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Synthesis of nanocrystalline diamond thin films from an Ar–CH 4
microwave plasma

D. Zhou,a) T. G. McCauley, L. C. Qin, A. R. Krauss, and D. M. Gruen
Materials Science and Chemistry Divisions, Argonne National Laboratory, Argonne, Illinois 60439

~Received 16 July 1997; accepted for publication 29 September 1997!

Nanocrystalline diamond thin films have been synthesized in an Ar–CH4 microwave discharge,
without the addition of molecular hydrogen. X-ray diffraction, transmission electron microscopy,
and electron energy loss spectroscopy characterizations show that the films consist of a pure
crystalline diamond phase with very small grain sizes ranging from 3 to 20 nm. Atomic force
microscopy analysis demonstrates that the surfaces of the nanocrystalline diamond films remain
smooth independent of the film thicknesses. Furthermore, the reactant gas pressure, which strongly
affects the concentration of C2 dimer in the Ar–CH4 plasma as well as the growth rate of the films,
has been found to be a key parameter for the nanocrystalline diamond thin film depositions.
© 1998 American Institute of Physics.@S0021-8979~98!04501-0#

I. INTRODUCTION

Atomic hydrogen has long been recognized as playing a
crucial role in the growth of polycrystalline diamond films
by chemical vapor deposition~CVD!, typically using hydro-
carbons as the carbon source.1–3 It is well known that atomic
hydrogen from a hydrogen-rich reactant gas can terminate
the carbon dangling bonds with a tetrahedralsp3 configura-
tion and etch out nondiamond materials at the growth surface
of diamond during the CVD film depositions.4–6 Reducing
the concentration of atomic hydrogen or increasing the con-
centration of hydrocarbons in the reactant gas~or plasma!
normally causes either nondiamond phase growth or no dia-
mond film deposition.7,8 On the other hand, the grain sizes
and the surface roughness of the polycrystalline diamond
films prepared from a hydrogen-rich plasma depend heavily
on the film thickness. Generally, the thicker the film, the
bigger the grain size and the rougher the surface of the film.

In order to increase the electron density of the plasma
and to modify diamond film morphology, argon has been
added independently to plasmas.9 Furthermore, argon has
also been used in place of hydrogen in a carbon–oxygen–
argon system, but oxygen was a critical parameter for the
phase purity of the deposited diamond films.10 Recently,
Gruenet al. has reported that nanocrystalline diamond thin
films can be grown from an Ar–C60 microwave plasma with-
out adding molecular hydrogen to the reactant gas.11 In
Gruen’s experiments, fullerenes, such as C60 and C70, have
been successfully used as the carbon source for the diamond
growth. Through an argon microwave plasma fragmentation
of fullerenes~without hydrogen involved!, the discharge dis-
plays a strong green color~Swan band! due to the 5165 Å
emission from the C2 radicals, and the C2 dimer appears to
be the growth precursor of nanocrystalline diamond.12,13

Note that the nanocrystalline diamond thin films prepared
from an Ar–C60 microwave plasma with C2 dimers as the

growth precursors have their own unique properties, such as
nanocrystalline diamond grains, exceptionally smooth as-
grown surfaces, and outstanding electron field emission
properties.14,15 The growth of nanocrystalline diamond thin
films using hydrocarbon as the growth precursors in a plasma
enhanced CVD system without hydrogen or oxygen addition,
however, appears not to have been studied in detail.16

We report here on the growth of nanocrystalline dia-
mond thin films from an Ar–CH4 microwave plasma without
the addition of molecular hydrogen or oxygen. X-ray diffrac-
tion ~XRD!, transmission electron microscopy~TEM!, and
electron energy loss spectroscopy~EELS! analyses demon-
strate that the as-grown films from the Ar–CH4 plasma con-
sist of phase-pure crystalline diamond grains ranging from 3
to 20 nm in size independent of the film thickness. Similar to
the nanocrystalline diamond films prepared from Ar–C60

plasmas, the nanocrystalline films synthesized from Ar–CH4

plasmas also have very smooth surfaces. Based on the study
of the optical emission of C2 dimer from the Ar–CH4 plas-
mas and the growth rates of the films at different pressures
ranging from 55 to 150 Torr, we demonstrate that increasing
reactant gas pressure enhances strongly the concentration of
C2 in the plasmas, and thus significantly promotes the growth
of nanocrystalline diamond thin films.

