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ABSTRACT 

The eigenvalues in the modal co-ordinate frame are 
varied and the corresponding changes in the stiffness 
matrix is investigated. To represent the modified 
eigenvalues as a function of the stiffness matrix is the main 
focus of this paper. It is shown that the change in 
eigenvalue is proportional to the change in the stiffness 
matrix. This approach may be applied to shift certain 
natural frequencies of a structure away from the critical 
operating frequency by structural modification. 

NOMENCLATURE 

= Mass Normalised Modal Matrix 
(D, =Mass Normalised eigenvector 
0 = Modal Matrix 

= ith eigenvector 
A = Diagonalised eigenvalue matrix 
X, = ith Eigenvalue 

= Modification of ith Eigenvalue 
K = Stiffness Matrix 
mi  = ith generalised modal mass 

LITERATURE REVIEW 

Much work has been done on structural modification using 
mass and stiffness matrices. Normally for large systems 
modal analysis results do not contain description of the 
complete system. It is therefore difficult to find the exact 
modification parameters which yield the desired spectnun 

(Berman 1984). This has been overcome by using 
truncated sets of modal data. Optimisation is performed 
instead of solving the exact solution. Baldwin and Hutton 
(1985) investigated structural modification and Zhang et al 
(1988) investigated the use of mass matrix modifications to 
achieve desired natural frequencies. Rain & Braun (1990, 
1991) published many papers on determining the bounds 
for the natural frequencies and mode shapes of modified 
structures based on truncated modal analysis results. Tsuei 
(1991) has presented a method of shifting the desired 
eigenvalues using the forced response of the system. The 
method is based on modification of either the mass or 
stiffness matrix by treating the modification of the system 
matrices as an external forced response. Sivan & Ram 
(1996) presented an optimisation algorithm dealing with 
truncated modal analysis data to shift natural frequency to 
desired values. 

THEORY 

Evaluation of the structure 

The dynamic equation of motion may be solved either 
by direct integration or by using modal superposition. Due 
to the presence of off-diagonal terms in the matrices [M] 
and [K] the equations of motion may be coupled. Direct 
integration uses step by step numerical integration such as 
Runge-Kutta. For mode superposition the matrix equation 
is transformed into the modal frame by pre and post 
multiplying by the mode shape matrix obtained by the free 
vibration solution. The transformation uncouples the 
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For eigenvalue analysis 

The determinant of the frequency domain solution may 
be obtained and equated to zero to obtain a quadratic 
equation in w2  as shown in equation (3). Using this 
equation the sum and the product of the square of the roots 
respectively may be obtained in terms of the mass and 
stiffness matrix as shown in equation (4) and (5). The 
change in stiffness due to modification of the eigenvalues 
may be calculated easily by solving these equations. 

w4 _1k2 	+k2 ) c02+ k2 (1c, + k2 )  k22  _ 0  

Un2m1j 	mi m2 	mi 

4) 1 2•+ (1) 2
2 	

+ 	
kl+k2) 

m2 	mi 

2 	2 	k l k 2 
CO I  CO 2  - 

Mi M 2  

For the two degree of freedom as shown above the stiffness 
is proportional to w2. However for a more complex system 
involving more masses the above equations cannot thus be 
represented and would be very difficult to solve 
analytically therefore alternative method needs to be 
devised. 

Eigenvalue Analysis 

Orthogonal transforms are usually of two type, the 
iterative and non-iterative solutions. The non-iterative 
solutions include Givens and Householder and the iterative 
methods usually adopted in vibration analysis are the 
Jacobi method and the LR, QR and QL algorithms. 

As stated previously the equations of motion are 
coupled in the physical cartesian axes frame and need to be 
uncoupled. 

This is done through direct integration or Modal 
superposition through the use of Orthogonal transforms. 
Here we concentrate on the modal method. By using a 
periodic displacement function the equation may be 
converted to the frequency domain through an appropriate 
function representing the displacement response. The 
frequency analysis of the equation of motion for a free 
system is 

— Mco 10= 0 
	

(6) 

The equation is solved by setting the determinant of 
equation (6) to zero and solving for the eigenvalues w 2  and 
obtaining the modal matrix 0. The modal. matrix showing 
the modes of vibration is purely arbitrary and needs to be 
normalised. The orthogonal matrix here is the mass 
normalised modal matrix obtained from the equation (7). 

equation of motion. The resultant uncoupled equations are 
then solved using numerical integration procedure like 
Newmark -Beta. 

