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Synthesis of Linear Antenna Arrays 

P. K. MURT’HY AND A. KUMAR, MEMBER, IEEE 

AbstractSynthesis of antenna arrays employing the &-norm as 

well as the L,-norm is discussed. The approximation in the &norm 

is obtained making use of Lawson’s algorithm. A general iterative 
perturbation technique has been evolved for pattern synthesis for the case 

when the antenna currents alone are vaned as well as for the case when 

both the antenna currents and the element positions are simultaneously 

varied. A few illustrative examples are given. The convergence of the 
iteration and the uniqueness of the solution are discussed. 

I. INTRODUCT?ON 

A considerable amount of work [l], [2] hasbeen done on the 

synthesis of linear equally-spaced antenna arrays. These methods 

are based on Fourier series expansion, minimization of maximum 

deviation, and interpolation theory. Shaped beam radiation 
patterns have been synthesized by Stutzman [3] using the iterative 

sampling method. 

Spacing the elements unequally along a straight line in order 

to obtain a better performance is a more recent innovation in 

array synthesis theory. Probably, the first work on unequally 

spaced arrays has been carried out by Unz who has given several 

methods [4]-[lo] for pattern synthesis. Sahalos [11] further 
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extended Unz's orthogonal method to synthesize three-dimen- 
sional arrays. Ma [12] has used mini-max criterion and has 
applied techniques of approximation theory while Ishimaru [13] 
has described a theory of unequally spaced arrays based on the 
Poisson's summation formula. Recently Mautz and Harrington 
[14] have described a method wherein pattern synthesis is 
carried out with a constraint on the source norm. 

The problem of choosing the element positions instead of 

specifying them has been tackled by Perini and Idselis [15] by 
making use of the steepest descent technique. Mikuni and Nagai 
[16] have used a modified steepest descent technique to obtain 
a set of antenna currents and element positions which results 
in restricting the synthesized pattern to lie within a specified 
region. Redlich [17] has made use of a perturbation technique 
to arrive at a set of element positions and the corresponding 
currents which minimize the mean squared error between the 

desired and synthesized patterns. However, no information is 
available regarding the convergence of the iteration and unique- 
ness of the solution. 

In this paper, a method to synthesize antenna arrays employ- 
ing either the L,- or the L,-norm is discussed. The approxima- 
tion in the La-norm is obtained by making use of Lawson's 
algorithm. Described in this paper is an iterative perturbation 
technique to synthesize an arbitrary pattern by varying both the 
element positions and the antenna currents. Uniqueness of the 
solution has been studied numerically and it has been found that 
the sets of antenna currents and element positions that yield the 
least error may not always be unique. A particular case of this 
problem, namely, when only antenna currents are allowed to 
vary, is also discussed. 

11. THEORY OF PATTERN SYNTHESIS 

Let it be desired to design an N-element array whose array 
factor f,(I,x; 4) approximates an arbitrarily prescribed pattern 
f d ( 4 )  best in a given norm. This amounts to the determination 
of the set of currents 1 and the set of element positions x such 
that the error 

~ 

= !I& - f , l l  (1) 

is minimum. 
This may be solved by an iterative perturbation technique 

described below. Consider a center-symmetric N (  = h)-element 
linear array (Fig. 1) whose array factor after (I - 1) iterations 
have been carried out, is given by 

where 

uk(xk';fp) .= cos Q;, lib; = Bxn' cos 4 + a; 
and a: = -fix: cos do with #o = steering angle and /3 = 241.. 
Adopting the L,-norm, the error op' after (I - 1) iterations is 
given by 

where w( 4) is a nonnegative weight function. The set of currents 
is now determined such that G,' is minimum. Having obtained 
the currents, the element positions are perturbed to obtain a 
better match, i.e., 

1- x-3 --+=-- x 3  .--I 
Fig. 1. Center-symmetric linear array. 

