8 cannot

be selected when directly using the GP prediction values.

However, the point x = 8 is possible to be selected when

using the EI measurement. In Fig. 4, the probability density

of the prediction uncertainty at the point x = 8 in the curve of

the DACE predictor is shown by curve B. We can find that at

the tail of the density function (area A), the EI value of x = 8

is better than the EI of the current fmin (near x = 3), so it is

possible that the true value at x = 8 is better than the current

fmin. Mathematically, the potential is calculated by (9). More

details are in [10].

C. Using Artificial Neural Network in MMLDE

An ANN is a computational mechanism, the structure

of which essentially mimics the process of knowledge

acquisition, information processing and organizational skills of

a human brain. An ANN has the capability of learning complex

nonlinear relationships and associations from a large volume

of data, and enables the analysis of a wide range of pattern

recognition [17]. An ANN is composed of a number of highly

interconnected neurons, usually arranged in several layers.

These layers generally include an input layer, a number of
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Fig. 4. Uncertainty about the function’s value at a point (such as x = 8
above) can be treated as if there were a realization of a normal random
variable with mean and standard deviation given by the DACE predictor and
its standard error (from [10]).

hidden layers, and an output layer. Signals generated from the

input layer propagate through the network on a layer-by-layer

basis in the forward direction. Neurons in the hidden layers are

used to find associations between the input data and to extract

patterns that can provide meaningful outputs. The output of

each neuron that responds to a particular combination of inputs

has an impact on the overall output. The weight is controlled

by the level of the activation of each neuron, and the strength

of the connections between the individual neurons. Patterns of

activation and interconnections are adjusted through a training

process to achieve the desired output for the training data. If

the averaged error is within a predefined tolerance, the training

is stopped and the weights are locked in; the network is then

ready to be used [18]. In MMLDE we use a feed-forward

ANN with one hidden layer and the predicted value of the

ANN model is used to measure the potential of the microwave

structure.

D. Optimization Kernel: The DE Algorithm

For the optimization core we choose an evolutionary com-

putation (EC) algorithm. It may seem that they may cost

more function evaluations compared with non-population-

based algorithms. However, choosing EC is motivated by the

following three considerations: 1) EC algorithms can achieve

global optimization, which is the aim of this paper; 2) although

a group of candidates is generated in each iteration, we

only perform one EM simulation for the candidate with the

possible best potential; and 3) the evaluations of individuals

in the EC algorithms are independent of each other in a

population, so it is very suited for parallel computation to

enhance the efficiency. On the other hand, non-population-

based optimization algorithms can do this not so easily, hence

many of them cannot be combined with parallel computation.

Although our current implementation in this paper does not

yet use parallel computation techniques, powerful parallel

computation techniques are available.

The DE algorithm [19] is selected as the search engine

in MMLDE. The DE algorithm outperforms many other EC

algorithms in terms of solution quality and convergence speed

[19]. DE uses a simple differential operator to create new

candidate solutions and a one-to-one competition scheme to

greedily select new candidates.

The ith candidate solution in the d-dimensional search space

at generation t can be represented as

xi(t) = [xi,1, xi,2, · · · , xi,d]. (10)

At each generation t, the mutation and crossover operators

are applied to the candidate solutions, and a new population

arises. Then, selection takes place, and the corresponding

candidate solutions from both populations compete to com-

prise the next generation. The operators are now explained in

detail.

For each target candidate solution, according to the mutation

operator, a mutant vector is built

Vi(t + 1) = [vi,1(t + 1), . . . , vi,d(t + 1)]. (11)

It is generated by adding the weighted difference between a

given number of candidate solutions randomly selected from

the previous population to another candidate solution. The

mutation operation is therefore described by the following

equation (DE/best/1/bin [19]):

