
International Journal of Computer Vision, Vol. no. 28, Issue No. 2, 103–116 (1998)
c© 1998 Kluwer Academic Publishers, Boston. Manufactured in The Netherlands.

Synthesis of novel views from a single face image
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Abstract. Images formed by a human face change with viewpoint. A new technique is described for synthesizing
images of faces from new viewpoints, when only a single 2D image is available. A novel 2D image of a face can be
computed without explicitly computing the 3D structure of the head. The technique draws on a single generic 3D
model of a human head and on prior knowledge of faces based on example images of other faces seen in different
poses. The example images are used to “learn” a pose-invariant shape and texture description of a new face. The
3D model is used to solve the correspondence problem between images showing faces in different poses.

The proposed method is interesting for view independent face recognition tasks as well as for image synthesis
problems in areas like teleconferencing and virtualized reality.
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1. Introduction

Given only a driver’s license photograph of a person’s
face, can one infer how the face might look like from
a different viewpoint? The three-dimensional struc-
ture of an object determines how its image changes
with a variation in viewpoint. With viewpoint changes,
some previously visible regions of the object become
occluded, while other previously invisible regions be-
come visible. Additionally, the arrangement or config-
uration of object regions that are visible in both views
may change. Accordingly, to synthesize a novel view
of an object, two problems must be addressed and re-
solved. First, the visible regions that the new view
shares with the previous view must be redrawn at their
new positions. Second, regions not previously visible
must be generated or synthesized. It is obvious that
this latter problem is unsolvable without prior assump-
tions. For human faces, which share a common struc-

ture, such prior knowledge can be obtained through
extensive experience with other faces.

The most direct and general solution for the synthesis
of novel views of a face from a single example image
is the recovery of the three-dimensional structure of
the face. This three-dimensional model can be rotated
artificially and would give the correct image for the all
points visible in the example image (i.e. the one from
which the model was obtained). However, without ad-
ditional assumptions, the minimal number of images
necessary to reconstruct a face using localized points is
three (Huang and Lee, 1989). Even with the additional
assumption that a face is bilaterally symmetric at least
two images are required (Rothwell et al., 1993; Vetter
and Poggio, 1994). Shape recovery methods such as
shape-from-shading that can, in principle, work with
a single image are not of much help for this problem.
While shape from shading algorithms have been ap-
plied in previous work to recover the surface structure
of a face (Horn, 1987), the inhomogeneous reflectance
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properties of faces make surface integration over the
whole face imprecise and questionable. Additionally,
the fact that the face regions visible from a single image
are insufficient to obtain the three-dimensional struc-
ture of the whole head makes it clear that the task of
synthesizing new views from a single image of a face,
cannot be solved without prior assumptions about the
structure and appearance of faces in general.

Models that have been proposed previously to learn
a face model from images can be subdivided into two
groups: those based on the three-dimensional head
structure and those considering only view- or image-
dependent face models. In general, schemes that
have attempted to incorporate knowledge about faces
into flexible three-dimensional head models, consist of
hand-constructed representations of the physical prop-
erties of the muscles and the skin of a face (Terzopoulos
and Waters, 1993; Thalmann and Thalmann, 1995). To
adjust such a model to a particular face, often two or
more images were used (Aizawa et al., 1989; Akimoto
et al., 1993). For present purposes, it is difficult to
assess the usefulness of this approach, since general-
ization performance to new views from only a single
image has never been reported. An example based ap-
proach for forming a flexible three-dimensional head
model was explored by Choi et al.(1991). Here a new
face is modeled as a weighted sum of given example
head models, modeling the three-dimensional shape
and the texture data (image intensities) separately.

In the same idea of modeling shape and texture of
face images separately, two-dimensional image-based
face models have been applied for the synthesis of
rigid and nonrigid face transitions (Craw and Cameron,
1991; Poggio and Brunelli, 1992; Beymer et al., 1993;
Cootes et al., 1995; Lanitis et al., 1995). These models
generally exploit prior knowledge from example im-
ages of prototypical faces and work by building flexi-
ble image-based representations (active shape models)
of known objects by a linear combination of labeled
examples. Although all these methods differ in their
labeling method they all lead to a very similar repre-
sentation of images, which separates the shape and tex-
tural information in an image. These representations
have been applied for the tasks of image search and
recognition (Cootes et al., 1995) or synthesis (Craw
and Cameron, 1991; Lanitis et al., 1995). The under-
lying coding of an image of a new object or face is
based on linear combinations of the two-dimensional
shape and texture of examples of prototypical images.

