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Five new thiophenes, namely, N-[(3-bromo-2-methylthiophen-5-yl)methylene]-4-methoxyaniline (4a), N-[(3-bromo-2-methyl-
thiophen-5-yl)methylene]-3,4-dimethoxyaniline (4b),N-[(3-bromo-2-methylthiophen-5-yl)methylene]-3,4-dimethylaniline (4c),
3-[(3-bromo-2-methylthiophen-5-yl)methyleneamino]-2-methylquinazolin-4(3H)-one (4d), and 3-[(3-bromo-2-methylthio-
phen-5-yl)methyleneamino]-2-isopropylquinazolin-4(3H)-one (4e), have been synthesized. All of these materials brought about
a reduction in the level of photodegradation of poly(vinyl chloride) (PVC) �lms containing the synthesized thiophenes (0.5%; by
weight). 
e results obtained showed that the extent of photostabilization of PVC in the presence of an additive was in the order
4e> 4d> 4b> 4a> 4c. For the most favorable additive (4e), the rate of appearance of infrared absorption bands of degradation
products was reduced by around two-thirds, while the quantum yield of chain scission was calculated to be reduced by a factor
of more than one thousand. It is suggested that the additives may help stabilize PVC by direct absorption of UV radiation and
dissipation of the energy as heat or that electrostatic attraction between the additives and PVC may assist transfer of energy from
excited state PVC to the additive, from where it can be dissipated.

1. Introduction

Poly(vinyl chloride) (PVC) is second to polyethylene among
the highest selling types of plastic materials, which are widely
used in a wide range of industries including architecture,
electronics, packaging, and transportation [1]. However, low
photostability of PVC leads to hydrogen chloride loss, dis-
coloration, and �nally serious corrosion phenomena, accom-
panied by changes of physical and chemical properties of
the PVC. 
e low cost and the good performance of PVC
products have increased the utilization of this polymer in
building, mainly in exterior applications such as window
pro�les and cladding [2]. However, ultimate user acceptance
of the PVC products for outdoor building applications

depends on their ability to resist photodegradation over long
periods of sunlight exposure. To ensure weatherability, the
PVC resin needs to be compounded and processed properly
using suitable additives, leading to a complex material whose
behavior and properties are quite di�erent from those of
the PVC resin itself [3]. Because of this, it is important to
perform reliable weathering methods to test factors, like light
and temperature, which inuence the degradation of PVC
based materials in accelerated service conditions. Due to
the growing importance of the PVC, various studies have
been reported that deal with the rheological behavior and
mechanical properties of its blends [4], the properties of
PVC/thermoplastic polyester elastomer blend systems [5],
and fabrication of new antimicrobial PVC plastic [6]. 
e
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e�ect of UV light on the molecular structure of the PVC is an
important issue that has attracted the attention of researchers
[7].

As part of on-going research on the synthesis of poly-
meric materials [8], lithiation reactions [9], and the synthesis
of various substituted heteroaromatic compounds [10] and
on the stabilization of polymers [11], we became interest-
ed in the synthesis of thiophene derivatives. Here we re-
port the syntheses of various imines derived from thiophe-
nes, namely, N-[(3-bromo-2-methylthiophen-5-yl)methyl-
ene]-4-methoxyaniline (4a), N-[(3-bromo-2-methylthio-
phen-5-yl)methylene]-3,4-dimethoxyaniline (4b), N-[(3-
bromo-2-methylthiophen-5-yl)methylene]-3,4-dimethylan-
iline (4c), 3-[(3-bromo-2-methylthiophen-5-yl)methylene-
amino]-2-methylquinazolin-4(3H)-one (4d), and 3-[(3-
bromo-2-methylthiophen-5-yl)methyleneamino]-2-isopro-
pylquinazolin-4(3H)-one (4e) and studies of their activity in
the photostabilization of PVC. To the best of our knowledge
this is the �rst attempt to investigate the photostabilization
of PVC �lms containing such compounds.