The procedure in brief 
a) Formulate equation of motion in time variable at nodal 

points with assumed displacement function 
b) Solve for natural modes 
c) Uncouple terms in the equations of motion by using 

natural modes 
d) Solve the uncoupled sets of equation one by one for the 

generalised co-ordinates 
e) compute the displacement response 

Designing a Two degree of Freedom System For 
Desired Eigenfrequency 

For a two degree of Freedom system with two masses, 
it is easy to obtain the equation for the eigenvalues in 
terms of the mass and stiffness. 

The equation of motion is shown in matrix form by 
equation (1). Cartesian co-ordinates x 1  and x2  represent the 
displacement function in the time domain, fl  and f2  are the 
forcing functions 

kl +k 2 
 CO 	

-k2 2 

1 	 M1 
—k 2 	k2 	2 

— CO 
M 2 	M 2 

=0 	(2) 
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(7) 

where 

017ww, = m, 	 (8) 

and in, is the ith generalised modal mass and in 
equation (9) below (1) is the mass normalised modal 
matrix. 

Implementation of the Method 

The figure 1.0 shows the procedure adopted for the 
analysis in a graphical form around the simple equation 
that the change in the eigenvalues is given by subtracting 
the old value from the new one. 

Starting 
point 

0=[(411412-ein)r(cilla12-41 ,)r(glIa32...41,Jr] 
	

(9) 

The mass normalised eigenvector matrix exhibits 
properties of the orthogonal transformation matrix with 
respect to the mass and stiffness matrix as shown below. 
The pre and post multiplying with the mass matrix yields 
the identity matrix I and it yields the cliagonalised 
eigenvalues A for the stiffness matrix. 

I/MO= I 	 (10) 

tiff( cD= A 	 (11) 

Applying this transformation, the frequency response 
becomes. 

Final 
poini 

Figure 1. Diagram illustrating the procedure adopted 

An initial stiffness matrix Koki for a given structure is 
pre and past multiplied (the mass matrix is unity for this 

(12) case) by the normalised modal matrix to obtain the initial 
eigenvalues for the free system X as shown in equation 
(14). 

2, 0 0 
ert  Ic„44:1=1o A 2  0 

0 0 a. 

0 = — I f 

In the Cartesian axes frame this is shown to be 

X = tIr 	— (.0 20-1 (D T  

Modification of the Eigenvalues 

(13)  (14)  

When a transformation is applied to the structure the 
modal co-ordinates obtained are de-coupled however there 
is no simple reference to the original physical co-ordinate 
frame. For this reason a reverse transformation needs to be 
applied. The diagonal matrix of eigenvalues obtained from 
application of the transformation function signifies a shift 
from the cartesian frame to the modal frame and may be 
manipulated to desired values before the reverse 
transformation changes the axis frame to cartesian frame. 

The output of the reverse transform can be assessed so 
as to identify the associated modifications on the mass and 
stiffness matrices required to enable the change in the 
eigenvalue to be implemented. 

Assuming no external force is existent in the system 
equation (15) shows how the eigenvalues are modified in 
the modal plane. 

(a 1 +52) 0 0 

51= 0 A 2  0 
0 	0 1. 

The result may be termed Km.' which represents the 
new stiffness matrix in the modal axes. The reverse 
transformation procedure is used to obtain the new 
stiffness matrix. The new stiffness matrix K..„ is 
subtracted from old stiffness matrix. The result is put 

(15) 

3 

D
ow

nloaded from
 http://asm

edigitalcollection.asm
e.org/G

T/proceedings-pdf/TA1997/78675/V001T13A068/4460265/v001t13a068-97-aa-092.pdf by guest on 16 August 2022



10000 	  
7C000 
6C030 
50300 

• 4C000 
• 3C000 	....xxx.xxxxxxxxxxx 

23030 
7=0 

04  

30000 

—20000 

0 

—20000 

70000 

—50000 

K = 

through the system again to verify its compliance with the 
equation given in figure 1. 

