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In this paper we introduce a new design principle, and complementary geometric entities, that form the

basis for a new approach to the synthesis of multi-degree of freedom, purely parallel precision flexure

systems. This approach – Freedom and Constraint Topology (FACT) – is unique in that it is based upon sets

of geometric entities that contain quantitative information about a flexure system’s characteristics. A first

set contains information about a flexure system’s degrees of freedom (its freedom topology) and a second

set contains information about the flexure system’s topology (its constraint topology). These sets may

be used to visualize the quantitative relationships between all possible flexure designs and all possible

motions for a given design problem. We introduce a new principle – complementary topologies – that

enables the unique mapping of freedom and constraint spaces. This mapping makes it possible to visualize

and determine the general shape(s) that a viable parallel flexure system concept must have in order to

permit specified motions. The shapes contain all of the relevant quantitative information that is needed to

rapidly sketch early embodiments of complex parallel flexure system concepts. These shapes may then be

used to rapidly synthesize a multiplicity of flexure system concepts that have (a) independent rotational

and/or linear motions, (b) coupled linear and rotational motions, and (c) redundant constraints that

permit the desired motions while improving stiffness, load capacity and thermal stability. This enables

early-stage flexure system design via “paper and pencil sketches” without undue complications that arise

when one focuses upon detailed mathematical treatments that are better-suited for optimization rather

than visualization and synthesis.

© 2009 Elsevier Inc. All rights reserved.

1. Introduction

The intent of this paper is to introduce the principles behind

a new method – Freedom and Constraint Topology (FACT) – that

may be used to diagnose and synthesize multi-degree of freedom

(multi-DOF) flexure system concepts. Flexure systems consist of

a combination of rigid and flexural elements. These elements are

arranged and interconnected in a way that their compliant direc-

tions permit specified motions and their stiff directions prevent

motions in all other directions. Flexure systems have been used

as precision machine elements for over a century [1] due to their

excellent resolution characteristics, their low-cost characteristics,

and the ease with which they may be fabricated.

Flexure systems continue to be important to conventional pre-

cision applications, for instance they are commonly used within

optical manipulation stages, precision motion stages and as gen-

eral purpose flexure bearings. More recently, flexure systems

have become attractive for use in motion stages for nanoman-

∗ Corresponding author.

E-mail address: culpepper@mit.edu (M.L. Culpepper).

ufacturing equipment, instruments that are used in nano-scale

research/manufacturing, and micro- and nano-manipulators. These

instruments and devices typically require the capability to move in

four to six axes with nanometer-level resolution [2–11]. This paper

provides a means to synthesize flexure systems for these types of

applications.

There are many ubiquitous one-, two- or three-axis flexure sys-

tems [12] that may be combined in series to solve some types of

multi-DOF motion problems. Parallel flexure systems are usually

preferred to serial systems because they have better dynamic char-

acteristics and they do not suffer from stacked axis errors that are

inherent in serial flexure systems.

The generation of multi-DOF parallel flexure system concepts

is difficult because there are typically several flexural components

that provide constraints in several directions while allowing

motions in many other directions. It is necessary, and difficult,

for designers to keep track of (a) the relative, three-dimensional

orientations of the flexural constraints, (b) the orientation of the

permitted motions, and (c) the three-dimensional relationships

between each constraint and the permissible motions. Even if

an expert designer is capable of the preceding, the existing body

of published precision flexure system knowledge provides little
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information or guidance as to how they should deal with two

important problems that are inherent to parallel flexure systems:

(a) The problem of coupled rotations–translations and,

(b) The problem of identifying when and where redundant

constraints may be added to a flexure system. Redundant con-

straints are often needed to endow a flexure system with

suitable stiffness, load capacity and thermal stability charac-

teristics.

In general, parallel flexure systems, regardless of the number

of degrees of freedom (DOFs), are often designed via iteration and

many designers are fortunate if they are able to synthesize one or

two new concepts that possess only the specified motions.

Fig. 1A provides a contrast of the conventional flexure design

method, constraint-based design (CBD), and FACT. In CBD, a

designer must use his visualization skills, pattern recognition and

CBD’s Rule of Complementary Patterns to guide a visual itera-

tion process until a viable flexure system concept is identified.

Additional concepts are generated via more iteration. In contrast,

FACT uses sets of three-dimensional geometric entities, for exam-

ple planes and spheres, to embody quantitative information about a

flexure system’s shape and its DOFs [13]. These types of geometric

entities, for example those shown in Fig. 1Bii, are capable of dis-

playing the general form of a flexure system design. All possible

concepts are represented within the entities therefore a designer

will know the general form of a flexure design for a desired set of

DOFs.

In the FACT method, a first set of entities contains information

about the flexure system’s DOFs (its freedom topology) and a second

set contains information about the flexure system’s geometry (its

constraint topology). The sets of shapes are made useful via a prin-

ciple – the principle of complementary topologies – that provides

a unique mapping of the first set (DOFs) to the second set (geome-

try). This is illustrated via the example that is shown in Fig. 1B. If a

designer wanted to generate concepts for a flexure system with

one rotation DOF, they would first specify the geometric entity

(freedom topology) that represents this rotation. The designer then

identifies which freedom space this topology belongs – the rotation

line in Fig. 1Bi. The principle of complementary topologies would

then be used to find the geometric entities (constraint space) – the

Fig. 1. Illustration of (A) the contrast between constraint-based design and FACT and

(B) example geometric entities that represent the permissible motion – Ri – and the

appropriate geometric entities that contain the constraints – Ci – that are used to

generate several concepts for a flexure system that permits the desired motion. Note,

color coding will be used in this paper to distinguish motions and flexure geometry.