The shape model developed in Lanitis et al. (1995)
additionally allows rigid rotations in 3D-space of the
faces depicted in the images. The shape component of
a new individual face image is normalized to a stan-
dard three-dimensional orientation before it is coded
by other example faces. The transformations neces-
sary for this normalization are similar to these applied
by Beymer et al. (1993) to synthesize new images of a
face with a different expression or a changed viewpoint
making use of only a single image. These methods of
warping an image to a new expression or a new view
have been already successfully applied for face recog-
nition tasks (Lanitis et al., 1995; Beymer and Poggio,
1996).

In the contrast of the problem posed in this paper of
the synthesis of a new view from a single image, these
methods are limited in two ways due to their reliance on
the solution of the correspondence problem across view
changes. First, to establish correspondence over large
changes in viewpoint is highly problematic because of
the fact that occluding contours in different views of
an object do not physically correspond to each other
on the surface of the object. Second, the methods are
fundamentally incapable of generating or synthesizing
those areas or regions in the new view, which previously
were not visible. For instance, a change in viewpoint
of about15◦ from the front to the side for a face usually
leads to a complete occlusion of one ear.

To overcome these difficulties in the present work,
we draw on the concept oflinear object classes, which
we have introduced recently in the context of object rep-
resentations (Vetter and Poggio, 1996). This approach
does not need correspondence across different view-
points and therefore is capable of coping with larger
viewpoint changes. For each specific viewpoint a sep-
arate linear image model is used where each leads to
the same view independent representation of an object.
In contrast to all the methods mentioned earlier, this
approach does not directly transform (warp) a given
image to an image showing a new view of the face. It
rather codes the given image by one linear model and
uses this code in an different linear model to synthe-
size the new view. While this basic coding scheme
is advantageous for handling large viewpoint changes,
however, it has some drawbacks for information not
representable by the linear coding model. For instance
textural details will be lost with this linear modeling
approach, even when they are clearly visible in the
given image. In this paper an extension to the linear
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Fig. 1. Two examples of face images (left column) mapped onto a reference face using pixelwise correspondence are shown (right column).
The middle column shows a superposition of the reference face and the correspondence field which was established through an optical flow
algorithm. The correspondence separates the 2D-shape information captured in the correspondence field from the texture information captured
in the texture mapped onto the reference face (right column).

object class approach is presented, which retains all its
advantages without the loss of textural information.

Overview of the ApproachIn the present paper, the
linear object classapproach is improved and combined
with a single three-dimensional model of a human head
for generating new views of a face. By using these
techniques in tandem, the limitations inherent in each
approach (used alone) can be overcome. Specifically,
the present technique is based on the linear object class
method described in (Vetter and Poggio, 1996), but is
more powerful because the addition of the 3D model
allows a much better utilization of the example images.
The 3D-model also allows the transfer of features like
moles and blemishes particular to an individual face
from the given view into new synthetic views. This
latter point is an important addition to the linear class
approach, because it now allows for individual identify-
ing features that are present in “non-standard” locations
on a given individual face, to be transferred onto syn-
thesized novel views of the face. This is true even when
these blemishes, etc., are unrepresented in the “general
experience” that the linear class model has acquired
from example faces. On the other hand, the primary

limitation of a single 3D head model is the well-known
difficulty of representing the variability of head shapes
in general, a problem that the linear class model, with
its exemplar-based knowledge of faces will allow us to
solve.

Another way of looking at the combination of these
approaches returns us to the two-fold problem we de-
scribed at the beginning of this paper. The synthesis of
novel views from a single exemplar image requires the
ability to redraw the regions shared by the two views,
and also the ability to generate the regions of the novel
face that are invisible in the exemplar view. The 3D
head model allows us to solve the former, and linear
object class approach the allows us to solve the latter.

Linear Object ClassesA linear object class is de-
fined as a 3D object class for which the 3D shape
can be represented as a linear combination of a suffi-
ciently small number of prototypical objects. Objects
that meet this criterion have the following important
property. New orthographic views according to uni-
form affine 3D transformation can be generated for any
object of the class. Specifically, rigid transformations
in 3D, can be generated exactly if the corresponding
transformed views are known for the set of prototypes.
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Thus, if the example set consists of frontal and rotated
views of a set of prototype faces, any rotated view of a
new face can be generated from a single frontal view –
provided that the linear class assumption holds.