Vi(t + 1) = xbest(t) + F (xr1(t) − xr2(t)) (12)

where indices r1 and r2 (r1, r2 ∈ {1, 2, . . . , NP}) are randomly

chosen and mutually different, and also different from the

current index i. Parameter F ∈ (0, 2] is a constant called

the scaling factor, which controls the amplification of the

differential variation xr1(t) − xr2(t). The base vector to be

perturbed xbest(t) is the best member of the current popula-

tion, so that the best information can be shared among the

population. To avoid stagnation and to improve the balance

between exploration and exploitation, we use the random-

scale search DE mutation operator. In this mutation, for the

scaling factor we use a vector F̂ composed of Gaussian-

distributed random variables with mean value μ and variance

σ: F̂i,j = norm(μ, σ), i = 1, 2, . . . NP, j = 1, 2, . . . d. Equation

(12) is therefore changed to (13). For more details please refer

to [19]

Vi(t + 1) = xbest(t) + F̂i(xr1(t) − xr2(t)). (13)

After the mutation phase, the crossover operator is applied to

increase the diversity of the population. Thus, for each target

candidate solution, a trial vector is generated as follows:

Ui(t + 1) = [ui,1(t + 1), . . . , ui,d(t + 1)] (14)

ui,j(t + 1) =

{

vi,j(t + 1), if (rand(i, j) ≤ CR) or j = randn(i)

xi,j(t), otherwise
(15)

where rand(i, j) is an independent random number uniformly

distributed in the range [0, 1]. Parameter randn(i) is a ran-

domly chosen index from the set {1, 2, . . . , d}. Parameter

CR ∈ [0, 1] is a constant called the crossover parameter, which

controls the diversity of the population.

Following the crossover operation, the selection operation

decides on the population of the next generation (t + 1).

In standard DE, Ui(t + 1) is compared to the initial target

candidate solution xi(t) by a one-to-one-based greedy selection

criterion. However, in MMLDE, we do not use this selection

operator, because we need to minimize the number of EM

simulations. Instead, we select the best solution (or solution

with the possible best potential) among all the trial solutions

U(t + 1) and then perform EM simulation to it. Then, we add
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this new solution to the population. Note that in MMLDE the

“population” only refers to the samples with EM simulation

results, and a new point is added into the population at each

iteration. The candidates generated by the DE operators are

called trial individuals.

E. Integrating Surrogate Models into the EC Algorithm

In MMLDE, there is an initial surrogate model and the

surrogate model is continuously updated throughout the opti-

mization process. Let us introduce the initial surrogate model

first. On one hand, the number of samples in the initial

surrogate model needs to be as small as possible; otherwise

the efficiency will decrease. On the other hand, we need to

cover the design space as much as possible, because too sparse

samplings will cause very little information in some areas and

the reliability of the surrogate model will be poor. To make

a good tradeoff, we use LHS sampling. The LHS sampling

method samples the design space more uniformly, and hence,

can use fewer samples to achieve more effective sampling.

For example, LHS often requires 20%–25% of the number of

samples compared to primitive Monte Carlo sampling when

estimating yield [21]. In MMLDE, the number of samples is

correlated to the dimension of the design variables, d. If d

is larger than 3, we use 11 × d − 1 as the number of initial

samples; otherwise, we use 8 × d − 1.

Although the initial surrogate model can roughly reflect

the performances of the RF passive components, its quality

is not good enough. Therefore, if we would directly use the

predicted value to guide further search, it would be very easy

to be trapped in a local optimum. The interpretation is quite

intuitive. For the GP model the predicted value of a point is

decided by the function values of the points near it. It may be

possible that there are more points around a local optimal point

than around the global optimal point. In this case, the function

value of the local optimal point can be predicted quite well and

with less uncertainty, while the function value of the global

optimal point may be predicted poorly (as the information is

little) and have a large uncertainty. The result may be that the

predicted value of the global optimal point is worse than that

of the local optimal point, which will cause a wrong selection.

To address this problem, we use the EI [10] (9) to measure

the potential, which considers both the predicted value and the

uncertainty of the prediction (see Section III-B).

EI considers both global search and local search. Especially

when the sampling is sparse (large standard error), it has a

high ability to consider the potential for global search. It can

also consider the potential for local search, especially when

the sampling is dense. However, in the MMLDE mechanism

the sampling can seldom be dense, because we want to use

a limited number of EM simulations to finish the synthesis.