For example, the red and blue in this figure indicate a rotation and flexure constraints

respectively. Further details regarding color coding will be in a later section. (For

interpretation of the references to color in this figure legend, the reader is referred

to the web version of the article.)

intersecting planes in Fig. 1B ii – that represents concepts for flex-

ure systems that permit only the specified DOF. The designer then

selects constraints that lie within the constraint space to form var-

ious different concepts, for example the three concepts shown in

Fig. 1Biii contain flexural constraints that lie within the planes of

the constraint space. This is a simplified example that illustrates

the basic approach. Sections of Part I of this paper, and Part II of this

paper, will provide examples of increasing complexity.

1.1. Overview of flexure system design history and sources for

principles and best practices

It is a common misunderstanding that flexure systems could not

be invented until the later 20th century. The engineering of flexure

systems requires at a minimum, an understanding of principles that

have existed for some time:

i. Hooke’s linear stress–strain relationship from 1678 [14],

ii. Bernoulli and Euler’s kinematic and elastomechanic beam

behavior from 1744 [15], and

iii. Maxwell’s rules that govern the relationship between con-

straints and DOFs c.a. 1890 [16].

This knowledge enables the engineering of precision flexure sys-

tems and compliant mechanisms. Given this knowledge, Clay and

Roy [17], Jones [18] and others were able to generate, model and

implement new flexure systems and early compliant mechanisms

throughout the early 20th century. These flexure systems became

ubiquitous precision machine elements and so there was a need

to catalogue the concepts, principles and best practices that were

used to engineer them. This was accomplished by Smith [12] c.a.

2000.

Blanding created a formal base of exact constraint principles for

use in the design of flexures [19], c.a. 1999 and Hale augmented

these principles [20] for precision flexure systems. The contribu-

tions of Maxwell, Blanding and Hale constitute the core of what is

called constraint-based design. The fundamental premise of CBD is

that all motions of a rigid body are determined by the position and

orientation of the constraints, i.e. the topology of constraints, which

act upon the body. In CBD, a designer arranges flexural and rigid ele-

ments into a geometric layout that endows a device with the ability

to permit and forbid motions in specified directions. Constraint-

based design principles are central to precision engineering as the

layout of a device’s constraints governs the device’s DOFs, stiffness,

repeatability, mode shapes, etc. Constraint-based design has been

practiced by using a combination of visualization techniques, expe-

rience and rules of thumb. It is currently the primary synthesis

method used to engineer precision flexure systems.

1.2. Scope

This paper focuses on improving the synthesis of precision flex-

ure systems with a specific emphasis on the creation of parallel

flexure system concepts to meet kinematic requirements. We limit

the scope of this paper to include small-motion kinematics and lin-

ear elastic material properties. Parasitic errors that are associated

with large motions are not addressed. These assumptions are appro-

priate for the early-stage synthesis of precision flexure systems. The

content of this paper applies to systems wherein the guided com-

ponent may be considered as a rigid body; therefore the number of

DOFs is limited to six DOFs.

There are two types of flexure systems, they are systems wherein

(a) chains or serial conjugated flexures link the mobile element to

ground, i.e. serial flexure systems, and (b) all ground-to-stage links

consist of a single flexural element, i.e. parallel flexure systems. The

former requires the later to address the parallel combinations of the
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chained flexures and it also requires a means to deal with the serial

nature within the chains. The solution of the later is a necessary

first step; therefore this paper is focused upon parallel solutions

wherein serial chains do not exist. The methods of this paper may

be extended to address some practical serial flexure systems [21],

but this requires the introduction of considerable material and so

this topic will be the subject of a future paper.

It should also be noted that this approach may be used for rigid

mechanisms that rely on sliding/rolling joints. The utility of these

devices within precision applications is limited given the inherent

problems with the accuracy and repeatability of the non-flexural

joints. The utility to other fields, e.g. robotics, is presently limited to

small-motion kinematics, although it should be possible to extend

the work to large-motion kinematics.

2. Background knowledge that is used in FACT

2.1. Maxwell’s principles of constraint

A rigid body has six DOFs and any non-redundant constraint

upon the body removes a DOF. A constraint is idealized as provid-

ing resistance to motion along its line of action only. This may be

expressed as:

R = 6 − C (1)

where C is the number of non-redundant constraints and R is the

number of DOFs. Non-redundant constraints are mathematically

equivalent to constraints that possess lines of action, i.e. vectors,

which are mathematically independent. Maxwell augmented this

equation with observations that enable one to understand some of

the DOFs that are permitted given the lines of action of a system of

constraints [16].

2.2. Projective geometry

It will be useful for us to visualize geometric entities that possess

a mix of finite dimensions and dimensions that approach infinity.

The field of projective geometry [22] addresses these types of geo-

metric entities. The first principle of import is that a line may be

perceived as a circle with a radius of curvature that approaches

infinity. The relevance of this principle is demonstrated in Fig. 2.

For small motions, translations may be emulated by rotations about

a circle whose radius approaches infinity. The circle is shown as a

“hoop” in Fig. 2. The rotation of the stage could occur about points

on this hoop such that the rotation yields a motion that emulates

a translation in a direction that is perpendicular to the plane of

the hoop. This principle is important because CBD and FACT treat

all translations as though they are the result of a rotation about a

hoop.

Fig. 2. Illustration showing how a hoop (red) represents a translation – Ti – shown as

a black arrow. The lines of action of the flexure system’s constraints (blue) intersect

the hoop as the lines extend toward infinity. (For interpretation of the references to

color in this figure legend, the reader is referred to the web version of the article.)

Fig. 3. Example that illustrates the Rule of Complementary Patterns between Rs

and Cs for a rigid stage that is constrained with five non-redundant constraints. The

ends of the constraints that are not attached to the rigid stage are considered to

be grounded. (For interpretation of the references to color in this figure legend, the

reader is referred to the web version of the article.)

The second principle from this field is that parallel lines may be

considered to share an intersection as the lines approach infinity.

This principle is used in CBD and FACT to identify the intersections

between geometric entities that represent (i) constraints and (ii)

DOFs.

