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Abstract

During the past few decades, the study of the single polymer chain has attracted considerable 

attention with the goal of exploring the structure–property relationship of polymers. It still, 

however, remains challenging due to the variability and low atomic resolution of the amorphous 

single polymer chain. Here, we demonstrated a new strategy to visualize the single 

metallopolymer chain with a hexameric or trimeric supramolecule as a repeat unit, in which Ru(II) 

with strong coordination and Fe(II) with weak coordination were combined together in a stepwise 

manner. With the help of ultrahigh-vacuum, low-temperature scanning tunneling microscopy 

(UHV-LT-STM) and scanning tunneling spectroscopy (STS), we were able to directly visualize 

both Ru(II) and Fe(II), which act as staining reagents on the repeat units, thus providing detailed 

structural information for the single polymer chain. As such, the direct visualization of the single 

random polymer chain is realized to enhance the characterization of polymers at the single-

molecule level.

Graphical Abstract
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INTRODUCTION

Over the past decades, to enhance the understanding of the structure–property relationship of 

polymers, characterization of single polymer chain has attracted widespread attention.1,2 

Microscopy, such as scanning tunneling microscopy (STM) or atomic force microscopy 

(AFM), allows us to observe the molecular structures directly. However, except for the large 

biomolecules such as DNA,3–7 the imaging of structure as well as conformation is mainly 

limited to crystalline, liquid crystalline, and the aggregation of polymer chains.8–13 With 

densely grafted side-chains, the worm-like polymer bottle-brushes can be observed directly,
14–23 yet the dense and long side chains severely affect the polymeric backbone 

conformation.24,25 A formidable challenge still remains to address the random coil 

conformations of amorphous single polymer chain due to the variability and low atomic 

resolution.

As is known to all, metals or metal ions with high electron density can afford relatively 

strong signals and enhanced atomic resolution under microscopy like STM. Therefore, if one 

can introduce these metal components into polymer chains as “staining reagents”, the 

amorphous single polymer chain could be easily observed and confirmed by STM depending 

on the position of metal. Generally, metal components are introduced into polymers through 

three approaches, viz., (1) polymerization of monomers with metal ions in the main chains 

or pendant groups,26–30 (2) supramolecular polymerization through coordination of metal 

ions with organic monomer in the main chains,31–41 and (3) metalation of pendant groups 

through postpolymerization modification.42–53 However, these approaches have certain 

limitations. In the first approach, the polymerization is typically centered on small and stable 

metal–organic components, e.g., metallocenes, which are polymerized through living radical 

polymerization, ring-opening metathesis polymerization (ROMP), and so on.54–56 In the 

second approach, the supramolecular polymerization is mainly achieved through dynamic 

coordination interaction.32,36,37,39–41,57 Therefore, precise control of the polymerization is 

difficult for dynamic supramolecular polymers with labile coordination bonds. In the third 
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approach, metalation of pendant groups after polymerization is also limited to metal with 

weak coordination to get low-defect polymers.42,44–48 To date, very few systems were able 

to harness both strong and weak coordination metal ions together into metallopolymers with 

discrete supra-molecules as repeat units.

Thanks to the recent flourish of 2D and 3D metallosupramolecular structures with precisely 

controlled sizes and shapes constructed by coordination-driven self-assembly,58–82 we 

introduced two discrete structures, hexameric and trimeric metallosupramolecules, as repeat 

units to construct metallopolymers due to the high symmetry as well as the appropriate size 

for STM imaging (Scheme 1). The copper(I)-catalyzed azide–alkyne cycloaddition 

(CuAAC) “click” reaction, which owns the advantages of fast reaction rates and high yields 

with mild reaction conditions,83–86 was selected for the polymerization. In this design, we 

bridged the 2,2′:6′,2″-terpyridine (tpy) ligand and Ru(II) with strong coordination 

interaction to create the open-form metal–organic hexameric and trimeric monomers with 

free tpy.