2. Experimental

2.1. General. Bromine-lithium exchange reactions were per-
formed under an inert atmosphere. Glassware was oven
dried, assembled hot, and allowed to cool under a stream of
nitrogen gas. All chemicals and reagentswere purchased from
commercial sources and used without further puri�cation.
THF was distilled from sodium benzophenone ketyl and
other solvents were puri�ed by standard procedures [12]. IR
spectra were recorded as KBr discs for solid materials or by

applying droplets of liquid materials on a NaCl plate. 1H and
13CNMR spectra were recorded on a spectrometer operating

at 400MHz for 1H and 100MHz for 13C measurements,
respectively. Chemical shi�s � are reported in parts per
million (ppm) relative to tetramethylsilane (TMS). Low- and
high-resolution mass spectra were recorded on a time-of-
�ght mass spectrometer using electron impact (EI). Column
chromatography was carried out using Fischer Scienti�c
silica 60A (35–70micron). n-Butyllithiumwas obtained from
Aldrich Chemical Company and was estimated prior to use
by the method of Watson and Eastham [13].

2.2. Synthesis of 3,5-Dibromo-2-methylthiophene (2). A solu-
tion of bromine (12.00mL, 37.20 g, 232.8mmol) in acetic acid
(16mL) was added in a dropwise manner over 10min to a
stirred solution of 2-methylthiophene (1; 9.82 g, 100.0mmol)
in acetic acid (40mL) at (0∘C). 
e reaction mixture was
stirred at 0∘C for 2 h and at room temperature for 16 h. 
e
mixture was quenched with water (20mL) and solid Na2CO3
was then added to bring the pH to ≥9. 
e product was
extracted with Et2O (3 × 60mL) and the combined organic
extracts were dried (MgSO4).
e solvent was removed under
reduced pressure to give the crude product as a reddish liquid,
which was puri�ed by distillation under reduced pressure to
give pure 2 (23.04 g, 90.0mmol; 90%) as a colorless oil (lit.

[14] colorless oil). 1HNMR (400MHz, CDCl3) �: 6.87 (s, 1H)
and 2.36 (s, 3H). 13C NMR (100MHz, CDCl3) �: 136.0, 131.9,

108.8, 108.6, and 14.9. EI-MS (m/z, %): 258 ([M81Br2]
+, 62),

257 (30), 256 ([M81Br79Br]+ 98), 255 (60), 254 ([M79Br2]
+,

80), 253 (32), 175 (100) and 96 (84). HRMS (EI): Calcd for
C5H4Br2S [M

79Br2]
+ 253.8409; found, 253.8400. FTIR (]max,

cm−1): 3097, 2918, 1534, 1449 and 1305.

2.3. Synthesis of 3-Bromo-2-methylthiophene-5-carboxaldehy-
de (3). A solution of n-butyllithium (64.0mL, 1.60M;
64.0mmol) in hexane was added in a dropwise manner over
5min to a stirred solution of 3,5-dibromo-2-methylthiophene
(2; 16.0 g, 62.5mmol) in anhydrous THF (100mL) at −78∘C
under nitrogen. 
e solution turned orange then greenish
yellow and �nally yellowish orange.
e reactionmixture was
stirred at −78∘C for 30min and DMF (4.80 g, 65.7mmol) was
then added. 
e cooling bath was removed and the mixture
was stirred at room temperature for 16 h. 
e mixture was
quenched with aqueous HCl (20mL, 2M) and the product
was extracted with Et2O (3 × 100mL). 
e organic layer was
washed with saturated aqueous NaHCO3 solution (100mL)
and brine (100mL) and then dried (MgSO4). 
e solvent
was removed under reduced pressure to give pure 3 (10.88 g,
53.05mmol; 85%) as a yellow solid, m.p. 56-57∘C (lit. 57-

58∘C) [15]. 1HNMR (400MHz, CDCl3) � (ppm): 9.69 (s, 1H),
7.51 (s, 1H) and 2.41 (s, 3H). 13C NMR (100MHz, CDCl3) �
(ppm): 181.6, 145.9, 140.1, 138.8, 111.3 and 15.9. EI-MS (m/z, %):
206 ([M81Br]+, 75], 205 (98), 204 ([M79Br]+, 77), 203 (100),
177 (25), 125 (20), 96 (40), 84 (32) and 69 (49). HRMS (EI):
Calcd for C6H4BrOS [M79Br, 1]+ 202.9172; found, 202.9166.
FTIR (]max, cm

−1): 3080, 2859, 1678 and 1521.