2.3. The Rule of Complementary Patterns

Blanding [19] viewed constraints and DOFs via constraint lines

and freedom lines, respectively. A constraint line is the line of action

of an idealized constraint. DOFs are viewed as rotations about a

freedom line. The hoop principle from the previous section is used

to describe translations in terms of rotations. Blanding’s Rule of

Complementary Patterns [19] states that every freedom line inter-

sects every constraint line. This is powerful because it enables a

designer to visualize the relative relationships between a flexure

system’s constraints and the DOFs that these constraints permit.

The Rule of Complementary Patterns has been used to design many

mechanical devices, precision flexure systems and precision fix-

tures [19,20].

The principle is demonstrated via the flexure system in Fig. 3.

The flexure system consists of a rigid stage and five independent

constraints, C1–C5. The constraint lines in Fig. 3, and throughout

the rest of the paper, are shown in blue. Eq. (1) predicts that the

stage should move with one DOF and the Rule of Complementary

Patterns may be used to find this DOF. The only line that intersects

all of the constraint lines is the red freedom line, R1, in Fig. 3. This

freedom line, and every other freedom line throughout this paper,

is shown in red. From projective geometry, we know that parallel

lines intersect at infinity and so C1–C3 intersect the freedom line

as the line approaches infinity. Constraints C4 and C5 intersect the

freedom line at the centroid of the triangular stage. This is the only
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Fig. 4. Projective geometric entities that are used as freedom and constraint sets.

line that intersects all constraint lines and so it represents the only

permissible DOF—a rotation about the freedom line.

The example in Fig. 2 illustrates how the Rule of Complementary

Patterns applies to hoops and constraints. The lines of action of the

three constraints intersect the hoop. As such, the hoop represents

a permissible DOF and the associated translation, T, is one of the

permitted DOFs.

3. Fundamentals of FACT

3.1. Freedom and constraint sets

It is difficult, even for the most experienced designer, to visual-

ize how the constraint and freedom lines within a complex flexure

system relate to each other. Visualization is made easier through

the use of geometric entities – freedom sets and constraint sets –

that represent a collection of freedom and constraint lines, respec-

tively. Fig. 4 shows 12 shapes that are commonly used as freedom

and constraint sets. The entities in Fig. 5A–H are of the most import

to precision flexure system design. The entities in Fig. 5I–L corre-

late to flexure systems whose import to practical precision flexure

systems have yet to be identified. They are provided in the interest

of completeness.

Although the entities in Fig. 4 are readily described via equations

from Euclidean geometry, the form they take is best described for

introductory purposes via logical expressions:

• A: Line – A line of a given orientation
• B: Pencil – All co-planar lines that intersect at a common point
• C: P-plane – All co-planar, parallel lines of a given orientation
• D: A-plane – All lines on a given plane
• E: Sphere – All lines that intersect at a common point

Fig. 5. (A) Example of a flexure system wherein the constraints are skew with respect

to the permissible screw motion, S1. The result is a coupled, i.e. screw, DOF (green)

and (B) the geometric parameters that govern the degree of coupling between trans-

lation and rotation. (For interpretation of the references to color in this figure legend,

the reader is referred to the web version of the article.)
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• F: Box – A box of infinite extent that contains all parallel lines of

a given orientation
• G: Hoop – A circle that has a radius that approaches infinity
• H: Hoop surface – All hoops with normal vectors that are orthog-

onal to a given axis
• I: Circular hyperboloid – A ruling of lines that exist within the

surface of a circular hyperboloid
• J: Elliptical hyperboloid – A ruling of lines that exist within the

surface of an elliptical hyperboloid
• K: Cylindroid – All lines that exist within the surface of a cylin-

droid
• L: Hyperbolic paraboloid – All lines that exist within the surface

of a hyperbolic paraboloid

These entities may be used by designers to visualize and under-

stand the characteristics of a flexure system. More detail on the

shapes of these geometric entities, the equations used to describe

them, and their evolution in the context of FACT are provided by

Hopkins [13]. Subsequent sections will provide an overview of how

these sets relate to flexure systems and how they are used.

3.2. Treatment of coupled DOFs and constraints via screw theory

To this point we have only covered freedom sets that contain

rotational freedom lines. It is possible for a freedom set to con-

tain screw lines that represent coupled rotations and translations.

Fig. 5A shows a flexure system that possesses this type of coupled

DOF – a coupled rotation and translation – along a vertical axis

shown as a green line. A downward displacement of the stage is

accompanied by a proportional rotation of the stage. In cases such

as this, the constraint lines (blue) do not intersect the line associ-

ated with the rotation or the translation. CBD principles are unable

to diagnose or synthesize flexure systems with this type of coupling.

Screw theory may be used to create geometric entities that con-

tain information about coupled DOFs, i.e. screws [23–25]. Each

vector is in essence a line that corresponds to a motion or load.

Others, including Bottema and Roth [26], Hunt [27], Merlet [28]

and McCarthy [29,30] have extended this work to include the use of

“Grassman Geometries,” which are geometric shapes that represent

independent lines. When used in this context, the shapes in Fig. 4

are Grassman Geometries. These shapes may be found within a

number of kinematics texts as descriptors of either an existing

mechanism’s kinematic or a mechanism’s constraint characteris-

tics.

In FACT, the shapes are used for a different purpose and in

a different way. Their purpose is to enable easy visualization of

the possible flexure constraints that permit a given set of DOFs

without loss of the quantitative link between motion and con-

straints. The way the shapes are used differs from screw theory

and equation-based approaches. Screw theory and equation-based

approaches are best-suited to analysis of existing concepts and

optimization of existing designs. The shapes within FACT are

primarily used for rapid early-stage concept synthesis via visu-

alization/sketches, thereby preventing undue complications from

screw theory’s mathematic complexity that tends to camouflage

practical design issues/characteristics and thereby form a barrier

to a designer’s ability to understand the essence of how/why the

concept works. It is critical to understanding the practical issues

and how/why a precision flexure system works prior to investing

the time/resources to use screw theory, or an equation, or other

simulations for detailed analysis/optimization.