Hence, the local search ability of using the EI measurement is

comparably weak. We therefore use a memetic algorithm [22]

to compensate the local search ability. In addition to the global

optimization engine, memetic algorithms use a population-

based strategy coupled with individual search heuristics ca-

pable of performing local refinements. In the revised DE

algorithm used in MMLDE, we use the same evolution oper-

Fig. 5. Illustrative example for EI and ANN results in local search.

ators and select the candidate with the possible best potential

in each iteration. Hence, the global or local search engine

is defined by the method to determine the potential of a

candidate and the corresponding surrogate model type. For

GP, we use EI to measure the potential when focusing on

global exploration; for ANN, we use the predicted value to

measure the potential when focusing on local exploitation. An

illustrative example is shown in Fig. 5. The function to be

predicted is y = 2.5× sin(x). From the ANN prediction values

and the potential measured by EI, we can see that EI predicts

that xB (the corresponding x value of point B) has the best

potential, but ANN prediction correctly selects the best point

xA. It can be noticed that there are two training data on each

side of xA and xB, which influence the GP prediction and EI

measurement mostly. xB has a smaller distance to the training

point with fmin compared with xA, and the opposite on the

other side. Hence, the EI value of xB is larger. On the other

hand, in this local area without dense sampling, ANN catches

the shape of the curve and predicts better.

From the experiments on passive components synthesis, we

also found that the best candidate chosen by the ANN and

the corresponding potential measurement method has a higher

probability of being the local refinement compared with GP

with EI measurement. Note that it does not mean that GP is

for global exploration and ANN is for local exploitation. They

cooperate with each other. The GP-based surrogate model and

the EI measurement also consider local refinement, and the

ANN may also help GP on global search by its samplings.

The mechanism of MMLDE is as follows: after the LHS

sampling to construct the initial surrogate model, we first use

GP with the EI measurement to determine the potential of the

candidates for a certain number of generations. The reason

is that in this period the number of samples is not sufficient,

global search needs to be emphasized. Then, we continue to

use GP, but when no improvement is shown for a certain

number of generations using GP, we use the ANN prediction

values to define the potential. If there is no improvement for

a certain number of generations by the ANN, we come back

to the GP and EI. We iteratively do this process until the

termination condition is met.

F. Other Components

To handle constraints, we use the static penalty function

method [23] in MMLDE.
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Algorithm 1 The MMLDE algorithm

Step 0: Initialize the parameters, e.g., the generation thresh-

old of continuously using GP/ANN when no improvement

is shown, the DE algorithm parameters (e.g., CR), the GP

parameters (e.g., the correlation function), the ANN param-

eters (e.g., the number of neurons, the training algorithm).

Step 1: Initialize the population by LHS sampling of the

design space. The EM simulations are performed for the

sampled design points.

Step 2: Check if the stopping criterion (e.g., a convergence

criterion or a maximum number of iterations) is met. If yes,

output the result; otherwise go to step 3.

Step 3: Judge to use the GP or ANN machine learning

technique as described in Section III-E.

Step 4: Train the selected surrogate model according to the

available samples (population).

Step 5: Use the available samples as the current population,

and perform the mutation operation according to (13) to

obtain each candidate solution’s mutant counterpart.

Step 6: Perform the crossover operation between each

candidate solution and its corresponding mutant counterpart

according to (14) and (15) to obtain each individual’s trial

individual.

Step 7: According to the selected model in Step 3, use the

EI or the predicted value to select the individual with the

possible best potential and perform the EM simulation to it.

Step 8: Update the population by adding the point from Step

7 and its performance. Update the best solution obtained so

far. Update other parameters. Go back to Step 2.

GP has the assumption of Gaussian distribution of the input

and output data. Hence, normalization should be done to the

training data. But when the range of the data is large, directly

normalizing the design points X and the performances Y may

not yield good results. In this case, we use transformation

functions (e.g., logx
m) to decrease the range of the input/output

variables.

G. General Framework of MMLDE

Based on the above components, the overall MMLDE

algorithm for the synthesis of high-frequency RF passive com-

ponents can now be constructed. The detailed flow diagram is

shown in Fig. 6 and the description is in Algorithm 1.

It can be seen from Fig. 6 that at every iteration there is a

step to decide to use the GP model or the ANN model. The

rules have been described in the last paragraph of Section III-E

and are not shown in the figure.

