Synthesis of novel tricyclic heterocyclic compounds as potential anticancer agents using chromanone and thiochromanone as synthons

Abou El-Fotooh G Hammam^a*, A F M Fahmy^b, Abdel-Galil E Amr^a & Ashraf M Mohamed^a

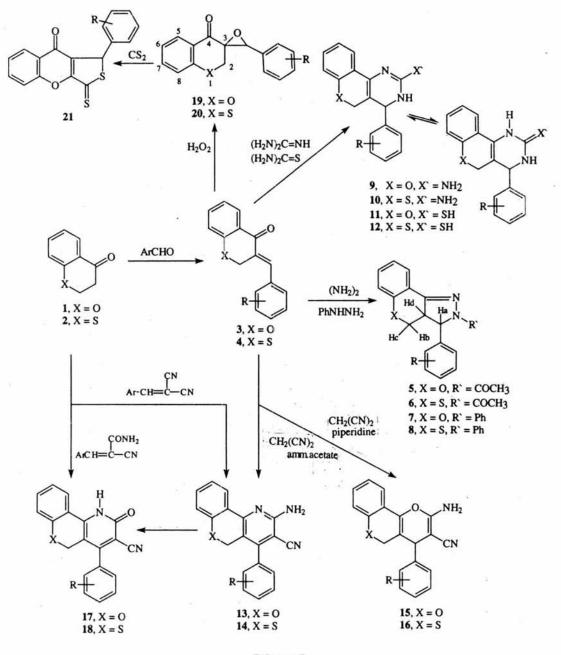
^a Applied Organic Chemistry Dept., National Research Centre, Egypt

^b Organic Chemistry Dept., Faculty of Science, Ain Shams Univ., Egypt

Received 23 July 2001; accepted (revised) 1 November 2002

The arylmethylene of benzopyrane or benzothiopyrane 3,4 have been synthesized and condensed with hydrazine, guanidine and thiourea to yield pyrazole 5-8, aminopyrimidine 9,10 and thioxopyrimidine derivatives 11,12, respectively. Compounds 3 or 4 on treatment with malononitrile in the presence of ammonium acetate/acetic acid or in the presence of piperidine/ methanol to yield benzopyrano- and benzothiopyranopyridine 13,14 and benzopyrano- and benzothiopyrane 15,16, respectively. The oxirane of compound 3 is prepared and condensed with CS_2 to yield the tricyclic system, thioxothienobenzopyrane 21. Ylidenemalononitrile for the ketone 1 and 2 are synthesized and condensed with aromatic aldehyde in presence of ammonium acetate/acetic acid to yield benzopyranopyridine and benzothiopyranopyridine derivatives 24,25, respectively, which are the isomer of compounds 13,14. Ylidenemalononitrile on condensation with phenylisothiocyanate yields benzo-pyrano- and benzothiopyranothioxopyridine 28,29, respectively.

Driven by the increased demand for anticancer and antiviral drugs, the search for new heterocyclic compounds and novel methods of their synthesis is a major topic in contemporary organic synthesis^{1,2}. As part of our program in this area, we have synthesized and investigated some reactions of heterocyclic compounds inclouding six³⁻⁶ or seven membered⁷⁻¹² ring cyclic or heterocyclic, such as thioxoqunazoline⁶, benzothiopenothioxopyrimidine¹¹ and benzooxipino-thioxopyrimidine¹⁰, and other heterocyclic compounds.


Some of the above synthesized compounds showed anticancer activity^{1,2,13,14}. Our current interest lies in a class of tricyclic heterocyclic compounds that contain the benzopyrane and benzothiopyrane ring fused with substituted pyrimidine, pyridine and pyran moiety. In this work we wish to report their synthesis, characterization and the results of screening tests as anticancer.

Results and Discussion

The assignment of the structures of all the new synthesized compounds were based on elemental analysis and spectral data (IR, mass, ¹H NMR).

2,3-Dihydro[1]benzopyran-4-one **1** or 2,3-dihydro-[1]benzothiopyran-4-ones **2** were condensed with the proper aromatic aldehyde in the presence of mixed acids as catalyst to yield the corresponding 3-arylmethylene-2,3-dihydro[1]benzopyran-4-ones **3** and 3arylmethylene-2,3-dihydro[1]benzothiopyran-4-ones **4** respectively in high yield when compared with the reported method^{15,16}.

Compounds 3 or 4 were reacted with hydrazine hydrate or phenyl-hydrazine in acetic acid to yield 2acetyl-3-aryl-2,3,3a,4-tetrahydro-(4H)-[1]-benzopyrano[4,3-c]pyrazoles 5, 2-acetyl-3-aryl-2,3,3a,4-tetrahydro-(4H)-[1]-benzothiopyrano[4,3-c]pyrazoles 6, 2-phenyl-3-aryl-2,3,3a,4-tetrahydro-(4H)-[1]-benzopyrano[4,3-c]pyrazoles 7 and 3-aryl-2-phenyl-2,3,3a,4-tetrahydro-(4H)-[1]-benzopyrano[4,3-c]pyrazoles 8, respectively (Scheme I). The IR spectra of compounds 5 and 6 showed peaks at 1675-1668 (C=O) and 1660-1655 cm⁻¹ (C=N). The ¹H NMR spectrum (CDCl₃) of compound 5b showed signals at 8 6.90-7.49 (8H, m, Ar-H), 4.90 and 5.60 (1H, 2d, H-a, J = 9.56 Hz and J = 10.21 Hz), 4.57 (1H, m, Hb), 4.14 (1H, s, H-c), 3.72 (3H, s, OCH₃), 3.40 (1H, m, H-d), and 3.35 (3H, s, CO-CH₃) and its mass spectrum showed peaks of M⁺ at m/z 322, 77.5%, 280, 79% [M⁺-CH₂CO], 160, 22% [280-OCH₃C₆H₄CH], and base peak at 134, 100%. The ¹H NMR spectrum (CDCl₃) of compound **6b** showed signals at 7.1-7.5 (8H, m, Ar-H), 6.0 (1H, d, H-a), 4.6 (1H, m, H-b), 3.5 (1H, m, H-c), 3.1 (1H, m, H-d) and 2.2 (3H, s, COCH₃) and its mass spectrum showed peaks of M⁺ at m/z 387, 18%; m/z 389 $[M^++2]$, 17%, due to the presence of Br atom), 344, 63% [M⁺ - COCH₃], and at 161 (344 - BrC₆H₄CH=N, 100%).

