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Abstract. Deductive veri�cation of progress properties relies on �nding

ranking functions to prove termination of program cycles. We present an

algorithm to synthesize linear ranking functions that can establish such

termination. Fundamental to our approach is the representation of sys-

tems of linear inequalities and sets of linear expressions as polyhedral

cones. This representation allows us to reduce the search for linear rank-

ing functions to the computation of polars, intersections and projections

of polyhedral cones, problems which have well-known solutions.

1 Introduction

Deductive veri�cation of reactive systems relies on �nding invariants and ranking
functions. While automatic generation of invariants has received much attention
[GW75,KM76,BLS96,BBM97], automatic generation of ranking functions has
only recently started to emerge [DGG00].

Proofs of progress properties of systems (that is, properties that the system
will achieve a certain goal) involve showing that cycles on the path to the goal
terminate. The classical method for establishing such termination is the use of
well-founded domains together with so-called ranking functions that assign a
value from these domains to each program state. Progress is then shown by
demonstrating that each step in the cycle reduces the measure assigned by the
ranking function. As there can be no in�nite descending chain of elements of a
well-founded domain, the cycle must eventually terminate. Clearly the existence
of such a ranking function implies termination. Conversely, it has been proven
that if a cycle terminates, a ranking function exists.

Recent years have seen great progress in automating deductive veri�cation
by improvements in decision procedures, invariant generation and automatic ab-
straction. However, the synthesis of ranking functions remains largely a manual
task. Some heuristics have been proposed in [DGG00], but these are limited to
functions that appear as expressions in the program text.
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In this paper we propose an algorithm that generates ranking functions for a
program cycle that are linear in the program variables. The algorithm consists
of three steps. First, it derives a set of linear expressions that are bounded inside
the cycle from some cycle invariant. Second, it derives a set of linear expressions
that decrease discretely around the cycle from the cycle's transition relation.
The third step then computes the intersection of these two sets. Any expression
in the intersection serves as a ranking function, and thus nonemptiness of the
intersection proves termination of the cycle.

The remainder of the paper is organized as follows. Section 2 presents our
computational model of transition systems, it gives some background on well-
founded domains, and it introduces the running example. In Sec. 3 we introduce
polyhedral cones and demonstrate that problems involving systems of linear
inequalities can be reduced to problems over cones. Our algorithm is presented
in Sec. 4, and its application is illustrated on the example program. In Sec. 5 we
discuss a more complex application of the algorithm, and in Sec. 6 we conclude
with some discussion and limitations of our approach.

2 Preliminaries

The computationalmodel used to describe programs is that of a transition system

[MP95] (fts), S = hV;�; T i, where V is a �nite set of variables, � is an initial
condition, and T is a �nite set of transitions. A state s is an interpretation of
V . Each transition � 2 T is represented by a transition relation �� , an assertion
that expresses the relation between the values of V in some state s and the values
of V (referred to by V 0) in any state s0 to which the system can transition by
taking � . A run of S is a sequence of states such that the �rst state satis�es �
and any two consecutive states satisfy �� for some � 2 T . A state s is accessible
if s appears in some run of S. The set of all accessible states is �.

A relational domain (or just domain) hD;�i is a set D paired with a binary
relation � on D. A domain is said to be well-founded if there are no in�nite
sequences of elements of D which decrease under �. A function f is said to
map hD1;�1i into hD2;�2i if f maps D1 into D2 and is monotone, that is,
f(d1) �2 f(d2) for all d1; d2 2 D1 such that d1 �1 d2. Notice that f maps in�nite
decreasing sequences in hD1;�1i to in�nite decreasing sequences in hD2;�2i. A
ranking function for a domain is any function that maps it into some domain that
is known to be well-founded, such as the non-negative integers with the greater-
than relation. Notice that any domain for which a ranking function exists is
well-founded.

Ranking functions can also be used to establish the termination of transition
systems. Let R =

S
f�� j� 2 T g be the combined transition relation of S. The

decreasing sequences of h�;Ri are precisely the suÆxes of runs of S. Thus S
has an in�nite run i� the domain h�;Ri has an in�nite decreasing sequence.
Therefore the termination of S is equivalent to the well-foundedness of h�;Ri,
and a ranking function for h�;Ri certi�es that S terminates.
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Our algorithm generates ranking functions that map h�;Ri into the well-
founded domain hRat�; >�i of rationals greater than some constant value �,
with the discretely-greater-than relation >�, de�ned by

x >� y i� x � y +� ;

where � is a positive constant.