The iterative equation. for further small  modifications 
and subsequent change in stiffness matrix is shown in 
equation (16). It will be noted that the reverse 
transformation gives the value MI K. This is due to the 
fact that the modal matrix was divided by the modal mass 
to obtain the mass normalised modal matrix. The change 
for each iteration is given in equation (17). 

M= 

A= [ 
40.8 

100 

0 

0 

0 
0 

0 
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0 

0 
319.8 

0 

0 

0 

150 

0 

0 

689.3 

1 

K=(1)(A+6 OD -1 	(16) 

Kd,ff  = K 1 —K„ 	 (17) 

The associated stiffness with new eigenvalues 

In order to obtain the new stiffness matrix, the output 
of the reverse transformation is multiplied by the mass 
matrix. The stiffness matrix values will have physical 
constraints and may not be able to be implemented in a 
real system. 

The requirement for modification is that the stiffness 
values obtained on the non-diagonal elements be less than 
zero as shown in equation (18). The additional constraint 
imposed on spring mass system of the type examined in 
the paper is that for an xn system, equation (19) applies 
except where there is a ground connection. 

K< 0 	V i, j 	where i j 	(18) 

ZEK if  =0 	 (19) 

Case Example 

The following numerical example is used to show how 
a real physical system may be modified by varying one of 
the natural frequencies. The Mass, Stiffness and 
Diagonalised Eigenvalue matrix for this system are as 
given respectively. 

0 

—500001 

60000 

The 2 eigenvalue was altered and the changes in the 
stiffness matrix plotted in Figure 2. Table 1.0 shows how 
the stiffness elements would change for a proportional 
increase in the eigenvalue. In the modifications carried out 
to the eigenvalue matrix it was found that the increase in 
the stiffness matrix was proportional. This was true for 
small as well as large increases in the eigenvalue as seen 
in figure 2.0. 

K(1,1) orig 1((2,2) orig k(3,3) orig 
30000 

K(1.1) last 

70000 

k(2,2) last 

60000 

k(3,3) last 

319.8 

X 2 last 
65316 71387 73486 769.8 

Table 1.0 The initial and final values of the stiffness 
elements and the second eigenvalue. 

Figure 2.0 Graph showing the change in various stiffness 
elements for proportional change in eigenvalue 

DISCUSSION 

The example of a two degree of freedom system 
highlighted how the change of the stiffness varied linearly 
with the eigenvalues. Such an example however was not 
suitable for a more complex problem. In the case study 
example a real physical system was transformed to the 
modal co-ordinate frame and the value of the eigenvalue 
modified. The reverse transformation yielded the 
associated stiffness matrix for the modified system. In the 

4 

D
ow

nloaded from
 http://asm

edigitalcollection.asm
e.org/G

T/proceedings-pdf/TA1997/78675/V001T13A068/4460265/v001t13a068-97-aa-092.pdf by guest on 16 August 2022



numerical example, small modifications to the second 
eigenvalue were plotted against the changes in the stiffness 
matrix. It was shown that the stiffness elements increased 
linearly with the change in eigenvalue. Higher frequencies 
also show the same linearity. 

There may not be a practical solution to the output 
presented by the technique to physically implement the 
necessary changes. A more complete solution to the 
problem will involve an algorithm to make modifications 
which take these factors into account. Many authors have 
written on the ways of shifting the natural frequencies of a 
structure by way of an optimisation procedure to modify 
the stiffness matrix. Authors such as Tsuei use a method 
whereby the solution is in a complex plane. The required 
natural frequency is shifted and the structural modification 
obtains. The optimisation algorithm arrives at the real 
solution after a few iterations. 

Finally it is worth stating that showing the existence of 
a linear relationship between the change of eigenvalue and 
the resulting change in the stiffness matrix indicates that 
to shift eigenfrequencies one may not need complicated 
optimisation algorithms as developed by many researchers 
working on this problem. 
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