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Abstract: A series of novel indole Schiff base derivatives (2a–2t) containing a 1,3,4-thiadiazole scaffold
modified with a thioether group were synthesized, and their structures were confirmed using FT-IR,
1H NMR, 13C NMR, and HR-MS. In addition, the antifungal activity of synthesized indole derivatives
was investigated against Fusarium graminearum (F. graminearum), Fusarium oxysporum (F. oxysporum),
Fusarium moniliforme (F. moniliforme), Curvularia lunata (C. lunata), and Phytophthora parasitica var.
nicotiana (P. p. var. nicotianae) using the mycelium growth rate method. Among the synthesized
indole derivatives, compound 2j showed the highest inhibition rates of 100%, 95.7%, 89%, and
76.5% at a concentration of 500 µg/mL against F. graminearum, F. oxysporum, F. moniliforme, and
P. p. var. nicotianae, respectively. Similarly, compounds 2j and 2q exhibited higher inhibition rates of
81.9% and 83.7% at a concentration of 500 µg/mL against C. lunata. In addition, compound 2j has
been recognized as a potential compound for further investigation in the field of fungicides.

Keywords: antifungal activities; synthesis; indole Schiff base derivatives; 1,3,4-thiadiazole;
F. graminearum; F. oxysporum; F. moniliforme; C. lunata; P. p. var. nicotianae

1. Introduction

Food crop diseases caused by fungi have become one of the concerns in the global
agricultural sector [1]. Fungal diseases directly cause a reduction in crop yield and quality,
which results in a huge economic loss for farmers worldwide [1,2]. Furthermore, some
pathogenic fungi can secrete toxins and metabolites that are harmful to humans and
livestock [3–6]. For example, F. oxysporum is a soil-borne fungal pathogen widely distributed
throughout the world that can infect more than 100 valuable crops by causing blight and
root rot, seriously affecting plant growth, yield, and quality [7–13]. Similarly, F. graminearum
is responsible for fusarium head blight (FHB) disease in barley, rice, and oat, and stem rot
and spike rot in maize, which severely affects the production of these crops on a global
scale [14–18]. Meanwhile, mycotoxins such as trichothecenes and zearalenone produced
by F. graminis are harmful to humans and livestock [19]. The use of fungicides is the most
common and well-known method for controlling these fungal diseases. However, the
excessive or improper use of antifungal agents leads to an increase in the resistance of fungi
to fungicides. Thus, the discovery of new antifungal compounds with a new mechanism of
action is of great significance for future development in agriculture.

In recent years, heterocyclic pesticides have become the mainstream of pesticide
research because of their flexible structure, low toxicity, and high activity. Indole is an
important nitrogen-containing heterocyclic compound. Indole and indole derivatives have
a broad spectrum of biological activities such as antifungal [20–26], antibacterial [27–29],
antimycobacterial [30], antitubercular [31–33], antioxidant [34], antimalarial [35–37], an-
tiviral [38–41], anti-leishmanial [42,43], anti-inflammatory [44], and anti-tumor [45–47]
activities. The design and synthesis of new indole derivatives with excellent biological
activity is one of the emerging fields in pharmaceutical chemistry. There are various
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indole-based drugs available for the treatment of human fatal diseases (I–VI in Figure 1).
Furthermore, some indole derivatives containing coumarin [48], thiofuran [49], oxazole [50],
and imidazole [51] at the 3-position of the indole ring were found to exhibit obvious fungici-
dal activity (VII–X in Figure 1). However, the usage of commercial indole-based pesticides
for the treatment of plant fungal diseases has not yet been explored.
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1,3,4-thiadiazole derivatives were widely used as pesticides in agrochemical chemistry
and studied for years due to their excellent biological activities, including antifungal [52,53],
insecticidal [54], acaricidal [54], antibacterial [55], and herbicidal activities [56]. Heterocyclic
thioether compounds also possess high antifungal activities [57], and the thioether-bound
1,3,4-thiadiazole scaffold is an important pharmacophore [58]. Some thioether-bound
1,3,4-thiadiazole derivatives such as bismerthiazol and 2,5-dimercapto-1,3,4-thiadiazole
zinc salts (I, II in Figure 2) have been used as commercial fungicides for plant fungal
diseases. Schiff base, a class of compounds with imine groups (-CH=N-), is a common
pharmacological group in many compounds, which has a wide range of biological activi-
ties [59,60]. The introduction of Schiff bases into 1,3,4-thiadiazoleis is interesting to study,
and the 1,3,4-thiadiazole Schiff base derivatives also have biological activities [61,62]. For
example, compound V in Figure 2 were found to exhibit obvious fungicidal activity [63].

In this research, our aim is to find new antifungal compounds to control fungal diseases
from farmland. Based on the different advantages of indoles, thiadiazoles, thioethers and
Schiff bases, and in continuation of our long-term research on the heterocyclic derivatives
such as 1,3,4-thiadiazole [64], coumarin [65–71], indole [72], and chitosan [73] as agricultural
antifungal agents, herein, we designed and synthesized a series of target compounds 2a–2t
containing indole, thioether-modified 1,3,4-thiadiazole, and imine. These compounds
have obvious inhibitory activities against plant pathogenic fungi, which have not been
reported in the literature at home and abroad. The structure–activity relationship of the
new derivatives against fungi was determined. This structure–activity relationship lays a
foundation for the research and development of drugs to control plant fungal diseases in
the future. According to the preliminary inhibition experiments results, compound 2j had
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been recognized as a potential compound for further investigation in the field of fungicides.
The design of target compounds is shown in Scheme 1.
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2. Results and Discussion
2.1. Synthesis

The synthetic pathway used in the preparation of novel indole derivatives 2a–2t
containing thioether-modified 1,3,4-thiadiazole is shown in Scheme 2. The (1H)-indole-
3-formaldehyde was condensed with 2-amino-5-alkylthio-1,3,4-thiadiazole in ethanol or
1,4-dioxane solvent in the presence of a CH3COOH catalyst to obtain the target compounds.
The progress of the reaction was monitored using HPLC and TLC. The reaction progress
monitoring revealed that it took approximately 4–6 h to completely consume the 2-amino-
5-alkylthio-1,3,4-thiadiazole, and the target compounds 2a–2i can be obtained with a yield
range of 62–94% after refluxing at 80 ◦C with ethanol as the solvent. However, compounds
2k–2t showed low yields or no product under the same conditions. After refluxing at 100 ◦C
with 1,4-Dioxane instead of ethanol as solvent, the result was higher yields of compounds
2k–2t. Conclusively, the formation of compounds 2k–2t required higher temperatures
compared to the formation of compounds 2a–2j.

