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Synthesis of Mechanical Networks: The Inerter
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Abstract—This paper is concerned with the problem of synthesis
of (passive) mechanical one-port networks. One of the main con-
tributions of this paper is the introduction of a device, which will
be called the inerter, which is the true network dual of the spring.
This contrasts with the mass element which, by definition, always
has one terminal connected to ground. The inerter allows electrical
circuits to be translated over to mechanical ones in a completely
analogous way. The inerter need not have large mass. This allows
any arbitrary positive-real impedance to be synthesized mechan-
ically using physical components which may be assumed to have
small mass compared to other structures to which they may be at-
tached. The possible application of the inerter is considered to a
vibration absorption problem, a suspension strut design, and as a
simulated mass.

Index Terms—Brune synthesis, Darlington synthesis, elec-
trical–mechanical analogies, mechanical networks, network
synthesis, passivity, suspension systems, vibration absorption.

I. INTRODUCTION

T HERE is a standard analogy between mechanical and
electrical networks in which force (respectively, velocity)

corresponds to current (respectively, voltage) and a fixed point
in an inertial frame of reference corresponds to electrical ground
[9], [26]. In this analogy, the spring (respectively, damper, mass)
corresponds to the inductor (respectively, resistor, capacitor).
It is well known that the correspondence is perfect in the
case of the spring and damper, but there is a restriction in
the case of the mass. This restriction is due to the fact that
the force–velocity relationship satisfied by the mass, namely
Newton’s Second Law, relates the acceleration of the mass
relative to a fixed point in the inertial frame. Effectively this
means that one “terminal” of the mass is the ground and the
other “terminal” is the position of the center of mass itself [26,
p. 111], [15, pp. 10–15]. Clearly, in the electrical context, it
is not required that one terminal of the capacitor is grounded.
This means that an electrical circuit may not have a direct
spring–mass-damper mechanical analog.

There is a further drawback with the mass element as the
analog of the capacitor in the context ofsynthesisof mechan-
ical impedances. Namely, it may be important to assume that the
mechanical device associated with the “black-box impedance”
to be designed has negligible mass compared to other masses in
the system (cf., a suspension strut for a vehicle compared to the
sprung and unsprung masses). Clearly this presents a problem
if (possibly) large masses may be required for its realization.

It appears that the aforementioned two difficulties have pre-
vented electrical circuit synthesis from being fully exploited for
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the synthesis of mechanical networks. It seems interesting to
ask if these drawbacks are essential ones? It is the purpose of
this paper to show that they are not. This will be achieved by
introducing a mechanical circuit element, which will be called
the inerter, which is a genuine two-terminal device equivalent
to the electrical capacitor. The device is capable of simple re-
alization, and may be considered to have negligible mass and
sufficient linear travel, for modeling purposes, as is commonly
assumed for springs and dampers. The inerter allows classical
results from electrical circuit synthesis to be carried over exactly
to mechanical systems.

Three applications of the inerter idea will be presented. The
first is a vibration absorption problem whose classical solution
is a tuned spring–mass attached to the main body. It will be
shown that the inerter offers an alternative approach which does
not require additional elements to be mounted on the main body.
The second application is a suspension strut design. Traditional
struts employ springs and dampers only, which greatly restricts
the available mechanical admittances. In particular, their phase
characteristic is always lagging. By considering a general class
of third order admittances it will be shown that the use of in-
erters offers a possibility to reduce oscillation in stiffly sprung
suspension systems. The procedures of Brune and Darlington
will be employed to obtain network realizations of these admit-
tances. The third application is the use of the inerter to simulate
a mass element.

The approach used for the mechanical design problems in this
paper owes a debt to the methods of modern control. Firstly, the
problems are viewed as an interconnection between a given part
of the system (analogous to the plant) and a part to be designed
(analogous to the controller). Secondly, the part to be designed is
a dynamical element whose admissibility is defined as broadly
as possible—passive in the present case (stabilizing for feed-
back control). The advantage of this viewpoint is that synthesis
methods come into play, and that new solutions emerge which
would otherwise be missed.

II. M ECHANICAL NETWORKS

A. Classical Network Analogies

Historically, the first analogy to be used between electrical
and mechanical systems was the force–voltage analogy, as is
readily seen in the early use of the term electromotive force. The
alternative force–current analogy is usually attributed to Fire-
stone [9], though it appears to have been independently discov-
ered in [12], [7]. Firestone also introduced the ideas of through
and across variables which provide a unifying framework to ex-
tend analogies to other contexts, e.g., acoustic, thermal, fluid
systems. The reader is referred to [26] for a seminal exposition
of this approach (see also [19] and [20]). Interesting historical
notes can be found in [22], [18, Ch. 9], [16, Preface].
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Fig. 1. A free-body diagram of a one-port (two-terminal) mechanical element
or network with force–velocity pair(F; v) wherev = v � v .

The subject of dynamical analogies relies strongly on the use
of energy ideas, with the product of through and across variables
being an instantaneous power. Although there is a sense in
which both analogies are valid, the force–current analogy is
the one which respects the manner of connection (i.e., series,
parallel etc.) so that mechanically and electrically equivalent
circuit diagrams are identical as graphs [9], [12], [7]. At a
more fundamental level, this arises because the through and
across variable concepts allow a direct correspondence between
nodes, branches, terminals, and ports in a network [30]. In
the closely related bond graph approach to system modeling
[23], [16], [17], the use of effort and flow variables, whose
product has units of power, normally employs the force–voltage
analogy, but this is not intrinsic to that approach [31].