Example

Consider the program terminate, presented in Fig. 1. The expression �i � j

decreases by 1 with each iteration of the cycle f`0; `1; `2g, and its value is bounded
from below by �100� k0, where k0 is the value of k upon entry into the loop.
Therefore, �i � j de�nes a ranking function for the cycle, and the program
terminates.

local i; j; k : integer

`0 : while i � 100 ^ j � k do�
`1 : (i; j) := (j; i + 1)

`2 : k := k � 1

�

`3 : halt

Fig. 1. Program terminate

Notice that this system is not �nite-state, so termination cannot be estab-
lished by model checking. In addition, the expression �i � j does not appear
anywhere in the program, so analytic heuristics of the form proposed in [DGG00]
are unlikely to discover it. Furthermore, the expression k, which seems the most
promising analytic ranking function, has no obvious lower bound. In fact, it is
bounded from below by min(i0; j0), but it is not clear that discovering this bound
is any easier than �nding the expression �i � j.

In Sec. 4 we will demonstrate that the ranking function �i � j can be gen-
erated automatically.

3 Linear Inequalities and Polyhedral Cones

Our method is inherently deductive. It reduces the synthesis of linear ranking
functions to the search for linear inequalities implied by systems of inequalities
extracted from the program. Essential to the method, then, is the approach used
to derive such consequences.

Consider any system of linear inequalities �i1x1+ � � �+�idxd � 0. Recall that
the inequality�1x1+� � �+�dxd � 0 is a consequence of the system i� it is satis�ed
by every solution of the system. Two well-known rules for deducing consequences
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of such systems are that any inequality can be scaled by a non-negative factor,
and that any pair of inequalities can be added. These two inference rules can be
combined to yield a single rule which derives any non-negative linear combination
of inequalities. It is this sound and complete inference rule which motivates the
treatment of linear inequalities developed here.

A vector w is a conic combination of vectors v1; : : : ; vn i� w = �i�ivi for
scalars �i � 0. A cone is any set of vectors closed under conic combinations.
Thus a cone is a (vector) space in which the linear combinations are restricted
to non-negative factors. Every space is a cone since spaces are closed under
negation. As the vector 0 is the conic combination of the empty set, the least
cone is f0g, not ;. The greatest cone is the set containing all vectors (of a given
dimension).

It is easy to see that the intersection of two cones is again a cone. However,
the union of two cones need not form a cone. This observation motivates the
introduction of the following two concepts. The conic hull of a set of vectors V ,
written Con(V ), is the set of conic combinations of V . The conic union of two
cones C1; C2, written C1]C2, is the cone Con(C1[C2). Thus the conic hull of a
set is the least cone containing it, while the conic union of two cones is the least
cone containing both.

A set of vectors R is called a ray (or half-line) if R = Con(r) for some vector
r 6= 0. A set of vectors L is called a line if L = Lin(l) for some vector l 6= 0,
where the linear hull Lin(V ) is the set of linear combinations of V . Thus a ray
is a unit cone, while a line is a unit space. A pair G = hL;Ri of lines L and
rays R is called a generator of the cone C i� C = Lin(L) ] Con(R). Lines are
not essential components of generators. Since Lin(l) = Con(l) ] Con(�l), every
line can be replaced by a pair of rays in opposite directions without chang-
ing the generated cone. To simplify the theory, we assume all lines have been
eliminated in this manner. In practice, however, maintaining an explicit repre-
sentation of lines improves both the space and time complexity of algorithms on
cones [Tel82,Wil93].

Notice that every cone has a generator, as C certainly generates itself. How-
ever, unlike spaces, some cones admit only in�nite generators. Cones which do
admit �nite generators are said to be polyhedral.

Returning to linear inequalities, the inequality �1x1+ � � �+�dxd � 0 can be
represented by the vector (�1; : : : ; �d) of its coeÆcients, and the ray determined
by this vector is the set of consequences of the inequality. A system of inequalities
is represented by the set of its coeÆcient vectors, and the cone generated by these
rays yields precisely the consequences of the system { a fact which we prove
presently. Should the system also contain equalities, they can be represented
either implicitly, as pairs of rays in opposite directions, or explicitly, as lines.