The structures of the synthesized compounds 2a–2t were confirmed using different
spectroscopic techniques, such as FT-IR, 1H NMR, 13C NMR, and HR-MS analyses. The
FT-IR spectra of the synthesized compounds 2a–2t showed one or two separate absorption
bands in the 3267–3506 cm−1 region, which corresponds to the N–H stretching of the
indole ring. The peaks corresponding to aromatic =C–H and C=N stretching bands were
identified in the 3040–3097 cm−1 and 1605–1698 cm−1 regions, respectively. The peak
was observed at 1035–1087 cm−1 and corresponds to the thioether bond C–S–C stretching.
The 1H NMR spectra of compounds 2a–2t showed the pyrrole N–H protons of the indole
moiety as one singlet in the δ 11.18–12.34 ppm region and the C–H protons of the imine
group as one singlet in the δ 8.90–10.68 ppm region. The thioether (SCH2) C–H proton
signals of compounds 2j and 2k were observed at δ 3.75 and 4.37 ppm, respectively, as a
doublet due to the ortho coupling with the ethylene C–H. In the other compounds, the
thioether (SCH2) C–H protons were found as one singlet in the δ 4.29–4.83 ppm region.
The 13C NMR spectrum showed the resonances of C=N, S–C, 1,3,4-thiadiazole C2, and
1,3,4-thiadiazole C5 through the signals at δ 152.80–165.56, 19.02–38.09, 170.49–181.65,
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and 161.88–170.08 ppm, respectively. The HR-MS of compounds 2a–2t was conducted
using the electrospray ionization method (ESI). In the HR-MS spectra of compounds 2a–2t,
[M + H+], [M + Na+] or [M–H+] peaks were observed, which confirmed their precise
molecular weights.
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Scheme 2. Synthesis route of the target compounds 2a–2t.

The synthesized compounds 2a–2t had moderate solubility in ethanol and methanol,
and good solubility in DMF, DMSO, acetone, and chloroform. The synthetic molecules are
stable in any of the above solvents.

2.2. In Vitro Antifungal Activity

The results of the preliminary inhibition experiments of the target compounds 2a–2t
against F. graminearum, F. oxysporum, F. moniliforme, C. lunata, and P. p. var. nicotianae
are shown in Figures 3–7, respectively. Photos of some of the compounds in the fungal
inhibition experiment are in the Supplemental Materials.

From the experimental results, we found that the target compounds 2a-2t has different
inhibitory activities against the experimental fungi. For example, at the concentration of
500 µg/mL, the inhibitory rate of the target compound 2a–2t against F. graminearum was
within the range of 36.8–100% (in Figure 3). Among the tested compounds, compounds
2i, 2j, 2m, 2n, 2o, 2p, 2q, and 2r exhibited higher inhibition rates than the control reagent
triadimefon (inhibition index: 47.6%). At the same concentration, the inhibitory rate
of compounds 2a–2t against F. oxysporum was in the range of 45.2–95.7% (in Figure 4),
which was higher than that of the control drug triadimefon (the inhibitory rate of 45.2%).
Some compounds, such as compound 2j and compound 2q, showed a broad spectrum
of good antifungal activity. The inhibition rates of compound 2j against F. Graminearum,
F. oxysporum, F. Moniliforme, C. lunata, and P. p. var. nicotianae were 100%, 95.7%, 91.2%,
81.9%, and 82.1%, respectively. Compound 2q showed better inhibitory activity against
F. graminearum and C. lunata with inhibition rates of 76.5% and 83.7%, respectively.
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The structure–activity relationship indicated that different substituents attached to the
benzene ring of the target compounds would have obvious effects on the inhibitory activity
of the experimental fungi. The introduction of electron-withdrawing groups such as –NO2,
–CF3, –F, –Cl on the benzene ring resulted in an increase in the antifungal activity of com-
pounds such as 2j, 2i, 2k, 2e, 2p, 2q, 2r, 2s, and 2t, compared to compound 2a. The higher
antifungal activity of those compounds may be due to the electron-withdrawing group on
the benzene ring, which decreases the electron cloud density and results in an increase in
the accessibility of the target molecules toward the fungicide cell. In addition, different po-
sitions of the same substituents have different effects on the inhibitory activities of different
fungi. For example, when –CF3 is in different positions (ortho:2t, meta:2p and para:2s), it
has little effect on the inhibition rate of compound against F. Graminearum, F. Oxysporum,
F. Moniliforme and C. Lunata, but has a great effect on the inhibition rate of compound
against P. p. var. nicotianae. The inhibition rates of meta compound (2p) and ortho com-
pound (2t) against P. p. var. nicotianae were 53.4% and 33.9%, respectively. The inhibition
rates of 3, 5-di-substituted –CF3 compound (2q) against F. Graminearum and C. lunata were
76.5% and 83.7%, respectively, which were higher than that of mono-substituted –CF3 com-
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pounds (2p, 2s and 2t). However, the inhibition rates of 3, 5-di-substituted –CF3 compound
(2q) against the other three fungi were almost the same as that of mono-substituted –CF3
compounds (2p, 2s, 2t). The compounds with different substituted pyridine positions had
different inhibitory activities against fungi. The inhibition rates of 4-position pyridine com-
pound (2m) against F. Graminearum, F. Moniliforme, C. Lunata, and P. p. var. nicotianae were
higher than that of 2-position and 3-position pyridine compounds (2b and 2c). However,
the inhibition rate of 2-position pyridine compound (2b) against F. oxysporum was higher
than that of 3-position and 4-position pyridine compounds (2c and 2m).
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Figure 7. Antifungal activity of the synthesized compounds (2a–2t) against P. p. var. nicotianae.