The following equation provides the relationship between con-

straints and screws (i.e. coupled rotations–translations) [13,30]:

p cos( i) = ri sin( i) (2)

Fig. 6. Geometric parameters used to relate a screw and constraint line. (For inter-

pretation of the references to color in this figure legend, the reader is referred to the

web version of the article.)

In Eq. (2), r is the shortest distance between the constraint line

and the screw,  is the skew angle between the screw and the

constraint line, and p is the pitch, that is the translation per unit

rotation. These parameters are defined in Fig. 6. Eq. (2) may be

used to generate appropriate freedom sets that have the form of

the geometric entities in Section 3.1. Three-dimensional geomet-

ric entities have been used with screw theory in the past to (a)

illustrate the linear combinations of Plueker vectors [27] and (b)

identify singularities in rigid, parallel mechanisms [29,30]. In FACT,

the entities are used to visualize all types of permissible motions

(rotations, translations and screws), non-redundant constraints and

redundant constraints.

Some freedom sets may only contain screws while others may

contain a combination of screws and rotational freedom lines. In

this paper, the color green and/or an inscribed “S” are used to rep-

resent the line of action of a screw line along which the screw’s

translation occurs, and about which the screw’s rotation occurs.

3.3. Freedom and constraint spaces

The superposition of several freedom or constraint sets – called

a freedom or constraint space – is usually needed to capture the

entirety of a flexure system’s freedom or constraint characteristics.

For instance, the constraint space (blue) in Fig. 7A is a combination

of a sphere with an A-plane. The freedom space (red) in Fig. 7B is the

combination of two pencils. The next section describes how spaces

may be mapped to each other, thereby providing a link between a

flexure system’s DOFs and its constraints.

3.4. The principle of complementary topologies

The Rule of Complementary Patterns only covers lines, it does

not explicitly cover all of the shapes that represent freedom sets and

constraint sets in FACT. The Principle of Complementary Topologies

was created to provide a mapping between freedom and constraint

topologies that exist within freedom and constraint spaces. The

principle states ‘a freedom space and a constraint space contain

complementary freedom and constraint topologies when all lines

Fig. 7. Examples of freedom and constraint spaces. (For interpretation of the refer-

ences to color in this figure legend, the reader is referred to the web version of the

article.)
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Fig. 8. The unique relationship between freedom and constraint spaces as shown

during the diagnosis (constraints to freedoms) and synthesis (freedoms to con-

straints) cycles. (For interpretation of the references to color in this figure legend,

the reader is referred to the web version of the article.)

in the constraint space are complementary to all lines in the free-

dom space.’ Here, complementary adheres to the classical definition

from mechanism kinematics. Although the definition is typically

defined via mathematics, it is more appropriate for our purposes

to phrase this in logical terms as a given layout of constraints and

a given motion is complementary if the constraints permit the

motions.

Appendix A contains several sets of complementary freedom

and constraint spaces that were mapped to each other via the

Principle of Complementary Topologies. There are two important

corollaries that may be deduced from this principle:

(i) The freedom and constraint spaces are uniquely mapped to each

other,

(ii) Any constraint line that is selected from the constraint space

will be complementary to the rotational freedom lines and

screw lines according to Eq. (2).

Corollary 1. The first corollary means that a designer may use the

catalogue of matching freedom-constraint spaces in Appendix A to

immediately select the appropriate constraint spaces (design type) that

may be used to synthesize concepts which possess a desired freedom

space (DOF). The reverse may also be done. That is, a designer may

diagnose the DOFs that a flexure permits by finding the constraint space

that the flexure fits within, and then looking up the matching freedom

space.

The synthesis and diagnosis cycles for a simple flexure system

are illustrated in Fig. 8. The sequence of steps within the figure

should be read in a counter clockwise direction. We first describe

the diagnosis of the permitted DOFs for the flexure that is shown

at the 12 o’clock position. The flexure is broken down into its con-

straint lines and then all possible freedom sets that contain lines

which intersect these constraint lines are added to form the flex-

ure system’s freedom space. In this case, only a hoop or the lines

contained within an A-plane will obey Eq. (2) in that they intersect

each of the constraint lines, so they are combined to form the free-

dom space of the flexure. The motions that correspond to the hoop

and the A-plane, a translation and two independent rotations, are

shown at the 6 o’clock position.

The synthesis of this flexure system concept is achieved using

the steps shown on the right of Fig. 8. If the desired DOFs are two

rotations and a translation that is orthogonal to the plane that con-

tains the lines, the appropriate freedom space is selected from the

catalogue in Appendix A. Eq. (1) is used to determine the minimum

and necessary number of constraints that must be selected from

the appropriate constraint space. There are many combinations of

three co-planar lines that may be selected from the constraint space

plane. We are interested in combinations that do not intersect at the

same point.

After the minimum number of constraints has been selected via

Eq. (1), additional constraints may be selected from within the con-

straint space because each additional constraint is guaranteed to

permit the desired DOF. This would be done for instance if it was

necessary to improve the load capacity, symmetry, thermal stabil-

ity and/or the stiffness of the flexure system in some, or all, of

the constrained directions. Another consequence of adding addi-

tional constraints is that the stiffness in the free directions will

also increase. More information on these constraints, referred to

as redundant constraints, is provided in Part II [31] of this paper.

There are many ways to select combinations of non-redundant

and redundant constraints, so many viable topologies of constraint

lines may be generated. Each topology is a different concept and

so the constraint space may be used to synthesize several concepts

that permit the desired DOFs. One of them could be the flexure that

is shown at the 12 o’clock position.