II. EXPERIMENTS

A mixture of Ar ~99 sccm! and CH4 ~1 sccm! was em-
ployed as the reactant gas for the microwave plasma en-
hanced CVD thin film preparations.N-type single crystal
silicon wafers with^100& orientation were used as the sub-
strates, and mechanical polishing with fine diamond powder
~0.1 mm! was employed to enhance the nucleation density.
For all film depositions the substrate temperature and input
microwave power were maintained at 800 °C and 800 W,
respectively. The films prepared in this work were either 1 or
5 mm thick, as determined by using anin situ laser reflec-
tance interferometer to monitor the modulations of the sur-
face reflectivity during the growth process.17 To study the
dependence of growth rate of the film on C2 concentration in
the plasma, the reactant gas pressure, which strongly affects

a!Current address: Advanced Materials Processing and Analysis Center,
Dept. of Mechanical, Materials, and Aerospace Engineering, University of
Central Florida, Orlando, FL 32816.
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production of C2 dimers from the Ar–CH4 plasmas, was var-
ied from 20 to 150 Torr. A spectrometer equipped with a
1200 GR/mm grating and water-cooled photomultiplier tube
was employed to monitor the Ar–CH4 plasma, and specially
the concentration of C2 dimers. Emission from the plasma
was collected with a quartz optical fiber viewing a region
1–2 cm above the substrate. The monochromater was
stepped in 2.3 Å increments with a dwell time of 100 ms
from 3000 to 7000 Å. The characterization of the as-grown
films was then carried out using XRD, TEM, EELS, and
atomic force microscopy~AFM!.

III. RESULTS AND DISCUSSION

The x-ray diffraction spectrum of the as-grown film is
shown in Fig. 1. The diffraction peaks can be indexed on the
basis of the cubic diamond structure~see the labels in Fig. 1!.
The diffraction peaks are significantly broadened due to the
very small grain sizes. There is no evidence for graphite or
amorphous carbon from the x-ray diffraction. The silicon
diffraction peak from Si$400% planes derives from the sub-
strate used for the film deposition. Further characterization of
the films has been conducted using TEM. Figure 2~a! shows
a plan view TEM image, showing that the film contains very
small grains ranging from 3 to 20 nm, but the actual size can
be determined more accurately from high resolution TEM
images.18 The inset image shows a selected area~over 10mm
in diameter! electron diffraction of the film, in which the
sharp ring pattern illustrates that the diamond grains have a
random orientation. EELS was employed as a diagnostic for
amorphous or disordered carbon withsp2 bonding. It is
known that different carbon phases~graphite or amorphous
carbon and diamond! have very distinctK-shell absorption
edge structures. Diamond has a single EELS feature with an
onset at 289 eV due to itss* electronic states, while graphite
or amorphous carbon has an additional EELS edge starting at
284 eV owing to its lower lying antibondingp* states.19

Figure 2~b! shows an EELS spectrum of the nanocrystalline
diamond film acquired over an area;10mm in diameter,
displaying only an EELS edge at 289 eV, characteristic of

diamond. No energy loss feature at 284 eV has been ob-
served, demonstrating the absence of amorphous or graphite
phases in the film. A high resolution TEM image of the
nanocrystalline thin film shown in Fig. 3 demonstrates that
individual grains are single diamond crystals. The image of
lattice fringes has a spacing of 0.205 nm, which is the inter-
planar distance between diamond$111% planes. The lattice
image of diamond can only be observed when the diamond
$111% planes are in proper orientation since the resolution of
the TEM used is about 1.8 Å.

The surface morphologies of the as-grown nanocrystal-
line diamond thin films have been studied by AFM. Figure 4
shows three-dimensional AFM images of the films with dif-

FIG. 1. X-ray diffraction of the as-grown nanocrystalline diamond film
prepared from an Ar–CH4 plasma at 100 Torr. The labels show the diffrac-
tion peaks from different planes of the cubic diamond.

FIG. 2. ~a! A plan view TEM image of the diamond film prepared from an
Ar–CH4 plasma at 100 Torr showing that the diamond film consists of
nanocrystalline grains ranging from 3 to 20 nm. The inset image shows a
sharp ring pattern of a selected area electron diffraction, indicating that the
diamond grains have a random orientation;~b! an EELS spectrum of the
nanocrystalline diamond film acquired over an area;10mm in diameter,
displaying only an EELS edge at 289 eV corresponding to asp3 electron
configuration, characteristic of diamond.
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ferent thicknesses of~a! 1 mm and~b! 5 mm, illustrating that
the films produced from the Ar–CH4 plasma have very
smooth surfaces. The surface roughness measured over an
area of 5mm35 mm for these two films are 36.5 and 38.6
nm, respectively, suggesting that the surface roughness of
the nanocrystalline diamond films is largely insensitive to the

film thickness, which is in contrast to the conventional CVD
polycrystalline diamond films prepared by an atomic
hydrogen-rich microwave plasma. Therefore, a new growth
precursor such as C2 dimer associated with a novel growth
mechanism should be considered for the nanocrystalline dia-
mond thin film deposition from an Ar–CH4 plasma presented
here.