The polar C� of a cone C is the set of vectors forming non-acute angles with
every member of C, i.e., the set fu j u � v � 0 for all v 2 Cg, as illustrated in
Fig. 2. The polar of a cone is itself a cone. In fact, the polar of any set of vectors
is a cone, but our interest here lies in polars of cones. Polars of cones have the
following properties
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{ (C�)� � C,
{ (C1 \ C2)

� � C�
1 ]C�

2 ,
{ (C1 ] C2)

� = C�
1 \C�

2 .

For arbitrary cones, the two inclusions cannot be strengthened to equalities.
However, for polyhedral cones we have

{ (C�)� = C,
{ (C1 \ C2)

� = C�
1 ]C�

2 .

These equalities are implied by a fundamental result, due toWeyl andMinkowski,
that a cone is polyhedral i� its polar is polyhedral. Another fundamental theorem
concerning polars of polyhedral cones is the following.

Theorem 1 (Alternative) Let G = fr1; : : : ; rng be a set of vectors and r be a

vector. Either i) r 2 Con(G) or ii) v � r > 0 for some v 2 G�, but not both.

C

C*

Fig. 2. A cone and its polar.

Our primary interest in polar cones is driven by the relationship they bear
to solutions of systems of inequalities. A vector (x1; : : : ; xd) is a solution of the
inequality �1x1 + � � �+ �dxd � 0 i� (x1; : : : ; xd) � (�1; : : : ; �d) � 0. For a system
of inequalities, the set of all solutions is precisely the polar of its set of coeÆcient
vectors. With this observation, we are in a position to justify the soundness and
completeness of the inference rule presented above.

Theorem 2 (Farkas' Lemma) Let �i1x1 + � � � + �idxd � 0 be a system of

inequalities. Let G = frig, where ri = (�i1; : : :�id). Then �1x1+ � � �+�dxd � 0
is a consequence of the system i� (�1; : : : ; �d) 2 Con(G).

This result is easily proved using the theorem of the alternative. In the case
of soundness, assume (�1; : : : ; �d) 2 Con(G). Then for all (x1; : : : ; xd) 2 G�,
(x1; : : : ; xd) � (�1; : : : ; �d) � 0. That is, every solution of the system satis�es
the inequality. For completeness, assume (�1; : : : ; �d) 62 Con(G). Then for some
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(x1; : : : ; xd) 2 G�, (x1; : : : ; xd) � (�1; : : : ; �d) > 0. That is, some solution of the
system fails to satisfy the inequality.

Thus far, we have demonstrated that the polar of a system of linear inequal-
ities represents its solutions. Another perspective on these polars is that they
too represent systems of inequalities. In this case, the inequalities are constraints
not on solutions, but on the coeÆcients of consequences of the original system.
That is, any solution (�1; : : : ; �d) of the polar is in fact the coeÆcient vector
of an inequality implied by the original system, as (C�)� = C. This perspec-
tive on polars of systems of linear inequalities is also integral to the method for
synthesizing ranking functions presented here. By computing the polar of a sys-
tem, adding additional inequalities, and computing the polar of the augmented
polar, the algorithm presented in Sec. 4 derives those consequences of systems
which satisfy syntactic criteria suÆcient to guarantee the existence of ranking
functions.

To compute polars, our method uses an algorithm, known as the Double De-
scription Method, which is based on Motzkin's constructive proof of Minkowski's
theorem [MRTT53,FP96]. This algorithm constructs the generator of the polar
incrementally by successively intersecting the generator of the entire space with
the polar of each ray in the generator of the cone.

The algorithm also serves as the basis for implementing additional operators
on cones. For two polyhedral cones C1; C2 such that Ci = Con(Gi) = Con(Hi)

�,

{ C1 ] C2 = Con(G1 [G2),
{ C1 \ C2 = Con(H1 [H2)

�, and

{ C1 � C2 i� r � s � 0 for every r 2 G1 and s 2 H2.