The force–current analogy, described in more detail in Sec-
tion II-B, is the one preferred here. However, the contribution
of the present work is not dependent on which analogy is used.
The property of the mass element, that one of its terminals is the
ground, is a “restrictive” feature independent of whether its elec-
trical analog is considered to be the capacitor or the inductor. In
this sense, the defining property of the inerter is that it is the true
mechanical dual of the spring.

B. The Force–Current Analogy

The formal definitions of nodes, branches, elements, etc. in
electrical network theory are quite standard and do not need to
be repeated here (see [2] for a summary). The analogous but
slightly less familiar definitions for mechanical networks will be
useful to record below (see [26] for a comprehensive treatment).

A (idealized)mechanical networkof pure translational type
consists of mechanical elements (such as springs, masses,
dampers and levers) which are interconnected in a rigid manner
[26], [15]. It is usual to restrict the motion to be parallel to a
fixed axis and relative to a fixed reference point in an inertial
frame called theground.The pair of end-points of the spring
and damper are callednodes(or terminals). For the mass, one
terminal is the position of its center of gravity, whilst the other
terminal is the ground.

A port is a pair of nodes (or terminals) in a mechanical system
to which an equal and opposite forceis applied and which
experience a relative velocity. Alternatively, a velocity can be
applied which results in a force. Fig. 1 is a free-body diagram of
a one-port (two-terminal) mechanical network which illustrates
the sign convention whereby a positivegives a compressive
force and a positive corresponds to the nodes
moving together. The product of and has units of power
and we call the force–velocity pair. In general, it is not
necessary for either node in a port to be grounded.

Fig. 2. The standard network symbol for the mass element.

The force–current (sometimes termedmobility) analogy
between electrical and mechanical networks can be set up by
means of the following correspondences:

force current
velocity voltage

mechanical ground electrical ground
spring inductor

damper resistor
kinetic energy electrical energy

potential energy magnetic energy.

The correspondence between mass and capacitor was omitted
from the previous list due to the fact that one terminal of the
mass element is mechanical ground, which means that the
defining equation is analogous to that of the capacitor, but
is not as general. This is embodied in the standard network
symbol for the mass shown in Fig. 2 where the bracket and
dashed line emphasize that must be measured relative to a
nonaccelerating (usually zero velocity) reference.

The force–current analogy goes deeper than the correspon-
dences listed in the previous paragraph because of the concept
of through and across variables [9]. In essence, athrough vari-
able (such as force or current) involves a single measurement
point and requires the system to be severed at that point to
make the measurement. In contrast, anacross variable(such
as velocity or voltage) can be measured without breaking into
the system and the relevant quantity for network analysis is
the difference of the variable between two points, even if one
point is the ground. A general approach to network analysis
based on such a formalism is given in [30]. One consequence
is that the methods of mesh- and nodal-analysis can be applied
to mechanical networks.

In this paper, we defineimpedanceto be the ratio of the across
variable to the through variable, which agrees with the usual
electrical terminology. For mechanical networks, impedance is
then the ratio of velocity to force, which agrees with some books
[26, p. 328], but not others which use the force–voltage analogy
[15]. We defineadmittanceto be the reciprocal of impedance.

C. The Inerter

We define the (ideal)inerter to be a mechanical two-node
(two-terminal), one-port device with the property that the equal
and opposite force applied at the nodes is proportional to the
relative acceleration between the nodes.That is,
in the notation of Fig. 1. The constant of proportionalityis
called theinertanceand has units of kilograms. The stored en-
ergy in the inerter is equal to .
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Naturally, such a definition is vacuous unless mechanical
devices can be constructed which approximate the behavior
of the ideal inerter. To be useful, such devices also need to
satisfy certain practical conditions which we list as follows.

R1) The device should be capable of having a small mass,
independent of the required value of inertance.

R2) There should be no need to attach any point of the phys-
ical device to the mechanical ground.

R3) The device should have a finite linear travel which is
specifiable, and the device should be subject to reason-
able constraints on its overall dimension.

R4) The device should function adequately in any spatial
orientation and motion.

Condition R2) is necessary if the inerter is to be incorporated in
a free-standing device which may not easily be connected to a
fixed point in an inertial frame, e.g., a suspension strut which is
connected between a vehicle body and wheel hub. We mention
that conditions of the above type hold for the ordinary spring
and damper.

The aforementioned realizability conditions can indeed be
satisfied by a mechanical device which is easy to construct. A
simple approach is to take a plunger sliding in a cylinder which
drives a flywheel through a rack, pinion, and gears (see Fig. 3).
Note that such a device does not have the limitation that one of
the terminals be grounded, i.e., attached to a fixed point in an
inertial frame. To approximately model the dynamics of the de-
vice of Fig. 3, let be the radius of the rack pinion, the radius
of the gear wheel, the radius of the flywheel pinion, the ra-
dius of gyration of the flywheel, the mass of the flywheel,
and assume the mass of all other components is negligible. As-
suming we can check that the following relation holds:

(1)

where and . If the direct in-
ertial effect of the flywheel mass comes into play, but this will
only change (1) by a small proportion providing is large.
To a first approximation, such an effect can be neglected, as is
commonly done for springs and dampers. Note that even with
relatively modest ratios the inertance is a factor
of 81 times the mass. It is clearly feasible to introduce addi-
tional gearing; an extra gear wheel and pinion with ratiowill
multiply the inertance by a factor . Increasing the gearing ra-
tios also increases internal forces in the device and the flywheel
angular velocity (the latter is given by in
the above model) which places higher demands in manufacture,
but these are practical concerns and not fundamental limits. In
principle, it is feasible to keep the mass of the device small in
an absolute sense, and compared to the inertance of the device.
Indeed a simple prototype inerter has been made which has an
inertance to mass ratio of about 300.1 The remaining conditions
R2)–R4) are also satisfied by the realization of Fig. 3. In the
case of gyroscopic effects being an issue under R4), a system
of counter-rotating flywheels could be introduced. It seems rea-
sonable to conclude that such a device can be regarded as ap-
proximating the ideal inerter in the same sense that real springs,

1Patent pending.