Correspondingly the u,' change as given below: 

ii,' -+ cos cos (BS,' cos 4) - sin Q; sin (BS; cos 4). (5) 

Assuming the 8,' to be small, to a first-order of approximation, 

cos (BS; cos 4) = 1 and sin (BS,' cos 4) = /36; cos 4. (6) 

Therefore, 

u,' -+ u,' - BS,' cos 4 sin Qi. (7) 

The new array factor fsx' corresponding to this perturbation is 

given by 

where 

v,' = I2B cos 4 sin $2. 

The error 6,' is now defined as 

= /lei - 2 Sk(VL11 where e' = (fs; - fd). (10) 
k =  1 

P 

The 82 are now determined so that $' is minimum. Minimiza- 

tion of may be seen to be similar to the minimization of G;. 
The procedure for determining the 62 consists in approximating 
the error function e' by x=l dk'v,'. Since e' itself is small, the 
6,' may be expected to be small, thus justifying the approximation 
made in (6). It is expected that with 62 so chosen, a closer 
approximation becomes possible, i.e., 

5,' < 0;. (1 1) 

The iteration process may be continued until no further reduction 
in the error becomes possible. However, the iterative process 
described above does not converge for the case p = co, if there 
exists a point 4, where e' is an extremum and simultaneously 

Since e' is the difference between fd and its best mini-max 
6iV216,6, = 0. This may be proved as follows. 

approximation fsr' [18], 
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Further, since Hence 

Hence. the iteration does not converge. 

It may be noted that this condition occurs in the synthesis 

of the Gaussian pattern, exp [- /a;(4 - 40)2] at 4 = 40. In 

such cases the method described above may be modified as 

follows. 

i) fd is normalized so that &(&) = 1. 
ii) The set of currents are obtained by minimizing 1, fsr' - f d  Ilm. 

iii) The error gzl  is redefined as 

Noting that [ fsr  - (C;= ZJfd]g=+a = 0, the 6,' may now be ob- 

tained by minimizing c,'. 
Note that the expressions in (3), (10) and (14) are all of the 

form : I f  - xi=l akgkll,. Minimization of this expression is 

equivalent to obtaining the best approximation in the &-norm 

of the function f by xi=l akgk, where the gk are given. Choice 

of p = 2 leads to the least squares approximation and p = cc 

leads to the mini-max approximation. Both of these cases are 

considered here. 

Case No. 1:p = 2 

be solved as given below. 

the gk such that 

Given that the gk are linearly independent, this problem may 

i) A new set of orthonormal functions & are obtained from 

and (Zi ,z j )  = aij where the inner product of two functions f and 

g is given by 

(L9) = h ) 8 ( 4 ) W ( 4 )  d4, (16) 
J a  

w(4) being a given nonnegative weight function. The bij are 

obtained by making use of the Gram-Schmidt procedure [19]. 

ii) The least squares approximation to f is now given by [19], 

Identifying the gk with u,, an explicit expression for Z,' may 

Let C, = (&,&), then 

now be obtained from the following identity. 

Similarly, 6,' may also be determined. 

Case No. 2 : p  = OT? 

867 

(1 8) 

Minimax approximation over a finite point set only is con- 

sidered. Let& be specified over a finite point set @. Then, 

It has been proved elsewhere [18], [20] that the best mini- 

max approximation may be obtained by computing a certain 

weighted least squares approximation. This method is advan- 

tageous because there are several areas (for instance, vector- 

valued functions and functions of complex variable) where there 
arc no known algorithms for L,-approximation but where least 

squares approximation can be used. Lawson's algorithm consists 

in generating the required weight function. 