Corollary 2. The second corollary provides a necessary relationship

between the constraint lines and the lines within the freedom space –

rotational freedom lines and screw lines. The essence of this relation-

ship, as embodied in Eq. (2), is that:

(1) Rotational freedom lines and constraint lines must intersect in

order to be complementary.

(2) Screw lines and constraint lines do not need to intersect in order

to be complementary; they only need to satisfy Eq. (2).

It is important to note that the freedom space of a parallel flexure

system is the intersection, not the union, of the freedom spaces of

each individual flexible constraint within the system.

4. Examples that show how spaces correlate to flexure

system concepts

It is important to realize that FACT is not a means to enable

designers with little experience to become expert flexure design-

ers. FACT enables designers that understand principles and best

practices (content reviewed in Section 1.1) to more easily gener-

ate new flexure system concepts. For example, one must know the

different types of flexure elements (e.g. blades, wires, hinges, etc.),

understand their constraint characteristics (stiff directions, com-

pliant directions), how they are emulated by constraint lines (e.g.

three constraint lines emulate a blade flexure) and how to ascertain

redundancy when many flexure elements are combined to create a

system.

4.1. A flexure system with three independent permissible

rotations (Case 3, Type 4)

Here we examine a situation wherein a flexure system is

required to permit three independent rotations of an optic about its

focal point. These permissible freedoms correlate to Case 3, Type

4 in Appendix A. This freedom space contains all freedom lines

that intersect at a common point as shown in Fig. 9A. The comple-

mentary constraint space, shown in Fig. 9B, contains all lines that

intersect every rotation line. There are no permissible screws. Eq.

(1) tells us to select three non-redundant lines from the constraint

space in order to form a concept constraint topology that permits

three DOFs. The combination of the three constraint lines shown in

Fig. 9C permits three independent rotations. The three independent

rotation lines in Fig. 9C are the device’s freedom topology. Fig. 9D
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Fig. 9. (A) The freedom space for three independent rotations and (B) the complementary constraint space that yields (C) a viable concept topology of constraints. A possible

embodiment of the concept is shown in (D). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of the article.)

shows a possible constraint topology embodied in a flexure system

design.

For this flexure system, any three rotations about the focal point

may occur simultaneously and independently. The rotation about

specific axes may be obtained by using three actuators that are

placed at prescribed locations and orientations. The constraints for

this system shown in Fig. 9D may be modeled as wrenches [23,30]

and described per Eq. (3) where Lwi is a vector that points from the

origin to a location along its corresponding constraint line and fi is

a vector that points along its corresponding constraint line’s axis.

[W] =













f1 Lw1 × f1
f2 Lw2 × f2
...

...

fn Lwn × fn
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Standard mathematical techniques may be used to show that the

wrench vectors that correspond to the constraints are mathemati-

cally independent. The expression of constraint lines as wrenches

enables designers to convert graphical flexure concepts and formu-

late engineering models for detailed design and optimization. This

process of optimization may also be performed in conjunction with

FEA techniques.

4.2. A flexure system with one permissible screw (Case 5, Type 2)

Here we examine a situation wherein a stage must permit only

a coupled rotation and translation. This permissible freedom corre-

lates to Case 5, Type 2 (1 coupled DOF) in Appendix A. This freedom

topology is the same as the freedom space in this case. It contains

a single screw as shown in Fig. 10A. The complementary constraint

space is shown in Fig. 10B. This space is comprised of five con-

straint lines that satisfy Eq. (2) with respect to the desired screw

axis. Constraint 5 shows that an intersecting constraint would need

to intersect at 90◦ in order to satisfy Eq. (2).

Fig. 10C shows a flexure system that was created from the free-

dom topology in Fig. 10A. Constraints C1–C4 intersect and are per-

pendicular to the line of the freedom topology and thus these con-

straints permit every collinear screw with every pitch value along

that line. Constraint C5 supports a screw possessing only one finite

pitch value according to Eq. (2). The only screw that is permissible

is one that is complementary to all constraints, and therefore the

screw permitted by C5 is the only DOF. The coupled motions, ��z

and�z, of this flexure system design are shown in Fig. 10 D and E.

5. Moving beyond early-stage synthesis

This paper helps designers get over the first hurdle, that is to

generate a conceptual representation of the design. This generation

Fig. 10. (A) The freedom space for a coupled DOF and (B) the constraint space that yields (C) a viable topology of constraints. Images from FEA post-processing show the

simultaneous rotation and translation via (D) isometric and (E) side views. (For interpretation of the references to color in this figure legend, the reader is referred to the web

version of the article.)
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phase is the front-end of the engineering process and its out-

come (concepts) are readily ported into conventional refinement

stage—modeling/simulation/optimization methods for subsequent

stages. At this point, it is best if mathematical models take over from

visualization because they more easily identify the specific/detailed

outputs (dimensions, angles, etc.). The refinement stage involves

the assignment of relevant dimensions (beam lengths, widths, ori-

entation angles, etc.) and material properties. This representation

may then be ported to a simulation or calculation. For exam-

ple, given the concept, dimensions and material properties, one

could generate several ways to simulate behavior: (1) beam equa-

tions and stiffness matrices, (2) screw theory representation of

the constraints/stage, (3) pseudo-rigid body models, (4) FEA sim-

ulations, etc. The engineering process then moves onto the next

stage—fabrication.

6. Summary

In this paper we have introduced a method, supporting prin-

ciples and geometric entities that may be used to visualize the

kinematics of parallel flexure systems. A catalogue of matching

entities was made available for use in representing the freedom

characteristics (freedom spaces) and the constraint characteristics

(constraint space) of parallel flexure systems. The Principle of Com-

plementary Topologies was introduced and then used to provide a

unique mapping between the freedom and constraint spaces. The

means to treat coupled DOFs and redundant constraints were pro-

vided. At present, we are working on extending the capabilities so

that other types of geometric shapes may be used to represent the

elastomechanics, dynamics (mode shapes and normalized natural

frequencies), parasitic errors, and best actuator layout/connection

points for parallel flexure systems. At present, we are working on

modifying the approach so that it captures large motion kinematics

and serial systems.

