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ABSTRACT

The eigenvalues in the modal co-ordinate frame are
varied and the corresponding changes in the stiffness
matrix is investigated, To represent the modified
eigenvalues as a function of the stiffness matrix is the main
focus of this paper. It is shown that the change in
eigenvalue is proportional to the change in the stiffness
matrix, This approach may be applied to shift certain
natural frequencies of a structure away from the critical
operating frequency by structural modification.

NOMENCLATURE

@ = Mass Normalised Modal Matrix
®;=Mass Normalised eigenvector

0 = Modal Matrix

€, = ith eigenvector

A = Diagonalised eigenvalue matrix

A; = ith Eigenvalue

A; = Modification of ith Eigenvalue
K = Stiffness Matrix

m, = ith generalised modal mass

LITERATURE REVIEW

Much work has been done on structural modification using
mass and stiffness matrices. Normally for large systems
modal analysis results do not contain description of the
complete system. It is therefore difficult to find the exact
modification parameters which yield the desired spectrum

(Berman 1984). This has been overcome by using
truncated sets of modal data. Optimisation is performed
instead of solving the exact solution. Baldwin and Hutton
(1985) investigated structural modification and Zhang et al
(1988) investigated the use of mass matrix modifications to
achieve desired natural frequencies. Ram & Braun (1990,
1991) published many papers on determining the bounds
for the natural frequencies and mode shapes of modified
structures based on truncated modal analysis results. Tsuei
(1991) has presented a method of shifting the desired
eigenvalues using the forced response of the system. The
method is based on modification of either the mass or
stiffness matrix by treating the modification of the system
matrices as an external forced response. Sivan & Ram
(1996) presented an optimisation algorithm dealing with
truncated modal analysis data to shift natural frequency to
desired values.

THEORY

Evaluation of the structure

The dynamic equation of motion may be solved either
by direct integration or by using modal superposition. Due
to the presence of off-diagonal terms in the matrices [M]
and [K] the equations of motion may be coupled. Direct
integration uses step by step numerical integration such as
Runge-Kutta. For mode superposition the matrix equation
is transformed into the modal frame by pre and post
multiplying by the mode shape matrix obtained by the free
vibration solution. The transformation uncouples the
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equation of motion. The resultant uncoupled equations are
then solved using numerical integration procedure like
Newmark -Beta.

The procedure in brief

a) Formulate equation of motion in time variable at nodal
points with assumed  displacement function

b) Solve for natural modes

¢) Uncouple terms in the equations of metion by using
natural modes

d) Solve the uncoupled sets of equation one by one for the
generalised co-ordinates

e) compute the displacement response

Designing a Two degree of Freedom System For
Desired Eigenfrequency

For a two degree of Freedom system with two masses,
it is easy to obtain the equation for the eigenvalues in
terms of the mass and stiffness.

The equation of motion is shown in matrix form by
equation (1). Cartesian co-ordinates x; and X; represent the

displacement function in the time domain, f; and f; are the
forcing functions

K L e AT

For eigenvalue analysis

m] -
~k, A @

The determinant of the frequency domain solution may
be obtained and equated to zero to obtain a quadratic
equation in w as shown in equation (3). Using this
equation the sum and the product of the square of the roots
respectively may be obtained in terms of the mass and
stiffness matrix as shown in eguation (4) and (5). The
change in stiffness due to modification of the eigenvalues
may be calculated easily by solving these eguations.

m, m m,m, iy im,
3)
6012.4‘0)22 = _[ﬁz_+ﬁ+_k2] (4)
m, m,
o ,260 22 =.£L]2_ ()
m,m

For the two degree of freedom as shown above the stiffness
is proportional to w. However for a more complex system
involving more masses the above equations cannot thus be
represented and would be very difficult to solve
analytically therefore alternative method needs io be
devised.

Eigenvalue Analysis

Orthogonal transforms are usually of two type, the
iterative and non-iterative solutions. The non-iterative
solutions include Givens and Householder and the iterative
methods usnally adopted in vibratien analysis are the
Jacobi method and the LR, QR and QL algorithms.

As stated previously the equations of motion are
coupled in the physical cariesian axes frame and need to be
uncoupled.