H. Parameter Settings of MMLDE

In MMLDE, there are several algorithm parameters which

need to be set by the user. They can be classified into five

groups: the DE parameters, the GP parameters, the ANN

parameters, the number of initial samples and the generation

threshold for alternating GP and ANN. Here, we provide some

recommended settings for each of them.

1) The DE parameters: two parameters need to be set in the

DE optimization algorithm, which are the scaling factor

Fig. 6. Flow diagram of MMLDE.

F and the crossover rate CR. For F, we use a Gaussian

distributed random number with μ = 0.75 and σ = 0.25.

The reason is shown in [20]. For CR, it is often set

from 0.5 to 1. The smaller, the more diversity of the

population, but the convergence rate is also lower. We

set CR to 0.8, which is a very commonly used setting

for single objective optimization [19].

2) The GP correlation function: for the problem of high-

frequency passive components synthesis, we suggest

using the Gaussian correlation function. The reason

is that through experiments, we found this correlation

model having the best results, while the exponential

correlation model [16] can also be considered.

3) The ANN parameters: for the training algorithm, the

LM algorithm [24] is used, which is a very commonly

used method in ANN training. For the number of hidden

layers, in most real world applications, one hidden layer

is chosen if a feed-forward ANN is used for fitting. In

the problem of passive component synthesis, the number

of design variables is not too many, and 8–15 neurons in

the hidden layer is a common choice. We use ten neurons

in the hidden layer, as other settings in this range do not

have much effect both on run time and performances.

4) The number of initial samples: we use 11×d − 1 when

the dimension is larger than 4, and 8 × d − 1 when

the dimension is less than 4. This setting is based on

the “10k” rule for space filling [10]. The “10k” rule

suggests using 10 × d (d is the number of design vari-

ables) LHS samples to uniformly cover the design space

for initialization in meta-model assisted optimization.

Because LHS sampling is used, the design space can

often be uniformly covered in not very high-dimensional

problems. The density of the filling is decided by m

when using m × d LHS samplings. 8 × d to 12 × d are

all used in practice. In order to avoid that a relatively

large part of the design space is not sampled because
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of the sparseness of the initial sampling, 11 × d − 1 is

used when the number of design variables is larger than

4, which is a very safe setting. For the problems with

less than four dimensions, on the other hand, even when

we have sparse initial samples, the updating mechanism

has a high probability to remedy the sparseness of the

initial sampling because the dimension is low. Therefore,

we select 8 × d − 1. Example 1 also shows that a good

result is obtained using the 8 × d − 1 setting.

5) The generation threshold: the generation threshold de-

termines after how many generations without improve-

ment the adaptive learning method, i.e., GP or ANN

is switched. The recommended setting is 20 if the

number of design variables is larger than 4; otherwise,

this parameter is set to 10. This is a setting based on

experience and tests. The two experiments show that

this setting is effective.

IV. Experimental Results and Comparisons

In this section, the MMLDE algorithm is demonstrated for

the synthesis of a 60 GHz inductor and a 60 GHz transformer

in a 90 nm CMOS technology. The top two metal layers

are used. ADS-momentum is used as the EM simulator. The

bounds of the design variables are set both by the design rules

of the technology and the experience of the designer. The two

examples are all constrained optimization problems. For the

optimization core, DE is used. Because the advantages of the

DE algorithm in circuit sizing have been demonstrated in [25],

such comparisons will not be repeated here. MMLDE stops

when the performance cannot be improved for 40 consecutive

generations. The performance of evolutionary algorithms may

be affected by the random numbers used in the evolution

operators. Therefore, ten runs with independent random num-

bers are performed for all the experiments and the results are

analyzed and compared statistically. The examples are run on

a PC with Intel 2.4 GHz Xeon CPU and 12 GB RAM under

Linux operating system. No parallel computation is applied

yet in these experiments. All the time consumptions in the

experiments are clock time.

