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Synthesis of novel views from a single face image
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Abstract. Images formed by a human face change with viewpoint. A new technique is described for synthesizing
images of faces from new viewpoints, when only a single 2D image is available. A novel 2D image of a face can be
computed without explicitly computing the 3D structure of the head. The technique draws on a single generic 3D
model of a human head and on prior knowledge of faces based on example images of other faces seen in different
poses. The example images are used to “learn” a pose-invariant shape and texture description of a new face. The
3D model is used to solve the correspondence problem between images showing faces in different poses.

The proposed method is interesting for view independent face recognition tasks as well as for image synthesis
problems in areas like teleconferencing and virtualized reality.
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1. Introduction ture, such prior knowledge can be obtained through
extensive experience with other faces.

Given only a driver’s license photograph of a person’s ~ The mostdirectand general solution for the synthesis
face, can one infer how the face might look like from of novel views of a face from a single example image
a different viewpoint? The three-dimensional struc- IS the recovery of the three-dimensional structure of
ture of an object determines how its image changes the face. This three-dimensional model can be rotated
with a variation in viewpoint. With viewpoint changes, ~artificially and would give the correct image for the all
some previously visible regions of the object become POINts visible in the example image (i.e. the one from
occluded, while other previously invisible regions be- W_h'Ch the model was obtalne_d_). However, W'th_OUt ad-
come visible. Additionally, the arrangement or config- ditional assumptions, the m|n|ma! number of |m6}ge§
uration of abject regions that are visible in both views necessary to reconstruct a face using localized points is

h A dinalv. t thesi Vi three (Huang and Lee, 1989). Even with the additional
may ¢ qnge. ceordingly, to Synthesize a Novel View assumption that a face is bilaterally symmetric at least
of an object, two problems must be addressed and re-,, images are required (Rothwell et al., 1993; Vetter

solved. First, the visible regions that the new view 5. Poggio, 1994). Shape recovery methods such as
shares with the previous view must be redrawn at their shape-from-shading that can, in principle, work with
new positions. Second, regions not previously visible a single image are not of much help for this problem.
must be generated or synthesized. It is obvious that \while shape from shading algorithms have been ap-
this latter problem is unsolvable without prior assump- plied in previous work to recover the surface structure
tions. For human faces, which share a common struc- of a face (Horn, 1987), the inhomogeneous reflectance
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properties of faces make surface integration over the The shape model developed in Lanitis et al. (1995)
whole face imprecise and questionable. Additionally, additionally allows rigid rotations in 3D-space of the
the fact that the face regions visible from a single image faces depicted in the images. The shape component of
are insufficient to obtain the three-dimensional struc- a new individual face image is normalized to a stan-
ture of the whole head makes it clear that the task of dard three-dimensional orientation before it is coded
synthesizing new views from a single image of a face, by other example faces. The transformations neces-
cannot be solved without prior assumptions about the sary for this normalization are similar to these applied
structure and appearance of faces in general. by Beymer et al. (1993) to synthesize new images of a
Models that have been proposed previously to learn face with a different expression or a changed viewpoint
a face model from images can be subdivided into two making use of only a single image. These methods of
groups: those based on the three-dimensional headwarping an image to a new expression or a new view
structure and those considering only view- or image- have been already successfully applied for face recog-
dependent face models. In general, schemes thatnition tasks (Lanitis et al., 1995; Beymer and Poggio,
have attempted to incorporate knowledge about faces 1996).
into flexible three-dimensional head models, consist of  In the contrast of the problem posed in this paper of
hand-constructed representations of the physical prop-the synthesis of a new view from a single image, these
erties of the muscles and the skin of a face (Terzopoulos methods are limited in two ways due to their reliance on
and Waters, 1993; Thalmann and Thalmann, 1995). To the solution of the correspondence problem across view
adjust such a model to a particular face, often two or changes. First, to establish correspondence over large
more images were used (Aizawa et al., 1989; Akimoto changes in viewpoint is highly problematic because of
et al., 1993). For present purposes, it is difficult to the fact that occluding contours in different views of
assess the usefulness of this approach, since generalan object do not physically correspond to each other
ization performance to new views from only a single on the surface of the object. Second, the methods are
image has never been reported. An example based apfundamentally incapable of generating or synthesizing
proach for forming a flexible three-dimensional head those areas orregionsinthe new view, which previously
model was explored by Choi et al.(1991). Here a new were not visible. For instance, a change in viewpoint
face is modeled as a weighted sum of given example of about15° from the front to the side for a face usually
head models, modeling the three-dimensional shapeleads to a complete occlusion of one ear.
and the texture data (image intensities) separately. To overcome these difficulties in the present work,
In the same idea of modeling shape and texture of we draw on the concept tihear object classesvhich
face images separately, two-dimensional image-basedwe have introduced recently in the context of object rep-
face models have been applied for the synthesis of resentations (Vetter and Poggio, 1996). This approach
rigid and nonrigid face transitions (Craw and Cameron, does not need correspondence across different view-
1991; Poggio and Brunelli, 1992; Beymer et al., 1993; points and therefore is capable of coping with larger
Cootes et al., 1995; Lanitis et al., 1995). These models viewpoint changes. For each specific viewpoint a sep-