Acknowledgements

This material is based upon work supported by the National Sci-

ence Foundation under Grant No. DMI-0500272: Constraint-based

Compliant Mechanism Design Using Virtual Reality as a Design

Interface.

Appendix A. Sets of matching freedom and constraint

spaces

This appendix provides graphical and textual descriptions of

26 types that represent matched sets of freedom and constraint

spaces for parallel flexure systems. These types are divided among

six cases, where the case number represents the number of non-

redundant constraints within the system and the type number

represents a particular arrangement of those constraints. The free-

dom and constraint spaces are denoted as FSij and CSij. Where “i”

represents the case and “j” represents the type.

Any flexure from Case “C” that consists of “C” non-redundant

constraints, maps to a freedom space that contains 6-C DOFs, i.e.

independent motions.

Types that are used in conventional flexure systems are marked

with “�” and types with promise to provide new motions are

marked with “©”. Types that are marked with a “⊗” have yet to

be linked to any practical application; however they are provided

here in the interest of completeness. In some types, the screw sets

are too complex to display in a useful graphical form and therefore

they are denoted by an “S” that is inscribed within a green circle.

In Figs. 11–16, the constraint spaces are shown to the left of

the thick arrows and consist of blue constraint lines. The freedom

Fig. 11. The only type for Case 1. (For interpretation of the references to color in this

figure legend, the reader is referred to the web version of the article.)

Fig. 12. Types of flexure system arrangements for Case 2. (For interpretation of the

references to color in this figure legend, the reader is referred to the web version of

the article.)

spaces are shown to the right of the thick arrows. The spaces to

the immediate right of the thick arrows consist of red pure rota-

tional freedom lines and the spaces to the right of the addition signs

consist of green screw lines unless otherwise indicated in the figure.

A.1. Case 1: Flexure systems with one constraint

In this case, every flexure system contains one non-redundant

constraint and five DOFs.

A.1.1. Type 1

CS11: A single constraint line.

FS11: Any line, on every plane, that contains the constraint line

is a permissible rotation. Any direction that is perpendicular to the

constraint line is a permissible translation. Any line that satisfies

Eq. (2) is a permissible screw.

A.2. Case 2: Flexure systems with two non-redundant constraints

In this case, every flexure system contains two non-redundant

constraints and four DOFs.

A.2.1. Type 1

CS21: A pencil of constraint lines.

FS21: Every line within a sphere that intersects at the center of

the constraint pencil is a permissible rotation. Any line that lies

on the plane of the constraint pencil is a permissible rotation. A

permissible translation points in the direction normal to the plane

of the constraint pencil. Lines that are orthogonal to the constraint

lines are permissible screws.
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Fig. 13. Types of flexure system arrangements for Case 3. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of the

article.)

A.2.2. Type 2

CS22: A P-plane of constraint lines.

FS22: Every line within a box that (a) is parallel to the constraint

lines or (b) lies on the plane of the constraint lines is a permissible

rotation. Every line that is perpendicular to any constraint line is

a permissible translation. Lines that exist within planes that are

parallel to the plane of constraint lines are permissible screws.

A.2.3. Type 3

CS23: Two skew constraint lines.

FS23: Every line within any pencil that (a) is intersected at its

center point by one of the constraint lines and (b) lies on a com-

mon plane with the other constraint line is a permissible rotation.

A permissible translation exists in a direction that is normal to the

parallel planes of the skew constraint lines. Permissible screws also

exist.

A.3. Case 3: Flexure systems with three non-redundant

constraints

In this case, every flexure system contains three non-redundant

constraints and three DOFs.

A.3.1. Type 1

CS31: An A-plane of constraint lines.

FS31: Every line that lies on the plane of constraints is a permis-

sible rotation. A permissible translation exists in a direction that is

normal to this plane.

A.3.2. Type 2

CS32: A pencil of constraint lines and a P-plane of constraint

lines that intersect. The lines within the P-plane are parallel to this

intersection line and this intersection line pierces the center of the

pencil.

FS32: Every line within a pencil that lies on the plane of parallel

constraint lines is a permissible rotation. Every line that is (a) par-

allel to the constraint lines on the P-plane and (b) lies on the plane

of the pencil of constraint lines is a permissible rotation. A permis-

sible translation exists in a direction that is normal to the plane of

the pencil of constraints. Permissible screws also exist.

A.3.3. Type 3

CS33: Two pencils of constraint lines that exist within intersect-

ing planes. The intersection line of the planes pierces the center of

each pencil.

FS33: Every line within two pencils that exist within the same

planes as the pencils of constraint lines is a permissible rotation.

The pencils of freedom lines share a common center point with a

corresponding pencil of constraint lines. The plane that contains

the pencil of freedom lines is orthogonal to the plane that contains
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Fig. 14. Types of flexure system arrangements for Case 4. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of the

article.)

a corresponding pencil of constraint lines. Permissible screws also

exist.

A.3.4. Type 4

CS34: A sphere of constraint lines that represents all lines that

intersect a common point.

FS34: Every line within a sphere that intersects the sphere of

constraint lines at its center point is a permissible rotation.

A.3.5. Type 5

CS35: A box that contains every constraint line that is parallel to

a specific direction.

FS35: Every line that is parallel to the constraint lines is a per-

missible rotation. Every line that is perpendicular to a constraint

line points in the direction of a permissible translation.

A.3.6. Type 6

CS36: Two P-planes of constraint lines. The parallel constraint

lines on one plane are skew with respect to the parallel constraint

lines on the other plane.

FS36: Every line that (a) lies on one of the planes and (b) is parallel

to the constraint lines on the other plane is a permissible rotation.