Lawson's algorithm for La,-approximation: A sequence of 
weight functions d(q$) = W: with &,iE9 W: = 1 is defined 

below 

Lawson [20] has shown that this sequence of weights does 

converge and the corresponding least squares approximation is 

also the best mini-max approximation, i.e., defining 

the numbers ozk increase monotonically and converge to $ 
defined by 

= max - 2 akgki = lim u2'. (21) 
$ i s @  1 k : l  I k-m 

The convergence is slow without an acceleration scheme. It has 

been observed that Lawson's algorithm tends to drive the 

weights to zero everywhere except at the extremal points of 
the error curve. Hence attempts may be made to speed up the 

algorithm by making the weights tend to zero as rapidly as 

possible everywhere except at the extremal points. The scheme 

due to Rice and Usow [21] is described here. 

Step 1 : ''1" iterations of Lawson's algorithm are carried out 

(a typical value of 1 is 3 or 4). 

Step 2: W! is set to zero, if 

Step 3:  Iteration is started from step 1 again. 

111. SYNTHESIS BY AMPLITUDE CONTROL 

Using the techniques described in the preceding section the 

given pattern is synthesized by varying the magnitude of antenna 

currents alone. In order to illustrate the method a smoothly 

varying Gaussian pattern is synthesized. Further, to qualita- 

tively assess the effect of the nature of the desired pattern on the 

quality of the approximation obtained, a sector-beam pattern 
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Synthesis of Gaussian pattern. Fig. 2. 

with a finite discontinuity is also synthesized. For the sake of 
computational simplicity a 6-element center-symmetric array 
with A/2 element spacing is chosen. Both patterns are taken to 
be symmetric about Q = 7112. So that CI = 0. 

Illustration I : Synthesis of Gaussian Pattern 

The pattern to be synthesized is defined below: 

Case1:p  = 2 

Since the pattern is symmetric about Q = 7112, it is sufficient 
to consider the pattern only in the range (0,(71/2)). The weight 
function is chosen to be a constant and in light of the normaliza- 
tion condition, 

(24) 
2 

w ( Q )  dQ = 1, w(#) = - .  
71 

The currents obtained using (18) are 

I ,  = 0.43224, I ,  = 0.32067, I3 = 0.15787. 

The mean squared error 0, = 1.61338 x The desired and 
synthesized patterns are shown in Fig. 2. 

The error m2 depends upon the desired pattern, the element 
spacing, and the number of elements. It is of interest, therefore, 
to determine the minimum number of elements and the corre- 
sponding spacing so that the error does not exceed a prescribed 
limit. For this case, the error has been studied [2] numerically 
as a function of both Nand d l l .  

Note that Schelkunoff's method would aim at choosing the 

antenna currents such that the error 

whereas in the method described above, the error defined by 

Gz = 1: I fd  - f , 1 2 W ( d )  dQ 

is minimized. Thus, on comparison, it may be found that 
Schelkunoff's method is a particular case of the method presented 
here with sin Q chosen as the weight function. 

Case 2: p = co 

equally spaced points, i.e., 

The Gaussian pattern described by (23) is specified over 181 

f,(di) = fdi = exp [-15(di - n/2)'], i = 1,2,-. .,181 

71 
Qi = (i - 1) ~ 

2 x 180' 

Accelerated Lawson's algorithm is started choosing 

weights to be equal, i.e., 

The iteration has been found to converge to a third decimal 
accuracy in 8 iterations. The weight function and the synthesized 
pattern are shown in Fig. 2. The currents are obtained to be 

I ,  = 0.43308, I ,  = 0.31621, I3 = 0.18415. 

The maximum deviation may be seen to be only 0.067 as com- 
pared to 0.0892 for the case p = 2. 

Illustration 2: Synthesis of Sector-Beam Pattern 

The sector-beam pattern is defined below: 

0 5 Q < 7113 

f d  = [i 71/3 5 5 2x13 

27113 < Q 5 71. (27) 

As in the previous example, w ( Q )  = 2/n. The currents for this 
case are found to be 

I ,  = 0.90449, I ,  = 0.28928, I3 = -0.15324 

and the mean squared error is G~ = 2.61981 x lod2. The 

desired and synthesized patterns are shown in Fig. 3. 