Scheme I

The IR spectra of compounds **7** and **8** showed peaks at 1655-1648 cm⁻¹ (C=N). The ¹H NMR spectrum (DMSO-*d*₆) of compound **7c** showed signals at 6.90-7.70 (13H, m, Ar-H), 4.90 (1H, d, H-a, J = 12Hz), 4.60 (1H, m, H-b), 4.30 (1H, m, H-c), 3.70 (3H, s, OCH₃) and 3.50 (1H, m, H-d) and its mass spectrum showed peaks of M⁺ at m/z 356 (base peak, 100%), 341, 2% [M⁺-CH₃], 279, 21% [M⁺-Ph], 264, 3.5% [M⁺-Ph-NH], and 249, 10% [M⁺ -C₆H₄-OCH₃]. The ¹H NMR spectrum (CDCl₃) of compound **8a** showed signals at 6.90-7.40 (13H, m, Ar-H), 4.8 (1H,

d, H-a, J = 12 Hz), 3.90 (3H, s, OCH₃), 3.7 (1H, m, H-b), 3.3 (1H, m, H-c) and 3.1 (1H, m, H-d) and its mass spectrum showed peaks of M⁺ at m/z 372 (base peak, 100%), 280, 41% [M⁺-PhNH], 251, 13% [M⁺-OCH₃, C₆H₄-CH₂] and 210, 20% [251-HN-C=CH₂].

Compounds 3 or 4 were reacted with guanidine hydrochloride in ethanol and NaOH to yield 2-amino-4-aryl-3,4-dihydro-(5H)-[1]benzopyrano[4,3-d]-pyrimidine 9 and 2-amino-4-aryl-3,4-dihydro-(5H)-[1] benzothiopyrano[4,3-d]-pyrimidine 10, respectively (Scheme I). The IR spectra of compounds 9 and 10 showed peaks at 3390-3215 (NH2 and NH) and 1665-1663 cm⁻¹ (C=N). The ¹H NMR spectrum (DMSO- d_6) of compound 9d showed signals at 9.90 (1H, s, NH, exchangeable with D₂O), 6.90-8.00 (8H, m, Ar-H), 6.50 (2H, s, NH₂, exchangeable with D₂O), 5.20 (1H, s, CH-pyrimidine), and 3.70 (2H, s, CH₂ of pyran nucleus) and its mass spectrum showed peaks of M⁺ at m/z 311 (base peak, 100%), at 313 [M⁺+2] due to presence of Cl atom, 33%, 294, 65% [M⁺-NH₃] and 200, 9.5% [M⁺ -C₆H₅-Cl]. The ¹H NMR spectrum (DMSO-d₆) of compound 10b showed signals at 8.2 (1H, s, NH, exchangeable with D₂O), 6.8-7.5 (8H, m, Ar-H), 6.60 (2H, s, NH₂, exchangeable with D₂O), 4.15 (1H, s, CH-pyrimidine) and 3.10 (2H, s, CH₂ of thiopyrane nucleus) and its mass spectrum showed peaks of M⁺ at m/z 372, 27%; 370, 28% [M⁺-2H], 374, 18%, $[M^++2]$, due to the presence of Br atom; 338, 11% [M⁺-H₂S], 214, 20% [370-C₆H₄- Br] and 202, 100% [M⁺- CH₂-C₆H₄-Br].

Also, compounds 3 or 4 were condensed with thiourea in ethanol and dry HCl gas to give 4-aryl-1,2,3,4tetrahydro-(5H)-[1]benzopyrano[4,3-d]pyrimidine-2thioxo 11 and 4-aryl-1,2,3,4-tetrahydro-(5H)-[1]benzothiopyrano[4,3-d]-pyrimidine-2-thioxo 12, respectively. The IR spectra of compounds 11 and 12 showed peaks at 3434-3259 cm⁻¹ (NH). The ¹H NMR spectrum (DMSO-d₆) of compound 11d showed signals at 9.80-8.00 (2H, s, 2NH, exchangeable with D₂O), 6.90-7.80 (8H, m, Ar-H), 5.30 (1H, s, Hpyrimidine) and 4.60 and 4.80 (2H, 2d, CH₂, J = 14.5 Hz, J = 14.49 Hz). The ¹³CNMR spectrum (DMSO d_6) of compound **11d** showed signals at 65 (CH₂), 106 (CH, pyrimidine), 116, 117, 121, 127, 129.1, 129.2, 129.3, 131, 133, 137, 153 for aromatic carbons and 165 (C=S) and its mass spectrum showed peaks of M⁺ at m/z 328 [base peak, 100%], 330, 38% [M+2] due to the presence of Cl atom, 268, 16% [M+-NH2-C=S] and 217, 22% [M⁺-Cl-C₆H₄].

The ¹H NMR spectrum (DMSO- d_6) of compound **12b** showed signals at 10.5, 9.5 (2H, s, 2NH, exchangeable with D₂O), 7.2-7.6 (8H, m, Ar-H), 5.50 (1H, s, H-pyrimidine) and 3.9 and 3.7 (2H, 2d, CH₂) and its mass spectrum showed peaks of M⁺ at m/z 344 [base peak, 100%], 346, 41% [M⁺+2], due to the presence of Cl atom, 284, 24% [M⁺-NH₂-C=S] and 233, 13% [M⁺- C₆H₄-Cl].

Compounds 1 or 2 was reacted with α -cyanocinnamonitrile derivatives and ammonium acetate in the presence of ethanol and triethylamine to yield the corresponding 2-amino-4-aryl-(5*H*)-[1]-benzopyrano-[4,3-*b*]pyridine-3-carbo-nitrile 13 and 2-amino-4-aryl(5*H*)-[1]-benzothiopyrano[4,3-*b*]pyridine-3-carbonitrile **14**, respectively (**Scheme I**). Also, compounds **13** and **14** could be prepared by the reaction of 3-arylmethylene-2,3-dihydro[1]benzopyran-4-ones **3** or 3arylmethylene-2,3-dihydro[1]benzothiopyran-4-ones **4** with malononitrile and ammonium acetate in refluxing glacial acetic acid. The IR spectra of compounds **13** and **14** showed peaks at 3404-3344 (NH₂) and 2221-2218 cm⁻¹ (CN). The ¹H NMR spectrum (DMSO-*d*₆) of compound **13c** showed signals at 6.90-7.50 (8H, m, Ar-H), 4.90 (2H, s, NH₂, exchangeable with D₂O), 4.60 (2H, s, CH₂) and 3.70 (3H, s, OCH₃) and its mass spectrum showed peaks of M⁺ at m/z 329, 91%, 330 [M⁺+1] as base peak, 100%, 299, 21% [M⁺ - HCHO] and 222, 11% [M⁺-C₆H₄-OCH₃].