Another useful operation on polyhedral cones is projection onto a space. It
is performed by intersecting the cone with the space and eliminating positions
that are zero in every ray of the resulting generator. When the space has a basis
consisting of canonical unit vectors, we can simply eliminate those positions in
the generator of the cone that are zero in every line of the basis of the space.

For a more thorough discussion of the theory of polyhedral cones, the reader is
referred to [Gal60,Sch86]. Those interested in the implementation of algorithms
on cones should consult [Wil93].

Inhomogeneous Inequalities

Having demonstrated the equivalence of systems of homogeneous inequalities
and polyhedral cones, we turn now to inhomogeneous systems and argue that
they too can be represented as polyhedral cones.

Consider an inhomogeneous system �i1x1 + � � �+ �idxd + �i � 0. The set of
solutions of such a system is no longer a polyhedral cone, but rather a polyhe-
dral convex set. However, by the addition of a single variable �, the solutions of
an inhomogeneous system can be embedded in a polyhedral cone. To see this,
consider that the inhomogeneous system is equivalent to the homogeneous sys-
tem �i1x1 + � � � + �idxd + �i� � 0, along with the single inhomogeneous side
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condition � = 1. That is, (x1; : : : ; xd) is a solution of the inhomogeneous system
i� (x1; : : : ; xd; 1) is a solution of its homogeneous embedding.

While the set of solutions of an inhomogeneous system is a polyhedron, not
a cone, its set of consequences remains a cone. Taking conic combinations of
inequalities continues to be a sound inference rule when applied to inhomoge-
neous systems. Furthermore, with two minor modi�cations, it is also complete.
First, the tautology �1 � 0 must be added to the system. The need for this
apparently redundant inequality can be attributed to the side condition of the
homogeneous embedding. Although � = 1 cannot be represented explicitly in
the embedding, it has as a consequence the homogeneous inequality �� � 0,
which is representable, but not derivable. Therefore, this inequality must be
added explicitly.

The second modi�cation concerns unsatis�able systems. Consider the system
consisting of the single inequality 1 � 0. The system is unsatis�able, so every
inequality is a consequence of it. For example, xi � 0 is a consequence for any i.
However, xi � 0 is not a conic combination of 1 � 0 and �1 � 0, where the
second inequality is added for the reasons previously given. For unsatis�able
systems, the taking of conic combinations is sound, but incomplete. Care must
be taken, then, to detect unsatis�ablility and to replace unsatis�able systems
with an equivalent system which generates all inequalities.

The next theorem, which we state without proof, provides a procedure for
detecting unsatis�ability and shows that inferring conic combinations is sound
and complete for satis�able systems.

Theorem 3 Let �i1x1 + � � � + �idxd + �i � 0 be a system of inequalities. Let

r0 = (0; : : : ; 0;�1), and let ri = (�i1; : : : ; �id; �i). Let G = frig. The system is

unsatis�able i� (0; : : : ; 0; 1) 2 Con(G). When satis�able, �1x1+� � �+�dxd+� � 0
is a consequence i� (�1; : : : ; �d; �) 2 Con(G).

Strict Inequalities

Consider now the mixed inhomogeneous system �i1x1+� � �+�idxd+�i f<;�g 0,
containing both strict and weak inequalities. The solutions of this system are
embedded in the cone of solutions of the weak homogeneous system �i1x1+ � � �+
�idxd + �i� + Æi� � 0, where Æi is positive or zero depending on whether the
ith inequality is strict or weak, along with the side conditions � = 1 and � > 0.
That is, (x1; : : : ; xd) is a solution of the original system i� (x1; : : :xd; 1; �) is a
solution of its embedding for some � > 0.

The consequences of the mixed inhomogeneous system are the members of the
cone generated by its weak homogeneous embedding, provided the embedding is
augmented with two additional inequalities. First, it is necessary to add ��+� �
0, which is the representation of the tautology �1 < 0. Second, �� � 0 must
also be added, as it is a representable, but not derivable consequence of the
side condition � > 0. The presence of this second inequality guarantees that the
coeÆcient of � in any consequence of the weak system can be driven to zero.



74 Michael A. Col�on and Henny B. Sipma

Thus, it plays the role of the well-known inference rule for mixed systems which
allows any strict inequality to be weakened.

The following theorem, a variant of which appears to have been �rst proved
by Kuhn [Kuh56], demonstrates the soundness and completeness of this approach
to mixed inhomogeneous systems.