2.4. Synthesis of Imines 4a–e. In a 10mL microwave vial
charged with a magnetic bar, 3-bromo-2-methylthiophene-
5-carboxaldehyde (3; 0.30 g, 1.46mmol) and the appropriate
amine (1.46mmol) were dissolved in absolute methanol
(6mL) and a drop of HCl was added to the mixture. 
e
vial was sealed and subjected to microwave irradiation at
100∘C for 5min. 
e mixture was cooled and then decanted
into a 50mL round bottomed ask and the solvent was
evaporated under reduced pressure. 
e solid crude product
was recrystallized from ethanol to give the desired product.

2.4.1. N-[(3-Bromo-2-methylthiophen-5-yl)methylene]-4-me-
thoxyaniline (4a). Produced from 4-methoxyaniline (0.18 g,
1.46mmol); yield: 0.41 g, 1.32mmol; 91%; m.p. 73-74∘C.
1H NMR (400MHz, CDCl3) �: 8.36 (s, 1H), 7.20–7.10 (m,
4H), 6.83 (s, 1H), 3.76 (s, 3H), and 2.38 (s, 3H). 13C NMR
(100MHz, CDCl3) �: 158.5, 149.6, 143.8, 139.8, 139.4, 133.8,
122.4, 114.4, 109.9, 55.5, and 15.5. EI-MS (m/z, %): 311
([M81Br]+, 88), 309 ([M79Br]+, 90), 296 (97), 294 (100), 86
(51), 84 (96). HRMS (EI): calcd. for C13H12BrNOS [M

79Br]+

308.9823; found, 308.9825. FTIR (]max, cm
−1): 2960, 2836,

1614, 1505, 1469.

2.4.2. N-[(3-Bromo-2-methylthiophen-5-yl)methylene]-3,4-di-
methoxyaniline (4b). Produced from 3,4-dimethoxyaniline
(0.224 g, 1.46mmol); yield: 0.44 g, 1.30mmol; 89%; m.p. 118-

119∘C. 1HNMR (400MHz, CDCl3) �: 8.47 (s, 1H), 7.28 (s, 1H),
6.90–6.81 (m, 3H), 3.94 (s, 3H), 3.92 (s, 3H), and 2.48 (s, 3H).
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13CNMR (100MHz, CDCl3) �: 150.0, 149.3, 147.9, 144.2, 139.7,
139.6, 134.0, 112.1, 111.2, 110.0, 105.8, 56.1, 55.9, and 15.52. EI-MS
(m/z, %): 341 ([M81Br]+, 53), 339 ([M79Br]+, 54), 326 (51), 324
(54), 86 (94), 84 (100). HRMS (EI): calcd. for C14H14BrNO2S
[M79Br]+ 338.9929; found 338.9924. FTIR (]max, cm

−1): 2998,
2933, 2833, 1612, 1587, 1510.

2.4.3. N-[(3-Bromo-2-methylthiophen-5-yl)methylene]-3,4-
dimethylaniline (4c). Produced from 3,4-dimethylaniline
(0.177 g, 1.46mmol); yield: 0.40 g, 1.30mmol; 89%; m.p. 51-

52∘C. 1HNMR (400MHz, CDCl3) �: 8.34 (s, 1H), 7.19 (s, 1H),
7.10–6.90 (m, 3H), 2.38 (s, 3H), 2.21 (s, 3H), and 2.19 (s, 3H).
13CNMR (100MHz, CDCl3) �: 150.7, 148.7, 139.8, 139.6, 137.4,
134.9, 133.9, 130.3, 122.5, 118.2, 109.9, 19.9, 19.4, and 15.5. EI-MS
(m/z, %): 309 ([M81Br]+, 46), 308 (32), 307 ([M79Br]+, 47),
306 (24), 206 (41), 205 (44), 204 (33), 203 (42), 86 (64), 84
(100). HRMS (EI): calcd. for C14H14BrNS [M

79Br]+ 307.0030;
found, 307.0029. FTIR (]max, cm

−1): 3084, 3014, 2966, 2917,
1615, 1591.

2.4.4. 3-[(3-Bromo-2-methylthiophen-5-yl)methyleneamino]-
2-methylquinazolin-4(3H)-one (4d). Produced from 3-
amino-2-methylquinazolin-4(3H)-one (0.256 g, 1.46mmol).

Yield: 0.48 g, 1.33mmol; 91%; m.p. 231-232∘C. 1H NMR
(400MHz, CDCl3) �: 9.12 (s, 1H, CH), 8.22 (d, J = 9.0Hz,
1H), 7.72–7.66 (m, 1H), 7.60 (d, J = 8Hz, 1H), 7.40 (app. t, J =
8.0Hz, 1H), 7.20 (s, 1H), 2.60 (s, 3H, CH3), and 2.42 (s, 3H,
CH3).