The ¹H NMR spectrum (DMSO- d_6) of compound **14b** showed signals at 7.20-7.80 (8H, m, Ar-H), 6.65 (2H, s, NH₂, exchangeable with D₂O), 3.4 (2H, s, CH₂) and its mass spectrum showed peaks of M⁺ at m/z 394, 91%, 395, 100% [M⁺+1], 396, 85% [M⁺+2] due to the presence of Br atom and 238, 17% [M⁺ -C₆H₄- Br].

Compounds 3 and 4 were condensed with malononitrile in a mixture of ethanol and piperidine at room temperature to yield 2-amino-4-aryl-(4H),(5H)-[1]benzopyrano[4,3-b]pyrano-3-carbonitrile 15 and 2amino-4-aryl-(4H),(5H)-[1]benzothiopyrano[4,3-b]pyrano-3-carbonitrile 16, respectively (Scheme I). The IR spectra of compounds 15 and 16 showed peaks at 3401-3345 (NH₂) and 2223-2219 cm⁻¹ $(C \equiv N)$. The ¹H NMR spectrum (CDCl₃) of compound 15b showed signals at 6.70-7.00 (8H, m, Ar-H), 4.70 (2H, s, NH₂, exchangeable with D₂O), 4.50-4.30 (2H, dd, CH₂), 4.00 (1H, s, pyrane proton) and 2.30 (3H, s, CH₃), and its mass spectrum showed peaks of M⁺ at m/z 316, 89%, 299, 10% [M⁺-NH₃], 225, 100% [M⁺- C_6H_4 - CH_3] and 211, 41% [M⁺- CH_2 - C_6H_4 - CH_3].

The ¹H NMR spectrum (CDCl₃) of compound **16c** showed signals at 7.10-7.50 (8H, m, Ar-H), 4.60 (2H, s, NH₂, exchangeable with D₂O), 4.10 (1H, s, pyrane proton) and 3.5-3.1 (2H, dd, CH₂) and its mass spectrum showed peaks of M⁺ at m/z 397, 21%, [M⁺+ 2] at 399, 17% due to the presence of Br atom, 396, 82% [M⁺-1] and 241, 100% [M⁺- Br-C₆H₄].

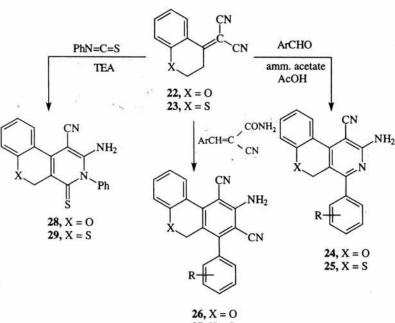
Compounds 1 or 2 were condensed with arylmethylenecyanoacetamide in the presence of triethylamine to yield 4-aryl-1,2-dihydro-(5*H*)-[1]-benzopyrano[4,3-*d*]pyridine-2-one-3-carbonitrile 17 and 4aryl-1,2-dihydro-(5*H*)-[1]benzothiopyrano[4,3-*d*]pyridine-2-one-3-carbonitrile 18, respectively (Scheme I). The IR spectra of compounds 17 and 18 showed peaks at 3453-3447 (NH), 2211-2208 (C=N) and 1698-1639 cm⁻¹ (HN-C=O). The ¹H NMR spectrum (DMSO- d_6) of compound **17e** showed signals at 12.80 (1H, s, NH, exchangeable with D₂O), 6.90-7.60 (6H, m, Ar-H), 4.90 (2H, s, CH₂) and 3.70 (9H, s, 3OCH₃) and its mass spectrum showed peaks of M⁺ at m/z 390 [base peak, 100%], 359, 93% [M⁺- OCH₃], 373, 12% [M⁺-NH₃] and 361, 6% [M⁺-CH=NH₂].

The ¹H NMR spectrum (DMSO-*d*₆) of compound **18b** showed signals at 8.10 (1H, s, NH, exchangeable with D₂O), 7.1-7.5 (8H, m, Ar-H) and 3.3 (2H, s, CH₂) and its mass spectrum showed peaks of M⁺ at m/z 350 [base peak, 100%], 352, 40% [M⁺+2] due to the presence of Cl atom, 238, 13% [M⁺- Cl-C₆H₄] and 188, 6% [238 – C=C-CN].

Compounds **17** and **18** were prepared also by passing HCl gas into compounds **15** and **16** in ethanol^{17,18} at 0°C. The structures were confirmed by m.p., mixed m.p. and TLC by comparison with authentic sample.

Compounds 3 or 4 in methanol/acetone mixture was reacted with hydrogen peroxide in the presence of 10% sodium hydroxide at 0°C to yield 3'-aryl-(3'H)-(2H)-spiroxariane[2',3]benzopyran-4-one 19 and 3'-aryl-(3'H)-(2H)-spiroxariane[2',3]benzothiopyran-4-one 20, respectively (Scheme I). The IR spectra of compounds 19 and 20 showed peaks at 1679,1685 cm⁻¹ (C=O). The ¹H NMR spectrum (DMSO-d₆) of compound 19b showed signals at 7.5-7.8 (8H, m, Ar-H), 4.75 (1H, d, H-a, J = 12.3 Hz), 4.55 (1H, s, H-b), 4.10 (1H, d, H-c, J = 12.3 Hz) and 2.30 (3H, s, CH₃). The ¹³CNMR spectrum (DMSO-d₆) of **19b** showed signals at 21.2 (CH₃); 60.15 (CH₂); 65 (CH); 118, 121, 122, 126, 127, 129.3, 129.6, 136.6, 138.7 (aromatic carbons); 161.4 (spiro carbon) and at 188.5 (C=O) and its mass spectrum showed peaks of M⁺ at m/z 266 [base peak, 100%], 249, 6% [M⁺-OH], 146, 9% [249-C₈H₇].