IV. S Y ~ ~ . ~ I S  BY SIMULTANEOUS CONTROL OF ANTENNA 

b R E h T S  AND ELEMENT POSITIONS 

Employing the method described in Section 11, the Gaussian 
pattern and the sector-beam pattern are synthesized by varying 
both the magnitudes of the antenna currents and the element 
positions. A numerical study of the uniqueness of the solution 
has been carried out by starting the iteration from different sets 
of initial element positions. It appears that the solution is not 
always unique and depends upon the pattern to be synthesized. 

Illustration I : Synthesis of Gaussian Pattern 

The Gaussian pattern given by (23) is synthesized employing 
L,-norm by a &element, center-symmetric broadside array. 
The weight function, as before, has been chosen to be a constant 

equal to 2/71. Five sets of initial element positions are chosen and 
in all these cases the iterative process has converged to the same 

solution. However, the number of iterations required to obtain 
the solution depends upon the initial choice of element positions. 
The synthesized pattern is shown in Fig. 2. The initial element 



SUCCIh-CT PAPERS 869 

TABLE I 
SYNTHESIS OF GAUSSIAN PATTERN 

Initial Element Positions Final Element Positions 
in Wavelengths in Wavelengths Antenna Currents 

Number x,' x2' x3' x1 X2 x3 11 I2 13 

TABLE I1 
SYNTHESIS OF SECTOR-BEAM PATTERN 

Final Element Positions 
in Wavelengths Final Antenna Currents 

Number of 
Number X i  .y2 -y3 11 1 2  13 1 oou2 Iterations 

(0.25) (0.75) (1.25) 0.8376 0.2916 -0.2282 1.7727 
0.2488 0.5879 1.5496 

(0.30) (0.90) (1.25) 1.0091 0.3295 -0.2350 1.7730 
'0.2950 '0.7786 '1.5353 
(0.325) (0.975) (1.625) 1.0406 0.1070 -0.2424 1.7735 
0.3048 0.8839 1.5204 

(0.225) (0.475) (0.925) The iteration does not converge. 
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Fig. 3. Synthesis of sector-beam pattern using L2-norrn 

positions, the final element positions and the antenna currents 

are  presented in Table J .  

Illustration 2: Synthesis of Sector-Beam Pattern 

The sector-beam pattern as defined by (27) is syntliesiLed 

employing L,-norm as before, by a 6-element, center-symmetric 

broadside array. The weight function is chosen to be a constant 

equal to 2.n. The iteration has been started from four different 

sets of initial element positions. The results of the synthesis are 

shown in Table 11. 

Note that each choice of initial element position has led to  

a different set of final element positions and antenna currents. 

However, it has been found that the pattern of any of these arrays 

is the same, as well as  the mean-squared error. Thus it appears 

that the optimum pattern is unique but the element positions and 

antenna currents for a given pattern are not unique. The desired 

and synthesized patterns are shown in Fig. 3. 

DISCL~SSION 

Use of Lawson's algorithm in pattern synthesis reduces the 

problem of mini-max approximation to one of weighted least 

squares approximation. Thus mini-max approximation may be 

obtained even when the functions N, are complex. This implies 

that arrays of arbitrary geometry may be designed using the 

techniques presented here. 
When linear arrays with element positions prescribed are syn- 

thesized using the L,- or &-norm, the current distribution 

obtained is unique in light of a uniqueness theorem 1181. In the 

case of L,-approximation, however, it may be noted that the idi 

must constitute a Chebyshev set for the solution to exist. This 

condition imposes a constraint on the length of the array for 
a given I\' as pointed out by Ma [12]. The closeness of the match 

between the desired and the synthesized pattern appears to 
depend upon the nature of the desired pattern (see Figs. 2 and 3). 

The match is better for smooth pattern and for a pattern with a 
finite discontinuity Gibb's phenomenon is observed. 