The key to this approach is a representation of an ob-
ject or face view in terms of ashape vectorand atexture
vector(see also Cootes et al., 1995; Beymer and Pog-
gio, 1996). The separation of 2D-shape and texture
information in images of human faces requires corre-
spondence to be established to a single reference face.
At its extreme, correspondence must be established for
every pixel, between the given face image and a ref-
erence image. As noted previously, while this is an
extremely difficult problem when large view changes
are involved, the linear object class assumption requires
correspondence onlywithina given viewpoint – specif-
ically, the correspondence between a single view of an
individual face and a single reference face image from
the same view. Separately for each orientation, all ex-
ample face images have to be set in correspondence to
the reference face in the same pose, correspondence be-
tween different poses is not needed. This can be done
off-line manually (Craw and Cameron, 1991; Cootes
et al., 1995) or automatically (Beymer et al., 1993;
Lanitis et al., 1995; Vetter and Poggio, 1996). Once
the correspondence problem within views is solved, the
resultant data can be separated into a shape and texture
vector. The shape vector codes the 2D-shape of a face
image as deformation or correspondence field to a ref-
erence face, which later also serves as the origin of a
linear vector space. Likewise the texture of the exem-
plar face is coded in a vector of image intensities being
mapped ontocorrespondingpositions in the reference
face image (see also figure 1 right column).

The Three-dimensional Head ModelThe linear class
approach works well for features shared by all faces
(e.g. eyebrows, nose, mouth or the ears). But, it has
limited representational possibilities for features par-
ticular to a individual face (e.g. a mole on the cheek).
For this reason, a single 3D model of a human head
is added to the linear class approach. Face textures
mapped onto the 3D model can be transformed into
any image showing the model in a new pose. The final
“rotated” version of a given face image (i.e. includ-
ing birthmarks, etc.) can be generated by applying to
this new image of the 3D model the shape transfor-
mation given through the linear object class approach.
This is described in more detail shortly. The three-

dimensional model and its generation are described in
Appendix A.

The paper is organized as follows. First, the algo-
rithm for generating new images of a face from a single
image is described. The technical details of the imple-
mentation used to realize the algorithm on grey level
images of human faces are described in theAppendix.
UnderResultsa comparison of different implementa-
tions of the generalization algorithm are shown. Two
variations of the combined approach are compared with
a method based purely on the linear object class as de-
scribed previously (Vetter and Poggio, 1996). First, the
linear class approach is applied to the parts of a face
separately. The individual parts in the two reference
face images were separated using the 3D-model. Sec-
ond, the 3D-model was used additionally to establish
pixelwise correspondence between the two reference
faces images in the two different orientations. This
correspondence field allows texture mapping across the
view point change. Finally, the main features and pos-
sible future extensions of the technique are discussed.

2. Approach and Algorithm

In this section an algorithm is developed that allows
for the synthesis of novel views of a face from from
a single view of the face. For brevity, in the present
paper we describe the application of the algorithm to
the synthesis of a “frontal” view (i.e., defined in this
paper as the novel view) from a single “rotated” view
(i.e., defined in this paper as the view24◦ from frontal).
It should be noted, however, that the algorithm is not
at all restricted to a particular orientation of faces.

The algorithm can be subdivided into three parts (for
an overview see figure 3).

• First, the texture and shape information in an im-
age of a face are separated.

• Second, two separate modules, one for texture and
one for shape, compute the texture and shape rep-
resentations of a given “rotated” view of a face
(in terms of the appropriate view of the reference
face). These modules are then used to compute the
shape and texture estimates for the new “frontal”
view of that face.

• Finally the new texture and shape for a “frontal”
view are combined and warped to the “frontal”
image of the face.
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Fig. 2. A three-dimensional model of a human head was used to render the reference images (columnA) for the linear shape and texture
model. The model defines corresponding parts in the two images (columnB) and also establishes pixelwise correspondence between the two
views (columnC). Such a correspondence allows texture mapping from one view (C1) to the other (C2).

Separation of texture and shape in images of faces:
The central part of the approach is a representation of
face images that consists of a separate texture vector
and 2D-shape vector, each one with components refer-
ring to the same points – in this case pixels. Assum-
ing pixelwise correspondence to a reference face in the
same pose, a given image can be represented as follows:
its 2D-shape will be coded as the deformation field ofn

selected points – in the limit of each pixel – to the refer-
ence image. So the shape of a face image is represented
by a vectors = (x1, y1, x2, ....., xn, yn)T ∈ <2n, that
is by thex, y distance or displacement of each point
with respect to the corresponding point in the refer-
ence face. The texture is coded as a difference map be-
tween the image intensities of the exemplar face and its
correspondingintensities in the reference face. Thus,
the mapping is defined by the correspondence field.
Such a normalized texture can be written as a vector
T = (i1, ....in)T ∈ <n, that contains the image in-
tensity differencesi of then pixels of the image. All
images of the example set are mapped onto the ref-
erence face of the corresponding orientation. This is
done separately for each rotated orientation. For real
images of faces the pixelwise correspondences neces-
sary for this mappings were computed automatically
using a gradient based optical technique which was
already used successfully previously on face images
(Beymer et al., 1993; Vetter and Poggio, 1996). The
technical details for this technique can be found in Ap-

pendix B.