3. Materials and Methods
3.1. Chemicals and Instruments

All reagents and chemicals were procured from a commercial supplier (Shanghai
Aladdin Reagent Co., Ltd., Shanghai, China) and used as received. The method described in
the literature was used to synthesize the intermediate 1 (1a–1t, 2-ammino-5-alkylthio-1,3,4-
thiadiazoles) [64]. Five crop-threatening pathogenic fungi (F. graminearum, F. oxysporum,
F. moniliforme, C. lunata, and P. p. var. nicotianae) were obtained from the College of Plant
Protection of Henan Agricultural University.

The Fourier transformed infrared (FT-IR) spectra were recorded using a Thermo
Scientific Nicolet IS10 FT-IR spectrometer (Nicolet Technologies Co., Madison, America)
and the frequencies were given in cm–1. The proton nuclear magnetic resonance (1H
NMR) and carbon nuclear magnetic resonance (13C NMR) spectra were obtained using a
Bruker DPX-400 spectrometer (Brucker Technologies Co., Karlsruhe, German) in acetone or
dimethyl sulfoxide (DMSO) solvent with tetramethylsilane (TMS) as an internal standard.
A thin-layer chromatography (TLC) was performed on silica gel 60 F254 (Shanxi ersai
biotechnology Co., Ltd., Xian, China). A high-performance liquid chromatography (HPLC)
from Thermo Fisher Science and Technology Ltd. with C18 chromatographic column
was used in the process of the reaction. The high resolution-mass spectroscopy (HR-MS)
was performed using an Ultimate 3000RE-Q-ExactiveTM Orbitrap, Thermo Fisher-ESI
instrument (Thermo Fisher Technologies Co., Waltham, America). Melting points were
determined using a Taike X-4 melting point apparatus. The reaction yields, except for
compound 2a, were not optimized.

3.2. General Procedure for the Preparation of Compounds 2a–2t

A total of 3.6 mmol of 3-indoxformaldehyde and 3 mmol of the intermediate 1a
(2-amino-5-S-benzyl-1,3,4-thiadiazole) were taken in the round bottom flask and dissolved
in ethanol, and then a few drops of acetic acid were added as a catalyst. The resulting
mixture was refluxed for 5 h at 80 ◦C. Once the reaction was completed according to thin
layer chromatography (TLC) or high-performance liquid chromatography (HPLC), the
reaction solution was cooled and then filtered using vacuum filtration to obtain the crude
product. The crude product was then purified using ethanol recrystallization to obtain the
desired product 2a. The preparation method for compounds 2b–2t was the same as for
compound 2a.
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3.3. Spectral Data

(E)-N-(5-(benzylthio)-1,3,4-thiadiazol-2-yl)-1-(1H-indol-3-yl) methanimine (2a)
Orange yellow crystal; M. p. 200.5–201.4 ◦C; yield 72%; IR (ν, cm–1 KBr): 3506 (N–H),

3069 (Ar–H), 1630 (C=N), 1524, 1513, 1402, 1336, 1204 (thiadiazole ring), 1042 (C–S–C);
1H NMR (400 MHz, DMSO, d6, δ, ppm): 12.31 (s, 1H, N–H), 8.92 (s, 1H, HC=N), 8.30 (d,
J = 8.0 Hz, 2H, Ar–H), 7.55 (d, J = 8.0 Hz, 1H, Ar–H), 7.46 (d, J = 8.0 Hz, 2H, Ar–H), 7.35 (t,
J = 8.0 Hz, 2H, Ar–H), 7.29 (t, J = 8.0 Hz, 3H, Ar–H), 4.56 (s, 2H, SCH2); 13C NMR (101 MHz,
DMSO d6, δ, ppm): 176.51, 163.41 (thiadiazole ring), 160.51 (C=N), 139.14, 138.02, 137.05,
129.56, 129.04, 128.10, 124.93, 124.23, 122.67, 122.38, 114.76, 113.09, 37.83 (SCH2); HR-MS
(ESI): calcd. for C18H14N4S2: [M + Na+] 373.0558; found: 373.0559.

(E)-N-(5-((pyridin-2-ylmethyl)thiol)-1,3,4-thiadiazol-2-yl)-1-(1H-indol-3-yl)methanimine (2b)
Yellow needle-shaped crystal; M. p. 209.1–210.5 ◦C; yield 81%; IR (ν, cm–1 KBr): 3442

(N–H), 3091(Ar–H), 1619 (C=N), 1596, 1573, 1478, 1429, 1374, 1245 (thiadiazole ring), 1046
(C–S–C); 1H NMR (400 MHz, DMSO d6, δ, ppm): 12.29 (s, 1H, N–H), 8.93 (s, 1H, HC=N),
8.55 (d, J = 4.0 Hz, 1H, thiadiazole-H), 8.32 (s, 1H, Ar–H), 8.29 (d, J = 4.0 Hz, 1H, Ar–H),
7.78–7.83 (m, 1H, Ar–H), 7.55 (d, J = 8.0 Hz, 2H, Ar–H), 7.34–7.26 (m, 3H, Ar–H), 4.67 (s,
2H, SCH2); 13C NMR (101 MHz, DMSO d6, δ, ppm): 176.55, 163.50 (thiadiazole ring-C),
160.70 (C=N), 156.48, 149.78, 139.19, 138.01, 137.49, 124.91, 124.24, 123.76, 123.21, 122.68,
122.69, 122.37, 114.74, 113.11, 36.26 (SCH2); HR-MS (ESI): calcd. for C17H13N5S2: [M + Na+]
374.0510; found: 374.0509.