The ¹H NMR spectrum (DMSO- d_6) of compound **20b** showed signals at 7.4-8.0 (8H, m, Ar-H), 4.0 (1H, d, H-a), 4.5 (1H, s, H-b) and 2.6 (1H, d, H-c) and its mass spectrum showed peaks of M⁺ at m/z 347, 5%; 349, 4.5% [M⁺+2], due to the presence of Br atom, 329, 4% [M⁺-HOH], 162, 64% [M⁺-CHO-C₆H₄-Br] and at m/z 185, base peak, 100%.


Compounds **19** was reacted with carbon disulfide in the presence of ethanolic sodium hydroxide to yield 4-aryl-2-thioxo-(4*H*)-thieno[3,4-*b*]-benzopyran-4-one **21**. The IR spectra of compounds **21** showed peaks at 1675-1670 cm⁻¹ (C=O). The ¹H NMR spectrum (CDCl₃) of compound **21b** showed signals at 7.0-7.9 (8H, m, Ar-H), 5.30 (1H, s, CH) and 3.80 (3H, s, OCH₃) and its mass spectrum showed M^+ at m/z [340, 11%], 325, 12% [M⁺-CH₃], 281, 10% [325-C=S] and at m/z 69 (b.p. 100%).

On the other hand, condensation of compounds 1 or 2 with malononitrile gave ylidenemalononitrile derivatives 22 and 23, respectively. 2-amino-4-aryl-(5H)-[1]benzopyrano[3,4-c]pyridine-1-carbonitrile 24 and 2-Amino-4-aryl-(5H)-[1]benzothiopyrano[3,4-c]pyridine-1-carbonitrile 25 were prepared by the reaction of compounds 22 or 23 with aromatic aldehydes in the presence of ammonium acetate (Scheme II). The IR spectra of compounds 24 showed peaks at 3355-3461 (NH₂) and 2219-2215 cm⁻¹ (C \equiv N). The ¹H NMR spectrum (CDCl₃) of compound **24c** showed signals at 6.90-7.80 (8H, m, Ar-H), 5.50 (2H, s, NH₂, exchangeable with D₂O), 4.90 (2H, s, CH₂) and 3.60 (3H, s, OCH₃) and its mass spectrum showed peaks of M⁺ at m/z 329, base peak, 100%, 314, 11% [M⁺-CH₃], 222, 15%[M⁺-C₆H₄-OCH₃] and 195, 26% [222-HCN].

The IR spectra of compounds **25** showed peaks at 3470-3417 (NH₂) and 2210-2202 cm⁻¹ (C \equiv N). The ¹H NMR spectrum (DMSO-*d*₆) of compound **25b** showed signals at 7.30-7.80 (8H, m, Ar-H), 7.01 (2H, s, NH₂, which exchangeable with D₂O) and 3.70 (2H, s, CH₂) and its mass spectrum showed peaks of M⁺ at m/z 394, 52%, 396, 23% [M⁺+2] due to the presence of bromine atom, 395, 100% [M⁺+1], 238, 8% [M⁺-C₆H₄-Br] and 211, 16% [238 – HCN].

Compounds 22 or 23 were condensed with arylmethylenecyano-acetamide in ethanol, the presence of triethylamine to yield 2-amino-4-aryl-(5*H*)dibenzo[*b*,*d*]pyran-1,3-dicarbonitrile 26 and 2-amino-4-aryl-(5*H*)-dibenzo[*b*,*d*]thiopyran-1,3-dicarbonitrile 27 (Scheme II). The IR spectra of compounds 26 showed peaks at 3445-3360 (NH₂) and 2212 cm⁻¹ (C=N). The ¹H NMR spectrum (CD₃COCD₃) of compound 26e showed signals at 7.1-7.5 (4H, m, Ar-H), 6.8 (2H, s, Ar-H), 6.25 (2H, s, NH₂, exchangeable with D₂O), 4.70 (2H, s, CH₂) and 3.80 (9H, s, 3OCH₃) and its mass spectrum showed peaks of M⁺ at m/z 413 [base peak, 100%], 398, 56% [M⁺-CH₃], 382, 98% [M⁺-OCH₃] and 246, 14% [M⁺-C₆H₂-(OCH₃)₃].

The IR spectra of compounds **27** showed peaks at 3415-3375 (NH₂) and 2221-2214 cm⁻¹ (C \equiv N). The ¹H NMR spectrum (DMSO-*d*₆) of compound **27a** showed signals at 7.20-8.00 (8H, m, Ar-H), 6.60 (2H, s, NH₂, exchangeable with D₂O), 3.80 (2H, s, CH₂) and 3.60 (3H, s, OCH₃) and its mass spectrum showed peaks of M⁺ at m/z 369 [base peak, 100%], 293, 5% [M⁺-C₆H₄] and 261, 23% [M⁺-C₆H₅-OCH₃].

Scheme II

Compounds 22 or 23 was reacted with phenylisothiocyanate in DMF in the presence of triethylamine at 50°C to yield 2-amino-3-phenyl-4-thioxo-(5H)-[1]benzopyran[3,4-*c*]pyridine-1-carbonitrile 28 and 2-amino-3-phenyl-4-thioxo-(5H)-[1]benzothiopyran[3,4-*c*]pyridine-1-carbonitrile 29 (Scheme II). The IR spectra of compounds 28 showed peaks at 3375-3058 (NH₂) and 2212 cm⁻¹ (C=N). The ¹H NMR spectrum (DMSO-*d*₆) of compound 28 showed signals at δ , ppm: 6.5-7.6 (m, 9H Ar-H), 5.4 (dd, 2H, CH₂) and 4.3 (s, 2H, NH₂, exchangeable with D₂O) and its mass spectrum showed peaks of M⁺ at m/z 331 [base peak, 100%], 305, 21% [M⁺-CN], 254, 43% [M⁺-Ph], 239, 30% [254-NH].