Linear shape model of faces:The shape model of
human faces used in the algorithm is based on the lin-
ear object class idea (the necessary and sufficient con-
ditions are given in Vetter and Poggio, 1996 ) and is
built on a example set of pairs of images of human
faces. From each pair of images, each consisting of
a “rotated” and a “frontal” view of a face, the 2D-
shape vectorssr for the “rotated” shape andsf for
the “frontal” shape are computed. Consider the three-
dimensional shape of a human head defined in terms
of a set of points in the three-dimensional space. The
3D-shape of the head can be represented by a vec-
tor S = (x1, y1, z1, x2, ....., yn, zn)T , that contains
the x, y, z-coordinates of itsn points. Assume that
S ∈ <3n is the linear combination ofq 3D shapes
Si of other heads, such that:S =

∑q
i=1 βiSi. It

is quite obvious that for any linear transformationR
(e.g. rotation in 3D) withSr = RS, it follows that
Sr =

∑q
i=1 βiS

r
i . Thus, if a 3D head shape can be

represented as the weighted sum of the shapes of other
heads, its rotated shape is a linear combination of the
rotated shapes of the other heads with the same weights
βi.

To apply this to the 2D face shapes computed from
images, we have to consider the following. A projec-
tion P from 3D to 2D with sr = PSr under which
the minimal numberq of shape vectors necessary to
representSr =

∑q
i=1 βiS

r
i andsr =

∑q
i=1 βis

r
i does
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not change, it allows the correct evaluation of the co-
efficientsβi from the images. Or in other words, the
dimension of a three-dimensional linear shape class is
not allowed to change under a projectionP . Assuming
such a projection, and thatsr, a 2D shape of a given “ro-
tated” view, can be represented by the “rotated” shapes
of the example setsri as

sr =
q∑
i=1

βisri , (1)

then the “frontal” 2D-shapesf to a givensr can be
computed without knowingS usingβi of equation (1)
and the othersfi given through the images in the exam-
ple set with the following equation:

sf =
q∑
i=1

βis
f
i . (2)

In other words, a new 2D face shape can be com-
puted without knowing its three-dimensional structure.
It should be noted that no knowledge of correspondence
between equation (1) and equation (2) is necessary
(rows in a linear equation system can be exchanged
freely).

Texture model of faces:In contrast to the shape
model, two different possibilities for generating a
“frontal” texture given a “rotated” texture are de-
scribed. The first method is again based on the linear
object class approach and the second method uses a sin-
gle three-dimensional head model to map the texture
from the “rotated” texture onto the “frontal” texture.
The linear object class approach for the texture vectors
is equivalent to the method described earlier for the
2D-shape vectors. It is assumed that a “rotated” tex-
tureTr can be represented by theq “rotated” textures
Tr
i computed from the given example set as follows:

Tr =
q∑
i=1

αiTr
i . (3)

It is assumed further that the new textureTf can be
computed usingαi of equation (3) and the otherTf

i

given through the “frontal” images in the example set
by the following equation:

Tf =
q∑
i=1

αiT
f
i . (4)

In contrast to the linear shape model, using the co-
efficientsαi of equation (3) in equation (4) holds not
in general. The assumption of a separate linear texture
model, which is independent of (1) is strictly only valid
for textures which are a function of albedo only.

The three-dimensional head model:Whereas the lin-
ear texture approach is satisfactory for generating new
“frontal” textures for regions not visible in the “rotated”
texture, it is not satisfactory for the regions visible in
both views. The linear texture approach is hardly able
to capture or represent features which are particular to
an individual face (e.g. freckles, moles or any simi-
lar distinct aspect of facial texture). Such features ask
for a direct mapping from the given “rotated” texture
onto the new “frontal” texture. However, this requires
pixelwise correspondence between the two views (see
Beymer et al., 1993).

Since all textures are mapped onto the reference face,
it is sufficient to solve the correspondence problem
across the the viewpoint change for the reference face
only. A three-dimensional model of an object intrinsi-
cally allows the exact computation of a correspondence
field between images of the object from different view-
points, because the three-dimensional coordinates of
the whole object are given, occlusions are not prob-
lematic and hence the pixels visible in both images
can be separated from the pixels which are only visible
from one viewpoint.

A single three-dimensional model of a human head
is incorporated into the algorithm for three different
processing steps. For more details about the three-
dimensional head model and its generation see Ap-
pendix A.

1. The reference face images used for the formation
of the linear texture and 2D-shape representations
were rendered from the 3D-model under ambient
illumination conditions (see figure 2A).

