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Synthesis of Lumped and Distributed Networks 
for Impedance Matching of Complex Loads 

ROBERT M. COTTEE AND WILLIAM T. JOINES, MFMBER, IEEE 

Absrrrre-Numerically generated results hsed on exlstlng tlxmetlcal 
restrlctlons are presented enabling the straight-forward synthesis of ladder 

type~~formatrhingaresistivesourcetoaeomplexl~Ttansfer 

functions used in the synthesis allow lImea! halldwlm via tradeoffs 

with refleetlon coefficients. Both lumped and distributed networks are 

treated and are fully ilhtrated with practical exampk including, in the 

dlstrlbuted case, experimental verification. 

I. INTRODUCTION 

T HEORETICAL restrictions applying to networks 
matching a resistive source to a complex load have 

been well treated in the literature, in particular by Fano 
[l] in 1950, who extended early work by Bode [2] and 
more recent work by Youla [3] and Chan and Kuh [4]. 
Although a number of papers have appeared making use 
of this theory [5]-[9], its application in practice for all but 
the simplest of loads has been limited by computational 
difficulties. It is the purpose of this paper to formulate 
procedures and present results which overcome the above 
difficulties and lead readily to the solution of some com- 
mon impedance matching problems. 

The paper is organized in the following manner, Section 
II presents the integral gain-bandwidth restrictions of 
Fano as applicable to lumped ladder type matching 

networks. Section III is devoted to the synthesis of such 
networks and illustrates this by way of an example based 
on numerically generated curves of the integral restric- 
tions of Section II. Section IV compliments Section III by 
treating the corresponding synthesis of distributed ladder 
type. impedance matching networks suitable for micro- 
wave frequencies. A practical example in the form of a 
broadband microwave transistor amplifier illustrates the 
distributed-element synthesis procedure. Section V dem- 
onstrates the usefulness of these procedures by presenting 
experimental results for the amplifier design of Section IV. 

II. GAIN BANDWIDTH RESTRICTIONS 

Fano has derived a complete set of integral gain-band- 
width restrictions, which form necessary and sufficient 
conditions for the realizability of matching networks 
terminated in an arbitrary load impedance. The derivation 
of these results is fully covered in Fano’s original paper [I] 
and only the appropriate results will be given here. 
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Fig. 1. Lumped element matching network and load. 

For the three element load shown as part of the overall 
matching network of Fig. 1, the appropriate integral re- 
strictions are as follows: 

(14 

J 0 

where pi is the input reflection coefficient to the matching 
network, w is the normalized angular frequency, and Pti 
are the zeros of pi in de right-half plane. Study of (la) 
shows that the left-hand side, representing the area under 
the curve In l/(p,I versus frequency, is fixed (apart from 
the Z,P, term) by the value of the reactive element next 
to the load resistance. Similarly, (lb) shows the area under 
the curve w2 In l/Jp,l versus frequency is fixed by the two 
reactive elements next to the load resistance. Both equa- 
tions then represent gain-bandwidth type restrictions, with 
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the second equation being heavily weighted for higher 
frequencies. For the network under consideration maximi- 
zation of the area under the curve In l/lpi] versus 
frequency is achieved by setting Z,P, equal to zero (see 
Fano [I] for a more complete discussion). It can be shown 
that the results for the dual circuit of Fig. l(b) are identi- 
cal to those of (1) except that LI and C, are interchanged. 

III. LUMPED IMPEDANCE MATCHING NETWORK 

SYNTHESIS 

A. The Transfer Function and Its Parameters 

In this section ladder type impedance matching 
networks of the form shown in Fig. l(b) will be synthe- 
sized using procedures described by Matthaei [lo] and the 
integral restrictions of (1). 