Other sets of parallel lines that exist within planes that are paral-

lel to the two planes of constraint lines are permissible screws. A

permissible translation points in the direction perpendicular to the

two planes.

A.3.7. Type 7

CS37: One of two rulings of lines that exist on the surface of a

hyperbolic paraboloid consists of constraint lines.

FS37: The other ruling of lines that exist on the surface of the

same hyperbolic paraboloid consists of pure rotations. The direction

that is orthogonal to every constraint line is a translation. Screws

also exist.

A.3.8. Type 8

CS38: One of two rulings of lines that exist on the surface of a

circular hyperboloid consists of constraint lines.

FS38: The other ruling of lines that exist on the surface of the

same circular hyperboloid consists of pure rotations. Screws also

exist.



J.B. Hopkins, M.L. Culpepper / Precision Engineering 34 (2010) 259–270 269

Fig. 15. Types of flexure system arrangements for Case 5. (For interpretation of the

references to color in this figure legend, the reader is referred to the web version of

the article.)

Fig. 16. The only type for Case 6. (For interpretation of the references to color in this

figure legend, the reader is referred to the web version of the article.)

A.3.9. Type 9

CS39: One of two rulings of lines that exist on the surface of an

elliptical hyperboloid consists of constraint lines.

FS39: The other ruling of lines that exist on the surface of the

same elliptical hyperboloid consists of pure rotations. Screws also

exist.

A.4. Case 4: Flexure systems with four non-redundant constraints

In this case, every flexure system contains four non-redundant

constraints and two DOFs.

A.4.1. Type 1

CS41: Every line within a sphere that intersects a common point

is a constraint line. Every line that lies on a plane that contains this

point is also a constraint line.

FS41: Every line within a pencil that (a) lies on the plane of con-

straints and (b) intersects the constraint sphere at its center point

is a permissible rotation.

A.4.2. Type 2

CS42: A box representing every constraint line that is parallel to

a specific direction. Every line that lies on a plane that is parallel to,

or coincident with, the parallel constraint lines is also a constraint

line.

FS42: Every line that is (a) parallel to the parallel constraint lines

and (b) lies on the constraint plane is a permissible rotation. A per-

missible translation exists in a direction that is normal to the plane

of constraints.

A.4.3. Type 3

CS43: Every line within any pencil that (a) is intersected at its

center point by a permissible pure rotation line and (b) lies on a

common plane with another permissible rotation line that is skew

to the first permissible rotation line is a constraint line.

FS43: Two skew lines within a cylindroid are permissible rota-

tions and every other line within the cylindroid is a permissible

screw.

A.4.4. Type 4

CS44: Every line within a pencil that is (a) perpendicular to a

permissible rotation line and (b) intersected at its center point by

the permissible rotation line, is a constraint line.

FS44: A permissible rotation line and permissible screw lines that

are coincident. A permissible translation exists in a direction that

is collinear with the rotation line and the screw lines.

A.4.5. Type 5

CS45: Every line within a pencil that is (a) not perpendicular to

a permissible rotation line and (b) intersected at its center point

by a permissible rotation line, is a constraint line. The pencils exist

within parallel planes.

FS45: A permissible rotation line that is (a) parallel to and (b) lies

on a plane of parallel permissible screws. A permissible translation

points in a direction that is normal to the planes that contain the

constraint pencils.

A.4.6. Type 6

CS46: A set of P-planes where each plane is parallel and contains

constraint lines. The directions of the parallel constraint lines on

each plane are different and are determined by Eq. (2).

FS46: A P-plane of permissible screws that all have the same

pitch values exists. This plane of permissible screws is coincident

with the plane of parallel constraints that are orthogonal to the

permissible screws. A permissible translation is normal to the plane

of permissible screws.

A.4.7. Type 7

CS47: Every line within certain pencils that rotate as they trans-

late along a permissible rotation line is a constraint line. Every line

on a plane that is parallel to that permissible rotation line is also

a constraint line. The rate that the pencils rotate as they translate

may be determined using Eq. (2) and the pitch value of a permis-

sible screw that is orthogonal to, and intersects, the permissible

rotation.

FS47: A cylindroid of permissible screws with a principal gener-

ator that is a permissible rotation.

A.4.8. Type 8

CS48: Every line from one of the two rulings of lines on the

surface of an infinite number of nested circular hyperboloids is a

constraint line.

FS48: A pencil of permissible screws with the same pitch value.

A.4.9. Type 9

CS49: Every line from one of the two rulings of lines on the

surface of an infinite number of nested elliptical hyperboloids is

a constraint line.

FS49: A cylindroid of permissible screws.

A.5. Case 5: Flexure systems with five non-redundant constraints

In this case, every flexure system contains five non-redundant

constraints and one DOF.
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A.5.1. Type 1

CS51: Every line that lies on any plane that intersects a single

permissible rotation line is a constraint line.

FS51: A single permissible rotation line.

A.5.2. Type 2

CS52: Every line that is (a) tangent to the surface of a cylinder

that possesses an axis that is a permissible screw and (b) satisfies

Eq. (2), is a constraint line.

FS52: A single permissible screw line.

A.5.3. Type 3

CS53: Any line that lies within any plane that belongs to a set of

parallel A-planes is a constraint line.

FS53: A single permissible translation in a direction that is nor-

mal to the parallel planes of constraint lines.

A.6. Case 6: Flexure systems with six non-redundant constraints

This case has no DOFs, i.e. the six constraints exactly constrain

the rigid body. This case is listed here in the interest of complete-

ness.

A.6.1. Type 1

CS61: Any line is a constraint line.

FS61: No lines exist as there are no permissible motions.

References

[1] Evans C. Precision engineering: an evolutionary view. Bedfordshire, UK: Cran-
field Press; 1989.

[2] Chen SC, Culpepper ML. Design of a six-axis micro-scale nanopositioner—
�HexFlex. Precis Eng 2006;30:314–24.