(E)-N-(5-((pyridin-3-ylmethyl)thio)-1,3,4-thiadiazol-2-yl)-1-(1H-indol-3-yl)methanimine (2c)
Yellow-green needle-shaped crystal; M. p. 207.5–208.4 ◦C; yield 92%; IR (ν, cm–1

KBr): 3436 (N–H), 3055 (Ar–H), 1605 (C=N), 1580, 1479, 1431, 1294,1241 (thiadiazole ring),
1059 (C–S–C); 1H NMR (400 MHz, DMSO d6, δ, ppm): 12.32 (s, 1H, N–H), 8.92 (s, 1H,
HC=N), 8.66 (s, 1H, Ar–H), 8.49 (d, J = 4.0 Hz, 1H, thiadiazole-H), 8.31 (s, 1H, Ar–H), 8.29
(d, J = 4.0 Hz, 1H, Ar–H), 7.88 (d, J = 8.0 Hz, 1H, Ar–H), 7.55 (d, J = 8.0 Hz, 1H, Ar–H),
7.37–7.40 (m, 1H, Ar–H), 7.29 (m, 2H, Ar–H), 4.59 (s, 2H, SCH2); 13C NMR (101 MHz,
DMSO d6, δ, ppm): 176.75, 163.59 (thiadiazole ring-C), 159.83 (C=N), 150.48, 149.15, 139.27,
138.02, 137.11, 133.44, 124.92, 124.26, 124.09, 122.71, 122.37, 114.75, 113.12, 34.82 (SCH2);
HR-MS (ESI): calcd. for C17H13N5S2: [M + Na+] 374.0510; found: 374.051.

(E)-N-(5-((2,4,5-trifluorobenzyl)thiol)-1,3,4-thiadiazol-2-yl)-1-(1H-indol-3-yl)metha-
nimine (2d)

Bright yellow needle-shaped crystal; M.p. 206.2–207.5 ◦C; yield 73%; IR (ν, cm–1

KBr): 3277 (N–H), 3091(Ar–H), 1620 (C=N),1519, 1423, 1401, 1320, 1239 (thiadiazole ring),
1065 (C–S–C); 1H NMR (400 MHz, DMSO d6, δ, ppm): 12.32 (s, 1H, N–H), 8.94 (s, 1H,
HC=N), 8.32 (s, 1H, Ar–H), 8.28 (d, J = 8.0 Hz, 1H, Ar–H), 7.60–7.68 (m, 2H, Ar–H), 7.54 (d,
J = 4.0 Hz, 1H, Ar–H), 7.26–7.32 (m, 2H, Ar–H), 4.54 (s, 2H,-SCH2); 13C NMR (101 MHz,
DMSO d6, δ, ppm): 177.12, 163.70 (thiadiazole ring-C), 159.12 (C=N), 153.98, 139.39, 138.04,
136.79, 128.86, 127.49, 124.92, 124.27, 122.72, 122.37, 119.75, 119.70, 119.55, 114.75, 113.14,
30.81 (SCH2); HR-MS (ESI): calcd. for C18H11F3N4S2: [M + Na+] 427.0275; found: 427.0276.

(E)-N-(5-((4-chlorobenzyl)thiol)-1,3,4-thiadiazol-2-yl)-1-(1H-indol-3-yl)methanimine (2e)
Beige needle-shaped crystal; M. p. 201.8–202.6 ◦C; yield 65%; IR (ν, cm–1 KBr): 3332

(N–H), 3085 (Ar–H), 1616 (C=N), 1513, 1453, 1428, 1373, 1292 (thiadiazole ring), 1035
(C–S–C); 1H NMR (400 MHz, DMSO d6, δ, ppm): 12.14 (s, 1H, N–H), 9.94 (s, 1H, HC=N),
8.29 (s, 1H, thiadiazole-H), 8.10 (d, J = 8.0 Hz, 1H, Ar–H), 7.52 (d, J = 8.0 Hz, 1H, Ar–H), 7.38
(d, J = 4.0 Hz, 3H, Ar–H), 7.31 (s, 1H, Ar–H), 7.22–7.27 (m, 2H, Ar–H), 4.29 (s, 2H, SCH2);
13C NMR (101 MHz, DMSO d6, δ, ppm): 170.49, 163.55 (thiadiazole ring-C), 160.17 (C=N),
149.51, 138.00, 136.88, 136.40, 132.50, 128.89, 124.90, 124.28, 122.72, 122.37, 114.74, 113.11,
38.09 (SCH2); HR-MS (ESI): calcd. for C18H13ClN4S2: [M + Na+] 407.0168; found: 407.0167.

(E)-N-(5-(((1H-benzo[d]imidazol-2-yl)methyl)thiol)-1,3,4-thiadiazol-2-yl)-1-(1H-indol-
3-yl)methanimine (2f)

Brown-red needle-shaped crystals; M. p. 245.8–246.5 ◦C; yield 72%; IR (ν, cm–1 KBr):
3307 (N–H), 3073 (Ar–H), 1634 (C=N), 1585, 1504, 1454, 1315, 1298 (thiadiazole ring), 1036
(C–S–C); 1H NMR (400 MHz, DMSO d6, δ, ppm): 12.12 (s, 1H, N–H), 10.68 (s, 1H, N–H),
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8.39 (s, 1H, HC=N), 8.28 (d, J = 8.0 Hz, 1H, Ar–H), 8.17 (s, 1H, Ar–H), 7.98 (d, J = 8.0 Hz,
1H, Ar–H), 7.80 (s, 1H, Ar–H), 7.75 (d, J = 8.0 Hz, 1H, Ar–H), 7.53 (d, J = 8.0 Hz, 1H,
Ar–H), 7.38–7.45 (m, 2H, Ar–H), 7.20–7.27 (m, 2H, Ar–H), 4.36 (s, 1H, SCH2); 13C NMR
(101 MHz, DMSO d6, δ, ppm): 176.03, 170.08 (thiadiazole ring-C), 152.80 (C=N), 149.29,
136.58, 130.17, 129.65, 127.70, 126.98, 123.48, 123.09, 121.30, 118.99, 118.74, 118.61, 114.71,
112.78, 112.03, 111.63, 19.02 (SCH2); HR-MS (ESI): calcd. for C19H14N6S2: [M–H+]: 389.0683;
found: 389.070.