Fig. 2 shows a typical response for the networks to be 
synthesized. The transfer function for this response is 
derived from the conventional Chebyshev low-pass filter 
transfer function given by 

pavail 1 -=- 
P out lt’l2 

I 

1 + e cash’ (n’ cash- ’ w’), for 1 < w’ < cc = 

w+ c cos’ (n’ cos-’ o’), forO<o’<l 1 

(2) 

where w’ is the sinusoidal frequency variable normalized 
for unity cutoff frequency, n’ is the number of reactive 
elements in the network,.and E is a parameter controlling 
the amplitude of the ripple. The appropriate transfer func- 
tion for the response of Fig. 2 is obtained by using the 
change of frequency variable 

where 

l&-w2 
A=2 

and 

d- 

W2+W,2 q)= a 
2 

is the frequency in the response of Fig. 2 corresponding to 
w’ = 0 in the conventional Chebyshev low-pass filter char- 
acteristic. In addition, the mean operating frequency w,,, is 
given by 

w +q w =a m 2 (6) 

and is scaled so that o,,, = 1. 
The relative bandwidth w is defined as 

wb-“a 

w= - =“b-w 
%I 

n 

where 

,=1-W 
2 (8) 

TRAI~SMISSIOli 

LOSS (db) 

Fig. 2. Lumped element network transfer function response. 

and 

w,=1+5 
2 (9) 

Applying the change of frequency variable of (3) to (2) 
leads to the following transfer function: 

Pawlil 1 -=- 
P out ItI2 

=1+6+e cash’ cash-i (w2-oo2) (lOa) 
A I 

which applies in the “stop” bands 0 < w < w, and ob < w =G 
cc. In the operating band w,, < w < w,, 

pmil 1 -=- 
P out ItI2 

Two points need clarification with respect to the transfer 
function in (10). First, the conventional low-pass 
Chebyshev response for a filter with n’ reactive elements 
maps into a response characterized by a filter having 
n =2n’ reactive elements. For example, the response of 
Fig. 2 corresponds to an n =4 reactive-element design. 
The corresponding conventional low-pass filter would 
have n’=2 reactive elements. Second, an extra parameter 
6 has been introduced to ensure that the function In l/Jp,l 
in the integral gain-bandwidth restrictions of (1) does not 
go to infinity at any real frequencies. This point is 
illustrated in Fig. 3 where ln l/lp,] has been plotted as a 
function of frequency for the same parameters as were 
used in Fig. 2, except that S has now been set to zero. As 
pointed out by Fano [l] this type of characteristic results 
in an unnecessary waste of the area represented by the 
integrals of (1). 
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Fig. 3. ln 1 /(p, ( vs o for lumped element network with 6 = 0. 

Fig. 4. Lumped network integral restrictions. Note: this eq@ity ap 
plies for the network of Fig. l(a). For the network of Fig. l(b) 
interchange L, and C,. 

B. Poles and Zeros 

The synthesis procedure to follow later in this section 
requires that the poles and zeros of the reflection 
coefficient pr be evaluated. As a first step, the poles of 
Ip;12 are evaluated for the conventional Chebyshev low- 
pass transfer function as [ 1] 

kakjs(m++)], n’even (11) 

kakj’zm , 
n’ 1 

n’ odd 
. 

where m is an integer or zero, and a and b are defined by 

s 
sinh2 n’b = - (124 

c 

and 

sid2 n’a= 1+6. (12b) 
E 

The zeros are given by the same expression in which b is 
substituted for a. 

“‘4 

*- .5 

Fig. 5. Lumped network integral restrictions. Note: this equality ap 
plies for the network of Fig. l(a), For the network of Fig. l(b) 
interchange L, and C,. 

Fig. 6. Lumped network integral restrictions. 
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Fig. 7. Lumped network integral restrictions. 

The poles and zeros of pr for the mapped transfer 
function are obtained from the poles and zeros of (11) by 
using 

p’= -j 
(P2+~oz) 

A 
(13) 

obtained by replacing w’ by p’/j and w by p/j in (3). In 



COTIXE AND JOINES: SYNTHESIS OF LUMPED AND DISTFCIB~ NETWORKS 

319 

.I . . . . . . . . - ‘. . . ‘. . . ‘. * 
e 1 a 3 4 6 6 7 8 D 1e 

r 

Fig. 8. Lumped network integral restrictions. 