[3] Culpepper ML, Anderson G. Design of a low-cost nano-manipulator which uti-
lizes a monolithic, spatial compliant mechanism. Precis Eng 2004;28:469–82.

[4] Taniguchi M, Ikeda M, Inagaki A, Funatsu R. Ultra-precision wafer position-
ing by six-axis micro-motion mechanism. Int J Jpn Soc Precis Eng 1992;26:
35–40.

[5] Dagalakis N, Amatucci E. Kinematic modeling of a 6 DOF tri-stage micro-
positioner. In: Proceedings of the 16th annual ASPE meeting, November. 2001.

[6] Nomura T, Suzuki R. Six-axis controlled nano-meter-order positioning stage for
micro-fabrication. Nanotechnology 1992;3(1):21–8.

[7] Gao P, Swei S. A six DOF micro-manipulator based on piezoelectric translators.
Nanotechnology 1999;10:447–52.

[8] McInroy JE, Hamann JC. Design and control of flexure jointed hexapods. IEEE
Trans Robot Autom 2000;16:372–81.

[9] Zago L, Genequand P, Moerschell J. Extremely compact secondary mirror unit
for the SOFIA telescope capable of six-degree-of-freedom alignment plus chop-
ping. In: Proceedings of the SPIE international symposium on astronomical
telescopes and instrumentation, March. 1998.

[10] Du E, Cui H, Zhu Z. Review of nanomanipulators for nanomanufacturing. Int J
Nanomanuf 2006;1(1):83–104.

[11] Bamberger H, Shoham M. A new configuration of a six DOF parallel robot for
MEMS fabrication. In: Proceedings of the 2004 IEEE international conference
on robotics and automation, New Orleans, LA, April. 2004. p. 4545–50.

[12] Smith ST. Flexures: elements of elastic mechanisms. Newark, NJ: Gordon and
Breach Science Publishers; 2000.

[13] Hopkins JB. Design of parallel flexure systems via freedom and constraint
topologies (FACT). Masters Thesis. Massachusetts Institute of Technology; 2007.

[14] Hooke R. De potentia restitutiv; 1678.
[15] Timoshenko SP. History of strength of materials. New York, NY: Dovers Publi-

cations; 1983.
[16] Maxwell JC. General considerations concerning scientific apparatus. The sci-

entific papers of James Clerk Maxwell, vol. 2. New York: Dover Press; 1890. p.
505–21.

[17] Clay RS, Roy J. Micro Soc 1937;57(1):1–7.
[18] Jones RV. Instruments and experiences. New York, NY: Wiley; 1988.
[19] Blanding DL. Exact constraint: machine design using kinematic principles. New

York, NY: ASME Press; 1999.
[20] Hale LC. Principles and techniques for designing precision machines. PhD The-

sis. Massachusetts Institute of Technology; 1999.
[21] Hopkins JB, Culpepper ML. Synthesis of multi-axis serial flexure systems. In:

Proceedings of the 24th Annual Meeting of the American Society for Precision
Engineering, Monterey, CA, October 2009.

[22] Coxeter HSM. Projective geometry. Cambridge, MA: Springer Press; 1987.
[23] Ball RS. A treatise on the theory of screws. Cambridge, UK: The University Press;

1900.
[24] Phillips J. Freedom in machinery. Introducing screw theory, vol. 1. New York,

NY: Cambridge University Press; 1984.
[25] Phillips J. Freedom in machinery. Screw theory exemplified, vol. 2. New York,

NY: Cambridge University Press; 1990.
[26] Bothema R, Roth B. Theoretical kinematics. New York: Dover Publication; 1990.
[27] Hunt KH. Kinematic geometry of mechanisms. Oxford, UK: Clarendon Press;

1978.
[28] Merlet JP. Singular configurations of parallel manipulators and Grassmann

geometry. Int J Robot Res 1989;8(5):45–56.
[29] Hao F, McCarthy JM. Conditions for line-based singularities in spatial platform

manipulators. J Robot Syst 1998;15(1):43–55.
[30] McCarthy JM. Geometric design of linkages. Cambridge, MA: Springer Press;

2000.
[31] Hopkins JB, Culpepper ML. Synthesis of multi-degree of freedom, parallel flex-

ure system concepts via Freedom and Constraint Topology (FACT) – part 2:
practice. Precis Eng 2010;34:271–8.


	Synthesis of multi-degree of freedom, parallel flexure system concepts via Freedom and Constraint Topology (FACT) – Part I...
	Introduction
	Overview of flexure system design history and sources for principles and best practices
	Scope

	Background knowledge that is used in FACT
	Maxwell's principles of constraint
	Projective geometry
	The Rule of Complementary Patterns

	Fundamentals of FACT
	Freedom and constraint sets
	Treatment of coupled DOFs and constraints via screw theory
	Freedom and constraint spaces
	The principle of complementary topologies

	Examples that show how spaces correlate to flexure system concepts
	A flexure system with three independent permissible rotations (Case 3, Type 4)
	A flexure system with one permissible screw (Case 5, Type 2)

	Moving beyond early-stage synthesis
	Summary
	Acknowledgements
	Sets of matching freedom and constraint spaces
	Case 1: Flexure systems with one constraint
	Type 1

	Case 2: Flexure systems with two non-redundant constraints
	Type 1
	Type 2
	Type 3

	Case 3: Flexure systems with three non-redundant constraints
	Type 1
	Type 2
	Type 3
	Type 4
	Type 5
	Type 6
	Type 7
	Type 8
	Type 9

	Case 4: Flexure systems with four non-redundant constraints
	Type 1
	Type 2
	Type 3
	Type 4
	Type 5
	Type 6
	Type 7
	Type 8
	Type 9

	Case 5: Flexure systems with five non-redundant constraints
	Type 1
	Type 2
	Type 3

	Case 6: Flexure systems with six non-redundant constraints
	Type 1


	References