Theorem 4 Let �i1x1 + � � �+ �idxd + �i f<;�g 0 be a system of inequalities.

Let r�1 = (0; : : : ;�1; 1), r0 = (0; : : : ; 0;�1) and ri = (�i1; : : : ; �id; �i; Æi), where
Æi > 0 when strict and Æi = 0 when weak. Let G = frig. The system is unsatis�-

able i� (0; : : : ; 0; 1) 2 Con(G). When satis�able, �1x1+ � � �+�dxd+ � f<;�g 0
is a consequence i� (�1; : : : ; �d; �; Æ) 2 Con(G) for some appropriate Æ.

Note that if our interest lies in just the weak consequences of a mixed system,
we can simply treat each strict inequality as if it were weak. However, there is
no generator of only the strict consequences. In fact, that set is not a cone as it
is not closed under scaling by zero.

4 Generating Linear Ranking Functions

Our objective is to show that a transition system S = hV;�; T i terminates. We
do so by attempting to �nd a ranking function for each cycle in S.

Let h�;Ri be the domain associated with S, as described in Sec. 2, and let
h�A;RAi be a �nite abstraction of h�;Ri with abstraction function � : � 7!
�A for some �nite set �A. That is, (sA1 ; s

A
2 ) 2 RA i� there exists s1; s2 2 �

such that sA1 = �(s1) and s
A
2 = �(s2) and (s1; s2) 2 R. Thus �A induces a �nite

partition on �. When �A is the partition induced by the control variables of the
system, h�A;RAi is a called the control 
ow graph of h�;Ri. Let 
 : �A 7! 2�

be the function that maps each abstract state sA to the set of concrete states
it represents, i.e., fs 2 � j �(s) = sAg. To show that h�;Ri is well-founded it
suÆces to show that for each cycle in h�A;RAi, no in�nite decreasing sequence
of h�;Ri is mapped to that cycle. This is so because any in�nite decreasing
sequence in h�;Ri is mapped to an in�nite decreasing sequence in h�A;RAi,
which must end in a cycle, as �A is �nite.

Consider an arbitrary cycle CA � �A of h�A;RAi and let cA 2 CA be any
element of that cycle. Let RA

C be the composition of the transition relations
along the cycle from cA back to cA. Any in�nite decreasing sequence that ends
in this cycle induces an in�nite decreasing sequence in hfcAg;RA

C i and hence in
h
(cA); 
(RA

C )i. Our approach to proving the well-foundedness of h�;Ri is to
prove that for each cycle of h�A;RAi there exists some element cA such that
h
(cA); 
(RA

C )i is well-founded.
In the remainder of this section we will assume that the well-foundedness of

h�;Ri is to be established, where � stands for 
(cA), the set of states accessible
at the chosen element of the cycle, and R stands for 
(RA), the transition
relation around the cycle. To show that h�;Ri is well-founded, our algorithm
attempts to generate all functions f of the form

f : �1x1 + : : :+ �dxd;
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that map h�;Ri into the well-founded domain hRat�; >�i, for some constant �
and positive constant�. The algorithm computes all functions de�nable as linear
expressions over the rational program variables x1; : : : ; xd, which are bounded
and discretely decreasing for h�;Ri. It does so by computing approximations of
the set of bounded expressions and the set of decreasing expressions and taking
their intersection.

The principle behind the algorithm is the representation of these sets as poly-
hedral cones. Up to this point, we have demonstrated that polyhedral cones can
conveniently represent systems of linear inequalities. But notice that the gener-
ator of all inequalities implied by the system is also the generator of all linear
expressions that are non-positive in every solution of the system. Our algorithm
exploits this observation to derive a generator of the bounded decreasing expres-
sions for h�;Ri from two systems of linear inequalities { the �rst characterizing
the set � and the second characterizing R.

Computing the Cycle Invariant

The �rst step of the algorithm is to compute an invariant I characterizing �.
For this step we assume the existence of an invariant generator that extracts an
invariant for each control location from the description of the system. Further-
more we posit that the generated invariants are systems of linear inequalities,
and that they are suÆciently strong. These assumptions are reasonable, given
the success of the automatic invariant generation techniques proposed in [CH77].