Fig. 9. Lumped network integral restrictions. 
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Fig. 10. Lumped network integral restrictions. 

using (13), it should be noted that the poles of p, are 
necessarily those poles of pt(p)p,(-p) which lie in the 
left-half plane. That is, in (11) “Q” must be taken with the 
negative sign. The zeros of pt, on the contrary, can be 
located anywhere in the complex plane. As pointed out 
earlier, however, the area represented by (1) is a maximum 

6 - .03 

6 . .l 

L' 
6 - .3 
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Fig. 11. Lumped network integral restrictions. 

Fig. 12. Lumped network integral restrictions. 

when all the zeros of p, are chosen to be in the left-half 
plane. 

C. Evaluation of the Gain-Bandwidth Integrals 

Using the expression 

I*&+ Jl 

(144 
in the stopband, and 

lq=F$7 
In ii? 

(14b) 

in the passband, the integrals of (1) have been evaluated 
numerically using the Gaussian method, and the results 
are presented in graphical form in Figs. 4-15. The in- 
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Fig. 13. Lumped network integral restrictions. 
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Fig. 14. Lumped network integral restrictions. 
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Fig. 15. Lumped network integral restrictions. 

tegrals are plotted as a function of r, with S as a parame- 
ter. Note that E does not appear explicitly in these graphs 
because l , 6, and the termination ratio r are not indepen- 
dent. The equation relating these three parameters is de- 

rived from (lOa) using the condition that at w=O (or DC) 
the power loss ratio is given by 

=1+6+c cosh”5[cosh-’ ($)I. (15) 

It should be noted here that Figs. 4- 15 could equally 
well have been obtained without numerical integration by 
using standard synthesis methods as has been done for 
example in producing the tables of [lo]. The reason for 
using the integral approach is that it allows the restrictions 
to be visualized (e.g., as the area under Fig. 3) enabling 
suitable transfer functions to be chosen. This in fact was 
the motivation for the introduction of the mapping of (3) 
and of the parameter 6. 

This completes the prerequisites for the synthesis, and 
an example follows to illustrate the procedures involved in 
a practical design. 

D. Numerical Example of a Practical Matching Network 

As an example, suppose that it is required to match the 
load shown in Fig. 16(a) to 50 Q over the frequency band 
from 75-125 MHz. In addition, suppose that the maxi- 
mum allowable insertion loss within this band is O.ldB. 

The mean frequency and relative bandwidth of the 
frequency response are calculated immediately as 

75+ 125 
Cd= m 2 

= 100 MHz 

and 

w= 12;i75 cO.5. 

The normalized lower and upper band edges from (8) and 
(9) are then 

and 

b&=1+ E=l25 
2 - 

and the frequency o,, is given from (5) as 

Finally, the parameter A is computed from (4) as 

A _ 1 .252 - 0.752 
2 

= 0.5. 

Using the arithmetic mean frequency of 100 MHz, the 
normalized load circuit is computed and is shown in Fig. 

WW 
From the normalized inductance and capacitance, the 
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integrals of (1) can now be evaluated, yielding 

and 

=---&(E-+)=3.78.(16b) 

Referring to the numerically generated integrals for n = 4 
and w =0.5 of Fig. 4, the value 6 =0.013 is interpolated 
from the graph using the result from (16a) above and the 
termination ratio r=4. Referring now to Fig. 5, again by 
interpolation the value of the second integral for 6 = 0.013 
and r = 4 is read as 1.82. This value is seen to be less than 
the upper limit set by the result from (16b), thus satisfying 
the second integral restriction. (The restriction of (16b) 
need only be “less than or equal to,” since inductance can 
be physically added later to make up the required load 
inductance.) 

Finally, we check to see that the maximum insertion 
loss requirement within the passband is satisfied. Evaluat- 
ing e from (15) using r=4, n=4, 6=0.013, wo= 1.031, and 
A = 0.5 gives l = 0.008503, and the maximum insertion loss 
in the passband is then 

L A,,=1010g(l+6+e)=0.09240dB. 

This value is seen to be less than the original specification, 
and so the choice of n =4 is suitable. The expected 
frequency response with these parameters substituted into 
(10) is shown in Fig. 2. 