This is done through direct integration or Modal
superposition through the use of Orthogonal transforms.
Here we concentrate on the modal method. By using a
periodic displacement function the equation may be
converted to the frequency domain through an appropriate
function representing the displacement response. The
frequency analysis of the eguation of motion for a free
system is

(K - Mo *)p=0 ©)

The equation is solved by setting the determinant of
equation (6) to zero and solving for the eigenvalues w* and
obtaining the modal matrix ©. The modal matrix showing
the modes of vibration is purely arbitrary and needs to be
normalised. The orthogonal matrix here is the mass
normalised modal matrix obtained from the eguation (7).

220z snbny 9| uo 3senb Aq ypd-z60-ee-26-8908€ L1 00A/S9Z09Y/890VE L LLOOA/SL98./266 |V LApd-sBuipesdoid/ | 5/610"swse uonos||0djeybipswse//:dpy wol papeojumoq




o, =]€; @)

glr{Mlgf =m, ®)

and m; is the ith generalised modal mass and in
equation (%) below @ is the mass normalised modal
matrix.

of@ e a) @ a) @0  ©

The mass normalised eigenvector matrix exhibits
properties of the orthogonal transformation matrix with
respect 10 the mass and stiffness matrix as shown below,
The pre and post multiplying with the mass matrix yields
the identity matrix | and it yields the diagonalised
eigenvalues A for the stiffness matrix.

P MO=] (10)
YKb=A (11)

Applying this transformation, the frequency response
becomes.

o=(A-o™) f (12)
In the Cartesian axes frame this is shown to be

X=0(A-0U) @ f (13)

Modification of the Eigenvalues

When a transformation is applied to the structure the
modal co-ordinates obtained are de-coupled however there
is no simple reference to the original physical co-ordinate
frame. For this reason a reverse transformation needs to be
applied. The diagonal matrix of eigenvalues obtained from
application of the transformation function signifies a shift
from the cartesian frame to the modal frame and may be
manipulated to desired values before the reverse
transformation changes the axis frame to cartesian frame.

The output of the reverse transform can be assessed so
as to identify the associated modifications on the mass and
stiffness matrices required to enable the change in the
eigenvalue to be implemented,

Implementation of the Method

The figure 1.0 shows the procedure adopted for the
analysis in a graphical form around the simple equation
that the change in the eigenvalues is given by subtracting
the old value from the new one.

Starting
point

Cartesian Co-ordinates

Koew K |E V[Koew] VT Kout

Figure 1. Diagram illustrating the procedure adopted

An initial stiffness matrix K4 for a given structure is
pre and post multiplied (the mass matrix is unity for this
case) by the normalised modal matrix to obtain the initial
eigenvalues for the free system Awa as shown in equation
(14).

A4, 0 0
K, D=0 2, 0 (14)
0 0 4

Assuming no external force is existent in the system
equation (15) shows how the eigenvalues are modified in
the modal plane.

(24,+6%) 0 o0
sa=| 0 i, 0 (15)
0 0 A,

The resuit may be termed K. which represents the
new stiffness matrix in the modal axes. The reverse
transformation procedure is used to obtain the new
stiffness matrix. The new stiffness matrix K., is
subtracted from old stiffness matrix. The result is put
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through the systemn again to verify its compliance with the
equation given in figure 1.

The iterative equation. for further small modifications
and subsequeni change in stiffness matrix is shown in
equation (16). It will be noted that the reverse
transformation gives the value M K. This is due to the
fact that the modal matrix was divided by the modal mass
to obtain the mass normatised modal matrix The change
for each iteration is given in equation (17).

M'K,, =dA+5A)O™ (16)

Kdrﬂ" = Kn+1 - Kn an

The associated stiffness with new eigenvalues

In order to obtain the new stiffness matrix, the output
of the reverse transformation is multiplied by the mass
matrix. The stifiness matrix values will have physical
constraints and may not be able o be implemented in a
real system.

The requirement for modification is that the stiffness
values obtained on the non-diagonal elements be less than
zero as shown in equation (18). The additional constraint
imposed on spring mass system of the type examined in
the paper is that for a n x n system, equation (19) applies
except where there is a ground connection.

K;<0 V1,j whereiz#] (18)

ZZK; =0 (19)
i

Case Example

The following numerical example is used to show how
a real physical system may be modified by varying one of
the natural frequencies. The Mass, Stiffness and
Diagonalised Figenvalue matrix for this system are as

given respectively.