After polymerization by the click reaction, through further metalation of Fe(II) with weak 

coordination, both strong and weak binding metal ions were harnessed into one polymer 

system in a stepwise manner. Our initial assumption was that the metalation of Fe(II) of 

metal–organic monomers would form the ring-closing hexagon or triangle as repeat units, 

and we could measure the structure and conformation of the amorphous single polymer 

chain based on the location of Ru(II) and Fe(II). Unexpectedly, according to the results of 

ultrahigh-vacuum, low-temperature scanning tunneling microscopy (UHV-LT-STM) and 

scanning tunneling spectroscopy (STS), both the hexagon assembled by intramolecular 

coordination and linear chains assembled by intermolecular assembly were observed. In 

contrast, only the intramolecular assembly into the triangle existed in trimeric repeat units.

RESULTS AND DISCUSSION

Scheme 1 depicts the two metal–organic monomers with open-form structures, viz., 

hexameric monomer (Hex-M) and trimeric monomer (Tri-M), which were prepared 

according to the procedure as shown in the Supporting Information (Schemes S1–S5 and 

Figures S1–S76). Briefly, Hex-M was synthesized through a well-established stepwise 

strategy based on the strong connectivity of 〈tpy-Ru(II)-tpy〉,87–94 by which six ditopic tpy 

ligands bearing a 120° angle were bridged linearly with five Ru(II) ions. Similarly, two 

Ru(II) ions were used to bridge three ditopic tpy ligands with 60° angle together to afford 

Tri-M. Note that Hex-M and Tri-M are functionalized by dual azide groups, which were 

designed for the next polymerization by click reaction. The 1H NMR spectra of Hex-M and 

Tri-M are shown in Figures 1A and 1E, with proton labeling at the top of Scheme 1. The 

assignment of peaks associated with the chemical structure was assisted by the two-

dimensional (2D) 1H–1H gCOSY and NOESY NMR spectra (Figures S41–S44 and S71–

S74). After treating the precursors (compounds 8 and 16) bearing chloride as terminal 

groups with sodium azide, the triplet peak for the methylene unit near chloride at around 

3.59 ppm totally disappeared with a new triplet peak at 3.28 ppm appearing, demonstrating 

that the conversion was completed. The integrals from corresponding peaks fit well with the 

theoretical value, indicating the high purity of Hex-M and Tri-M.
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The Hex-M and Tri-M monomers were further characterized by electrospray ionization–

mass spectrometry (ESIMS). Hex-M (Figure 2A) was observed with a dominant set of peaks 

with continuous charge states from 6+ to 10+ due to successive loss of the counterions, PF –

6. The experimental isotope pattern of each charge state agrees well with its theoretical 

simulation result (inset and Figure S46). The averaged molecular mass is deconvoluted as 

7019 Da, which matches the chemical composition [C340H294N42O6Ru5P10F60]. Figure 2C 

shows the ESI-MS of Tri-M with continuous charge states from 3+ to 4+. The experimental 

isotope pattern of each charge state is also consistent with the simulated one (inset and 

Figure S76). The averaged molecular mass is deconvoluted as 3375 Da, which has a good 

agreement with the chemical composition [C168H142N24O6Ru2P4F24]. Furthermore, 

traveling wave ion mobility–mass spectrometry (TWIM-MS) spectra (Figure 2B,D) show a 

series of narrowly distributed signals with successive charge states for both Hex-M and Tri-

M, indicating high isomeric purity of the structures.

Alkyne-terminated pentaethylene glycol (Alkyne-PEG, Scheme S6 and Figures S77–S79) 

was selected as another component to polymerize with the monomers (Hex-M and Tri-M) 

to construct the corresponding metallopolymers (Hex-P and Tri-P) by the click reaction 

(Scheme S7). During the polymerization process in DMF, a large amount of precipitation 

was produced, suggesting the formation of metallopolymers (Hex-P and Tri-P). The 

products were fully characterized by NMR and matrix-assisted laser desorption ionization 

time-of-flight (MALDI-TOF). Figure 1 shows the 1H NMR spectra of Hex-P (Figure 1B) 

and Tri-P (Figure 1D), while 2D 1H–1H gCOSY and NOESY NMR spectra are provided in 

the Supporting Information (Figures S80–S89). The triplet peak at 3.28 ppm corresponding 

to a methylene unit near the azide group of the monomers (Hex-M and Tri-M) disappeared, 

indicating monomers were completely reacted. After the formation of triazole by click 

reaction, this triplet peak was significantly shifted downfield (~1.23 ppm) and the protons of 

alkynyl group were dramatically shifted downfield (~4.99 ppm).