generally exploit prior knowledge from example im-
ages of prototypical faces and work by building flexi-
ble image-based representatioastive shape modgls

of known objects by a linear combination of labeled
examples. Although all these methods differ in their
labeling method they all lead to a very similar repre-

arate linear image model is used where each leads to
the same view independent representation of an object.
In contrast to all the methods mentioned earlier, this
approach does not directly transform (warp) a given
image to an image showing a new view of the face. It
rather codes the given image by one linear model and

sentation of images, which separates the shape and texuses this code in an different linear model to synthe-
tural information in an image. These representations size the new view. While this basic coding scheme
have been applied for the tasks of image search andis advantageous for handling large viewpoint changes,
recognition (Cootes et al., 1995) or synthesis (Craw however, it has some drawbacks for information not
and Cameron, 1991; Lanitis et al., 1995). The under- representable by the linear coding model. For instance
lying coding of an image of a new object or face is textural details will be lost with this linear modeling

based on linear combinations of the two-dimensional approach, even when they are clearly visible in the
shape and texture of examples of prototypical images. given image. In this paper an extension to the linear
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FACE IMAGE ~ CORRESPONDENCE " 1EXTURE MAP

Fig. 1. Two examples of face images (left column) mapped onto a reference face using pixelwise correspondence are shown (right column).
The middle column shows a superposition of the reference face and the correspondence field which was established through an optical flow
algorithm. The correspondence separates the 2D-shape information captured in the correspondence field from the texture information captured
in the texture mapped onto the reference face (right column).

object class approach is presented, which retains all its limitation of a single 3D head model is the well-known
advantages without the loss of textural information. difficulty of representing the variability of head shapes
Overview of the Approach the present paper, the in general, a problem that the linear class model, with
linear object classpproach is improved and combined  its exemplar-based knowledge of faces will allow us to
with a single three-dimensional model of a human head Solve. _ o
techniques in tandem, the limitations inherent in each @PProaches returns us to the two-fold problem we de-
approach (used alone) can be overcome. Specifically, SCTibed at the beginning of this paper. The synthesis of
the present technique is based on the linear object claséwy_EI views from a smgl_e exemplar image requires the
method described in (Vetter and Poggio, 1996), but is ability to redravy_the regions shared by the two views,
more powerful because the addition of the 3D model and also the ability to generate the regions of the novel
N . face that are invisible in the exemplar view. The 3D
allows a much better utilization of the example images. head model allows us to solve the former. and linear
The 3D-model allso allows .the transfer (_Jf fggtures like object class approach the allows us to solve the latter.
moles and blemishes particular to an individual face

. o L i Linear Object Classe# linear object class is de-
from the given view into new synthetic views. This fined as a 3D object class for which the 3D shape
latter point is an important addition to the linear class

- R g ‘ can be represented as a linear combination of a suffi-
approach, because itnow allows forindividualidentify- - ¢jently small number of prototypical objects. Objects