2. The 3D-model was manually divided into separate
parts, the nose, the eye and mouth region and the
rest of the model. Using the projections of these
parts, the reference images for different orienta-
tions could be segmented into corresponding parts
for which the linear texture and 2D-shape rep-
resentation could be applied separately (see next
paragraph on “The shape and texture models ap-
plied to parts” and also figure 2B).

3. The correspondence field across the two different
orientations was computed for the two reference
face images based on the given 3D-model. So the
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Fig. 3. Overview of the algorithm for synthesizing a new view from a single input image. After mapping the input image onto a reference
face in the same orientation, texture and 2D-shape can be processed separately. The example based linear face model allows the computation of
2D-shape and texture of a new “frontal” view. Warping the new texture along the new deformation field (coding the shape) results in the new
“frontal” views as output. In the lower row on the right the result purely based on the linear class approach applied to parts is shown, in the
center the result with texture mapping from the “rotated” to the “frontal” view using a single generic 3D model of a human head. On the bottom
left the real frontal view of the face is shown.
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visible part of any texture, mapped onto the refer-
ence face in one orientation, can now be mapped
onto the reference face in the second orientation
(see figure 2C and figure 3).

To synthesize a complete texture map on the
“frontal” reference face for a new view, (i.e., the re-
gions invisible in the exemplar view are lacking), the
texture of the region visible in both views, which has
been obtained through direct texture mapping across
the viewpoint change, is merged with the texture ob-
tained through the linear class approach (see figure 3).
The blending technique used to merge the regions is
described in detail in the Appendix D.

The shape and texture models applied to parts.To
apply equations (1 – 4) to individual parts of a face, it
is necessary to isolate the correspondingareasin the
“rotated’ and “frontal” reference images. Such a sep-
aration requires the correspondence between the “ro-
tated’ and “frontal” reference image or equivalent be-
tween equations (1) and (2) of the shape representation
and also between equations (3) and (4) for the texture.
The 3D-model, however, used for generating the ref-
erence face images determines such a correspondence
immediately (for example see figure 2B) and allows
the separate application of the linear class approach
to parts. To generate the final shape and texture vec-
tor for the whole face, this separation adds only a few
complexities to the computational process . Shape and
texture vectors obtained for the different parts must be
merged, which requires the use of blending techniques
to suppress visible border effects. The blending tech-
nique used to merge the regions is described in detail
in Appendix D.

The linear object class approach for 2D-shape and
texture, as proposed in (Vetter and Poggio, 1996), can
be improved through the 3D-model of the reference
face. Since the linear object class approach did not
assume correspondence between equations (1) and (2)
or (3) and (4), shape and texture vectors had to be con-
structed for the complete face as a whole. On the other
hand, modeling parts of a face (e.g. nose, mouth or eye
region ) in independent separate linear classes is highly
preferable, because it allows a much better utilization
of the example image set and therefore gives a much
more detailed representation of a face (see also Choi
et al., 1991). A full set of coefficients for shape and
texture representation is evaluated separately for each
part instead of just one set for the entire face.

3. Results

The algorithm was tested on 100 human faces. For
each face, images were given in two orientations (24◦

and0◦) with a resolution of 256-by-256 pixels and 8
bit (more details are given in Appendix A).

In a leave–one–outprocedure, a new “frontal” view
of a face was synthesized to a given “rotated” view
(24◦). In each case the remaining 99 pairs of face
images were used to build the linear 2D-shape and tex-
ture model of faces. Figure 4 shows the results for four
faces for three different implementations of the algo-
rithm (center rows A,B,C). The left column shows the
test image given to the algorithm. The true “frontal”
view to each test face from the data base is shown in the
right column. The implementation used for generating
the images in column A was identical to the method
already described in (Vetter and Poggio, 1996), the lin-
ear object class approach was applied to the shape and
texture vector as a whole, no partitioning of the ref-
erence face or texture mapping across the viewpoints
was applied. The method used in B was identical to
A, except that the linear object class approach was ap-
plied separately to the different parts of a face. The
three-dimensional head model was divided into four
parts (see figure 2B) the eye, nose, mouth region, and
the remaining part of the face. To segment the two
reference images correctly, it was clearly necessary to
render both of them from the same three-dimensional
model of a head. Based on this segmentation, the tex-
ture and 2D-shape vectors for the different parts were
separated and for each part a separate linear texture and
2D-shape model was applied. The final image was ren-
dered after merging the new shape and texture vectors
of the parts. The images shown in column C are the
result of a combination of the technique described in B
and texture mapping across the viewpoint change. Af-
ter mapping a given “rotated” face image onto the “ro-
tated” reference image, this normalized texture can be
mapped onto the “frontal” reference face since the cor-
respondence between the two images of the reference
face is given through the three-dimensional model. The
part of the “frontal” texture not visible in the “rotated”
view is substituted by the texture obtained by the linear
texture model as described under B.