In an e�ort to increase the utility of the generated invariant for computing
the set of bounded expressions in the next step of the algorithm, we automati-
cally augment the system with auxiliary variables. For each system variable, an
auxiliary variable is added which assumes the value of the corresponding system
variable upon entry into the cycle and which never changes in value while the
computation remains within the cycle. Thus, these variables can be considered
symbolic constants within the cycle.

To see the e�ect of such augmentation, consider again the program termi-

nate, shown in Fig. 1. An invariant for location `1 is

I� : i � 100 ^ j � k � 0 :

This invariant bounds i from above by the constant 100, but neither j nor k
is bounded. However, the augmented program, shown in Fig. 3, produces the
invariant

I : i � 100 ^ j � k � 0 ^ k � k0 � 0 ;

in which i, j, and k are all bounded (since j � k0 is a consequence of j � k � 0
and k � k0 � 0).

Fig. 4 shows the generator of the consequences of I, where, as explained
in Sec. 3, the �rst ray represents the tautology �1 < 0, the second ray allows
strict inequalities to be weakened, and the remaining rays represent the three
conjuncts of the invariant.
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i; j; k : integer

i0; j0; k0 : integer

`
�1 : (i0; j0; k0) := (i; j; k)

`0 : while i � 100 ^ j � k do�
`1 : (i; j) := (j; i + 1)

`2 : k := k � 1

�

`3 : halt

Fig. 3. Augmented version of terminate

G1 :

8>>>>>>>>>>><
>>>>>>>>>>>:

i; j; k; i0; j0; k0; �; �

r1
�1 : (0; 0; 0; 0; 0; 0; �1; 1) �1 < 0

r10 : (0; 0; 0; 0; 0; 0; 0; �1) <!�

r11 : (1; 0; 0; 0; 0; 0; �100; 0) i� 100 � 0

r12 : (0; 1; �1; 0; 0; 0; 0; 0) j � k � 0

r13 : (0; 0; 1; 0; 0; �1; 0; 0) k � k0 � 0

9>>>>>>>>>>>=
>>>>>>>>>>>;

Fig. 4. Generator of the consequences of I

Computing the Bounded Expressions

The second step of the algorithm is to compute the generator of bounded expres-
sions. Recall that a function f : � 7! Rat is bounded if there exists a constant
� such that f(s) � � for every s 2 �. That is, f is bounded if �f + � � 0
is implied by I, or equivalently, if �f + � is in the cone generated by I, for
some constant expression �. The generator of negations of bounded expressions
is computed by projecting I onto the system variables. In fact, we project I
with the ray (0; : : : ; 0; 1) added, since strictness is not relevant for establishing
boundedness. We then negate this generator, using the following result.

Proposition 1 Let G = frig, where ri = (�i1; : : : ; �id; Æi), and G0 = fr0ig, with
r0i = (��i1; : : : ;��id; Æi). Then (�1; : : : ; �d; Æ) 2 G i� (��1; : : : ;��d; Æ) 2 G0.

Fig. 5 presents the generator of bounded expressions for program terminate.

Computing the Decreasing Expressions

The third step of the algorithm is to compute a generator of expressions that
decrease discretely around the cycle. Recall that a function f : � 7! Rat is
discretely decreasing if there exists a positive constant � such that, for every
(s; s0) 2 R, f(s) � f(s0) + �. Thus, the discretely decreasing expressions are
exactly those expressions f such that f � f 0 + � is implied by the transition
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G2 :

8>>>>>>>><
>>>>>>>>:

i; j; k; �

l21 : ( 0; 0; 0; 1) any strictness

r21 : (�1; 0; 0; 0) �i is bounded

r22 : ( 0; �1; 1; 0) �j + k is bounded

r23 : ( 0; 0; �1; 0) �k is bounded

9>>>>>>>>=
>>>>>>>>;

Fig. 5. Generator of bounded expressions

relation R, for some positive constant �. Alternatively, they are those f for
which �f + f 0 +� is in the cone generated by R, with � > 0 implied by I.

The generator of the decreasing expressions is computed incrementally: First
we transform I into a generator of the positive constant expressions �. Then
we restrict R to generate only those expressions of the form �f + f 0 +�, with
� a constant expression. This restricted generator is then further constrained to
ensure that � is in fact positive. This result, when projected onto the coeÆcients
of primed system variables, yields the set of decreasing expressions.