To obtain information from the Ar–CH4 plasmas, optical
emission spectroscopy was employed. Figure 5~a! shows a
typical emission spectrum of the Ar–CH4 plasma running
with 1 vol % CH4 and 99 vol % Ar as the reactant gas at the
chamber pressure of 100 Torr. In this spectrum, the C2 swan
system~5165 Å bands! has been observed through in the
wavelength range from 3000 to 7000 Å. A weak emission
line of Ha ~6562 Å! from atomic hydrogen, which is contrib-
uted by the discharge reaction of methane, is also visible in
this emission spectrum. Figure 5~b! shows plots of growth
rates of nanocrystalline diamond films and emission intensi-
ties of C2 from the Ar–CH4 plasmas versus reactant gas pres-
sures ranging from 55 to 150 Torr, showing that the pressure
strongly affects both the Ar–CH4 discharge chemistry and
the nanocrystalline diamond film growth. The growth rates
of nanocrystalline thin films deposited from the Ar–CH4

plasmas are determined by monitoring modulations of the
surface reflectivity versus deposition time with a He–Ne la-
ser ~6328 Å! reflectance interferometer.17 One modulation
~from peak to peak! presents a film deposition

FIG. 3. A high resolution TEM image of the nanocrystalline diamond film
produced from an Ar–CH4 microwave plasma at 100 Torr showing the
lattice image of the diamond nanocrystals.

FIG. 4. Three-dimensional AFM images of the films with different thick-
nesses of~a! 1 mm and~b! 5 mm, illustrating that the nanocrystalline dia-
mond thin films produced from the Ar–CH4 plasma have very smooth sur-
faces, which appears to be independent of the film thicknesses.

FIG. 5. ~a! An optical emission spectrum of the Ar–CH4 plasma running
with 1 vol % CH4 and 99 vol % Ar as the reactant gas at a chamber pressure
of 100 Torr;~b! plots of growth rates of nanocrystalline diamond films and
emission intensities of C2 from the Ar–CH4 plasmas vs reactant gas pres-
sures ranging from 55 to 150 Torr.
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130 nm thick. The emission intensities of C2, which corre-
lates linearly with the absolute C2 concentration in Ar–CH4
microwave plasmas,20 are directly measured from the C2

swan system~5165 Å bands! in the optical emission spectra.
When the reactant gas pressure is below 40 Torr, no C2 emis-
sion is detected by our optical emission spectrometer, and no
diamond film growth is observed. Similarly, diamond film
growth is not observed from Ar–CH4 plasmas up to 15
Torr.21 At 55 Torr, a very low emission intensity of C2 is
seen@Fig. 5~b!#, and is accompanied by a correspondingly
low growth rate of the nanocrystalline diamond thin film is
about 0.06mm/h. As the reactant gas pressure increased,
both the emission intensity of C2 dimers and the growth rate
of the films are increased significantly@see Fig. 5~b!#. Note
that the linear relationship between the growth rate and the
C2 concentration shown in Fig. 5~b! suggests that the con-
centration of C2 in the Ar–CH4 plasma is the factor deter-
mining the film growth rate.

Our observations demonstrate that the reactant gas pres-
sure plays an important role in enhancing the emission inten-
sity and therefore the concentration of C2 in Ar–CH4 plasma.
That C2 is the growth species for nanocrystalline diamond is
confirmed by the functional relationship between the C2 con-
centration and the growth rate. Although the C2 dimer can be
efficiently produced by Ar–CH4 discharges, the fragmenta-
tion of C60 molecules in an Ar microwave plasma producing
C2 appears to be even more efficient as a result of high cross
sections for dissociation by metastable argon atoms, by
charge exchange with argon ions, by dissociative recombina-
tion with electrons, and by thermal processes.22 TEM analy-
sis reveals that diamond thin films produced from Ar–CH4

discharges consist of very small grain sizes ranging from 3 to
20 nm, indicating that renucleation rates must be very high.
The very high renucleation rates, which result in nanocrys-
talline diamond rather than graphite in an Ar–CH4 plasma,
suggest that during the deposition process nucleation of the
diamond phase occurs in the absence or near absence of
atomic hydrogen.

IV. CONCLUSIONS

Nanocrystalline diamond thin films have been synthe-
sized by microwave plasma enhanced CVD using a mixture
of Ar and CH4 as the reactant gas without any molecular
hydrogen addition. The films consist of a pure nanocrystal-
line diamond phase with grain sizes ranging from 3 to 20
nm. The films produced from an Ar–CH4 microwave plasma
have very smooth surfaces, which do not depend on the
thickness~at least in the range of 1–5mm! of the film. The
reactant gas pressure has been demonstrated to play a very
important role in enhancing the concentration of C2 in the
plasma, which in turn controls the growth rate. The depen-

dence of the growth rates of the nanocrystalline diamond
films on the optical emission intensities for the C2 dimer in
the plasma supports the mechanism of nanocrystalline dia-
mond growth from C2 dimers proposed by Gruenet al.11,12
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