The reference methods we selected for the comparisons are

as follows. The common reference method for the two exam-

ples is standard EMGO with the same DE optimization kernel

but fully using EM simulations. The purpose is to provide the

best result to test the other methods. Obviously, it is the most

CPU expensive method. Because, to the best of our knowledge,

a good enough equivalent-circuit model for 60 GHz integrated

inductors is difficult to find, we do not compare MMLDE with

SMLO for Example 1. Instead, we select SEMGO [2] and the

MMLDE framework but only with the GP or ANN model

as the reference methods. The latter two reference methods

all use the same optimization kernel and parameter settings

as MMLDE, and are abbreviated as EMGOG and EMGOA,

respectively. For the second example, we choose a widely

used equivalent-circuit transformer model and the reference

method is a revised SMLO (RSMLO). SMLO clearly has

the best efficiency, but the goal of MMLDE is to combine

good synthesis ability with low, practical computation time.

Fig. 7. Typical inductor result for Example 1.

So comparing the speed with SMLO is not our purpose unless

SMLO also receives a good result for high-frequency RF

component synthesis. Hence, we revise SMLO to enhance the

synthesis ability. The original SMLO uses a surrogate model

which can have errors, and the performances are related to the

type of surrogate model and its corresponding parameters. If

the synthesis fails by SMLO, the reason may be either the

framework itself or a bad surrogate model, or even a bad

search algorithm. In RSMLO, after the optimal solution of

the coarse model (initial optimal point) is decided, we directly

use EM simulations, which is analogous to using an absolutely

accurate surrogate model, and the same optimization kernel as

MMLDE. The search range is within a small deviation (e.g.,

3%, 5%) from the initial optimal point [3], which is a common

setting of SMLO.

A. Test Example 1

The first example is a 60 GHz inductor with circular shape in

a 90 nm CMOS process for VCO design. The design variables

are the inner diameter (din), the metal width (mw), and the

metal spacing (ms). The number of turns (nr) is 1.5, because

for most of the inductors in 60 GHz RF ICs, nr is 1 or

1.5. The ranges of the design variables are din ∈ [30, 100],

mw ∈ [3, 10], ms ∈ [3, 8] (all in μm). The design spec-

ifications (constraints) are the inductance L ∈ [0.45, 0.5]

nH and the self-resonance frequency SRF > 100 GHz. The

goal is to maximize the quality factor Q. The results are

shown in Table I. RCS is the number of designs satisfying

the constraints over ten different runs. N is the number of

evaluations (average for the ten runs). T is the average time

of ten runs. The average performance for the optimization goal

Q and the typical performances of the constraints (L, SRF )

are provided for each method. For SRF we calculate the

corresponding Q at 100 GHz. If Q at 100 GHz is larger than

0, the SRF is larger than 100 GHz.

It can be seen from Table I that the result of MMLDE is

comparable to that of EMGO (the benchmark) and achieves

an efficiency improvement of ten times. Both of the design

solutions of MMLDE and EMGO (in the sequence of din,

mw, ms) are near [5], [6], [28]. The standard deviation of

MMLDE on the optimization goal, Q, is 0.14. Because the

shape of the inductor is circular, the mesh density is set to

30 cells/wavelength and the Arc. resolution is set to 5° in this

example. With these settings, the CPU time cost of each EM

simulation is longer, but the accuracy is high. A typical result

of MMLDE for the 60 GHz inductor is shown in Fig. 7.

Next, we look at the performances of the MMLDE frame-

work only with the GP model and the EI measurement
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TABLE I

Results of Different Methods for Example 1

EMGO EMGOG EMGOA SEMGO MMLDE

RCS 10/10 9/10 2/10 5/10 10/10

Q 14.7 14.5 15.1 15.4 14.5

L 0.46 0.45 0.42 0.40 0.46

SRF >100G >100G <100G >100G >100G

N 356 92 Fail 96 40

T 19.1 h 5.0 h Fail 4.9 h 2.1 h

As EMGOA failed to satisfy the constraints in most cases, we do not
consider its clock time and write Fail.