The IR spectra of compounds **29** showed peaks at 3472-3417 (NH₂) and 2226 cm⁻¹ (C=N). The ¹H NMR spectrum of compound **29** (DMSO-d₆) showed signals at δ , ppm: 7.10-7.60 (m, 9H Ar-H), 6.80 (2H, s, NH₂, exchangeable with D₂O) and 3.50 (2H, s, CH₂) and at and its mas s spectrum showed peaks of M⁺ at m/z 347, 81%; 314, 100% [M⁺-SH]⁷ 0, 285 10% [314-CHNH₂], 270, 16% [314-C=S] and 237, 9% [314- Ph].

Biological Evaluation

The selected compounds listed below (**Table I**) have been evaluated in the three cell line (Lung, Breast and CNS), one dose primary anticancer assay. The compounds which reduced the growth of any one of cell line to approximately 32% or less (negative

		Growth		
Compd.	CNS	Breast	Lung	Activity
5c	-25	-11	-5	Active
7c	15	-25	-30	Active
7d	49	48	54	Inactive
9d	-5	-40	-10	Active
11d	92	76	91	Inactive
15b	11	44	53	Active
15d	-10	25	24	Active
17c	54	50	53	Inactive
17e	-24	15	7	Active
19c	38	37	51	Inactive
19d	-24	-38	-74	Active
19e	55	28	27	Active
26b	18	55	22	Active
26e	-16	55	66	Active

numbers indicate cell kill) are passed on for evaluation in the full panel of 60 cell lines over a 5-log dose range.

The above biological evaluation was carried in National Cancer Institute in Maryland U.S.A.

Experimental Section

Melting points are uncorrected and were taken on Electrothermal IA 9000 SERIES Digital Melting Point Apparatus. Microanalyses were performed by the Central Services Laboratory, NRC. IR spectra were recorded on Carlzeise Spectrophotometer model "UR 10" using KBr, ¹H NMR spectra on Varian Gemini 200 Mhz using tetramethyl silane as an internal standard and mass spectra (MS) on a finnigan SSQ 7000 mass spectrometer.

3-Arylmethylene-2,3-dihydro[1]benzopyran-4ones 3 and 3-aryl-methylene-2,3-dihydro[1]benzothiopyran-4-ones 4

Method A: (reported method)^{15,16} To a mixture of 2,3-dihydro[1]benzopyran-4-one **1** or 2,3-dihydro[1]benzothiopyran-4-one **2** (0.03 mole) and appropriate aromatic aldehydes (0.03 mole) in absolute ethanol (50 mL), conc. HCl (4.5 mL) was added. The reaction mixture was heated under reflux for 4 hr, the solid formed was filtered off, dried and crystallized from the proper solvent (**Table II**).

Method B: To a solution of compounds 1 or 2 (0.03 mole) and appropiate aromatic aldehydes (0.03 mole) in glacial acetic acid (20 mL), conc. H_2SO_4 (6 mL) was added. The reaction mixture was stirred at room temperature for 20 min. the solid formed was collected by filteration, dried and crystallized from the proper solvent (**Table II**).

Method C: To solution of compounds **1** or **2** (0.03 mole), aromatic aldehydes (0.03 mole) in glacial acetic acid (20 mL), was added 20 mL conc. HCl. The mixture was stirred at room temperature for 20 min, the solid formed was collected and crystallized from the proper solvent (**Table II**). Method B: gives better yield than Method C.

2-Acetyl-3-aryl-2,3,3a,4-tetrahydro-(4H)-[1]benzopyrano[4,3-c]pyrazole 5 and 2-acetyl-3-aryl-2,3,3a,4-tetrahydro-(4H)-[1]benzothiopyrano[4,3-c]pyrazole 6. A mixture of 3 or 4 (0.01 mole) and hydrazine hydrate (0.01 mole) in glacial acetic acid (15 mL), was refluxed for 3 hr, allowed to cool, and poured into cold water. The solid formed was filtered off, washed with water and crystallized from the proper solvent (**Table II**).

2-Phenyl-3-aryl-2,3,3a,4-tetrahydro-(4H)-[1]benzopyrano[4,3-c]pyrazole 7 and 2-phenyl-3-aryl-2,3,3a,4-tetrahydro-(4H)-[1]benzothiopyrano[4,3c]-pyrazole 8. A mixture of 3 or 4 (0.01 mole) and phenylhydrazine (0.01 mole) in glacial acetic acid (15 mL) was refluxed for 6 hr allowed to cool, and poured into cold water. The solid formed was filtered off, washed with water and crystallized from the proper solvent (Table II).

2-Amino-4-aryl-3,4-dihydro-(5*H*)-[1]benzopyrano-[4,3-*d*]-pyrimidine 9 and 2-amino-4-aryl-3,4-dihydro-(5*H*)-[1]benzothiopyrano[4,3-*d*]pyrimidine 10. Guanidine hydrochloride (0.01 mole) was added to a solution of compound 3 or 4 (0.01 mole) in absolute ethanol containing 0.5g NaOH (25 mL). The reaction mixture was refluxed for 4 hr. and then poured gradually with stirring onto cold water. The solid formed was collected by filteration, washed with water and crystallized from the proper solvent (**Table II**).

4-Aryl-1,2,3,4-tetrahydro-(5*H*)-[1]benzopyrano-[4,3-*d*]-pyrimidine-2-thioxo 11 and 4-aryl-1,2,3,4tetrahydro-(5*H*)-[1]benzothiopyrano[4,3-*d*]-pyrimidine-2-thioxo 12. Dry hydrogen chloride gas was passed through a mixture of compound 3 or 4 (0.01 mole) and thiourea (0.01 mole) in absolute ethanol (25 mL) at room temperature for 6 hr. The reaction mixture was poured gradually with stirring onto cold water. The solid formed was filtered off, washed with water and crystallized from the proper solvent (Table II).

2-Amino-4-aryl-(5*H*)-[1]benzopyrano[4,3-*b*]-pyridine-3-carbonitrile 13 and 2-amino-4-aryl-(5*H*)-[1]benzothiopyrano[4,3-*b*]pyridine-3-carbonitrile 14:

Method A: A mixture of 3 or 4 (0.01 mole), malononitrile (0.01 mole) and ammonium acetate (0.08 mole) in glacial acetic acid (25 mL) was heated under reflux for 8 hr, left to cool, then poured onto cold water. The solid formed was filtered off, washed with water, and crystallized from the proper solvent (Table II).