Because of the strong electrostatic interactions between charged polymer backbones and 

counterions, the characterization data by size exclusion chromatography, viscometry, and 

laser light scattering may come from the associations rather than the single chains of the 

metallopolymers, which can be regarded as a kind of polyelectrolyte. Because all the 

solution-based techniques have the similar problem, MALDI-TOF mass spectrometry was 

further used to characterize the metallopolymers with open-form monomers in their solid 

states. In contrast to losing multiple counterions for ESI-MS of monomers, such 

metallopolymers are mainly ionized by losing a single counterion, that is, PF6
− in this study. 

Hex-P (Figure 3A) shows a series of peaks with an interval of ca. 7340 Da, in good 

agreement with the molar mass of the repeat unit in Hex-P (Hex-M with Alkyne-PEG, 

C356H320N42O12Ru5P10F60; theoretical value: 7334 Da). A high molecular weight signal up 

to 73400 (m/z) was detected with the degree of polymerization of 10, directly confirming the 

successful synthesis of the corresponding metallopolymer Hex-P. In terms of polymers with 

a large polydispersity index value (PDI), it is worth noting that MALDI-TOF generally 

displays a nonsymmetrical distribution of peaks for polymers with higher abundant signals 

at low m/z range due to the high ionization efficiency of species with low molecular weight.
95–97 This also suggested that large oligomers with a high polymerization degree might exist 
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in our system; however, they were not ionized due to the limitation of MALDI-TOF. With 

small monomer Tri-M, a much higher degree of polymerization was detected in Tri-P as 

shown in Figure 3B. A high molecular weight signal up to 70000 (m/z) was obtained with 

the degree of polymerization of 19, indicating the successful synthesis of corresponding 

metallopolymer Tri-P. The average interval between adjacent peaks is about 3684 Da, which 

agrees with the molar mass of the repeat unit in Tri-P (Tri-M with Alkyne-PEG, 

C184H168N24O12Ru2P4F24; theoretical value: 3689 Da).

After polymerization, Fe(II) with weak coordination was introduced for further metalation.
35,42,98–103 To avoid the undesired cross-link between different polymer chains, a low 

concentration (0.2 mg mL−1) of metallopolymers (Hex-P and Tri-P) was used in the 

metalation process. The metalation results were supported by the ultraviolet–visible (UV–

vis) absorption spectra as shown in Figure S90. In both metallopolymers, the expected peak 

at about 496 nm was ascribed to the metal-to-ligand charge-transfer transition (MLCT) of 

〈tpy-Ru(II)-tpy〉 connectivity.31,101,104 After Fe(II) was introduced, a new emerging peak at 

about 574 nm that was attributed to the characteristic MLCT band of the 〈tpy-Fe(II)-tpy〉 
was observed, indicating successful metalation.35,98,99,101–104

Furthermore, ultrahigh-vacuum, low-temperature scanning tunneling microscopy (UHV-LT-

STM) was then used in an effort to characterize metallopolymers and address the structure 

and conformation of polymer chains. Samples were dissolved in acetonitrile and deposited 

on an Ag (111) surface by drop-casting. It should be noted that to clearly observe a single 

metallopolymer chain, a low concentration (0.05 mg mL−1) was used to prepare the STM 

sample. Because of the octahedral coordination geometry and higher electron density around 

the metal ions, the 〈tpy-Ru(II)-tpy〉 or 〈tpy-Fe(II)-tpy〉 units as the stained spots gave rise to 

a relatively strong signal in the form of a bright lobe when compared to the organic portions.
105

Figure 4A and Figure S92 show the STM images of Hex-P, in which each of the five bright 

lobes located closely together correspond to five connected 〈tpy-Ru(II)-tpy〉 units, indicating 

the successful formation of metallopolymers. Aggregation occurred due to the poor 

solubility of Hex-P in acetonitrile, making it difficult to observe longer polymer chains, and 

only large bright spots are observed for aggregates as shown in Figure S92. We also used 