The positive constant expressions � cannot be represented directly, as they
do not form a cone. For example, they are not closed under scaling by zero.
Therefore, we adopt the technique introduced in Sec. 3 for representing strict
inequalities, and compute a generator of the non-negative constant expressions
along with an indication of strictness. Now, � is a non-negative constant ex-
pression i� �� is non-positive and the coeÆcients of the system variables, both
primed and unprimed, are zero in �. That is, for � to be a constant expression,
only the auxiliary variables can have non-zero coeÆcients.

Recall that I generates the set of all non-positive expressions. So the polar
of I is a system of constraints on the coeÆcients of these expressions, and every
solution of the polar is the coeÆcient vector of some non-positive expression.
Adding the equalities �1 = 0, . . . , �d = 0 to the polar yields the subset of
non-positive expressions in which the system variables all have zero coeÆcients,
assuming d system variables. Thus, the polar of the augmented polar is precisely
the set of non-positive constant expressions. By negating the generator of this
set, we arrive at a generator of non-negative constant expressions.

Applying this transformation to the invariant I of terminate and eliminat-
ing the system variables yields the generator shown in Fig. 6. The only positive
constant expression is 1.

Next we compute the generator of that subset of the expressions generated
by R which have the form �f + f 0 + �, for some non-negative constant ex-
pression �. Again, this result is achieved by taking the polar of an augmented
polar. First, the ray (0; : : : ; 0; 1) is added to R, and the polar of the augmented
generator is computed. The strictness of the non-negativity of expressions in R
is not relevant, and adding the ray eliminates any constraints which R places
on Æ. Next, the equalities �1 = ��d+1; : : : ; �d = ��2d are added to the polar,
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G3 :

8>><
>>:

i0 j0 k0 � �

r31 : (0; 0; 0; 1; 1) 1 is positive

r32 : (0; 0; 0; 1; 0) 1 is non-negative

9>>=
>>;

Fig. 6. Generator of non-negative constant expressions.

thereby restricting its solutions to those expressions in which the coeÆcient of
each unprimed system variable is the negation of the coeÆcient of the corre-
sponding primed system variable. Finally, the system is augmented with all of
the constraints on the coeÆcients of non-negative constant expressions. That is,
we add all equalities and inequalities that result from taking the polar of the
non-negative constant expressions computed earlier.

The resulting system is precisely the set of constraints satis�ed by the coef-
�cients of the expressions we seek. The vector (�1; : : : ; �3d; �; Æ) is a solution of
this system i� the corresponding expression has the form �f + f 0+�, where �
is a non-negative constant expression. Furthermore, if Æ > 0, then � is positive.
Taking the polar of this system and projecting the result onto the coeÆcients of
the primed system variables and � yields the generator of a set of expressions all
of whose strict members are discretely decreasing.

Continuing with the program terminate, the generator of the decreasing
expressions is shown in Fig. 7.

G4 :

8>>>>><
>>>>>:

i; j; k; �

l41 : (1; 1; 1; 0) i+ j + k is invariant

r41 : (0; 0; 1; 1) k decreases

r42 : (0; 0; 1; 0) k does not increase

9>>>>>=
>>>>>;

Fig. 7. Generator of decreasing expressions.

Computing the Ranking Functions

The �nal step of the algorithm intersects the bounded expressions with the
decreasing expressions. Any strict member of the resulting cone is a ranking
function.

The generator of the ranking functions for terminate is shown in Fig. 8.
Thus �i � j + k is a ranking function. Notice that �i � j is also a ranking
function, since 1

2
r51 +

1
2
r52 = (�1;�1; 0; 1) is a strict member of the generated

cone.
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G5 :

8>>>>><
>>>>>:

i; j; k; �

r51 : (�1; �1; �1; 0) �i� j � k weakly

r52 : (�1; �1; 1; 2) �i� j + k strictly

r53 : (�1; �1; 1; 0) �i� j + k weakly

9>>>>>=
>>>>>;

Fig. 8. Generator of ranking functions.