Method B: A mixture of 1 or 2 (0.01 mole), α cyanocinnamonitrile (0.01 mole) and ammonium acetate (0.08 mole) in absolute ethanol (50 mL) was heated under reflux for 10 hr, left to cool, then poured onto cold water. The solid formed was filtered off, washed with water, and crystallized from the proper solvent (**Table II**). It was identified by m.p. and mixed m.p. with samples obtained from Method A.

Method A gives better yield.

2-Amino-4-aryl-(4H),(5H)-[1]benzopyrano-[4,3b]pyrane-3-carbonitrile 15 and 2-amino-4-aryl-(4H),(5H)-[1]benzothiopyrano[4,3-b]pyrane-3-carbonitrile 16. A solution of 3 or 4 (0.01 mole) and malononitrile (0.01 mole) in ethanol (100 mL) in the presence of piperidine (20 mL) was stirred at room temperature for 1 hr. The solvent was concentrated by evaporation under reduced pressure, the solid formed was filtered off, washed with water and crystallized from the proper solvent (Table II).

4-Aryl-1,2-dihydro-(5*H*)-[1]benzopyrano[4,3-*b*]pyridine-2-one-3-carbonitrile 17 and 4-aryl-1,2dihydro-(5*H*)-[1]benzothiopyrano[4,3-*b*]pyridine-2one-3-carbonitrile 18.

			Table	II—Physical dat	a of prepare	ed compound			
Compd	R	m.p. °C solvent	Yield (%)	Mol. formula (M.Wt)	Compd	R	m.p. °C solvent	Yield (%)	Mol. formula (M.Wt)
3a	Н	110 MeOH	85	C ₁₆ H ₁₂ O ₂ 236.3	8a	4-OCH ₃	196 AcOH	65	C ₂₃ H ₂₀ N ₂ OS 372.49
3b	4-CH ₃	118 MeOH	87	C ₁₇ H ₁₄ O ₂ 250.3	8b	4-Br	149 EtOH	82	C ₂₂ H ₁₇ BrN ₂ S (421.36)
3c	4-OCH ₃	132 MeOH	88	C ₁₇ H ₁₄ O ₃ 266.3	9a	Н	272 EtOH	75	C ₁₇ H ₁₅ N ₃ O 277.3
3d	4-Cl	168 EtOH	95	C ₁₆ H ₁₁ ClO ₂ 270.7	9b	4-CH ₃	184 EtOH	72	C ₁₈ H ₁₇ N ₃ O 291.4
3e	4-NO ₂	223 EtOH	90	C ₁₆ H ₁₁ NO ₄ 281.3	9c	4-OCH ₃	182 MeOH	70	C ₁₈ H ₁₇ N ₃ O ₂ 307.4
3f	3,4-(OCH ₃)	128 EtOH	91	C ₁₈ H ₁₆ O ₄ 296.3	9d	4-Cl	186 EtOH	65	C ₁₇ H ₁₄ ClN ₃ O 311.8
3g	4-Br	174 EtOH	94	C ₁₆ H ₁₁ BrO ₂ 315.2	9e	4-Br	112 EtOH	69	C ₁₇ H ₁₄ BrN ₃ C 356.2
3h	3,4,5-(OCH ₃)	107 EtOH	91	C ₁₉ H ₁₈ O ₅ 326.3	10a	4-OCH ₃	101 EtOH/H ₂ O	61	C ₁₈ H ₁₇ N ₃ OS 323.4
4a	4-CH ₃	107 MeOH	89	C ₁₇ H ₁₄ OS 266.4	10b	4-Br	126 EtOH	62	C ₁₇ H ₁₄ BrN ₃ S (372.3)
4b	4-OCH ₃	113 MeH	91	C ₁₇ H ₁₄ O ₂ S 282.4	11a	Н	272 EtOH/H ₂ O	70	C ₁₇ H ₁₄ N ₂ OS 294.4
4c	4-Cl	135 EtOH	85	C ₁₆ H ₁₁ ClOS 286.8	11b	4-CH ₃	241 MeOH	73	C ₁₈ H ₁₆ N ₂ OS 308.4
4d	4-Br	149 EtOH	90	C ₁₆ H ₁₁ BrOS 331.2	11c	4-OCH ₃	213 EtOH	79	C ₁₈ H ₁₆ N ₂ O ₂ S 324.4
5a	н	139-41 EtOH	88	$\begin{array}{c} C_{18}H_{16}N_2O_2\\ 292.3 \end{array}$	11d	4-Cl	246 dioxane	85	C ₁₇ H ₁₃ ClN ₂ O 328.8
5b	4-OCH ₃	124-6 EtOH	78	C ₁₉ H ₁₈ N ₂ O ₃ 322.4	11e	4-Br	248 EtOH	72	C ₁₇ H ₁₃ BrN ₂ O 373.3
5c	4-Cl	149-51 AcOH	76	C ₁₈ H ₁₅ ClN ₂ O ₂ 326.8	12a	4-OCH ₃	141 dioxane	65	C ₁₈ H ₁₆ N ₂ OS 340.50
5d	4-NO ₂	214 MeOH	74	C ₁₈ H ₁₅ N ₃ O ₄ 337.3	12b	4-Cl	199 AcOEt	61	C ₁₇ H ₁₃ ClN ₂ S 344.89
5e	4-Br	164 EtOH	71	C ₁₈ H ₁₅ BrN ₂ O ₂ 371.2	12c	4-Br	157 dioxane	71	C ₁₇ H ₁₃ BrN ₂ S 389.34
6a	4-OCH ₃	140 MeOH	82	C ₁₉ H ₁₈ N ₂ O ₂ S 338.4	13a	н	327 EtOH/H ₂ O	67	C ₁₉ H ₁₃ N ₃ O 299.3
6b	4-Br	143 AcOH	80	C ₁₈ H ₁₅ BrN ₂ OS 387.3	13b	4-CH ₃	302 MeOH	60	C ₂₀ H ₁₅ N ₃ O 313.4
7a	Н	152 EtOH	70	C ₂₂ H ₁₈ N ₂ O 326.4	13c	4-OCH ₃	285 EtOH	72	C ₂₀ H ₁₅ N ₃ O ₂ 329.4
7b	4-CH ₃	140 MeOH	65	$\begin{array}{c} C_{23}H_{20}N_2O\\ 340.43 \end{array}$	13d	4-Cl	352 EtOH	65	C ₁₉ H ₁₂ ClN ₃ C 333.8
7c	4-OCH ₃	165 MeOH	76	$\begin{array}{c} C_{23}H_{20}N_2O_2\\ 356.43\end{array}$	13e	4-Br	348 AcOH/H ₂ O	71	C ₁₉ H ₁₂ BrN ₃ C 378.2
7d	4-Cl	103 EtOH/H ₂ O	71	C ₂₂ H ₁₇ ClN ₂ O 360.84	14a	4-CH ₃	115 MeOH	60	C ₂₀ H ₁₅ N ₃ S 329.4
7e	4-Br	110 EtOH/H ₂ O	73	C ₂₂ H ₁₇ BrN ₂ O 405.3	14b	4-Br	130-4 MeOH		C ₁₉ H ₁₂ BrN ₃ S 394.3 —Co