In the case of synthesis when both the element positions and 

antenna currents are allowed to vary and when the iteration is 

started from different initial element positions, different sets of 
element positions and antenna currents are arrived a t  depending 
upon rhe prescribed pattern. Thus, in the case of the synthesis 

of sector-beam pattern each choice of initial element positions 

has led to a different solution; each solution corresponding to 

a local minimum. However, the synthesized pattern and hence 

ui2 are the same for all the solutions though x and I are dif- 

ferent. It appears that the synthesized pattern is unique though 
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the x and I that yield this pattern are not. In general, any 

choice of initial element positions leads t o  a local minimum 

only. To obtain a global minimum the iteration must be initiated 

from several choices of initial element positions and the resulting 

local minima must be compared to obtain the global minimum. 

A convenient choice of initial element positions is the one where 

the interelement spacings are equal. A digital computer may 

readily be programmed .to accomplish this scheme. 
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A Generalized Network Formulation for Aperture Problems 
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Absfrad-A general formulation for aperture problems is given in 

terms of the method of moments. It applies to any two regions isolated 

except for coupling through the aperture. The aperture characteristics 

Manuscript received November 29, 1975;. revised March 21, 1976. 
This work was sponsored by Air Force Cambridge Research Laboratories 
under Contract F19628-73-C-0047 and by the National Science Foundation 
under Grant GK-38309. 

The authors are with the Department of Electrical and Computer 
Engineering, Syracuse University, Syracuse, NY 13210. 

CONOU,CTOR J 
REGION b 

Fig. 1. General problem of two regions coupled by aperture. 

are expressed in term of two aperture admittance matrices, one for each 

region. The admittance matrix for one region is independent of the other 

region, and hence can be used for any probrem involving that region and 

aperture. The solution can be represented by two generalized n-port 

networks connected in parallel with current sources. The current sources 

are related to the tangential magnetic field which exists over the aperture 

region when the aperture is closed by an electric conductor. Formulas 
for fields (linear functionals) and power (quadratic functionals) are given 

in terms of the admittance matrices. 

I. INTRODUCTION 

The general problem of coupling through apertures has many 

specific applications, such as  apertures in a conducting screen, 
waveguide-fed apertures, cavity-fed apertures, waveguide-to- 

waveguide coupling, waveguide-to-cavity coupling, and cavity- 

to-cavity coupling. The literature on these problems is extensive. 

Many books, of which [1]-[4] are typical, discuss the problem 

and give references t o  some of the literature. 

This paper formulates the problem in terms of a moment 

solution of the operator equation. An application of the equiv- 

alence principle separates the problem into two parts, namely, 

the regions on each side of the aperture. The only coupling is 
through the aperture, whose characteristics can be expressed by 

aperture admittance matrices, one for each region. These admit- 

tance matrices depend only on the region being considered, being 

independent of the other region. The aperture coupling is then 
expressible as the sum of the two independent aperture admit- 

tance matrices, with source terms related to the incident magnetic 
field. This result can be interpreted in terms of generalized net- 

works as  two n-port networks connected in parallel with current 

sources. The resultant solution is equivalent to an ti-term 
variational solution. 

Since the problem is divided into two mutually exclusive parts, 

one can separately solve a few canonical problems, such as 
apertures in conducting screens, in waveguides, and in cavities, 

and then combine them in the various permutations mentioned 

above. Computer programs can be developed for treating broad 

classes of canonical problems, such as apertures of arbitrary 

shape in conducting planes, in square waveguides, and  in 
rectangular cavities. Such programs can then serve as broad and 

versatile tools for designing electromagnetic networks with 

aperture coupling. 

11. GENERAL FORMULATION 

Fig. 1 represents the general problem of aperture coupling 

between two regions, called region a and region b. in region a 

there are impressed sources J‘,  Mi, and region b is assumed 

source free. The more general case of sources in both region a 

and region b can be treated as  the superposition of two problems, 

one with sources in region a only, plus one with sources in 