5 Application

We applied our algorithm to a system modeling the biological mechanism of lat-
eral inhibition in cells, brought to our attention by Ronojoy and Tomlin [RT00].
Lateral inhibition, a mechanism extensively studied in biology [CMML96], causes
a group of initially equivalent cells to di�erentiate. It is based on an intra- and
intercellular feedback mechanism, whereby a cell developing into one type in-
hibits its neighbors from developing into the same type. The result is a more or
less regular pattern of cells of di�erent types.

In collaboration with David Dill, we abstracted the (continuous) model of
di�erentiation of skin cells described in [CMML96] and [RT00] into a discrete
transition system. The system consists of a planar hexagonal con�guration of
cells. Cells can be black, white or gray, where black and white cells, if stable,
lead to specialization into ciliated and unciliated cells, respectively. Cells tran-
sition based on their own color and the colors of their six immediate neighbors.
Therefore we de�ne the state of a cell by the two variables color 2 fw; g; bg and
ncolor 2 fW;G;Bg, where the value of ncolor is determined as follows:

W : 8i:(ni = white _ ni = gray) ^ 9i:(ni = white)
G : 8i:(ni = gray)
B : 9i:(ni = black)

with ni the neighbor cells. The transitions of a cell can then be described by

�1 : w ^W ^ g0 �2 : g ^W ^ b0 �3 : g ^G ^ (b0 _w0)
�4 : b ^B ^ g0 �5 : g ^B ^ w0

The objective is to prove that this system, like its biological counterpart, sta-
bilizes for an arbitrary number of cells. To do so we attempt to �nd a ranking
function F for the entire plane of cells C. We assume F has the form

F = �c2Cf(c) ;

where f(c) is the measure of a single cell. To show that F is a ranking function,
it is suÆcient to show that its value decreases whenever any cell c transitions.
Let c be an arbitrary cell. We can write F as F = Gc +Hc with

Gc = f(c) + �6
i=1f(ni(c)) and Hc = �d2Cnfc;n1(c):::n6(c)gf(d) :
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To show that F is decreased by every transition of c, it is suÆcient to show that
Gc is decreased by every transition of c, as transitions of c can a�ect only the
state of c and the state of c's neighbors, so Hc is una�ected. Thus it suÆces to
consider a group of seven cells (c and its six neighbors) and determine whether
a function f exists such that Gc is a ranking function.

Capitalizing on the symmetry in the description, we take as variables the nine
states in which a cell and its neighbors can be: NwW , NwG, NwB, NgW , NgG,
NgB, NbW , NbG, NbB, with each variable denoting the number of cells among
the seven with that con�guration, also taking into consideration the colors of
the neighbors of the neighbors. For example, if the set consists of a black center
cell with six white neighbors, then NbW = 1, NwB = 6 and all other variables
are zero1.

Applying the algorithm to the transition system leads to the following ranking
function:

24NbB + 6NwW + 4NwG + 5 (NgW +NgG +NgB)

This ranking function was found earlier by Dill [Dil00] using an ILP solver. From
this ranking function we can conclude that with

f(c) =

8>>>><
>>>>:

24 if color = b and ncolor = B

6 if color = w and ncolor = W

4 if color = w and ncolor = G

5 if color = g

0 otherwise

the function F is a ranking function for the entire plane of cells.

6 Conclusions

We have implemented our algorithm using the polyhedral cone library in the
invariant generator of the Stanford Temporal Prover [BBC+95]. Our experience
thus far is that simple systems are easily handled, but systems with complex
transition relations often exhaust the available memory before a ranking func-
tion can be found. This is to be expected, as the library, based on the Double
Description Method, represents each cone dually, i.e., by its generator and the
generator of its polar. The generator of the polar, however, can be exponentially
larger than the generator of the cone [McM70]. We are currently investigating an
implementation of our method that avoids this explosion in space by maintaining
parametric representations of cones, rather than computing polars explicitly.

Assuming a space-eÆcient implementation is possible, the method, as pre-
sented thus far, might still fail to �nd a ranking function when one exists. This
incompleteness is due to the fact that the required bounds may not be linear
expressions in the (auxiliary) variables. Future work includes �nding a charac-
terization of the class of systems for which our method is complete.
1 In this con�guration the values of the variables are independent of the colors of

the neighbors of the neighbors. In general however, the variables are dependent on

them.
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