DMF and DMSO as solvents, which however caused severe background signals during 

UHV-LTSTM imaging. After self-assembly with Fe(II), six bright lobes including five 〈tpy-

Ru(II)-tpy〉 units and one 〈tpy-Fe(II)-tpy〉 unit are observed as a group (Figure 4C and 

Figure S93). As expected, the repeat units of Hex-P underwent intramolecular coordination 

into a ring-closed structure, and six bright lobes arranged in a cyclic hexagonal structure 

(Hex–P-C). The distance between two adjacent bright lobes of the cyclic hexagonal 

structure is around 2.1 nm, which is well consistent with the calculated size by modeling 

(Figure S91). Also, because of the poor solubility, we were only able to observe one 

metallopolymer chain with three cyclic hexagonal repeat units (Figure S93). Besides 

intramolecular coordination, intermolecular coordination into a linear chain (Hex-P-L) was 

also observed as shown in Figure 4E and Figure S93. It should originate from the constraint 

of the repeat units in the metallopolymer chain, where Alkyne-PEG brings two monomers 

close enough for the occurrence of intermolecular complexation.
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The positions of Fe(II) and Ru(II) ions in the repeat units were identified by the means of 

dI/dV–V using scanning tunneling spectroscopy (STS) which probed local density of states 

(LDOS).106,107 Tunneling spectra were measured by positioning the STM tip above each 

lobe of the repeat units on the Ag (111) surface at a fixed height with a bias range of ±2V. 

From dI/dV–V spectroscopic data, the energy gap between the HOMO and LUMO can be 

directly obtained.108 Thus, from the STS measurements of each 〈tpy-metal(II)-tpy〉 unit, we 

were able to differentiate the Fe(II) and Ru(II) centers based on their different energy gaps. 

Among the six bright lobes of a group, one bright lobe in each group in Figure 4C,E gives 

the HOMO–LUMO gap of 2.4 eV (Figure 4H), while the remaining five bright lobes provide 

the gap value of 2.8 eV (Figure 4G). Thus, we can identify the site with a smaller gap, viz. 

2.4 eV, as Fe(II) and that of the larger gap, viz. 2.8 eV, as the Ru(II) site. Then, STM 

imaging was able to directly read the “sequence” of metal ion within the polymer chains 

(Figure 4D,F), in which red and blue dots represent the 〈tpy-Ru(II)-tpy〉 and 〈tpy-Fe(II)-tpy〉 
units, respectively. More importantly, the polymer chain can be profiled depending on the 

positions of metal ions as shown in Figure 4F, by which we were able to deduce the 

conformation of the polymer chain.

In the STM image of Tri-P, each of the two bright lobes positioning closely together 

represents two connected 〈tpy-Ru(II)-tpy〉 within a repeat unit (Figure 5A and Figure S94). 

With the introduction of Fe(II), all of the repeat units performed intramolecular coordination 

to form a ring-closing structure, where three bright lobes arranged into a triangle (Tri-P-C) 

as evidenced by STM imaging (Figure 5C and Figure S95). The distance between two 

adjacent bright lobes of the cyclic triangular structure is ca. 1.2 nm, which is well consistent 

with the modeling size (Figure S91). It should be noted that with enhanced solubility up to 

12 triangular repeat units were observed in a single polymer chain, much higher than that in 

the hexameric system. This result is consistent with the MALDI-TOF MS data as shown in 

Figure 3. The positions of Fe(II) and Ru(II) ions in the repeat unit are also identified by the 

means of dI/dV–V obtained in STS (Figure 5E,F). We then labeled the 〈tpy-Ru(II)-tpy〉 and 

〈tpy-Fe(II)-tpy〉 units with red and blue dots, respectively, on the basis of STS results 

(Figure 5B,D). The polymer chain is readily profiled by using the blue dots because all 〈tpy-

Fe(II)-tpy〉 units are located right in the middle of the chain. Meanwhile, the conformation 

could be estimated and proposed according to the polymer chain drawn as shown in the inset 

of Figure 5D. It should be noted that theoretically the molecular weight and polydispersity 

index for the metallopolymers can be calculated based on the observed polymer single 

chains from STM images. However, to obtain a statistically average value, hundreds of high-

resolution STM images without strong aggregation are needed, which is not practical 

currently.