ing features that are presentin “non-standard”locations that meet this criterion have the following important
ona given individual face, to be transferred onto syn- property. New orthographic views according to uni-
thesized novel views of the face. Thisis true even when form affine 3D transformation can be generated for any
these blemishes, etc., are unrepresented in the “generabbject of the class. Specifically, rigid transformations
experience” that the linear class model has acquired in 3D, can be generated exactly if the corresponding
from example faces. On the other hand, the primary transformed views are known for the set of prototypes.
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Thus, if the example set consists of frontal and rotated dimensional model and its generation are described in
views of a set of prototype faces, any rotated view of a Appendix A.
new face can be generated from a single frontal view—  The paper is organized as follows. First, the algo-
provided that the linear class assumption holds. rithm for generating new images of a face from a single
The key to this approach is a representation of an ob- image is described. The technical details of the imple-
ject or face view in terms ofshape vectoand aexture mentation used to realize the algorithm on grey level
vector(see also Cootes et al., 1995; Beymer and Pog- images of human faces are described inAppendix
gio, 1996). The separation of 2D-shape and texture UnderResultsa comparison of different implementa-
information in images of human faces requires corre- tions of the generalization algorithm are shown. Two
spondence to be established to a single reference facevariations of the combined approach are compared with
Atits extreme, correspondence must be established fora method based purely on the linear object class as de-
every pixel, between the given face image and a ref- scribed previously (Vetter and Poggio, 1996). First, the
erence image. As noted previously, while this is an linear class approach is applied to the parts of a face
extremely difficult problem when large view changes separately. The individual parts in the two reference
areinvolved, the linear object class assumption requires face images were separated using the 3D-model. Sec-
correspondence onlyithina given viewpoint—specif-  ond, the 3D-model was used additionally to establish
ically, the correspondence between a single view of an Pixelwise correspondence between the two reference
individual face and a single reference face image from faces images in the two different orientations. This
the same view. Separately for each orientation, all ex- correspondence field allows texture mapping across the
ample face images have to be set in correspondence to/ieW point change. Finally, the main features and pos-
the reference face in the same pose, correspondence pesible future extensions of the technique are discussed.
tween different poses is not needed. This can be done
off-line manually (Craw and Cameron, 1991; Cootes 2. Approach and Algorithm
et al., 1995) or automatically (Beymer et al., 1993;
Lanitis et al., 1995; Vetter and Poggio, 1996). Once |n this section an algorithm is developed that allows
the correspondence problem within views is solved, the for the synthesis of novel views of a face from from
resultant data can be separated into a shape and texturg single view of the face. For brevity, in the present
vector. The shape vector codes the 2D-shape of a facepaper we describe the application of the algorithm to
image as deformation or correspondence field to a ref- the synthesis of a “frontal” view (i.e., defined in this
erence face, which later also serves as the origin of a paper as the novel view) from a single “rotated” view
linear vector space. Likewise the texture of the exem- (i.e., defined in this paper as the view’ from frontal).
plar face is coded in a vector of image intensities being It should be noted, however, that the algorithm is not
mapped ont@orrespondingositions in the reference  at all restricted to a particular orientation of faces.
face image (see also figure 1 right column). The algorithm can be subdivided into three parts (for
The Three-dimensional Head Moddle linear class  an overview see figure 3).
approach works well for features shared by all faces
(e.g. eyebrows, nose, mouth or the ears). But, ithas « First, the texture and shape information in an im-
limited representational possibilities for features par- age of a face are separated.
ticular to a individual face (e.g. a mole on the cheek). « Second, two separate modules, one for texture and
For this reason, a single 3D model of a human head one for shape, compute the texture and shape rep-
is added to the linear class approach. Face textures resentations of a given “rotated” view of a face
mapped onto the 3D model can be transformed into (in terms of the appropriate view of the reference
any image showing the model in a new pose. The final face). These modules are then used to compute the
“rotated” version of a given face image (i.e. includ- shape and texture estimates for the new “frontal”
ing birthmarks, etc.) can be generated by applying to view of that face.
this new image of the 3D model the shape transfor- e« Finally the new texture and shape for a “frontal”
mation given through the linear object class approach. view are combined and warped to the “frontal”
This is described in more detail shortly. The three- image of the face.
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2D - Images

Correspondence | Correspondence
of parts of pixels

Fig. 2. A three-dimensional model of a human head was used to render the reference images @pfomthe linear shape and texture
model. The model defines corresponding parts in the two images (ca#)rand also establishes pixelwise correspondence between the two
views (columnC'). Such a correspondence allows texture mapping from one gt the other C'2).

Separation of texture and shape in images of faces: pendix B.
The central part of the approach is a representation of
face images that consists of a separate texture vector Linear shape model of faceShe shape model of
and 2D-shape vector, each one with components refer-human faces used in the algorithm is based on the lin-
ring to the same points — in this case pixels. Assum- €ar object class idea (the necessary and sufficient con-
ing pixelwise correspondence to a reference face in the ditions are given in Vetter and Poggio, 1996 ) and is
same pose, agivenimage can be represented as followsPuilt on a example set of pairs of images of human
its 2D-shape will be coded as the deformation fieldof ~ faces. From each pair of images, each consisting of
selected points —in the limit of each pixel —to the refer- @ ‘rotated” and a “frontal” view of a face, the 2D-

enceimage. So the shape of a face image is represente§N@pPe vectors” for the “rotated” shape and/ for
by a vectors = (z1,y1, 2, ..... T, yn)T € B2, that the “frontal” shape are computed. Consider the three-
is by the, y distance or displacement of each point dimensional shape of a human head defined in terms

with respect to the corresponding point in the refer- of a set of points in the three-dimensional space. The

ence face. The texture is coded as a difference map be-3D'Shape of the head can be represented by a vec-