Fig. 3. Schematic of a mechanical model of an inerter.

dampers, inductors, resistors, and capacitors approximate their
mathematical ideals.

It is useful to discuss two references on mechanical networks,
which give some hint toward the inerter idea, in order to high-
light the new contribution here. We first mention [26, p. 234]
which describes a procedure whereby an electrical circuit is first
modified by the insertion of ideal one-to-one transformers so
that all capacitors then have one terminal grounded. This then
allows a mechanical circuit to be constructed with levers, which
has similar dynamic properties to the electrical one while not
being properly analogous from a circuit point of view. Condi-
tion R1) is not discussed in [26] though it seems that this could
be addressed by adjusting the transformer ratios to reduce the
absolute values of the masses required (with transformers then
being needed for all capacitors), however, R3) might then be a
problem. Another difficulty with this approach is with R2) since
a pair of terminals of the transformer need to be connected to the
mass and the ground.

Second, we highlight the paper of Schönfeld [24], which is
principally concerned with the treatment of hydraulic systems
as distinct from mechanical systems and the interpretation of
acoustic systems as mixed mechanical–hydraulic systems, a
work which appears to have been unfairly neglected. In con-
nection with mechanical–electrical analogies, the possibility
of a biterminal mechanical inertance is mentioned. The idea is
essentially to place a mass at the end of a lever, connected with
links to the two terminals, while increasing the lever length
and decreasing the value of mass arbitrarily but in fixed ratio
[24, Fig. 12(d)]. Although this in principle deals with R1) and
R2), there is a problem with R3) due to the large lever length
required or the vanishing small available travel. A variant on
this idea [24, Fig. 12(e)] has similar difficulties as well as
a problem with R4). It is perhaps the obvious limitations of
these devices that have prevented the observation from being
developed or formalized.

In the light of the previous definition of the ideal inerter, it
may sometimes be an advantage to reinterpret combinations of
system elements as acting like an inerter. For example, in [17,
Problem 4.18] two masses are connected together by means of
a lever arrangement (interpreted as a 2-port transformer con-
nected to a 1-port inertia element in the bond graph formalism).
If this system is linearized for small displacements then the be-
havior is the same as if an inerter were connected between the
two masses. Of course, such an arrangement has problems with
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R3). Indeed, if large values of inertance were required for a mod-
erate amount of travel then the lever lengths and ratios would be
impractical.

A table of the circuit symbols of the six basic electrical
and mechanical elements, with the newly introduced inerter
replacing the mass, is shown in Fig. 4. The symbol chosen for
the inerter represents a flywheel.

D. Classical Network Synthesis

The introduction of the inerter mechanical element, and the
use of the force–current analogy, allows a classical theorem on
synthesis of electrical one-ports in terms of resistors, capacitors
and inductors to be translated over directly into the mechanical
context. We will now restate the relevant definitions and results
in mechanical terms.

Consider a mechanical one-port network as shown in Fig. 1
with force–velocity pair . The network is defined to be
passive[21, p. 26], [1, p. 21] if for all admissible, which
are square integrable on

(2)

The quantity on the left-hand side of (2) has the interpretation
of the total energy delivered to the network up to time. Thus,
a passive network cannot deliver energy to the environment.

Theorem 1 [21, Chs. 4, 5], [1, Th. 2.7.1, 2]:Consider a
one-port mechanical network for which the impedance ex-
ists and is real-rational. The network is passive if and only if one
of the following two equivalent conditions is satisfied.

1) is analytic and in .
2) is analytic in ,

for all , at which is finite, and any poles of
on the imaginary axis or at infinity are simple and have a
positive residue.

In the aforementioned theorem,denotes complex conjuga-
tion. A pole is said to besimpleif it has multiplicity one. The
residue of a simple pole of at is equal to

. Poles and zeros of at can be defined as
the poles and zeros of at . Thus the residue of a
simple pole at is equal to .

Any real-rational function satisfying 1) or 2) in The-
orem 1 is calledpositive real.Theorem 1 also holds with
replaced by the admittance .

Theorem 2: Consider any real-rational function which
is positive real. There exists a one-port mechanical network
whose impedance equals which consists of a finite inter-
connection of springs, dampers, and inerters.

Theorem 2 is also valid with replaced by the admit-
tance . This theorem represents one of the key results of
classical electrical network synthesis, translated directly into
mechanical terms. The first proof of a result of this type was
given in [4], which shows that any real-rational positive-real
function could be realized as the driving-point impedance of
an electrical network consisting of resistors, capacitors, in-
ductors, and transformers. The method involves a sequence
of steps to successively reduce the degree of the positive-real
function by extraction of imaginary axis poles and zeros and

Fig. 4. Circuit symbols and correspondences with defining equations and
admittanceY (s).

subtraction of resistive and reactive elements [11, Ch. 9.4], [4].
A classical alternative procedure due to Darlington [5] realizes
the impedance as a lossless two-port network terminated in
a single resistance. The possibility of achieving the synthesis
without the use of transformers was first established by Bott
and Duffin [3]. See [11, Ch. 10] and [2, pp. 269–274] for a
description of this and related methods, and [6] for a historical
perspective. It is these procedures which provide the proof
for Theorem 2.