(E)-N-(5-((2,6-difluorobenzyl)thio)-1,3,4-thiadiazol-2-yl)-1-(1H-indol-3-yl)methanimine (2g)
Light yellow solid powder; M. p. 177.0–177.7 ◦C; yield 72%; IR (ν, cm–1 KBr): 3287

(N–H), 3065 (Ar–H), 1622 (C=N), 1580, 1496, 1409, 1384, 1246 (thiadiazole ring), 1045
(C–S–C); 1H NMR (400 MHz, DMSO d6, δ, ppm): 11.35 (s, 1H, N–H), 9.08 (s, 1H, HC=N),
8.48 (s, 1H, Ar–H), 8.28 (d, J = 4.0 Hz, 1H, Ar–H), 7.58–7.61 (m, 1H, Ar–H), 7.43–7.48 (m, 1H,
Ar–H), 7.30–7.34 (m, 2H, Ar–H), 7.09 (t, J = 8.0 Hz, 2H, Ar–H), 4.63 (s, 2H, SCH2); 13C NMR
(101 MHz, DMSO d6, δ, ppm): 176.99, 162.17 (thiadiazole ring-C), 158.82 (C=N), 137.89,
137.57, 130.42, 124.99, 123.96, 122.43, 122.27, 121.33, 115.24, 112.31, 111.70, 111.45, 25.48
(SCH2); HR-MS (ESI): calcd. for C18H12F2N4S2: [M + Na+] 409.0369; found: 409.0369.

(E)-N-(5-(((2-chlorothiazol-5-yl)methyl)thio)-1,3,4-thiadiazol-2-yl)-1-(1H-in-dol-3-yl)
me- thanimine (2h)

Yellow solid powder; M. p.167.6–169.2 ◦C; yield 65%; IR (ν, cm–1 KBr): 3267 (N–H),
3084 (Ar–H), 1636 (C=N), 1577, 1504, 1462, 1325, 1297 (thiadiazole ring), 1045 (C–S–C); 1H
NMR (400 MHz, DMSO d6, δ, ppm): 12.31 (s, 1H, N–H), 8.95 (s, 1H, HC=N), 8.33 (s, 1H,
thiadiazole–H), 8.29 (d, J = 4.0 Hz, 1H, Ar–H), 7.66 (s, 1H, Ar–H), 7.55 (d, J = 8.0 Hz, 1H,
Ar–H), 7.30 (t, J = 4.0 Hz, J = 8.0 Hz, 2H, thiadiazole–H), 4.81 (s, 2H, SCH2); 13C NMR
(101 MHz, DMSO d6, δ, ppm): 177.12, 163.74 (thiadiazole ring-C), 162.28 (C=N), 159.30,
150.89, 141.44, 139.37, 138.69, 138.02, 124.92, 124.28,122.74, 122.38, 114.76, 113.13, 29.51
(SCH2); HR-MS (ESI): calcd. for C15H10ClN5S3: [M + Na+] 413.9685; found: 413.96824.

(E)-N-(5-((2,4-dichlorobenzyl)thio)-1,3,4-thiadiazol-2-yl)-1-(1H-indol-3-yl)methanimine (2i)
Yellow solid powder; M. p. 182.9–183.8 ◦C; yield 68%; IR (ν, cm–1 KBr): 3273 (N–H),

3093 (Ar–H), 1633 (C=N), 1572, 1504, 1426, 1325, 1238 (thiadiazole ring), 1045 (C–S–C); 1H
NMR (400 MHz, DMSO d6, δ, ppm): 12.31 (s, 1H, N–H), 8.93 (s, 1H, HC=N), 8.32 (s, 1H,
Ar–H), 8.29 (d, J = 8.0 Hz, 1H, Ar–H), 7.68 (d, J = 4.0 Hz, 1H, Ar–H), 7.61 (d, J = 8.0 Hz, 1H,
Ar–H), 7.54 (d, J = 4.0 Hz, 1H, Ar–H), 7.45–7.42 (m, 1H, Ar–H), 7.31–7.261 (m, 2H, Ar–H),
4.62 (s, 2H, SCH2); 13C NMR (101 MHz, DMSO d6, δ, ppm): 177.03, 163.68 (thiadiazole
ring-C), 159.29 (C=N), 139.33, 138.02, 134.82, 133.88, 133.82, 133.23, 129.38, 128.05, 124.91,
124.27, 122.72, 122.37, 114.75, 113.12, 35.32 (SCH2); HR-MS (ESI): calcd. for C18H12Cl2N4S2:
[M–H+] 416.98022; found: 416.9815

(E)-N-(5-((4-nitrobenzyl)thio)-1,3,4-thiadiazol-2-yl)-1-(1H-indol-3-yl)methanimine (2j)
Brown solid powder; M. p. 194.8–195.5 ◦C; yield 75%; IR (ν, cm–1 KBr): 3433 (N–H),

3042 (Ar–H), 1698 (C=N), 1580, 1518, 1443, 1345,1244 (thiadiazole ring), 1087 (C–S–C);
1H NMR (400 MHz, DMSO d6, δ, ppm): 12.29 (s, 1H, N–H), 8.91 (s, 1H, HC=N), 8.28 (t,
J = 12.0 Hz, J = 8.0 Hz, 2H, Ar–H), 8.22 (d, J = 8.0 Hz, 2H, Ar–H), 7.75 (d, J = 8.0 Hz, 2H,
Ar–H), 7.54 (d, J = 8.0 Hz, 1H, Ar–H), 7.30–7.27 (m, 2H, Ar–H), 4.70 (s, 2H, SCH2); 13C NMR
(101 MHz, DMSO d6, δ, ppm): 176.80, 163.55 (thiadiazole ring-C), 159.61(C=N), 147.26,
145.66, 139.26, 138.02, 132.52, 130.80, 124.91, 124.24, 124.11, 122.69, 122.26, 114.74, 113.09,
36.72 (SCH2); HR-MS (ESI): calcd. for C18H13N5O2S2: [M–H+] 394.0472; found: 394.0478.