Having satisfied the specification, the first step in the 
synthesis is to compute the poles and zeros of pi for the 
conventional Chebyshev low-pass filter. From (12), a and 
b are computed, respectively, as 1.543 and 0.5196, and 
from (1 I), the poles and zeros of Ipi I2 are computed as 

and 

pii = + 1.579 kjl.730 

p&= kO.3838kjO.8047. 

The poles and zeros for the corresponding mapped func- 
tion are now obtained from the poles and zeros just 
computed using (13) as 

p= -o,‘+jAp’ 

yielding 

pPi = 1.443. exp ( & j4.5 1 S), 0.9022 exp ( & 4.050) 

and 

poi = 1.216 exp ( ? j4.647), 0.8294 exp (2 j4.571). 

Utilizing left-half plane poles only, the expression for p, 

321 
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Fig. 16. Lumped element load. (a) Denormalized. (b) Normalixd. 
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Fig. 17. Synthesized lumped element matching network. (a) 
ized. (b) &normalized. 
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distributed circuit elements by using the mapping 

w=tan e (17) 
first introduced by Richards [ 121. The second requirement 
is to account for the finite out-of-band attenuation (as 

. opposed to infinite attenuation for the low-pass 
Chebyshev case) by using another mapping of the form 

1111 3: . 
w’=A 

2: :.*. . f. . . 
. where A is a constant, and 0, = tan- ’ 

1; 
. 

l . . length corresponding to w’=O for 
. 

l . . Chebyshev low-pass filter response. 

0: +...........: In addition to the above mappings, 

(18) 

w. is the electrical 
the conventional 

some further rela- 
0 

I . . . . . . . . .5b . . . . . . . . .,bo. . . . . . . . .,i,. . . . . . . . .& fr~uency (W tionships are required to define the frequency response. 

Fig. 18. Computer analysis plot of synthesized lumped element circuit. 
The mean operating electrical length 0, is given by 

ea+eb 2d 
em= 2 =- L 

(19) 

can be written as 

P,(p) = (p - l.216&4.647)(p - l.216e--j4.647)(p -0.8294d4.“‘)(p -0.8294e-j4.571) 

(p- l.443d4.5’8)(p- l.443e-~4”8)(p-0.9022~4~050)(p-0.9022e-~4~~~~) 

= (p2+.1589p+ 1.479)($+0.2338p+O.6879) = p4+.3927p3+2.204p2+.4551p+ 1.017 

(p2+.5575p+2.082)(p2+l.l10p+0.8140) p4+l.668p3+3.515pz+2.765p+l.695’ 

The input impedance of the network is computed as 

l-P, 
z(p)=I+p= 

0.6377~~ +0.6555p2 + 1.155~ + 0.3390 

I p4+ 1.030p3+2.860p2+ 1.61Op+ 1.356 

and the elements of the network can now be obtained 
through continued fraction expansion of y(p), yielding the 
circuit as shown in Fig. 17. A frequency response plot 
obtained from a computer network analysis program is 
shown in Fig. 18. Comparison of this figure with the 
original transfer function plot of Fig. 2 shows the excel- 
lent agreement obtainable. 

IV. DISTRI~JTED IMPEDANCE MATCHING 

NETWOW SYNTHESIS 

A. The Transfer Function and Its Parameters 

In this section distributed impedance matching 
networks of the types shown in Fig. 19 will be synthesized 
using procedures described by Matthaei [I 11, and the 
integral restrictions of (1) scaled appropriately to account 
for the distributed nature of the network. 

As was the case in the previous section,. the starting 
point for this synthesis is the conventional Chebyshev 
low-pass filter transfer function of (2). Fig. 20 shows a 
typical transfer function characteristic for the distributed 
circuit of Fig. 19. In order to map the Chebyshev low-pass 
characteristic into that of Fig. 20, it is necessary that 
certain requirements be met. The first requirement is to 
account for the fundamentally periodic nature of the 

and the relative bandwidth w is defined as 

4 - 4 

where 

e,=e, i-5 
( ) 

and 

eb=em i+f 
( 1 

. 