13CNMR (100MHz, CDCl3) �: 159.1, 157.4, 154.2, 146.3,
141.3, 136.3, 134.6, 134.5, 127.2, 126.9, 126.5, 121.4, 110.5, 22.9,
and 15.6. EI-MS (m/z, %): 363 ([M81Br]+, 8), 361 ([M79Br]+,
9), 203 (100), 160 (98), 122 (97), 86 (92), 84 (94), 70 (88).
HRMS (EI): calcd. for C15H12Br N3OS [M79Br]+ 360.9884;
found, 360.9877. FTIR (]max, cm

−1): 2917, 1673, 1601, 1568.

2.4.5. 3-[(3-Bromo-2-methylthiophen-5-yl)methyleneamino]-
2-isopropylquinazolin-4(3H)-one (4e). Produced from 3-ami-
no-2-isopropylquinazolin-4(3H)-one (0.297 g, 1.46mmol).

Yield: 0.50 g, 1.28mmol; 88%; m.p. 165-166∘C. 1H NMR
(400MHz, CDCl3) �: 9.15 (s, 1H), 8.28 (d, J = 8Hz, 1H),
7.78–7.76 (m, 2H), 7.51–7.45 (m, 1H), 7.36 (s, 1H), 3.57 (sept,
J = 7Hz, 1H), 2.51 (s, 3H), and 1.40 (d, J = 7Hz, 6H). 13C
NMR (100MHz, CDCl3) �: 160.6, 159.4, 158.1, 141.4, 136.2,
134.7, 134.4, 127.2, 127.2, 126.6, 121.1, 110.5, 32.0, 20.4, and 15.6
(one quaternary carbon signal was of insu�cient intensity
to allow con�dent discrimination from noise, but may have

been at 147.8 ppm). EI-MS (m/z, %): 391 ([M81Br]+, 32), 389
([M79Br]+, 39), 203 (90), 174 (100), 160 (95), 122 (98), 103 (95),
77 (97). HRMS (EI): calcd. for C17H16N3OS

79Br [M79Br]+

389.0197; found, 389.0198. FTIR (]max, cm
−1): 2987, 2932, 1671,

and 1599.

2.5. Preparation of Polymer Films. 
e polymer matrix used
in this study was PVC (K value = 67, degree of polymerization
= 800) supplied by SABIC (Saudi Arabia). It was reprecipi-
tated from a THF solution (THF is the best solvent for PVC)
by alcohol several times and �nally dried under vacuum
at room temperature for 24 h. PVC �lms were prepared by
dissolving PVC (5 g) in THF (100 g) under vigorous stirring

for 30min. It was necessary to control the hygrometry and
the rate of evaporation of solvent during casting to maintain
good optical quality and very limited turbidity. 
e �lm
transmission should be greater than 80% in the near-UV
range. A�er 3 h, the solution was spread on a slide of stainless
steel (250 × 120 × 0.5mm) and air-dried for 24 h. A�er the
solvent evaporation, the samples were dried in a vacuum at
room temperature for 30 h. 
e thickness of the resulting
PVC �lm (30 �m) was measured by a micrometer type 2610
A, Germany.

2.6. Irradiation Experiments

2.6.1. Accelerated Testing Technique. A QUV Accelerated
Weather Tester (Q-Lab, USA) was used for irradiation of
polymers �lms.
e accelerated weathering tester contained a
stainless steel plate, which had two holes in the front side and
a third one behind. Each side contained a 40 watt uorescent
ultraviolet light. 
ese lamps were of the type UV-B 313,
giving a spectrum range between 290 and 360 nm with a
maximum wavelength at 313 nm. 
e polymer �lm samples
were vertically �xed parallel to the lamps tomake sure that the
UV incident radiation was perpendicular to the samples.
e
irradiated samples were rotated from time to time to ensure
that the intensity of light incident on all sampleswas the same.