(E)-N-(5-(allylthio)-1,3,4-thiadiazol-2-yl)-1-(1H-indol-3-yl) methanimine (2k)
Reddish-brown powder; M. p. 190.3–190.7 ◦C; yield 72%; IR (ν, cm–1 KBr): 3313 (N–H),

3097 (Ar–H), 1639 (C=N), 1574, 1521, 1445, 1392, 1297 (thiadiazole ring), 1047 (C–S–C); 1H
NMR (400 MHz, Acetone d6, δ, ppm): 11.20 (s, 1H, N–H), 10.05 (s, 1H, HC=N), 8.23 (t,
J = 8.0 Hz, 2H, Ar–H), 7.56 (d, J = 4.0 Hz, 1H, Ar–H), 7.25–7.29 (m, 1H, Ar–H), 6.64 (s, 1H,
=CH), 5.91–6.01 (m, 1H, =CH), 5.25 (d, J = 12.0 Hz, 1H, =CH), 5.12 (d, J = 8.0 Hz, 1H, =CH),
3.75 (d, J = 8.0 Hz, 2H, SCH2); 13C NMR (101 MHz, Acetone d6, δ, ppm): 181.65, 170.07
(thiadiazole ring-C), 162.28 (C=N), 150.68, 137.51, 133.41, 124.66, 123.58, 122.15, 121.31,
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119.06, 118.63, 118.06, 112.31, 37.48 (SCH2); HR-MS (ESI): calcd. for C14H12N4S2: [M + Na+]
323.0401; found: 323.0401.

(E)-N-(5-((1-phenylallyl)thiol)-1,3,4-thiadiazol-2-yl)-1-(1H-indol-3-yl)methanimine (2l)
Yellow solid powder; M. p. 217.0–218.3 ◦C; yield 69%; IR (ν, cm–1 KBr): 3470 (N–H),

3040 (Ar–H), 1642 (C=N), 1574, 1510, 1457, 1373, 1241 (thiadiazole ring), 1064 (C–S–C); 1H
NMR (400 MHz, DMSO d6, δ, ppm): 12.29 (s, 1H, N–H), 8.92 (s, 1H, HC=N), 8.31 (s, 1H,
Ar–H), 8.29 (d, J = 8.0 Hz, 1H, Ar–H), 7.54 (d, J = 8.0 Hz, 1H, Ar–H), 7.44 (s, 3H, Ar–H),
7.29 (d, J = 4.0 Hz, 2H, Ar–H), 6.72 (q, J = 12.0 Hz, J = 8.0 Hz, J = 12.0 Hz, 1H, Ar–H),
5.83 (d, J = 20.0 Hz, 1H, Ar–H), 5.26 (d, J = 12.0 Hz, 1H, =CH), 4.55 (s, 2H, =CH2), 4.37 (t,
J = 4.0 Hz, 1H, SCH); 13C NMR (101 MHz, DMSO d6, δ, ppm): 176.53, 163.46 (thiadiazole
ring-C), 160.42 (C=N), 139.19, 138.01, 136.95, 136.77, 136.64, 129.84, 126.79, 124.92, 122.69,
122.37, 115.02, 114.74, 113.10, 37.62 (SCH2); HR-MS (ESI): calcd. for C20H16N4S2: [M + Na+]
399.0714; found: 399.0714.

(E)-N-(5-((pyridin-4-ylmethyl)thiol)-1,3,4-thiadiazol-2-yl)-1-(1H-indol-3-yl)methanimine
(2m)

Orange solid powder; M. p. 183.2–184.5 ◦C; yield 65%; IR (ν, cm–1 KBr): 3442 (N–H),
3043 (Ar–H), 1633 (C=N), 1577, 1521, 1445, 1396, 1244 (thiadiazole ring), 1087 (C–S–C); 1H
NMR (400 MHz, DMSO d6, δ, ppm): 12.32 (s, 1H, N–H), 8.92 (s, 1H, HC=N), 8.66 (s, 1H,
Ar–H), 8.49 (d, J = 8.0 Hz, 1H, Ar–H), 8.31 (s, 1H, Ar–H), 8.28 (d, J = 4.0 Hz, 1H, Ar–H),
7.88 (d, J = 8.0 Hz, 1H, Ar–H), 7.55 (d, J = 8.0 Hz, 1H, Ar–H), 7.38 (q, J = 4.0 Hz, 1H, Ar–H),
7.26–7.32 (m, 2H, Ar–H), 4.59 (s, 2H, SCH2); 13C NMR (101 MHz, DMSO d6, δ, ppm):
172.6, 169.31 (thiadiazole ring-C), 165.56 (C=N), 159.22, 156.40, 155.03, 137.40, 137.16, 124.63,
123.61, 122.12, 121.33, 119.21, 112.09, 35.79 (SCH2); HR-MS (ESI): calcd. for C17H13N5S2:
[M + H+] 352.0691; found: 352.0691

(E)-N-(5-((3-bromo-2-fluorobenzyl)thio)-1,3,4-thiadiazol-2-yl)-1-(1H-indol-3-yl)meth-
animine (2n)

Yellow solid powder; M. p. 198.0–199.3 ◦C; yield 76%; IR (ν, cm–1 KBr): 3439 (N–H),
3053 (Ar–H), 1605 (C=N), 1577, 1482, 1459, 1392, 1241 (thiadiazole ring), 1053 (C–S–C);
1H NMR (400 MHz, DMSO d6, δ, ppm): 11.36 (s, 1H, N–H), 9.05 (s, 1H, HC=N), 8.46 (d,
J = 8.0 Hz, 1H, Ar–H), 8.27(s, 1H, Ar–H), 7.55–7.60 (m, 2H, Ar–H), 7.42–7.47 (m, 2H, Ar–H),
7.31–7.34 (m, 2H, Ar–H), 4.60 (s, 2H, SCH2); 13C NMR (101 MHz, DMSO d6, δ, ppm): 177.03,
163.68 (thiadiazole ring-C), 159.29 (C=N), 138.02, 134.82, 133.88, 133.82, 133.23, 129.58,
128.05, 124.91, 124.27, 122.72, 122.37, 114.75, 113.12, 35.32 (SCH2); HR-MS (ESI): calcd. for
C18H12BrFN4S2: [M + Na+] 468.9569; found: 468.9575.