Solving for A by inserting (17) into (18) andusing the fact 
that W’ = 1 when 0 = 0, yields 

A= 
1 + tan’ e, 

tan2eb-t~2eo’ 
(23) 

The parameter tan 0, is determined by using (17), (18), 
and (23), together with the fact that w’ = - 1 when 0 = B,, 
yielding 

tan e, = 
tan e,Y[ 1 + (tan e$] + (tan e,)2[ 1 + (tan ebj2] 

2 + (tan e,)‘+ (tan ebj2 

(24) 

One further parameter K will be used to define the maxi- 
mum out-of-band reflection coefficient magnitude. The 
electrical lengths at which these maxima occur correspond 
to 8 = mn/2 or w = co. From (18), this corresponds to 
w’=A, and using this in (2) together with the fact that 
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(264 
which applies in the “stop” bands 0 < 8 < 0, and 0, G 0 < 
n/2. In the operating band 0, <e < 0, 

pa”ail 1 -=-= 
P Out [t/2 1+6+c 

- cos2 
i I 
2 cos - , 
2 

A (tan e )2 - (tan e,Y 
(tan e)“+ 1 II * 

(26b) 

B. Poles and Zeros 

As for the lumped element case, the first step in the 
synthesis is to obtain the poles and zeros of ]p,]’ for the 
conventional Chebyshev low-pass filter. Next, the poles 
and zeros of p, for the mapped transfer function are 
evaluated using the following equation, obtained from 
(18) by replacing w’ by p’/j and w by p/j, 

(27) 

DlEIl 
I 

L--B----- J 

@) 

Fig. 19. Distributed element matching network and load. 

p2+w,z 
p’=jA- 

p2-1 * 

Fig. 20. Distributed element network transfer function response. 

[pi]‘= 1 - ] t12, results in the following expression for K, 

K= hlo-m =dz- (25) 

Applying the change of frequency variable of (17) and 
(18) to the conventional Chebyshev low-pass filter transfer 
function of (2), leads to the following transfer function 

C. Evaluation of the Gain-Bandwidth Integrals 

The synthesis procedures to follow yield an all distrib- 
uted element network characterized .by harmonic pass- 
bands extending to infinity on the frequency scale. This 
would appear to preclude evaluation of the integrals in the 
restrictions of Section II. However, by replacing the load 
section of such a network by an equivalent lumped ele- 
ment load, the higher order passbands are attenuated 
resulting in a truncated frequency response which can be 
approximated by the fundamental passband only of the 
transfer function of (26). The accuracy of such an ap- 
proximation depends on the fundamental passband re- 
maining substantially unchanged, and on the degree to 
which the harmonic passbands are attenuated. This ap- 
proach allows the integral restrictions of Section II to be 
applied for a lumped element load and a distributed 
element matching network. (For distributed element loads 
one is referred to Tucker [8] where the integrals have been 
transformed to the Richards domain. While results are not 
extensive, the approach is potentially more accurate and 
does not require the approximations made here.) 

With this as a basis, the integrals have again been 
evaluated numerically by integrating the appropriate dis- 
tributed function over the fundamental passband, i.e., for 
8 in the range of 0 to r/2. Using (19) with 0, chosen as 
0, = n/8 (a compromise between impractical line imped- 
ances for &,<<a/8 and a reduced gain bandwidth for 
0,,,>>7r/S), the integral restrictions can be written as 



324 
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS, VOL. CAS-26, NO. 5, MAY 1979 

Fig. 21. Distributed network integral restrictions. Note: this equality 
applies for the network of Fig. 19(a) where L, and C,. constitute a 
lumped element equivalent of the load shown. For the network of Fig. 
19(b) interchange L, and C,. 

n-4 

*- .5 

Fig. 22. Distributed network integral restrictions. Note: this eeuahty 
applies for the network of Fig. 19(a) where L, and C, consutute a 
lumped element equivalent of the load shown. For the network of Fig. 
19(b) interchange L, and C,. 

.I . . . . . . . . . . . . . . . . . - * 
e 4 a 3 . 6 b ‘7 ‘ 0 I4 

r 

Fig. 23. Distributed network integral restrictions. 
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(284 
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Fig 24. Distributed network mtegral restrictions. 
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Fig. 25. Distributed network integral restrictions. 
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Fig. 26. Distributed network integral restrictions. 

and 

. (28b) 

Numerical integration of these equations, using the func- 
tion ln l/Ipl(e)j from (26a) and (26b) together with the 
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Fig. 27. Distributed network integral restrictions. 