— T H

tween the image intensities of the exemplar face and its tor S = (xl’yl.’zl’@’ ""."y”’z"f) , that contains

o . the z, y, z-coordinates of itsx points. Assume that
correspondingntensities in the reference face. Thus, S € %3 is the linear combination of 3D shapes
the mapping is defined by the correspondence field. S, of other heads, such thatS — ™2 3,S,. It
. . [ ’ - i=1 M1
Such "’“ normallfzed te:ture can be. wrltten.as a vgctor is quite obvious that for any linear transformatién
T = (’1’_""@”) € R, that.contalns thg Image IN- e 9. rotation in 3D) withS” = RS, it follows that
tensity differences of then pixels of the image. All S" = 27 :Sr. Thus, if a 3D head shape can be
images of the example set are mapped onto the ref-yapresented as the weighted sum of the shapes of other
erence face of the corresponding orientation. This iS heads, its rotated shape is a linear combination of the
done separately for each rotated orientation. For real rotated shapes of the other heads with the same weights
images of faces the pixelwise correspondences neces-;
sary for this mappings were computed automatically  To apply this to the 2D face shapes computed from
using a gradient based optical technique which was images, we have to consider the following. A projec-
already used successfully previously on face images tion P from 3D to 2D with s = PS” under which
(Beymer et al., 1993; Vetter and Poggio, 1996). The the minimal numbeg of shape vectors necessary to
technical details for this technique can be found in Ap- represen8” = Y"¢_ 3,S7 ands” = >"7 , 3;s! does
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not change, it allows the correct evaluation of the co-
efficients3; from the images. Or in other words, the
dimension of a three-dimensional linear shape class is
not allowed to change under a projectiBn Assuming
such a projection, and theit, a 2D shape of a given “ro-

In contrast to the linear shape model, using the co-
efficientsa; of equation (3) in equation (4) holds not
in general. The assumption of a separate linear texture
model, which is independent of (1) is strictly only valid
for textures which are a function of albedo only.

tated” view, can be represented by the “rotated” shapes ~ Thethree-dimensional head mod&thereasthe lin-

of the example set] as

q
ro__ E r
s = ﬂisq',7
i=1

then the “frontal” 2D-shape’ to a givens” can be
computed without knowin@ usings; of equation (1)
and the othesgc given through the images in the exam-
ple set with the following equation:

q
sf = Zﬂisif.
i=1

In other words, a new 2D face shape can be com-
puted without knowing its three-dimensional structure.

1)

(2)

ear texture approach is satisfactory for generating new
“frontal” textures for regions not visible in the “rotated”
texture, it is not satisfactory for the regions visible in
both views. The linear texture approach is hardly able
to capture or represent features which are particular to
an individual face (e.g. freckles, moles or any simi-
lar distinct aspect of facial texture). Such features ask
for a direct mapping from the given “rotated” texture
onto the new “frontal” texture. However, this requires
pixelwise correspondence between the two views (see
Beymer et al., 1993).

Since all textures are mapped onto the reference face,
it is sufficient to solve the correspondence problem
across the the viewpoint change for the reference face
only. A three-dimensional model of an object intrinsi-

Itshould be noted that no knowledge of correspondence cally allows the exact computation of a correspondence
between equation (1) and equation (2) is necessaryfield between images of the object from different view-

(rows in a linear equation system can be exchanged
freely).

Texture model of facesin contrast to the shape
model, two different possibilities for generating a
“frontal” texture given a “rotated” texture are de-
scribed. The first method is again based on the linear
object class approach and the second method uses a si
gle three-dimensional head model to map the texture
from the “rotated” texture onto the “frontal” texture.
The linear object class approach for the texture vectors
is equivalent to the method described earlier for the
2D-shape vectors. It is assumed that a “rotated” tex-
tureT” can be represented by thérotated” textures
T7 computed from the given example set as follows:

q
T =) oT].
=1

It is assumed further that the new textuFé can be
computed usingy; of equation (3) and the othé‘{
given through the “frontal” images in the example set
by the following equation:

q
T/ =Y o,T].
=1

©)

(4)

points, because the three-dimensional coordinates of
the whole object are given, occlusions are not prob-
lematic and hence the pixels visible in both images
can be separated from the pixels which are only visible
from one viewpoint.

A single three-dimensional model of a human head
is incorporated into the algorithm for three different

np_)rocessing steps. For more details about the three-

dimensional head model and its generation see Ap-
pendix A.