		Ta	able II–	-Physical data of	prepared of	compound—Cor	ttd		
Compd	R	m.p. °C solvent	Yield (%)	Mol. formula (M.Wt)	Compd	R	m.p. ^o C solvent	Yield (%)	Mol. formula (M.Wt)
15a	Н	211 EtOH	67	$\begin{array}{c} C_{19}H_{14}N_2O_2\\ 302.3 \end{array}$	20b	4-Br	143 MeOH	68	C ₁₆ H ₁₁ BrO ₂ S 347.2
15b	4-CH ₃	215 EtOH	75	$\begin{array}{c} C_{20}H_{16}N_2O_2\\ 316.4\end{array}$	21a	4-CH ₃	122 MeOH	60	$\begin{array}{c} C_{18}H_{12}O_2S_2\\ 324.4 \end{array}$
15c	4-OCH ₃	234 MeOH	72	$\begin{array}{c} C_{20}H_{16}N_2O_3\\ 332.4 \end{array}$	21b	4-OCH ₃	133 EtOH	61	$\begin{array}{c} C_{18}H_{12}O_{3}S_{2}\\ 340.4 \end{array}$
15d	4-Cl	226 EtOH	70	C ₁₉ H ₁₃ ClN ₂ O ₂ 336.8	21c	4-Cl	230 MeOH	51	C ₁₇ H ₉ ClO ₂ S ₂ 344.8
15e	4-Br	342 EtOH/dioxane	81	C ₁₉ H ₁₃ BrN ₂ O ₂ 381.2	24a	Н	118-20 EtOH	60	C ₁₉ H ₁₃ N ₃ O 299.3
16a	4-CH ₃	195-7 MeOH	65	$\begin{array}{c} C_{20}H_{16}N_2OS\\ 332.43\end{array}$	24b	4-CH ₃	202 EtOH	63	$C_{20}H_{15}N_{3}O_{313.4}$
16b	4-OCH ₃	160-4 MeOH	68	$\begin{array}{c} C_{20}H_{16}N_2O_2S\\ 348.43 \end{array}$	24c	4-OCH ₃	185-8 dioxane/H ₂ O	60	$\begin{array}{c} C_{20}H_{15}N_{3}O_{2}\\ 329.4 \end{array}$
16c	4-Br	205 EtOH	63	C ₁₉ H ₁₃ BrN ₂ OS 397.30	24d	4-Cl	178-80 EtOH	62	C ₁₉ H ₁₂ ClN ₃ O 333.8
17a	4-CH ₃	>300 EtOH	72	$\begin{array}{c} C_{20}H_{14}N_2O_2\\ 314.3 \end{array}$	24e	4-Br	293-6 EtOH	67	C ₁₉ H ₁₂ BrN ₃ O 378.2
17b	4-OCH ₃	>300 EtOH	65	$\begin{array}{c} C_{20}H_{14}N_2O_3\\ 330.3 \end{array}$	25a	4-OCH ₃	179 MeOH/H ₂ O	59	C ₂₀ H ₁₅ N ₃ OS 345.43
17c	4-Cl	>300 dioxane	71	C ₁₉ H ₁₁ ClN ₂ O ₂ 334.8	25b	4-Br	262 dioxane	69	C ₁₉ H ₁₂ BrN ₃ S 394.30
17d	4-Br	>300 EtOH	70	C ₁₉ H ₁₁ BrN ₂ O ₂ 379.2	26a	Н	263 EtOH	72	C ₂₁ H ₁₃ N ₃ O 323.4
17e	3,4,5-(OCH ₃)	287 EtOH	73	$\begin{array}{c} C_{22}H_{18}N_2O_5\\ 390.4 \end{array}$	26b	4-Cl	239 EtOH	74	C ₂₁ H ₁₂ CIN ₃ O 357.8
18a	4-OCH ₃	212 EtOH	82	$\begin{array}{c} C_{20}H_{14}N_2O_2S\\ 346.4 \end{array}$	26c	3,4-(OCH ₃)	290 EtOH	70	C ₂₃ H ₁₇ N ₃ O ₃ 383.4
18b	4-Cl	>300 AcOH	65	C ₁₉ H ₁₁ ClN ₂ OS 350.8	26d	4-Br	242 EtOH	71	C ₂₁ H ₁₂ BrN ₃ O 402.3
19a	Н	128 MeOH	71	C ₁₆ H ₁₂ O ₃ 252.3	26e	3,4,5-(OCH ₃)	254 MeOH	68	$C_{24}H_{19}N_3O_4$ 413.4
19b	4-CH ₃	129 EtOH	70	C ₁₇ H ₁₄ O ₃ 266.3	27a	4-OCH ₃	248 EtOH/dioxane	62	C ₂₂ H ₁₅ N ₃ OS 369.4
19c	4-OCH ₃	115 EtOH	72	C ₁₇ H ₁₄ O ₄ 282.3	27ь	4-Cl	227-29 EtOH	72	C ₂₁ H ₁₂ CIN ₃ S 373.90
19d	4-Cl	116 EtOH	75	C ₁₆ H ₁₁ ClO ₃ 286.7	28	-	203-5 MeOH	73	C ₁₉ H ₁₃ N ₃ OS 331.4
19e	3,4,5-(OCH ₃)	137 EtOH	71	C ₁₉ H ₁₈ O ₆ 342.3	29	-	200-4 dioxane	71	C ₁₉ H ₁₃ N ₃ S ₂ 347.5
20a	4-CH3	109-111 MeOH	68	C ₁₇ H ₁₄ O ₂ S 282.4	All c	compounds gave	satisfactory (C, I analysis	I, N, S a	nd halogen)

Method A: To a mixture of 1 or 2 (0.01 mole), arylmethylene-cyanoacetamide (0.01 mole) in absolute ethanol (50 mL) was added few drops of triethylamine. The mixture was refluxed for 9 hr, left at room-temperature, then poured onto cold water. The

-

solid formed was filtered off, washed with water, and crystallized from the proper solvent (**Table II**).