The quality of the different synthesized “frontal”
views was compared in a simple simulated recognition
experiment. For each synthetic image, the most simi-
lar frontal face image in the data base of 100 real face
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images was computed. For the image comparison, two
common similarity measures were used: a) thecorre-
lation coefficient, also known asdirection cosine; and
b) theEuclidean distance(L2). Both measures were
applied to the images in pixel representation without
further processing.

The recognition rate of the synthesized images (type
A,B,C) was 100 % correct, both similarity measures
independently evaluated the true “frontal” view to a
given “rotated” view of a face as the most similar im-
age. This result holds for all three different methods
applied for the image synthesis. The similarity of the
synthetic images to the real face image improved by ap-
plying the linear object class approach separately to the
parts and improved again adding the correspondence
between the two reference images to the method. This
improvement is indicated in table 1 where theL2-norm
decreases whereas the correlation coefficients increase
for the different techniques.

A crucial test for the synthesis of images is a direct
comparison of real and synthetic images by human ob-
servers. As can be seen in figure 4 the synthesized im-
ages of typeA already resemble the real faces in their
general shape and appearance. The images of typeB
show the improved similarity of the details of the faces.
The shape of the nose of face2 for example, is highly
improved changing from typeA toB. However, both
types are not able to capture the textural peculiarities
of the faces. Only the images of typeC reproduce
features like birthmarks (see face1 and2) or freckles
(see face3). On the other hand, for faces without pe-
culiarities all methods result in almost identical images
(see face4). The quality of the images synthesized to
all 100 faces in the data set was evaluated by human
observers. In a two alternative forced choice task 10
subjects were asked to decide which of the two frontal
face images matches a given rotated image (24◦) best.
One image was the “real” face the other a synthetic
image generated applying the linear class method to
the parts of the faces separately (method B). The first
five images of the data set were used to familiarize
the subjects with the task, whilst the performance was
evaluated on the remaining 95 faces. Although there
was no time limit for a response and all three images
were shown simultaneously, there were only 6 faces
classified correctly by all 10 subjects (see table 2). In
all other cases the synthetic image was at least by one

subject classified as the true image and in one case the
synthetic image was found to match the rotated image
better as the real frontal image. On average each ob-
server was74% correct whereas the chance level was
at50%.

4. Discussion

The results demonstrate a clear improvement in gener-
ating new synthetic images of a human face from only
a single given view over techniques proposed previ-
ously (Beymer and Poggio, 1995; Vetter and Poggio,
1996). Here a single three-dimensional model of a
human head was added to the linear class approach.
Using this model, the reference images could be seg-
mented into corresponding parts, and additionally any
texture on the reference image could be mapped pre-
cisely across the viewpoint change. The information
used from the three-dimensional model is equivalent to
the addition of a single correspondence field across the
viewpoint change. This addition increased the similar-
ity of the synthesized image to the image of the real
face for the shape as well as for the texture. The im-
provement could be demonstrated in automated image
comparison as well as in perceptual experiments with
human observers.

Table 1. Comparing the different image synthesis techniques using
Direction Cosines andL2-Norm as distance measures. First, for all
real frontal face images the average distance to its nearest neighbor
(an image of a different face) was computed over an images test set
of 100 frontal face images. Second, for all synthetic images (type
A,B,C) the average value to its nearest neighbor was computed for
both distance measures. For all synthetic images the real face image
was found as nearest neighbor. Switching from technique A to B
and from B to C the average values of Direction Cosines increase
whereas the values of theL2-Norm decrease, indicating an improved
image similarity.

Average Image Distance to Nearest Neighbor

L2 Direction Cosines

Real Face Images 4780.3 0.9589

Synthetic Images Type A 3131.9 0.9811

Synthetic Images Type B 3039.3 0.9822

Synthetic Images Type C 2995.0 0.9827
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Fig. 4. Synthetic new frontal views (center columns) to a single given rotated(24◦) image of a face (left column) are shown. The prior
knowledge about faces was given through a example set of 99 pairs of images of different faces (not shown) in the two orientations. Column
A shows the result based purely on the linear object class approach. Adding a single 3D-head model, the linear object class approach can be
applied separately to the nose, mouth and eye region in a face (columnB). The same 3D-model allows the texture mapping across the viewpoint
change (columnC). The frontal image of the real face is shown in the right column. The synthesized images in columnA resemble the real
faces already in general shape and appearance. In columnB the similarity of details is improved, see for example the mouth of face1 or the
eyebrows and nose of face2. Images of typeC additionally capture localized peculiarities like the mole on the cheek of face1 or the dimples
on the chin of face3. For faces without peculiarities all methods result in almost identical images (face 4).