(EMGOG) and only with the ANN model (EMGOA). For

the EMGOA method, we can see that the synthesis does not

succeed in many cases. This verifies that if only the predicted

value is used in online surrogate-model-based optimization, it

is very easy to be trapped in local optimum points and fail

the synthesis. For the EMGOG method we see that in most

cases the synthesis is successful, because the EI measurement

considers global exploration. However, it is about 2.5 times

slower than MMLDE. We found that the number of EM

evaluations can show a large variation between different runs

using EMGOG: sometimes the necessary number of EM

simulations is less than 30, but sometimes it can increase to

more than 180 for a similar final result. Hence, the memetic

algorithm in MMLDE enhances the speed and the optimization

ability considerably. We also compare with the method of

SEMGO [2]. For the ANN we use eight steps for din, four

steps for mw, and three steps for ms (in total 96 points for EM

simulation). We normalize the input and output data to [−1, 1]

by means of linear scaling, and use the LM training algorithm.

Different numbers of neurons and layers have been tested. We

randomly select five ANNs from the group of trained ANNs

whose training error is within 0.01. The results show that

sometimes SEMGO can obtain a good result and sometimes it

cannot. In the ten runs the results violate the specification on

L for five times (according to the EM simulation results, not

the ANN predictions). In those runs which provide infeasible

solutions, the Q value is much higher. Hence, the average

value of Q is higher. The reason of violating the L constraint

is not only the training errors of the ANNs; another important

reason is that the training data are not smooth enough, making

some of the trained ANN overfitted and loosing generality

[18]. These are inherent problems for ANNs. We can also

find that SEMGO is nearly 2.5 times slower than MMLDE.

The difference comes from the core idea of MMLDE, i.e., the

adaptive generation of the training data, which leads to two

advantages compared with SEMGO: 1) the time to perform

EM simulations in non-promising areas is minimized, and

2) the ANN prediction is often used for local refinements, so it

is more reliable and accurate. Even if the ANN in MMLDE is

over-fitted, there is another learning mechanism, the Gaussian

process, which can adjust the search direction.

B. Test Example 2

The second example is a 60 GHz overlay transformer [26]

with octagonal shape in a 90 nm CMOS process. The design

variables are the inner diameter of the primary inductor

Fig. 8. Equivalent circuit model of a transformer used as coarse model.

TABLE II

Results of Different Methods for Example 2

EMGO RSMLO MMLDE

RCS 10/10 0/10 10/10

PTE 89.0% 86.1% 88.8%

N 965 Fail 87

T 24.7 h Fail 2.3 h

As RSMLO using equivalent circuit model failed to satisfy the
constraints in all the ten runs, we do not list its clock time.

Fig. 9. Typical transformer result for Example 2.

(dinp), the inner diameter of the secondary inductor (dins),

the width of the primary inductor (wp), and the width of the

secondary inductor (ws). The ranges of the design variables

are dinp, dins ∈ [20, 150], wp, ws ∈ [5, 10] (all in μm).

The design specifications are the coupling coefficient k >

0.85, the quality factor of the primary inductor Q1 > 10, the

quality factor of the secondary inductor Q2 > 10. The output

load impedance is 25 �, which is the input resistance of the

following stage. The specifications of the input impedance (in

60 GHz) are Re(Zin) ∈ [10, 20] and Im(Zin) ∈ [10, 25] (�),

which is the required optimal load impedance of the driver

stage. The optimization goal is to maximize the power transfer

efficiency (PTE). The coarse model selected for RSMLO is a

widely used equivalent circuit of a transformer [27], which is

shown in Fig. 8. The transformer synthesis results are shown

in Table II. The average PTE for ten runs are provided for

each method.

From Table II, the results can be analyzed. MMLDE costs

2.3 h on a single CPU node, which is very reasonable for

practical use. Moreover, the result of MMLDE is comparable

with the benchmark (the EMGO method), but MMLDE is

more than ten times faster. The standard deviation of MMLDE

on the optimization goal, PTE, is 0.25%. The mesh density is

set to 30 cells/wavelength and the Arc. resolution is set to 45°.