(E)-N-(5-((3-methoxybenzyl)thio)-1,3,4-thiadiazol-2-yl)-1-(1H-indol-3-yl)methanimine(2o)
Yellow solid powder; M. p. 194.2–195.4 ◦C; yield 73%; IR (ν, cm–1 KBr): 3464 (N–H),

3064 (Ar–H), 1636 (C=N), 1577, 1462, 1440, 1389, 1244 (thiadiazole ring), 1050 (C–S–C);
1H NMR (400 MHz, DMSO d6, δ, ppm): 11.18 (s, 1H, N–H), 8.9 (s, 1H, HC=N), 8.31 (d,
J = 8.0 Hz, 1H, Ar–H), 8.06–8.12 (m, 2H, Ar–H), 7.44 (d, 1H, J = 8.0 Hz, Ar–H), 7.12–7.19
(m, 3H, Ar–H), 6.94 (t, J = 8.0 Hz, 2H, Ar–H), 4.42 (s, 2H, SCH2), 3.66 (s, 3H, OCH3); 13C
NMR (101 MHz, DMSO d6, δ, ppm): 176.07, 161.88 (thiadiazole ring-C), 159.98 (C=N),
138.28, 137.86, 137.32, 129.62, 129.50, 123.92, 123.61, 122.42, 122.22, 122.11, 121.31, 115.24,
114.71, 113.20, 112.28, 54.63 (OCH3), 37.52 (SCH2); HR-MS (ESI): calcd. for C19H16N4OS2:
[M + Na+] 403.0663; found: 403.0667.

(E)-N-(5-((3-(trifluoromethyl)benzyl)thiol)-1,3,4-thiadiazol-2-yl)-1-(1H-indol-3-yl)meth-
animine (2p)

Yellow solid powder; M. p. 201.3–202.2 ◦C; yield 68%; IR (ν, cm–1 KBr): 3419 (N–H),
3069 (Ar–H), 1670 (C=N), 1577, 1462, 1426, 1328, 1246 (thiadiazole ring), 1064 (C–S–C); 1H
NMR (400 MHz, Acetone d6, δ, ppm): 11.34 (s, 1H, N–H), 9.06 (d, J = 20.0 Hz, 1H, HC=N),
8.45 (d, J = 20.0 Hz, 1H, Ar–H), 8.27 (d, J = 8.0 Hz, 1H, Ar–H), 7.4 (q, J = 8.0 Hz, J = 12.0 Hz,
2H, Ar–H), 7.59 (d, J = 8.0 Hz, 1H, Ar–H), 7.20–7.46 (m, 4H, Ar–H), 4.70 (d, J = 12.0 Hz,
2H, SCH2); 13C NMR (101 MHz, Acetone d6, δ, ppm): 176.31, 162.05 (thiadiazole ring-C),
159.67 (C=N), 142.10, 137.87, 137.44, 129.91, 125.39, 123.95, 122.41, 122.25, 115.23, 112.31,
36.54 (SCH2); HR-MS (ESI): calcd. for C19H13F3N4S2: [M + Na+] 441.0431found: 441.0431.
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(E)-N-(5-((3,5-bis(trifluoromethyl)benzyl)thiol)-1,3,4-thiadiazol-2-yl)-1-(1H-indol-3-yl)
me -thanimine (2q)

Yellow solid powder; M. p. 201.3–202.2 ◦C; yield 72%; IR (ν, cm–1 KBr): 3456 (N–H),
3066 (Ar–H), 1650 (C=N), 1577, 1496, 1437, 1375, 1243 (thiadiazole ring), 1050 (C–S–C);
1H NMR (400 MHz, Acetone d6, δ, ppm): 11.35 (s, 1H, N–H), 9.03 (s, 1H, HC=N), 8.45
(d, J = 8.0 Hz, 1H, Ar–H), 8.26 (d, J = 4.0 Hz, 1H, Ar–H), 8.24 (s, 2H, Ar–H), 7.99 (s, 1H,
Ar–H), 7.59 (t, J = 4.0 Hz, 1H, Ar–H), 7.29–7.35 (m, 2H, Ar–H), 4.83 (s, 2H, SCH2); 13C NMR
(101 MHz, Acetone d6, δ, ppm): 176.58, 162.18 (thiadiazole ring-C), 159.13 (C=N), 141.31,
137.88, 137.56, 131.36, 131.04, 129.99, 124.97, 123.96, 122.41, 122.28, 121.23, 115.21, 112.32,
35.79 (SCH2); HR-MS (ESI): calcd. for C20H12F6N4S2: [M–H+] 487.0486; found: 487.0486.

(E)-N-(5-((2-chloro-6-fluorobenzyl)thiol)-1,3,4-thiadiazol-2-yl)-1-(1H-indol-3-yl)meth-
animine (2r)

Yellow solid powder; M. p. 194.6–195.5 ◦C; yield 63%; IR(ν, cm–1 KBr): 3489 (N–H),
3063 (Ar–H), 1622 (C=N), 1577, 1493, 1431, 1381, 1243 (thiadiazole ring), 1061 (C–S–C);
1H NMR (400 MHz, Acetone d6, δ, ppm): 11.34 (s, 1H, N–H), 9.09 (s, 1H, HC=N), 8.47 (d,
J = 8.0 Hz, 1H, Ar–H), 8.28 (d, J = 4.0 Hz, 1H, Ar–H), 7.60 (t, J = 4.0 Hz, 1H, Ar–H), 7.39–7.45
(m, 2H, Ar–H), 7.35–7.32 (m, 2H, Ar–H), 7.22 (t, J = 8.0 Hz, 1H, Ar–H), 4.73 (s, 2H, SCH2);
13C NMR (101 MHz, Acetone d6, δ, ppm): 177.02, 162.14 (thiadiazole ring-C), 160.16 (C=N),
158.79, 137.88, 137.54, 130.56, 130.46, 125.75, 123.96, 122.43, 122.27, 117.01, 115.26, 114.63,
114.41, 112.30, 37.18 (SCH2); HR-MS (ESI): calcd. for C18H12ClFN4S2: [M + Na+] 425.0074;
found: 425.0071.