III. V IBRATION ABSORPTION

A. Problem Statement

Suppose we wish to connect a massto a structure so that
steady sinusoidal vibrations of the structure at a constant fre-
quency do not disturb the mass. The problem is posed as in
Fig. 5 where the mass is connected to the structure by a device
whose mechanical admittance is . The mass may be sub-
jected to a force and the displacement of the mass and the
structure are and , respectively. We seek to design and realize
a positive-real so that if then as

.
The equation of motion for the mass in the Laplace trans-

formed domain is:

whence

where denotes Laplace transform. It is evident that the mass
will be impervious to a steady sinusoidal disturbance atpro-
viding has a zero at , and that this
will hold providing has a zero at .

B. Approach Using Inerter

Let us seek an admittance of the form

(3)
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with . The reasoning for this choice of
is as follows. If the quadratic factors in the numerator and de-
nominator are removed then the admittance reduces to that of
a spring and damper in parallel. The factor gives the
required zero at in and the quadratic factor in the
denominator allows to approximate the behavior of the
spring and damper for largeand for small .

We require that is positive real so it can be realized pas-
sively. Consider the positive real factor
in . Note that is purely imaginary, with a positive
sign if and a negative sign if . Consid-
ering the behavior of near it is evident that

for all only if is
real when . The latter condition holds providing that

(4)

It turns out that (4) is also sufficient for in (3) to be positive
real when . Rather than verify this directly, we
will now consider how can be realized.

A standard first step in synthesizing a positive real function is
to remove any imaginary axis poles and zeros [4], [11, Ch. 9.4].
For the function in (3) it turns out to be simplest to remove first
the zeros at by considering . We obtain

(5)

using (4). Equation (5) gives a preliminary decomposition of
as a series connection of two network elements with me-

chanical impedances and respectively. The first of
these elements has an admittance given by

which represents a parallel combination of an inerter with
constant and a spring with constant . The second
element, called theminimum reactivepart in electrical networks
[11, Ch. 8.1], has an admittance given by

which represents a parallel combination of a damper with con-
stant and spring of constant . Writing and

we therefore obtain the realization of as shown
in Fig. 6.

We remark that the new feature in the admittance is the
presence of the parallel combination of the inerter and spring.
This is, in fact, a tuned linear oscillator with natural frequency
of oscillation .

C. Comparison with Conventional Approach

It is interesting to compare the solution obtained in Fig. 6
with the more conventional approach shown in Fig. 7 where
the vibration absorber consists of a tuned spring-mass system

Fig. 5. Vibration absorption problem.

Fig. 6. Realization ofQ(s).

attached to the mass (see [8]). In the Laplace transformed
domain, the equations of motion are

Solving for and gives

Thus, when , the mass has zero steady-state ampli-
tude in response to a sinusoidal disturbance atof unit ampli-
tude and frequency (which is the desired vibration absorption
property) while the steady-state amplitude of the attached mass

is

It is evident that the amplitude of oscillation of the mass
may be large if is small compared to . Thus,
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Fig. 7. Conventional vibration absorber.

in practice, and will need to be sufficiently large to
avoid excessive oscillation in . This may be a disadvantage
if it is undesirable to mount too much additional mass on.

By contrast, in the solution using the inerter in Fig. 6, the
“compensation” for the oscillation of the structure to which
is attached occurs entirely within the device implementing the
admittance . The desired effect is achieved for any value of

. What then is the role of in the performance of this
system? Clearly, the choice of plays a role in the transient
response and the response to other disturbances of the structure.
Also, the response to loads depends on . In particular, the
static spring stiffness under loads equals ,
which suggests that should not be too small compared to

for the mass to be well supported. Unlike the vibration
absorber of Fig. 7 there is no objection to increasingon the
grounds of adding extra mass to the structure.

It is instructive to compare the dynamic response of the two
solutions to the vibration absorption problem. Let (re-
spectively, ) denote the transfer function fromto for
the solution of Fig. 6 (respectively, Fig. 7). Then

and

where

Clearly, , as was required of each
approach. The two transfer functions have a similar form, and
behave similarly in the limit as (respectively )

as we will see below. For any it is straightforward to
show that

(6)

as . The transfer function on the right-hand side of (6) is
the one obtained when the spring–inerter combination in Fig. 6
is removed. Because of the pointwise convergence described by
(6), has the appearance of a “notch” filter (with zero at

) with an increasingly narrow notch asbecomes large.
It is evident that the vibration absorption property is more sensi-
tive to variations in the disturbing frequency as becomes
large. That is, if the structure is designed for a disturbance fre-
quency , but in reality the frequency is where is small,
then the resulting disturbance attenuation will be ineffective if

has too large a value. Similar considerations apply for the
conventional approach of Fig. 7. For any

as . Again, as becomes smaller, there is an increas-
ingly narrow notch at , and the vibration absorption
property becomes more sensitive to variations in the disturbing
frequency.