A typical transformer result of MMLDE is shown in Fig. 9.
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We also see that the RSMLO method using a coarse

equivalent-circuit model cannot satisfy the constraints. The

design solutions of MMLDE and EMGO (in the sequence

of dinp, dins, wp, ws) are close to [50, 53, 10, 10], but

that of RSMLO is close to [123, 108, 10, 10]. The result is

good when using equivalent circuit model, but when checking

with fine EM simulations, the performances are far from the

specifications. It can be seen that the search around the optimal

point of the coarse equivalent-circuit model is not appropriate

in this example. We then look at the coarse-mesh SMLO. The

Nelder–Mead simplex direct search method [28] is used to

perform local search. The starting point is the optimal solution

of the above coarse equivalent-circuit model, which is better

than a random start in most cases. For the mesh density, 10

cells/wavelength and 20 cells/wavelength are tried. Because

the EM solver uses four threading, the time spent by using 10

cells/wavelength is about 86% of the time spent by using 30

cells/wavelength (the fine EM simulation). We use 150 coarse

mesh model evaluations to find the initial optimal point, while

MMLDE uses 87 fine EM simulations in the whole process.

With the optimal point of the coarse model, a 5% deviation

is used to set the search range and global optimization is

performed using fine EM simulations in the selected range.

As said above, this is like using an absolutely accurate

surrogate model, whose solution quality must be better than

the original SMLO which is affected by learning errors. Five

runs are performed for each setting. The best results are: using

ten cells/wavelength, the optimal point of the coarse mesh

model is [111.956, 86.778, 11.653, 12.610], and after global

optimization in the selected range, the performances [in the

sequence of PTE, k, Q1, Q2, Zin (in complex form)] are

[86.91%, 0.75, 15.664, 15.361, 18.7081 + 60.929i]. Using 20

cells/wavelength, the initial optimal point is [114.633, 91.192,

11.736, 11.761], and the optimized performances are [87.06%,

0.762, 14.882, 15.029, 19.990 + 64.414i]. These results are

much better than the result by the equivalent circuit model.

However, the k and Im(Zin) constraints are still not satisfied,

though this will be an acceptable result if the constraints are

loose. At last, we use the fine EM simulation and the Nelder–

Mead simplex direct search method in the whole process, and

the k and Im(Zin) constraints also cannot be satisfied.

From this example we can see the two challenges of SMLO:

the accuracy of the coarse model and the selection of the

starting point. Note that “the starting point” is not the initial

point to generate the base points, or the optimal result of

the local optimization, but the starting point to run the local

optimization. For the coarse equivalent-circuit model that is

cheap in evaluation, we can do global optimization to it and

no starting point is needed. However, the coarse model often

has serious accuracy problems at high frequencies. For coarse-

mesh EM models that are more expensive, when using SMLO

we can only do local optimization to find the initial best

point. Although the model is more accurate, the selection of

the starting point for the local optimization becomes the new

problem. This problem may seriously affect the performance

of SMLO, as the starting point is very critical for local

optimization algorithms. In contrast, MMLDE does not need

any coarse model nor a good starting point, so overall it has

a more reliable performance at a good computational cost

for high-frequency component synthesis. The upper frequency

limit of MMLDE is the frequency that fine EM simulations

cannot be trusted, or the same as EMGO. The reason is that

MMLDE only relies on accurate EM simulations, rather than

on coarse models. For any frequency where the designer relies

on the result of fine EM simulations, MMLDE is applicable.

Note that SMLO is a good choice when the frequency is

relatively low or the specifications are moderate. From the

two difficult examples presented in this paper, it is clear that

MMLDE and SMLO face different kinds of problems and

therefore are suited for different applications.

V. Conclusion

In this paper, the MMLDE algorithm has been proposed

for the optimized synthesis of passive components in high-

frequency RF ICs. MMLDE can provide results that are

comparable with the standard EMGO framework, which is the

best framework in terms of solution quality, but at far lower

computational cost (an order of magnitude smaller). Compared

with the state-of-the-art methods, i.e., SMLO and SEMGO,

MMLDE also showed clear advantages in optimization ability,

accuracy, efficiency and robustness, as demonstrated by the

presented 60 GHz examples. These results are achieved by the

core idea of generating the training data adaptively to con-

struct a dynamically online surrogate-model-based memetic

evolutionary algorithm in combination with the techniques

from evolutionary computation and machine learning. Future

work will focus on developing MMLDE-embedded tools and

introducing parallel computation to the MMLDE framework.
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