Fig. 28, Distributed network integral restrictions. 

6, 6 - .OOl , n=6 

Fig. 30. Distributed network integral restrictions. 

Fig. 31. Distributed network integral restrictions. 

Fig. 29. Distributed network integral restrictions. Fig. 32. Distributed network integral restrictions. 

fact that Ip,1’= I- 1 t12, yields the curves shown in Figs. 
21-32. 

bandwidth of at least 1 GHz. In addition, suppose that the 
minimum power gain within this band is to be 7 dB. The 

D. Numerical Example of a Practical Matching Network Motorola MFW901 transistor fulfills the basic require- 

As a specific problem, suppose that an amplifier is to be ments with an fT of 4.5 GHz and a typical power gain of 8 

designed having a center frequency of 1.5 GHz and a dB at 2 GHz. 
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Before the synthesis can proceed, it is necessary to 
obtain suitable equivalent circuits for the input and out- 
put impedances of the transistor from the scattering 
parameters that are given. The output equivalent circuit so 
obtained is shown in Fig. 33 and the impedance is also 
displayed on a Smith chart in Fig. 34 for comparison with 
the original S-parameters. It seems worthwhile to mention 
here that the S-parameters used were in fact a modified 
set of S-parameters obtained by taking into account the 
emitter lead inductance. Having derived suitable equiv- 
alent circuits, the next step is to determine the parameters 
characterizing the frequency response. 

The relative bandwidth is w = (2.0 - 1 .O)/ 1.5 = 0.667. 
However, to provide some margin for error, let w = 1. The 
normalized lower and upper band edges from (21) and 
(22) are then 

= 0.196350 rad 

and 

0, = t 1 + i = 0.589049 rad. 
( 1 

Substitution of these values into (24) yields 

8, = 0.429443 rad 

and subsequent substitution into (23) yields 

A = 6.10973. 

To prevent loss of accuracy, the preceding numbers will 
not be rounded off at this point, since later in the synthe- 
sis it will be required to subtract numbers nearly equal in 
value. 

The next step is to choose the transfer function parame- 
ters consistent with the integral restrictions. In the calcula- 
tions to follow, the output equivalent circuit for the tran- 
sistor has arbitrarily been used to illustrate the procedure, 
with only the results for the input circuit being given at 
the end of this section. 

Substituting into (28a) and (28b) the values from the 
output equivalent circuit of Fig. 33(b) yields 

8 

( 1s 
- r’2 *n - 
77 0 

,p,fs)l de= o.89;198 =33 (294 

0.891198 
0.0684215 3 

Referring to the integral curves of Figs. 29 and 30, the 
value of 3.53 for the integral at r=2.67 falls outside the 

.9675nH 

(a) 

.06842 

Fig. 33. Transistor output equivalent circuit. 

Fig. 34. Transistor equivalent circuit impedances. 
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load 
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load 
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O-9 

Fig. 35. Synthesized transistor o&put matching network. (a) Normal- 
ized. (b) Denornnlizd. 
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Fig. 36. Computer analysis plot of synthesized transistor output circuit. 

range of the curves. Normally n is chosen on the basis of 
maximum attenuation in the passband. However, in this 
case by choosing n = 6, a value for S can be obtained by 
extrapolation from Fig. 29 as 

6 = 0.00045. 
Turning now to Fig. 30, for r =2.67 and 6 =0.00045, the 
second integral’s value is real as 3.57, well below the 
upper limit of 56.3 set by (29b), and thus the second 
integral restriction is satisfied. Having chosen 6, l can now 
be found using the equation 
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Fig. 37. Synthesized transistor input matching network. 
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Fig. 38. Computer analysis plot of synthesized transistor input circuit. 
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Substituting r = 2.67, n = 6, 6 = 0X&45, and w. = 0.457947 
gives z = 0.0124326. The expected frequency response with 
these parameters substituted into (26) is shown in Fig. 20. 
The maximum insertion loss in the passband is then 

L A ,,,== 10 log (1 + S + e) = 0.0556 dB. 