It is also useful to consider the response ofto load distur-
bances . These take the form

and

for the two approaches. We can check that for any

as . A similar result holds for as but

with , replaced by , . We also obtain

and . Thus, the two solutions differ
in their response to sinusoidal load disturbances of frequency

. Although the load disturbances response is not a primary
consideration in this problem, the effect of these constraints may
need to be considered in the choice of parameters. For example,
if is significantly larger than ,
then the dynamic load response in the inerter approach may
not be satisfactory. Similar considerations apply for the conven-
tional approach of Fig. 7.

To conclude this discussion, we can say that the inerter
offers an interesting alternative solution to a standard vibration
absorption problem. The dynamic response properties of the two
solutions are broadly similar, as are the asymptotic properties
as the additional mass or inertance becomes small or large.
The inerter approach has a potential advantage in that there is
no need to mount additional mass on and to be concerned
about possible limits of travel of this additional mass.
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Fig. 8. Frequency responsesT : inerter (–), conventional (–�).

D. Numerical Example

Consider the problem as posed in Fig. 5 with kg and
Hz. Suppose it is required that a constant load

N produces a deflection atof at most 1 mm, so that the static
spring stiffness is at least 10Nm . If is chosen to be a
spring in parallel with a damper, then in Fig. 5

where , . Setting Nm
gives when and

as . Thus, even in the limit as the damping ratio
vanishes (which is likely to be unacceptably oscillatory in any
case), the maximal reduction in amplitude is to 34% of the dis-
turbance amplitude. For critical damping the reduction is only
to 83%. Evidently, the ordinary spring–damper arrangement is
unlikely to provide an acceptable solution for this problem.

Let us begin with the conventional approach of Fig. 7. As
becomes smaller, the “notch” in the frequency response be-

comes increasingly narrow. Also, we can observe an oscillatory
component in the time response which is hard to dampen by
adjusting . There is clearly a practical limit to how large
can be. Let us choose the parameters kg,

Nm , Nm and
Nsm . The resulting frequency response is shown

in Fig. 8 and the step response of is shown in Fig. 9. The

steady-state amplitude of equals
times the amplitude of the sinusoidal disturbance at.

Turning to the approach of Fig. 6 using the inerter. To achieve
a static stiffness of Nm we need to choose

. At either extreme for (close to or tending
toward infinity), we can again observe an oscillatory component
in the time response which is hard to dampen by adjusting. The
following parameter choices give a reasonably wide notch and
moderate overall damping: Nm ,

Nm , Nsm . This requires an
inerter of inertance 22.80 kg. The resulting frequency response

is shown in Fig. 8 and the step response of is
shown in Fig. 9.

Fig. 9. Response ofx to a unit step atF : inerter (–), conventional (–�).

Fig. 10. Quarter-car vehicle model.

IV. V EHICLE SUSPENSIONS

A. Quarter-Car Model

An elementary model to consider the theory of active and pas-
sive suspensions is the quarter-car of Fig. 10 (see, e.g., [25] and
[14]) consisting of the sprung mass , the unsprung mass
and a tyre with spring stiffness . The suspension strutpro-
vides an equal and opposite force on the sprung and unsprung
masses and is assumed here to be a passive mechanical admit-
tance which has negligible mass. The equations of motion
in the Laplace transformed domain are

(7)

(8)

Using the force–current analogy, the quarter-car model has
an electrical analog as shown in Fig. 11, with the two masses
becoming grounded capacitors and the two external inputs
(loads on the sprung mass) and(road undulations modeled
as a velocity source) becoming current and voltage sources,
respectively.
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Fig. 11. Equivalent electrical circuit for quarter-car model.

B. Suspension Struts

A fully active suspension allows a much greater design
freedom than the traditional suspension struts [27], [29], but
there are drawbacks in terms of expense and complexity.
Currently, passive suspension struts make use only of springs
and dampers. In electrical terms this corresponds to circuits
comprising inductors and resistors only. The driving-point
impedance or admittance of such circuits is quite limited
compared to those using capacitors as well, as is shown by the
following result which is translated directly from its electrical
equivalent [11, pp. 58–64].

Theorem 3: Consider any one-port mechanical network
which consists of a finite interconnection of springs and
dampers. If its driving-point admittance exists then it is a
(real-rational) positive real function with the following
properties: all its poles and zeros are simple and alternate on
the negative real axis with a pole, possibly at the origin, being
the rightmost of these.

For convenience we call a function satisfying the conditions
of Theorem 3 aspring-damper (SD) admittance(in electrical
networks the term RL admittance is used). Any SD admittance

must satisfy the following two conditions:

(9)

dB Bode-slope dB (10)

for . This follows by considering the contribution of each
pole and zero in turn, which gives:

where .
A similar argument proves (10). These conditions on an SD
admittance do not apply to a general positive-real admittance,
which may exhibit phase lead and has no fundamental restric-
tions on the local Bode-slope. It seems clear that there could
be significant advantages in optimizing the performance of pas-
sive suspension systems over the class of positive-real functions.
The use of inerters as well as springs and dampers provides the
means to do this.

C. Low Degree Positive Real Admittances

It is a general result of network synthesis [11, pp. 127–130]
that any SD admittance can be realized as in Fig. 12,
where is the number of zeros of . Even if transformers
(levers) are allowed in addition to springs and dampers the class

of achievable admittances is still the same as that given by The-
orem 3 (see [28]). Thus, the most general SD admittance with
(positive-static stiffness) using springs and one damper is given
by

(11)

where and , while the most general form
with two dampers is

(12)

where and . To investigate the
possible benefits that inerters might provide let us consider the
class ofarbitrary positive real mechanical admittances of the
same order as .