The results of the automated image comparison in-

dicate the importance of the proposed face model for

viewpoint independent face recognition systems. Here

the synthetic rotated images were compared with the

real frontal face image. It should also be noted that

coefficients, which result from the decomposition of

shape and texture into example shapes and textures, al-

ready give us a representation that is invariant under

any 3D affine transformation, supposing of course the
linear face model can produce a good approximation
of the target face.

The synthesis of new views is not only interesting for
the field of automated face recognition, it is also of great
interest for applications in the fields of teleconferencing
and virtualized reality. In contrast to pure machine
vision tasks, there the human observer is the best judge
of the quality of a method. (The problem of automating
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Table 2. For 95 different faces a rotated image(24◦) and two frontal images were shown to human observers simultaneously. They had to
decide which of the frontal images was the synthesized image (type B) and which one was the real image. The table shows the error rate for 10
observers and the related number of faces. In average each observer was correct in74% of the trails (chance level was50%).

Classification of Synthetic Versus Real Face Images

Error 0% 10% 20% 30% 40% 50% 60% 70− 100%

Number
of 6 17 22 24 19 6 1 0

Faces

the measurement of picture quality is discussed in Xu
and Hauske, 1994.)

The difficulties experienced by human observers in
distinguishing between the synthetic images and the
real face images indicate that a linear face model of 99
faces segmented into parts gives a good approximation
of a new face. The low number of images that were
consistently recognized as synthetic by all observers
demonstrates that the model can already be applied to
a wide range of faces and indicates possible applica-
tions of this method in the area of computer graphics.
Clearly, the linear model depends on the given example
set, thus to represent faces from a different race or a
different age group, the model would need examples
of these, an effect well known in human perception (cf.
e.g. O’Toole et al., 1994).

The key step in the proposed technique is a dense cor-
respondence field between images of faces seen from
the same viewpoint. The optical flow technique used
for the examples shown worked well. However, for im-
ages obtained under less controlled conditions, a more
sophisticated method for finding the correspondence
might be necessary. The use of images derived from
three-dimensional head models allowed the generation
of identical illumination conditions for all the example
and test images. An extension of the proposed method
to images obtained by a normal camera will lead to
more unconstrained lighting conditions and will influ-
ence the correspondence finding step as well as the
image synthesis. Both problems have been investi-
gated by Hallinan (1995) for frontal face images. He
demonstrated that a low dimensional linear illumina-
tion model is able to explain most variations in lighting.
By fitting this model to an image, he could determine
the lighting conditions as well as the correspondence.
Additionally, the model allows the synthesis of new

images of a face to given lighting conditions. This
approach is very similar to the correspondence tech-
niques based onactive shape models(Cootes et al.,
1995; Lanitis et al., 1995; Jones and Poggio, 1995;
Vetter et al., 1997), which are more robust to local oc-
clusions when applied to a known object class. There
model parameters are optimized actively to model a
target image.

Several open questions remain for a fully automated
implementation. The separation of parts of an object
to form separated subspaces could be done by comput-
ing the covariance between the pixels of the example
images. However, for images at high resolution, this
may require thousands of example images.

One of the most critical assumptions in the method
presented here, is that the orientation of a face in the
image must be known. Different techniques have al-
ready been reported to estimate the orientation of faces.
Beymer (1993) used templates of faces of known ori-
entation to estimate the pose of a face in a new image.
Lanitis et al. (1995) used a flexible model for pose
estimation, which was precice to2− 5◦. It is not clear
yet how precisely the orientation should be estimated
to yield satisfactory results. However, considering that
there was still some variance in the pose of the faces in
our data set, a precision of2◦ seems promising.
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Appendix A. Face Images and Head Model

Images of 100 caucasian faces, showing a frontal
view and views taken24◦ from the frontal were avail-
able. The images were originally rendered for psy-
chophysical experiments under mainly ambient illumi-
nation conditions from a data base of three-dimensional
human head models recorded with a laser scanner
(CyberwareTM ). The simulated pin-hole camera was
set to a distance of 120 cm from the face. The differ-
ent views were taken by moving the camera around the
face. All faces were without makeup, accessories, and
facial hair. Additionally, the head hair was removed
digitally (but with manual editing), via a vertical cut
behind the ears. The resolution of the grey-level im-
ages was 256-by-256 pixels and 8 bit.

Preprocessing: First the faces were segmented from
the background and aligned roughly by automatically
adjusting them to their two-dimensional centroid. The
centroid was computed by evaluating separately the av-
erage of allx, y coordinates of the image pixels related
to the face independent of their intensity value.