The synthesis procedure which can now begin is en- 
tirely similar to that already carried out for the lumped 
element synthesis of Section III, except for the final 
transmission line extractions. For this reason only results 
for the important stages of the procedure will be included. 
As for the lumped element case, the low-pass prototype 
poles and zeros are computed from (11) as 

pii = + 1.11949 +jO, + 0.559745 kjl.29998 

and 

phi = k 0.06308 1 +jO, + 0.03 1541 kjO.867747 

pi for the mapped response, including the factor K from 
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Fig. 39. Experimental circuit. 

f(GHz) 

Fig. 41. Measured transistor amplifier frequency response. 

Fig. 40. Transistor amplifier. 

(25), is then computed using (27) as 

the circuit of Fig. 35(b). A computer generated network 
analysis program was run on this circuit and the resulting 
frequency response plot is shown in Fig. 36. Comparison 
of this figure with the original transfer function plot of 
Fig. 20 shows excellent agreement. 

The development of a suitable matching network for 
the input of the transistor follows an entirely similar 
procedure and the results are as follows. With n =4, 
r = 0.44, and w = 1, 6 was chosen as S = 0.001, resulting in 
e -0.0340. The calculated maximum attenuation in the 

P,(P) = 
O.99995p6+O.o6Ol696p5+O.68O529p4+O.O2856l5p3+O.l23225p2+O.oO252l8Op +0.00511673 

p6+ l.10594p5+ l.28994p4+0.747056p3+0.348047p2+0.084~835p +0.0112615 

and the impedance Z(p) = (1 - pi)/( 1 + pi) then follows immediately as 

Z(P) = 
0.0000503063p6+ l.o4577p5+O.6o94o8p4+O.7l8494p3+O.224822p2+O.O8226l7p +0.00614475 

l.99995p6+l.l66llp5+l.97o47p4+O.7756l7p3+O.47l273p2+O.O873O53p+O.Ol63782 * 

The transmission line elements are now extracted using 
the procedure described by Richards [12], yielding the 
following line impedances and termination: 

z,=O.4142 

z5 = 1.80979 

z4 = 0.226797 

z3 = 1.54616 

z2 = 0.200742 

z, =0.819157 

and 

R,=0.371649. 

Denormalizing and scaling (x(1)/(0.371649)) so as to 
make the normalized source resistance equal to 1, yields 

passband was then LA max = 0.149 dB. The resultant circuit 
and computer analyzed frequency response are shown in 
Figs. 37 and 38. The next section develops and gives 
experimental results for a physical circuit based on the 
calculations of this section. 

V. EXPERIMENTAL DEVELOPMENT AND RESULTS 

An actual amplifier based on the previous calculations 
of Section IV was constructed. A circuit diagram and a 
photograph of the amplifier are shown in Figs. 39 and 40. 
The circuit was constructed in microstrip with dimensions 
calculated from charts available in the literature [13] and 
[14]. The measured frequency response of this amplifier is 
shown in Fig. 41 and is seen to be in good agreement with 
the maximum available gain G,, of the transistor ob- 
tained from the data sheets. It is worth noting that, in 
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contrast to designs with a flat response, the design here 
makes maximum use of the available gain of the transistor 
over the whole passband which exhibits an approximately 
6-dB per octave rolloff. For designs requiring a flat re- 
sponse, one is referred to a paper by Ku and Peterson 
[ 151, where computer optimized element values are tabu- 
lated. 

VI. CONCLUSION 

In this paper procedures for the synthesis of lumped 
and distributed ladder type matching networks have been 
presented, based on fundamental gain-bandwidth integral 
restrictions derived by Fano [l]. Heretofore, synthesis 
procedures based on these restrictions have not found 
wide application due to computational difficulties. In this 
paper these difficulties have been avoided by numerically 
evaluating the appropriate integrals and using the results 
so obtained (in graphical form) as the basis for the synthe- 
sis of suitable matching networks. Both the lumped and 
distributed synthesis procedures are fully illustrated with 
worked examples including experimental results for a 
broadband microwave transistor amplifier based on the 
distributed example. 
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