30000 -20000 0
K =|-20000 70000 -50000
0 -50000 60000

100 0 O
M=,0 200 O
0 0 150
40.8 0 0

A=l 0 3198 0
0 0 689.3

The 2™ eigenvalue was altered and the changes in the
stiffness matrix plotted in Figure 2. Table 1.0 shows how
the stiffness elements would change for a proportional
increase in the eigenvalue. In the modifications carmied out
to the eigenvalue matrix it was found that the increase in
the stiffness matrix was proportional. This was true for
small as well as large increases in the eigenvalue as seen
in figure 2.0.

KidDhorig K(2Xorig k(33)orig A2 onig
30000 70000 60000 3198
K(1.1)last  k(2.2) last k(3.3) last A 2 Jast
65316 71387 73486 769.8

Table 1.0, The initial and final values of the stiffness
elements and the second eigenvalue.
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Figure 2.0 Gréph showing the change in various stiffness
elements for proportional change in eigenvalue

DISCUSSION

The example of a two degree of freedom system
highlighted kow the change of the stiffness varied linearly
with the eigenvalues. Such an example however was not
suitable for a more complex problem. In the case study
example a real physical system was transformed to the
modal co-ordinate frame and the value of the eigenvalue
modified. The reverse transformation yielded the
associated stiffness matrix for the modified system. In the
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numerical example, small modifications to the second
eigenvalue were plotted against the changes in the stiffness
matrix. It was shown that the stiffness elements increased
linearly with the change in eigenvalue. Higher frequencies
also show the same linearity,

There may not be a practical solution to the output
presented by the technique to physically implement the
necessary changes. A more complete solution to the
problem will involve an algorithm to make modifications
which take these factors into account. Many authors have
written on the ways of shifting the natural frequencies of a
structure by way of an optimisation procedure to modify
. the stiffness matrix. Authors such as Tsuei use a method
whereby the solution is in a complex plane. The required
natural frequency is shifted and the structural modification
obtained. The optimisation algorithm arrives at the real
solution after a few iterations.

Finally it is worth stating that showing the existence of
a linear relationship between the change of eigenvalue and
the resulting change in the stiffness matrix indicates that
to shift eigenfrequencies one may not need complicated
optimisation algorithms as developed by many researchers
working on this problem.

REFERENCES

1. Edc K.L.Yee, Y.G.Tsuei, “ Method for Shifting Natural
Frequencies of Damped Mechanical Systems™, AIAA
Journal, Vol.29, No.11, Nov 1991, pp 1973-1977.

2. Dmitri D.Sivan, Yitshak M. Ram, “Mass and Stiffness
Modification to Achieve Desired Natural Frequencies”,
Communications in Numerical Methods In Engineering,
1996 Vol. 12 pp 531-542.

3. DN.Chu, Y.M.Xie, A Hira, G.P.Stevens “Evolutionary
Structural Optimisation for Problems with Stiffness
Constraints,” Finite Elements in Analysis and Design
(1996) 21, pp239-251

4. M.Barnuch, “Optimisation Procedure to correct Stiffness
and Flexibility Matrices Using Vibration Tests,” Technical
Report, Mechanics Dept, College of Engineering and
Applied Science, Univ of Wisconsin-Milwaukee, Dec
1977.

5. A Berman, “System Identification of Structural
Dynamic Models - theoretical and practical bounds,”
AJAA paper 84-0929, 1984, pp.123-129

6. M.Baruch, Y.Yitzhack, B Itizhack” Optimal Weighted
Orthogonalisation of Measured Modes, AIAA Journal,
1978 Vol.16, No.4, pp 346-351.

7. Ki-ook Kim, “A Review of Mass Matrices For
Eigenproblems,” Journal of Computers and Structures,
1993 Vol 46 No.6 ppl041-1048.

2e0z isnbny 91 uo 3senb Aq ypd-z60-eE-26-890BE L1L00NSIZ09YH/890VE L LLOOA/SL98./266 1V L/ipd-sBulpasooid/| ©/610 awse uonos|oojeybipawse//:dpy woly papeojumoq




	Page 1
	Page 2
	Page 3
	Page 4
	Page 5