A single three-dimensional model of a human head
was used to render the two reference images and to
compute the correspondence field between these two
images. This model was the average of 50 three-
dimensional models of human heads, recorded with a
laser scanner (CyberwareTM ). The averaging of the
models was performed in a semiautomatic way. Af-
ter manual editing and spatial alignment of the three-
dimensional models, the correspondence between the
models was computed using the same optic flow pro-
cedure on the texture data of the models as it was
used for the images in this paper. The obtained corre-
spondence between the three-dimensional models was
not correct in the individual case, however, the aver-
age based on this correspondence resulted in a perfect
three-dimensional model of a human head without any
noticeable errors (see figure 2).

Appendix B. Computation of the Correspondence

To compute the 2D-shape vectorssr, sri , s
f
i , used in

equations (1) and (2), which are the vectors of the spa-
tial distances between corresponding points in the face
images, the correspondence of these points has to be
established first. That means we have to find for every
pixel location in an image, e.g. a pixel located on the
nose, the corresponding pixel location on the nose in the

other image. This is in general a hard problem. How-
ever, since all face images compared are in the same
orientation, one can assume that the images are quite
similar and occlusions are negligible. The simplified
condition of a single view make it feasible to com-
pare the images of the different faces with automatic
techniques. Such algorithms are known from optical
flow computation, in which points have to be tracked
from one image to the other. We used a coarse-to-fine
gradient-based method (Bergen et al., 1992) applied to
the Laplacians of the images and following an imple-
mentation described in (Bergen and Hingorani, 1990).
The Laplacian of the images were computed from the
Gaussian pyramid adopting the algorithm proposed by
(Burt and Adelson, 1983). For every pointx, y in an
imageI, the error termE =

∑
(Ixδx+ Iyδy− δI)2 is

minimized forδx, δy, with Ix, Iy being the spatial im-
age derivatives of the Laplacians andδI the difference
of the Laplacians of the two compared images. The
coarse-to-fine strategy refines the computed displace-
ments when finer levels are processed. The final result
of this computation (δx, δy) is used as an approxima-
tion of the spatial displacement vectors in equation
(1)and (2). The correspondence is computed towards
the reference image from the example and test images.
As a consequence, all vector fields have a common ori-
gin at the pixel locations of the reference image.

Appendix C. Linear shape and texture synthesis.

First the optimal linear decomposition of a given shape
vector in equation (1) and a given texture vector in
equation (3) was computed. To compute the coeffi-
cientsαi (or similarβi) the “initial” vector Tr of the
new image is decomposed (in the sense of least square)
to theq example image vectorsTr

i given through the
example images by minimizing

||Tr −
q∑
i=1

αiTr
i ||2.

The numerical solution forαi andβi was obtained
by an standard SVD-algorithm (Press et al., 1992).
The new shape and texture vectors for the “frontal”
view were obtained through simple summation of the
weighted “frontal” vectors (equations( 2) and (4)).
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Appendix D. Blending of patches

Blending of patches is used at different steps in the
proposed algorithm. It is applied for merging different
regions of texture as well as for merging regions of
correspondence fields which were computed separately
for different parts of the face. Such a patch work might
have little discontinuities at the borders between the
different patches. It is known that human observers are
very sensitive to such effects and the overall perception
of the image might be dominated by these.

For images Burt and Adelson (1983,1985) proposed
a multiresolution approach for merging images or com-
ponents of images. First, each image patch is decom-
posed into bandpass filtered component images. Sec-
ondly, this component images are merged separately
for each band to form mosaic images by weighted aver-
aging in the transition zone. The weights for each band
were computed by generating a Gaussian pyramid of
the binary mask of each component. The sum of the
weights of the different components is normalized for
each band to one at each image pixel. This is necessary,
since it cannot be guaranteed in general that the sum
of the weights is one. Finally, these bandpass mosaic
images are summed to obtain the desired composite
image. This method was applied to merge the different
patches for the texture construction as well as to com-
bine the texture mapped across the viewpoint change
with the missing part taken from the constructed one.
Originally this merging method was only described for
an application to images, however, the application to
patches of correspondence fields eliminates visible dis-
continuities in the warped images. Taking a correspon-
dence field as an image with a vector valued intensity,
the merging technique was applied to thex andy com-
ponents of the correspondence vectors separately.

Appendix E. Synthesis of the New Image

The final step is image rendering. The new image can
be generated combining the texture and shape vector
generated in the previous steps. Since both are given in
the coordinates of the reference image, for every pixel
in the reference image the pixel intensity and coordi-
nates to the new location are given. The new location
generally does not coincide with the equally spaced
grid of pixels of the destination image. The final pixel
intensities of the new image are computed by linear in-

terpolation, a commonly used solution of this problem

known as forward warping (Wolberg, 1990).
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