Theorem 4: Consider the real-rational function

(13)

where , and . Then, is positive real if only
if the following three inequalities hold:

(14)

(15)

(16)

Furthermore, is an SD admittance of McMillan degree
three if and only if , , and the following
inequality holds:

(17)

(These last four inequalities together imply and ).
Proof: Assume is positive real. We can calculate that

(18)

By considering the behavior near and , we con-
clude that (14) and (16) must hold. Now, if , then

which means that (15) must hold. If then (15) must
again hold since implies has zeros with positive
real part which contradicts the positive realness assumption. So
let us consider the remaining case where and .
In this case, a pole occurs on the imaginary axis at .
From (14), it follows that , whence the residue at the pole
is equal to . Since this must be nonnegative this
again establishes (15), completing all cases.

For the converse direction, from (18) so we
need only check the residue conditions for any imaginary axis
poles. The pole at has residue . A pole at
can occur if in which case the residue is .
If and then a pole occurs on the imaginary axis
at . Again, from (14) and the residue at the
pole is equal to which is nonnegative. This
proves positive realness of .
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Fig. 12. Realization of a general SD admittance.

Turning to the final claim, is an SD admittance of
McMillan degree 3 if and only if is positive real and
satisfies the pole-zero interlacing property of Theorem 3
(with strict inequalities). Using [10, Ch. XV, Th. 11] the
interlacing property holds (with strict inequalities) if and only
if is Hurwitz. Using the
Liénard–Chipart criterion [10, Ch. XV, Th. 13] the latter holds
if the only if the following inequalities hold: ,

(19)

We can check that the two determinants in (19) are equal to
and . It can also be seen that (17) implies , whence

follows from .
Before studying the possible benefits of the admittance (13),

let us consider how it could be realized.

D. Realizations Using Brune Synthesis

The synthesis ofgeneralpositive-real functions cannot be
achieved with such a simple canonical form as Fig. 12 and re-
quires the more sophisticated procedures of Section II-D. For
the realization of the admittance (13) we can assume without
loss of generality that

A1) ;
A2) .

We can justify this as follows. If , then either
or [by combining (14) and (16)], which in both

cases leads to a loss of McMillan degree and the possibility of
realization in the form of Fig. 12. If , then (17) implies

, and (14) then implies . This is sufficient
for the pole-zero interlacing property of Theorem 3 to hold (the
case of can be checked as in the proof of Theorem 4) so
that realization in the form of Fig. 12 is again possible. Now, if

and (which implies that ) then we can
check that is a common pole-zero pair in (13) so again
realization is possible in the form of Fig. 12.

The first step in the Brune procedure [4, Ch. 9.4] is to remove
the imaginary axis poles and zeros. We write

(20)

and then

(21)

(22)

(23)

The decomposition in (22) is obtained by subtracting off the
minimum of the real part of the second term in (21), and the
same procedure is used on the inverse of that term to give (23).
Equations (22) and (23) together with (20) give the realizations
shown in Figs. 13 and 14 with the following expressions for the
constants: :

(24)

(25)

We can observe that

Since we see that , and ,
so the realization of Fig. 14 is the more efficient one in the sense
of having smaller parameter values.

It is useful to point out that the Brune procedure was relatively
simple for the admittance (13), since the minimum real part oc-
curred at zero or infinite frequency where the imaginary part was
zero. Thus, the use of a “Brune cycle” involving transformers,
or the alternative Bott–Duffin procedure, was not required.

E. A Strut Design Example

To illustrate the potential application of the inerter we
consider the simple idealized problem of designing a sus-
pension strut which has high static stiffness to applied loads

but which has well-damped time responses. We choose
the following parameters: kg, kg,

kNm and require that the strut behaves statically
like a spring of stiffness kNm [27], [29]. We
consider the set of system poles of the quarter-car model of (7),
(8), which is equal to the set of zeros of

(26)

We consider the least damping ratio among all the system
poles for a given . We seek to maximize as a func-
tion of the admittance for various choices of admittance
classes.

1) Design 1: SD Admittance With One Damper:We con-
sider the case of as in (11) with . The
optimization of over and appears to be convex (see
Fig. 15) with a maximum at , and
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Fig. 13. First realization of the admittance (13).

Fig. 14. Second realization of the admittance (13).

. This corresponds to the simplest suspension strut
of a spring in parallel with a damper with admittance

where the damper constant is given by kNsm .
Fig. 16 shows the step response fromto with rather light
damping in evidence. This highlights one of the difficulties with
conventional suspension struts which are very stiffly sprung.

2) Design 2: SD Admittance With Multiple Dampers:For
the same optimization problem, but with as in
(12) and , direct searches using the Nelder–Mead sim-
plex method led to no improvement on the value of

obtained in Design 1 with one damper. This situation ap-
pears to persist for a higher number of dampers as in Fig. 12.
Further direct searches in the parameter space converged to-
ward a set of pole-zero cancellations, and consequent reduction
in McMillan degree in , leaving only the solution obtained
in Design 1. These claims are backed only by computational
evidence, with a formal proof being lacking.

Fig. 15. Plot of damping ratio� versusT andT in Design 1.

Fig. 16. Response ofz to a unit step atz : Design 1 (–) and Design 3 (–�).