2.7. Photodegradation Measuring Methods

2.7.1. Measuring the Photodegradation Rate of Polymer Films
Using Infrared Spectrophotometry. 
edegree of photodegra-
dation of polymer �lm samples was followed by monitoring

FTIR spectra in the range 4000–400 cm−1 using a Shimadzu
FTIR 8300 spectrophotometer. Absorptions due to an alkene
group at 1631 cm−1, a carbonyl group at 1724 cm−1, and a

hydroxyl group at 3400 cm−1 were speci�cally monitored.

e progress of photodegradation during di�erent irradia-
tion times was followed by observing the changes in these
peaks. 
en hydroxyl (�OH), carbonyl (�CO), and polyene
(�PO) indices were calculated by comparison of these absorp-

tion peaks with a reference peak at 1328 cm−1, which is
not signi�cantly a�ected by the degradation process. 
e
method used was the band indexmethod, which includes the
following features [16]:

Is = As
Ar
. (1)

As = absorbance of peak under study, Ar = absorbance of
reference peak, and Is = index of group under study.

Actual absorbance, the di�erence between the absorbance
of top of peak and base line (A Top of Peak − A Base Line), is
calculated using the base line method [16].

2.8. Determination of Average Molecular Weight (�
V
) Using

Viscometry. 
e viscosity property was used to determine
the average molecular weight of polymer, using the Mark
Houwink relation [17]:

[�] = 
��
V
, (2)
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where [�] = the intrinsic viscosity and K and � are con-
stants that depend upon the polymer-solvent system at a
particular temperature. 
e intrinsic viscosity of a polymer
solution was measured with an Ostwald U-tube Viscometer.
Solutions were made by dissolving the polymer in a solvent
(0.2 g/100mL) and the ow times of polymer solution and
pure solvent are � and ��, respectively. Speci�c viscosity (�sp)
was calculated as follows:

�rel = ��� , (3)

where �rel = relative viscosity

�sp = �rel − 1. (4)


e single-point measurements were converted to intrinsic
viscosities by the following relationship:

[�] = (√2� ) (�sp − ln �rel)
1/2 , (5)

where � = concentration of polymer solution (g/100mL).

Molecular weights of PVC with and without additives
were calculated from intrinsic viscosities measured in THF
solution using the following equation:

[�] = 1.38 × 10−4�V0.77. (6)


e quantum yield of main chain scission (Ccs) [18] was
calculated from viscosity measurement using the following
relationship:

�cs = ( ���
V,0
) ⌊([��] / [�])

1/� − 1⌋
��� , (7)

where C = concentration; A = Avogadro’s number; (�
V,0)

= the initial viscosity − average molecular weight; [��] =
intrinsic viscosity of PVC before irradiation; �� = incident

intensity (1.052 × 10−8 ein dm−3 s−1); and t = irradiation time
in seconds.

3. Results and Discussion

3.1. Synthesis of the Target Imines 4a–e. 
e target imines
(4; Schi� bases) were synthesized by the condensation reac-
tions of 3-bromo-2-methylthiophene-5-carboxaldehyde (3)
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Figure 1: FTIR spectrum of PVC �lm (control) (30�m) at zero time.
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Figure 2: FTIR spectrum of PVC �lm (control; 30 �m) a�er 250 hours.

with the appropriate amine. 
e required aldehyde 3 was
synthesized from 3-methylthiophene (1) in two steps. 
e
�rst one involved bromination of 1 to give 3,5-dibromo-
2-methylthiophene (2) which was then converted to the
aldehyde 3 in the second step by selective bromine-lithium
exchange of the �-bromo group, followed by treatment with
dimethylformamide (DMF) as shown in Scheme 1.

For the synthesis of the target imines 4, aldehyde 3 (1
molar equivalent) was allowed to react with various amines,
namely, 4-methoxyaniline, 3,4-dimethoxyaniline, 3,4-dim-
ethylaniline, 3-amino-2-methylquinazolin-4(3H)-one, and
3-amino-2-isopropylquinazolin-4(3H)-one (Scheme 2). Re-
actions were carried out under microwave irradiation for
5min in absolute methanol. 
e solvent was removed and
the crude products were recrystallized to give pure imines
4 in high yields. 
e structures of the synthesized imines

4a–e were con�rmed by FTIR, 1H NMR, and 13C NMR
spectroscopy and bymass spectrometry (EI-MS andHRMS).


e FTIR spectra of 4a–e showed the presence of a
characteristic band for the C=N stretching vibration within

the 1599–1615 cm−1 region. 
e 1H NMR spectra showed
a characteristic singlet signal at � = 8.34–9.15 ppm corre-
sponding to H–C=N.
e structures of 4a–e were con�rmed
further by EI-mass spectrometry, which showed the presence
of molecular ion peaks, the elemental compositions of which
were proved by high resolution mass spectrometry (HRMS).
See Section 2 for details.