CONCLUSIONS

In summary, a novel class of metallopolymers were synthesized by harnessing Ru(II) with 

strong interaction and Fe(II) with weak interaction into one polymer system in a stepwise 

manner. First, open-form metal–organic monomers with Ru(II) were polymerized by click 

reaction to form the corresponding metallopolymers (Hex-P and Tri-P). After further 

metalation by Fe(II), Hex-P and Tri-P displayed different coordinations or self-assembly 

behaviors. More importantly, the structures and conformations of single polymer chains can 
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be directly visualized through STM and STS of the 〈tpy-metal(II)-tpy〉 units. The 

metallopolymers generated by Hex-P include not only hexagons constructed by 

intramolecular coordination but also hexameric linear chains formed by intermolecular 

coordination. In a sharp contrast, the further coordination of Tri-P was performed in a more 

controlled manner with only intramolecular complexation observed to form triangles as the 

repeat units. The different results are attributed to the size and rigidity of the repeat units. 

Overall, our endeavors will bring innovative aspects into polymer chemistry field and shed 

light on the development of innovative approaches to synthesize metallopolymers and study 

the structure and conformation of polymer chains at the single-molecule level. The 

characterization with the combination of STM and STS could be expanded into other 

metallopolymer systems to advance our understanding of the structure–property relationship 

of polymers.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
1H NMR spectra of (A) Hex-M (600 MHz), (B) Hex-P (600 MHz), (C) Alkyne-PEG (400 

MHz), (D) Tri-P (400 MHz), and (E) Tri-M (400 MHz) in CD3CN. The asterisk (*) 

represents the residue solvent CHCl3.

Li et al. Page 14

J Am Chem Soc. Author manuscript; available in PMC 2020 July 22.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 2. 

ESI-MS of Hex-M (A), TWIM-MS plot (m/z vs drift time) of Hex-M (B), ESI-MS of Tri-

M (C), and TWIM-MS plot of Tri-M (D).
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Figure 3. 

MALDI-TOF MS of Hex-P (A) and Tri-P (B) with corresponding numbers of repeat units 

in linear mode.
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Figure 4. 

(A) STM image of Hex-P on the supporting Ag(111) surface. (B) STM image of Hex-P 

with STS data acquisition locations on 〈tpy-Ru(II)-tpy〉 unit shown in red. (C) STM image 

of Hex–P-C. (D) STS profiling of Hex–P-C with 〈tpy-Ru(II)-tpy〉 unit in red and 〈tpy-Fe(II)-

tpy〉 unit in blue. (E) STM image of Hex-P-L. (F) STS profiling of Hex-P-L with 〈tpy-

Ru(II)-tpy〉 unit in red and 〈tpy-Fe(II)-tpy〉 unit in blue. The blue line in the inset represents 

the polymer chain proposed by 〈tpy-metal(II)-tpy〉 units. dI/dV–V results of STS of (G) 

Ru(II) (red) and (H) Fe(II) (blue) correspond to different electronic features in (D) and (F). 

Scale bar: 10 nm.
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Figure 5. 

(A) STM image of Tri-P on the supporting Ag(111) surface. (B) STS profiling Tri-P with 

the 〈tpy-Ru(II)-tpy〉 unit in red. (C) STM image of Tri-P-C. (D) STS profiling of Tri-P-C 

with the 〈tpy-Ru(II)-tpy〉 unit in red and the 〈tpy-Fe(II)-tpy〉 unit in blue. The blue line in 

the inset represents the polymer chain proposed by 〈tpy-Fe(II)-tpy〉 units. dI/dV–V results of 

STS of (E) Ru(II) (red) and (F) Fe(II) (blue) correspond to different electronic features in 

(D). Scale bar: 5 nm.
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Scheme 1. 

Monomers (A, Hex-M; B, Tri-M and Alkyne-PEG) and Their Corresponding 

Metallopolymers with 2D Hexameric (C) and Trimeric (D) Supramolecules as Repeat Units
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