Method B: Compound **15** or **16** (0.01 mole) was suspended in 100 mL ethanol, then a current of HCl gas was passed at 0°C till saturation, the reaction mixture was left overnight, then ethanol was evaporated under reduced pressure, the solid formed was filtered off, washed with water, and crystallized from the proper solvent (**Table II**) and identified by m.p. and mixed m.p. experiment with the samples obtained from method A.

3-Aryl-(3'H)-(2H)-spiroxarane[2',3]benzopyran-4-one 19 and 3-aryl-(3'H)-(2H)-spiroxarane[2',3]benzothiopyran-4-one 20. Hydrogen peroxide (10 mL, 30%) was added portion-wise to a mixture of 3 or 4 (0.01 mole) and 10% NaOH (3 mL) in methanol/acetone (30:10 mL) as solvent. The mixture was stirred in ice-bath for 8 hr, then left overnight at room temperature. The white solid formed was collected by filteration and crystallized from the proper solvent (Table II).

4-Aryl-2-thioxo-(4*H***)-thieno[3,4-***b***]benzopyran-5one 21. A mixture of 19 (0.01 mole), carbon disulfide (3 mL), NaOH (1 g) in ethanol (50 mL) was refluxed for 4 hr. The solvent was evaporated under reduced pressure, the product was extracted with chloroform, dried over anhyd. Na₂SO₄, evaporated and solidified with diethyl ether. The solid formed was filtered off and crystallized from the proper solvent (Table II**).

2-Amino-4-aryl-(5*H*)-[1]benzopyrano[3,4-*c*]-pyridine-1-carbonitrile 24 and 2-amino-4-aryl-(5*H*)-[1]benzothiopyrano[3,4-*c*]-pyridine-1-carbonitrile 25. A mixture of 2,3-dihydro[1]benzopyran-4(2*H*)yielidinemalononitrile 22 or 2,3-dihydro[1]benzothiopyran-4(2*H*)yielidinemalononitrile 23 (0.01 mole), aromatic aldehydes (0.01 mole) and ammonium acetate (0.08 mole) in glacial acetic acid (50 mL) was heated under reflux for 10 hr., allowed to cool, then poured onto cold water. The solid formed was filtered off, washed with water, and crystallized from the proper solvent (Table II).

2-Amino-4-aryl-(5*H*)-dibenzo[b,d]pyran-1,3-dicarbonitrile 26 and 2-amino-4-aryl-(5*H*)-dibenzo-[b,d]thiopyran-1,3-dicarbonitrile 27. To a mixture of 22 or 23 (0.01 mole), arylmethylenecyanoacetamide (0.01 mole) in ethanol (50 mL), few drops of triethylamine was added, the mixture was heated under reflux for 9 hr, allowed to cool, then poured onto cold water. The solid formed was filtered off, washed with water, and crystallized from the proper solvent (**Table II**). 2-Amino-3-phenyl-4-thioxo-(5*H*)-[1]benzopyrano[3,4-*c*]pyridine-1-carbonitrile 28 and 2-amino-3phenyl-4-thioxo-(5*H*)-[1]benzothiopyrano[3,4-*c*]pyridine-1-carbonitrile 29. To a mixture of 22 or 23 (0.05 mole) and phenyl-isothiocyanate (0.05 mole) in dimethylformamide (10 mL), triethyl-amine (4 mL) was added. After stirring for 2 hr at 50°C, methanol (20 mL) was added. The mixture was left overnight. The solid formed was filtered off and crystallized from the proper solvent (**Table II**).

Acknowledgement

Authors thank Dr V L Narayanan and his groups, National Institute of Health, Meryland, USA, for anticancer screening.

References

- Hammam A G, Abdel-Hafez N A & Midura W H Z, Naturforsch, 55b, 2000, 417.
- 2 Hammam A G, Mohie A S & Abdel Hafz N A. Indian J Chem, 40B, 2001, 213.
- 3 Ali M I, El-Kashif M A F & Hammam A G, Egypt J Chem, 20, 1977, 322.
- 4 Ali M I & Hammam A G, J Chem Eng Data, 23, 1978, 351.
- 5 Hammam A G & Ali M I, J Chem Eng Data, 26, 1981, 99.
- 6 Hammam A G, Ali A S & Yousif N M, Egypt J Chem, 26(6), 1983, 461.
- 7 Ali M I, E I-Kashif M A F & Hammam A G, *J Prakt Chemie*, 316, **1974**, 259.
- 8 Ali M I, El-Kashif A F & Hammam A G, J Chem Eng Data, 20, 1975, 128.
- 9 Ali M I & Hammam A G, J Prakt Chemie, 318, 1976, 1038.
- 10 Ali M I & Hammam A G, J Chem Eng Data, 23, 1978, 91.
- 11 Ali M I, El-Kashif A F, Hammam A G & Khallef S A, J Chem Eng Data, 24, 1979, 377.
- 12 Hammam A G, Egypt J Chem, 25, 1982, 471.
- 13 Hammam A G, Zahran M, El-Hag F A & Helmy K M H, Egypt J Pharm Sci, 37, 1996, 565.
- 14 Hammam A G, Zaki M E A & El-Assasy M E, Egypt J Pharm Sci, 38, 1997, 291.
- 15 Piero V, Paola M P, Luigi B & Paolo D, Arch Pharm, 313(4), 1980, 289.
- 16 Fritz E & Gerda F, Arch Pharm, 317, 1984, 861.
- 17 Campaigne E, Bulbenko G F, Kreighbaum W E & Maulding D R, J Org Chem, 27, 1962, 4428.
- 18 Campaigne E & Blanton Jr C D, J Heterocycl Chem, 7, 1970, 1179.