3.2. Photostabilization Study. Compounds 4a–ewere used as
additives for the photostabilization of PVC �lms. In order
to study the photochemical activity of these additives for
the photostabilization of PVC �lms; the carbonyl and alkene
indicesweremonitored as a function of irradiation time using
IR spectrophotometry.
e irradiation of PVC �lms with UV
light of wavelength, � = 313 nm, led to a clear change in
their FTIR spectra, as shown in the FTIR spectra of the PVC
before (Figure 1) and a�er (Figure 2) irradiation. Appearance

of bands at 1770 cm−1 and 1724 cm−1 was attributed to the
formation of carbonyl groups related to chloroketone and
to aliphatic ketone, respectively. A third band was observed

at 1631 cm−1, which implied formation of a C=C double
bond conjugated to a carbonyl group. 
e hydroxyl band

that appeared at 3400 cm−1 was attributed to the OH of the
hydroperoxide and alcohol groups, as shown in Scheme 3
[16, 19].


e changes in the intensities of the stretching absorp-
tion bands of the hydroxyl, carbonyl, and alkene groups
were used to follow the extent of polymer degradation
during irradiation, because the intensities of these bands are
directly proportional to the extent of degradation [11]. 
e
degradation was calculated in terms of the hydroxyl index
(�OH, as OH formation indicator), carbonyl index (�CO, as
C=O formation indicator), and polyene index (�PO, as C=C
formation indicator). Figure 3 shows the e�ects of adding the
new imines 4a–e to the PVC (0.5% by weight) on the growth
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Scheme 3: Some of the photooxidation processes of PVC: reactions of radical B with molecular oxygen, akin to those of radical A, would give
rise to chloroketone, chloroalcohol, and chlorohydroperoxide moieties; further reactions of such reactive functionalities may lead to chain
cleavage and reduction in molecular weight.

of the �CO, which reects the extent of degradation of the
PVC. It is clear that the addition of any of the compounds
4a–e lowered the growth of the carbonyl index of the PVC
in comparison with the control sample. So, it is reasonable
to conclude that these additives might be considered as
photostabilizers of PVC polymer.

Since an e�cient photostabilizer shows a longer induc-
tion period, compound 4e is considered as the most active
photostabilizer, followed by 4d, 4b, 4a, and 4c. Just as for-
mation of carbonyl groups indicates degradation of polymer,

so does the formation of alkene units. 
erefore, the polyene
index (�PO) was also monitored with irradiation time in the
presence of each of 4a–e. As shown in Figure 4 the results are
comparable with those of the e�ect on the �CO; compounds
4a–e showed the same order in their e�ciency at reducing
the growth of �PO.


e hydroxyl index (�OH) growth versus irradiation time
was also monitored for the PVC in the presence of each of
compounds4a–e against the pure PVC.All of the compounds
4a–e showed a positive e�ect by lowering the growth of the
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Figure 4:
e relationship between the alkene index and irradiation
time for PVC �lms (30�m thickness) with or without additives 4a–e
(0.5% by weight).

hydroxyl index in the same order of e�ciency as for both �CO
and �PO (Figure 5).

3.3. Variation of PVC Molecular Weight during Photolysis
in the Presence of 4a–e. 
e photodegradation of polymers

causes changes in viscosity average molecular weight (�
V
)

[20]. Accordingly, we decided to monitor the photodegra-

dation process by monitoring the change in �
V
and other

parameters that are related to it, particularly the average
number of chain scissions (average number of cuts per single
chain) (N) and the quantum yield of the chain scission
process (Φcs).

Figure 6 shows the change of the �
V
values with the

irradiation time for PVC �lms in the presence of each of the
selected additives 4a–e 0.5% (wt/wt) and for the pure PVC
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Figure 6: Changes in the viscosity-average molecular weight (�
V
)
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by weight).

as control (�
V
was calculated using (2) with THF as solvent

at 25∘C). It is clear that addition of 4a–e to the PVC �lms
reduces the decrease in the�

V
whichmeans that the additives

inhibit the photodegradation process and stabilize the PVC.
Again the e�ciencies of 4a–e were in the same order found
in the previous tests.