3) Design 3: Degree 3 Positive-Real Admittance:For the
same optimization problem, but with the admittance

as in equation (13), and no SD restriction, direct
searches using the Nelder–Mead simplex method led to clear
improvements. The following parameters

(27)

gave a value of . The improved damping is demon-
strated in Fig. 16 compared to the case of Design 1. The posi-
tive-real nature of is illustrated in the Bode plot of Fig. 17,
which also clearly shows that this solution is employing phase
advance. The latter fact proves that is not an SD admit-
tance, as is also seen by . The values
for the constants in the realizations of Figs. 13 and 14 are given
by

kNsm kNsm

kg kNsm

kNsm kg

These values appear to be within the bounds of practicality.
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Fig. 17. Bode plot for the admittanceY (s) of Design 3.

Fig. 18 shows the response of the sprung mass, suspension
working space, tire deflection, and relative displacement of the
damper (in the realization of Fig. 14) to a unit step road dis-
turbance. Note that the inerter linear travel has a similar overall
magnitude to the strut deflection due to the fact that the damper

is quite stiff and has small travel.

F. Realizations Using Darlington Synthesis

The realizations shown in Figs. 13 and 14 both require the
use of two dampers. It is interesting to ask if the admittance (13)
may be realized using only one damper. An approach which will
achieve this uses the method of Darlington [5], [11, Ch. IX.6]. In
the electrical context the method allows any positive-real func-
tion to be realized as the driving-point impedance of a lossless
two-port network terminated in a single resistance as shown in
Fig. 19. Since there is noa priori estimate on the minimum
number of inductors, capacitors (and indeed transformers) re-
quired for the realization of the lossless network, we will need to
carry out the procedure to determine if the saving of one damper
is offset by other increases of complexity, e.g., the need for more
than one inerter or the use of levers.

For a reciprocal two-port network with impedance matrix

we can check that in Fig. 19

(28)

Writing

where , are polynomials of even powers ofand ,
are polynomials of odd powers of, suggests the identification

(29)

Fig. 18. Responses of Design 3 to a step input atz : z (–), z � z (–�),
z � z (�), and deflection of damperc (– –).

Fig. 19. Realization of a positive real impedance in Darlington form.

This corresponds to Case B in [11, Ch. IX.6]. Defining
in (13) gives , ,

, and , from which

(30)

We now make the following two assumptions:

A1) ;
A2) .

The first of these involves no loss of generality since
implies , which means that (13) is an SD admittance
requiring only one damper for its realization. The second avoids
various special cases which can be dealt with in a rather simpler
way than the general development which now follows.

Since (30) is not a perfect square it is necessary to multiply
numerator and denominator in by the polynomial

(determined by ).
This gives where

and . Then, using the corre-
spondences in (29) with replaced by , etc., we obtain the
following expression for the impedance of the lossless two-port:
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We now write

(31)

where the constant matrices and are given by

Following [11, Ch. VII.1] we note that any impedance matrix
of the form , where is scalar and

is nonnegative definite, can be realized in the form of the T-cir-
cuit of Fig. 20 with = and

In order for , it is necessary and sufficient that
and

We can now apply this realization procedure to each term in
(31) and obtain the sum by taking a series connection of the two
resulting two-ports (see Fig. 21).

We begin with and observe that , which fixes
the choice of and ensures that . Since both
and then vanish from the T-circuit, this has the consider-
able advantage that only a single oscillator (inductor–capacitor
or spring–inerter parallel connection) will be required, which is
a significant economy. Moreover, we may dispense with a trans-
former by a choice of which gives :

(32)

We now set the first element of the second term in (31) equal to a
parallel capacitor–inductor combination with impedance

to obtain the parameters

(33)

(34)

We denote the capacitance byand the inductance by in
anticipation of the mechanical analogy.

Turning to , we note that a transformer will be required
here with and the range of transformer ratios given by

(35)

Fig. 20. T-circuit realization of elementary lossless two-ports.

Fig. 21. Series connection of a pair of two-port networks.

Choosing at the lower (respectively, upper) limit sets (re-
spectively, ) to be zero. It will be convenient to always select
the lower limit. After suitable manipulation we can find expres-
sions for the inductances and (whose
inverses will be spring constants in the mechanical analogy)

(36)

(37)

We can now take the series connection of the two terms in (31)
plus the terminating resistor to yield the circuit diagram shown
in Fig. 22. A technical condition for the series connection in
Fig. 21 to be valid is that no circulatory current can exist, which
is satisfied in this case because of the presence of a transformer
(see [11, Ch. VI.1], [13, pp. 325–326]).

It remains to deduce the mechanical analog of Fig. 22. The
ideal transformer can be implemented as a simple lever with
pivot point at the common node of the spring–inerter parallel
combination. The central pivot automatically corresponds to an
ideal transformer with negative turns ratio, which is what we
require. Therefore, we obtain the mechanical realization of the
admittance (13) with, , , and given by (33), (34), (36),
and (37)

and (38)

It is possible to directly calculate the admittance of the me-
chanical one-port networks in Fig. 23 as a function of the pa-
rameters , , , , , , to be given by (39) at the bottom of
the next page. Clearly, the McMillan degree of (39) is one higher



1660 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 47, NO. 10, OCTOBER 2002

Fig. 22. Electrical circuit realization of the admittance (13).

than the admittance we started with in (13). Since there are four
energy storage elements in Fig. 23 (three springs and one in-
erter), the extra degree is not unexpected from general circuit
theory considerations. How then is equality with (13) to be ex-
plained? The answer is that there is an interdependence in the
parameter values of , , , , , , as defined through (33),
(34), and (36)–(38) which is sufficient to ensure a pole-zero
cancellation in (39). In the case when , which makes

, this interdependence is expressed by

(The general relationship is significantly more complicated). It
is evident that the mechanical network in Fig. 23 parameterizes
a class of admittances which is strictly larger than those in (13)
if the parameter values of , , , , , and are allowed to
vary independently.