(E)-N-(5-((4-(trifluoromethyl)benzyl)thiol)-1,3,4-thiadiazol-2-yl)-1-(1H-indol-3-yl)meth-
animine (2s)

Yellow solid powder; M. p. 198.1–199.0 ◦C; yield 65%; IR(ν, cm–1 KBr): 3442 (N–H),
3043 (Ar–H), 1653 (C=N), 1574, 1490, 1442, 1389, 1243 (thiadiazole ring), 1081 (C–S–C);
1H NMR (400 MHz, Acetone d6, δ, ppm): 12.29 (s, 1H, N–H), 8.91 (s, 1H, HC=N), 8.28 (t,
J = 12.0 Hz, J = 8.0 Hz, 2H, Ar–H), 8.22 (d, J = 8.0 Hz, 2H, Ar–H), 7.75 (d, J = 8.0 Hz, 2H,
Ar–H), 7.54 (d, J = 8.0 Hz, 1H, Ar–H), 7.28 (s, 2H, Ar–H), 4.70 (s, 2H, SCH2); 13C NMR
(101 MHz, Acetone d6, δ, ppm): 176.31, 162.05 (thiadiazole ring-C), 159.67 (C=N), 142.10,
137.87, 137.44, 129.91, 128.91, 125.42, 124.99, 123.95, 122.41, 122.25, 115.23, 112.31, 36.54
(SCH2); HR-MS (ESI): calcd. for C19H13F3N4S2: [M–H+] 417.0456; found: 417.0496.

(E)-N-(5-((2-(trifluoromethyl)benzyl)thio)-1,3,4-thiadiazol-2-yl)-1-(1H-indol-3-yl)meth-
animine (2t)

Yellow solid powder; M. p. 194.7–195.6 ◦C; yield 63%; IR (ν, cm–1KBr): 3444 (N–H),
3043 (Ar–H), 1636 (C=N), 1561, 1496, 1448, 1336, 1246 (thiadiazole ring), 1055 (C–S–C); 1H
NMR (400 MHz, Acetone d6, δ, ppm): 12.34 (s, 1H, N–H), 9.03 (d, J = 20.0 Hz, 1H, HC=N),
8.46 (t, J = 8.0 Hz, 1H, Ar–H), 8.27 (d, J = 8.0 Hz, 1H, Ar–H), 7.58–7.78 (m, 4H, Ar–H),
7.23–7.39 (m, 3H, Ar–H), 4.71 (d, J = 8.0 Hz, 2H, SCH2); 13C NMR (101 MHz, Acetone d6,
δ, ppm) δ: 176.31, 162.05 (thiadiazole ring-C), 159.67 (C=N), 142.10, 142.10, 137.87, 137.44,
129.91, 128.94, 125.76, 125.42, 124.99, 123.95, 123.06, 122.41, 122.25, 115.23, 112.31, 36.54
(SCH2); HR-MS (ESI): calcd. for C19H13F3N4S2: [M–H+] 417.0456; found: 417.0496.

Spectra for structural information about the compounds are provided in the Supple-
mental Materials.

3.4. In Vitro Antifungal Assay

The antifungal activities of the novel compounds 2a–2t were tested based on the
reported method [74]. The synthesized compounds were dissolved in a 20% acetone water
solution. The solution of each compound was added to sterilized potato dextrose agar to
obtain a final concentration of 500 µg/mL. After the mixture was cooled, the mycelium
of the fungi was transferred to the test plate and incubated at 25 ◦C for 4–7 days. When
the mycelium reached the edges of the control plate (without the added samples), the
inhibitory index was calculated using the following formula:

Inhibitory index (%) = (1 − Da/Db)
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where Da is the diameter of the growth zone in the test plate, and Db is the diameter of the
growth zone in the control plate. Each experiment was performed three times and the data
points were averaged. The commercial fungicide triadimefon (100 µg/mL) was used as a
control and tested in the same manner.

4. Conclusions

In the present study, a series of novel indole derivatives containing 1,3,4-thiadiazole
scaffolds modified with thioether groups were efficiently designed and synthesized. In
addition, their antifungal activities were investigated against F. graminearum, F. oxysporum,
F. moniliforme, C. lunata, and P. p. var. nicotianae. The antifungal activity test results
show that some of the indole analogs exhibited better antifungal activity than the control
reagent triadimefon. Compound 2j was identified as the most active against F. graminearum,
F. oxysporum, F. moniliforme, and P. p. var. nicotianae with the inhibition rates of 100%, 95.7%,
89%, and 76.5%, respectively. Compounds 2j and 2q exhibited better antifungal activity
against C. lunata with inhibition rates of 81.9% and 83.7%, respectively. Compound 2j,
as the representative compound, was used for further mechanistic studies. The indole
derivatives containing modified 1,3,4-thiadiazole with the electron-withdrawing –NO2
group on the benzene ring showed better antifungal activity. Conclusively, the structural
optimization of indole derivatives containing modified 1,3,4-thiadiazole with the electron-
withdrawing groups on the benzene ring is a potential strategy to prepare analogs with
improved antifungal activity.

5. Patents

There is a patent resulting from the work reported in this manuscript.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/molecules27206858/s1, I: The IR, 1H NMR, 13C NMR, and HRMS
of the target compounds (2a–2t) Figures S1–S80; page: 12–41; II: The physical photos of the inhibitory
activity of the target compounds against test fungi, Figures S81–S85; page: 42–46.
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