Chain scissions occur as a result of photodegradation of
polymers and increase in number with increasing irradiation
time. 
erefore, the average number of chain scissions (aver-
age number of cuts per single chain) (N) [20, 21], calculated
using (8), is used to monitor photodegradation. Consider

� = �V,0

�
V,�
− 1. (8)
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To study the e�ect on its stability of adding compounds
4a–e to the PVC, the values of the average number of chain
scissions � were calculated at the irradiation time intervals
that were used in this study. 
e plot of� versus irradiation
time is shown in Figure 7, which shows that the growth of the
value of the chain scissions in the presence of 4a–e follows
the same trend as the decrease in molecular weight.

Finally, the change in the quantum yield of main chain
scission (Ccs) was studied. A�er 250 h of irradiation the Ccs

was calculated using (7) for the PVC �lms with and without
0.5% (wt/wt) of compounds 4a–e (Table 1).


e Φcs values for PVC �lms in the presence of additive
were of course less than that of pure PVC (control), and
the values increased in the following order: 4e < 4d < 4b< 4a < 4c. 
e explanation for low value of Φcs of PVC

(control) is that, in the macromolecules of PVC, the energy
is absorbed at one site, and then the electronic excitation is
distributed overmany bonds so that the probability of a single
bond breaking is small, or the absorbed energy is dissipated
by nonreactive processes. However, the additives caused a
further reduction of around 1000-fold in the value of Φcs,
which is comparable with the reduction brought about by use
of salicylidene imines of substituted aminothiadiazoles [22].

It is well established that the quantum yield (Φcs)
increases with increasing temperature [23] around the glass
transition temperature (Tg) of amorphous polymers and
around the melting temperature of crystalline polymers. In
the study presented in this work, the photolysis of PVC �lm
was carried out at a temperature 35–45∘C, well below the
glass transition temperature (Tg of PVC = 80∘C). 
erefore,
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Table 1: Quantum yield (Φcs) for chain scission for PVC �lms
(30 �m) with and without additive (0.5%wt) a�er 250 h irradiation
time.

Additive (0.5%wt) Quantum yield of main chain scission (Φcs)
PVC + 4e 4.83� − 08
PVC + 4d 5.97� − 08
PVC + 4b 6.55� − 08
PVC + 4a 7.09� − 08
PVC + 4c 7.79� − 08
PVC (blank) 8.34� − 05

dependency of Φcs on temperature was not expected to be
signi�cant.

3.4. Suggested Mechanisms of Photostabilization of PVC
by 3-[(3-Bromo-2-methylthiophen-5-yl)methyleneamino]-2-
isopropylquinazolin-4(3H)-one (4e). 
e e�ciency of the
new compounds 4a–e as photostabilizers for PVC �lms de-
creases in the order 4e> 4d> 4b> 4a> 4c.
ese compounds
may stabilize PVC by direct absorption of UV radiation and
dissipation of the energy as heat (Scheme 4).


iophene moieties themselves may also be able to act
in a similar way to absorb UV radiation and to dissipate
the energy as heat, but obviously the nature of the nitrogen
substituent on the imine group had a signi�cant e�ect on the
e�ciency of the additives as stabilizers so any direct e�ect of
the thiophene ring alone is likely to be minor. 
e polarity
of the thiophene ring may also lead to attraction between
the stabilizer and PVC, which again would be inuenced by
the nature of the nitrogen substituent on the imine group, as
shown for additive 4e in Scheme 5. Such attractionmay assist

transfer of energy from excited state PVC to the additive,
fromwhere it can be dissipated.
eobserved trendsmayhelp
in the design of even better photostabilizers for PVC.

4. Conclusion

New thiophene derivatives 4a–e incorporating an imine
group have been successfully synthesized and characterized.

e level of photodegradation of (PVC) �lms containing
the synthesized thiophenes (0.5%; by weight) was reduced
in all cases, with e�ectiveness of the additives in the order
4e > 4d > 4b > 4a > 4c. For the most favorable additive
(4e), the rate of appearance of infrared absorption bands
of degradation products was reduced by around two-thirds,
while the quantum yield of chain scission was calculated to
be reduced by a factor of more than one thousand.

It is suggested that the additives may help stabilize PVC
by direct absorption of UV radiation and dissipation of the
energy as heat, or that electrostatic attraction between the
additives and PVCmay assist transfer of energy from excited
state PVC to the additive, from where it can be dissipated.
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