It is interesting to make any possible comparisons between
parameter values required in Fig. 23 and those for the realization
in Fig. 14 for the admittance (13). In fact, it is possible to show

(40)

(41)

(42)

(43)

To show (40), we note that while

For (41), note that and ;
(42) follows from:

Fig. 23. Third realization of the admittance (13).

and (43) follows from:

It appears difficult to give any usefula priori estimates for the
lever ratio .

We now return to the suspension strut design of Sec-
tion IV-E-3. For the parameter values given in (27), the
realization of Fig. 23 gives the following values for the con-
stants using equations (33), (34), and (36)–(38)

kg kNm

kNm kNsm

These values appear to be within the bounds of practicality.
After carrying out the Darlington procedure for the real-

ization of the admittance (13), we note that the saving of one
damper from the realizations of Figs. 13 and 14 has been offset
by the need for a lever. The extra spring and increased value
of inerter constant implied in (40) are perhaps less significant
differences.

V. SIMULATED MASS

The previous two applications of the inerter exploited one
of its principal advantages over the mass element, namely that
neither of its terminals need to be grounded. There is also the
possibility that the inerter could be used to replace a mass

(39)
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element with one of its terminals then being connected to
ground. This is illustrated in Fig. 24(a) and (b), which are in
principle equivalent dynamically with respect to displacement
disturbances .

Fig. 24(b) may be a useful alternative to Fig. 24(a) in a sit-
uation where it is desired to test a spring–damper support or
absorber before final installation, and where it is impractical to
test it on a real mass element, e.g., where the massis very
large.

By contrast, it should be pointed out that, even in the context
of mechanical network synthesis, Fig. 24(b) may not be a phys-
ically feasible alternative to Fig. 24(a) in situations where it is
impossible to connect one terminal of the inerter to ground, e.g.,
for a vibration absorber mounted on a bridge.

VI. CONCLUSION

This paper has introduced the concept of the ideal inerter,
which is a two-terminal mechanical element with the defining
property that the relative acceleration between the two terminals
is proportional to the force applied on the terminals. There is no
restriction that either terminal be grounded, i.e., connected to a
fixed point in an inertial frame. The element may be assumed to
have small or negligible mass. The ideal inerter plays the role
of the true network dual of the (ideal) mechanical spring.

It was shown that the inerter is capable of simple realization.
One approach is to take a plunger sliding in a cylinder driving a
flywheel through a rack, pinion and gears. Such a realization sat-
isfies the property that no part of the device need be attached to
ground, and that it has a finite linear travel which is specifiable.
The mass of the device may be kept small relative to the iner-
tance (constant of proportionality) by employing a sufficiently
large gear ratio. Such a realization may be viewed as approxi-
mating its mathematical ideal in the same way that real springs,
dampers, capacitors, etc. approximate their mathematical ideals.

The inerter completes the triple of basic mechanical network
elements in a way that is advantageous for network synthesis.
The properties that neither terminal need be grounded and the
device mass may be small compared to the inertance are crucial
for this purpose. It allows classical electrical circuit synthesis to
be exploited directly to synthesize any one-port (real-rational)
positive-real impedance as a finite network comprising springs,
dampers, and inerters. The use of the inerter for synthesis does
not prevent mechanical networks containing mass elements
from beinganalyzedin the usual way as the analogs of grounded
capacitors. Moreover, as well as the possibility that in some
situations it is advantageous that one terminal of the mass
element is the ground, there is also the possibility that the
inerter may have benefits tosimulate a mass element with
one of its terminals being connected to ground.

A vibration absorption problem was considered as a pos-
sible application of the inerter. Rather than mounting a tuned
spring–mass system on the machine that is to be protected
from oscillation (conventional approach), a black-box me-
chanical admittance was designed to support the machine
with a blocking zero on the imaginary axis at the appropriate
frequency. The resulting mechanical network consisted of a
parallel spring-damper in series with a parallel spring inerter.

(a)

(b)

Fig. 24. Spring–damper supporting (a) a mass element and (b) a grounded
inerter acting as a simulated mass.

This arrangement avoids any associated problems of attaching
the spring-mass to the machine, such as the need for an
undesirably large mass to limit its travel.

A vehicle suspension strut design problem was considered as
another possible application of the inerter. It was pointed out that
conventional struts comprising only springs and dampers have
severely restricted admittance functions, namely their poles
and zeros all lie on the negativ real axis and the poles and zeros
alternate, so that the admittance function always has a lagging
frequency response. The problem of designing a suspension
strut with very high static spring stiffness was considered. It
was seen that conventional spring and damper arrangements
always resulted in very oscillatory behavior, but the use of
inerters can reduce the oscillation. In studying this problem, a
general positive real admittance was considered consisting of
two zeros and three poles. The realization procedure of Brune
was applied to give two circuit realizations of the admittance,
each of which consisted of two springs, two dampers and one
inerter. The resulting parameter values for the strut design
appear within the bounds of practicality. As an alternative,
the realization procedure of Darlington was used to finding a
realization consisting of one damper, one inerter, three springs
and a lever.
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