1. The reference face images used for the formation
of the linear texture and 2D-shape representations
were rendered from the 3D-model under ambient
illumination conditions (see figure 2A).

. The 3D-model was manually divided into separate
parts, the nose, the eye and mouth region and the
rest of the model. Using the projections of these
parts, the reference images for different orienta-
tions could be segmented into corresponding parts
for which the linear texture and 2D-shape rep-
resentation could be applied separately (see next
paragraph on “The shape and texture models ap-
plied to parts” and also figure 2B).

. The correspondence field across the two different
orientations was computed for the two reference
face images based on the given 3D-model. So the
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Fig. 3. Overview of the algorithm for synthesizing a new view from a single input image. After mapping the input image onto a reference

face in the same orientation, texture and 2D-shape can be processed separately. The example based linear face model allows the computation of
2D-shape and texture of a new “frontal” view. Warping the new texture along the new deformation field (coding the shape) results in the new
“frontal” views as output. In the lower row on the right the result purely based on the linear class approach applied to parts is shown, in the
center the result with texture mapping from the “rotated” to the “frontal” view using a single generic 3D model of a human head. On the bottom

left the real frontal view of the face is shown.
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visible part of any texture, mapped onto the refer- 3. Results

ence face in one orientation, can now be mapped

onto the reference face in the second orientation The algorithm was tested on 100 human faces. For

(see figure 2C and figure 3). each face, images were given in two orientatidh (

and0°) with a resolution of 256-by-256 pixels and 8
To synthesize a complete texture map on the bit (more details are given in Appendix A).

“frontal” reference face for a new view, (i.e., the re- In aleave—one—oytrocedure, a new “frontal” view
gions invisible in the exemplar view are lacking), the of a face was synthesized to a given “rotated” view
texture of the region visible in both views, which has (24°). In each case the remaining 99 pairs of face
been obtained through direct texture mapping acrossimages were used to build the linear 2D-shape and tex-
the viewpoint change, is merged with the texture ob- ture model of faces. Figure 4 shows the results for four
tained through the linear class approach (see figure 3).faces for three different implementations of the algo-
The blending technique used to merge the regions is rithm (center rows A,B,C). The left column shows the

described in detail in the Appendix D. test image given to the algorithm. The true “frontal”
_ view to each test face from the data base is shown in the
The shape and texture models applied to pafis.  right column. The implementation used for generating

apply equations (1 —4) to individual parts of a face, it the images in column A was identical to the method
is necessary to isolate the correspondingasin the  aready described in (Vetter and Poggio, 1996), the lin-
“rotated’ and “frontal” reference images. Such a sep- gg¢ object class approach was applied to the shape and
aration requires the correspondence between the “ro-iexire vector as a whole, no partitioning of the ref-
tated’ and “frontal” reference image or equivalent be-  grence face or texture mapping across the viewpoints
tween equations (1) and (2) of the shape representation,, -« applied. The method used in B was identical to
and also between equations (3) and (4) for the texture. A, except that the linear object class approach was ap-

The 3D-model, however, used for generating the ref- i senarately to the different parts of a face. The
erence face images determines such a CorrESporIOIenCgwee—dimensional head model was divided into four

L?medlatelil (for ?X""?‘p'e ??E f||gure ZBl) and allowshparts (see figure 2B) the eye, nose, mouth region, and
€ separate appiication ot Ihe linear class approachy, remaining part of the face. To segment the two

to parts. To generate the final shape and texture vec- . .
. . reference images correctly, it was clearly necessary to
tor for the whole face, this separation adds only a few : !
render both of them from the same three-dimensional

complexities to the computational process . Shape and ) .
P b b P model of a head. Based on this segmentation, the tex-

texture vectors obtained for the different parts must be t d 2D-sh tors for the diff t part
merged, which requires the use of blending techniques ure ant q S(‘j fape ver(]: orst orthe It elfe” p?r ‘:’ Wered
to suppress visible border effects. The blending tech- separatedand for each parta separate lineartexture an

nique used to merge the regions is described in detail 2D-shape modelyvas applied. The finalimage was ren-
in Appendix D. dered after merging the new shape and texture vectors

The linear object class approach for 2D-shape and ©f the parts. The images shown in column C are the
texture, as proposed in (Vetter and Poggio, 1996), can result ofacombmgnon of the tech.nlque.descnbed inB
be improved through the 3D-model of the reference and texture mapping across the viewpoint change. Af-
face. Since the linear object class approach did not (& mapping a given “rotated” face image onto the “ro-
assume correspondence between equations (1) and (2§ated” reference image, this normalized texture can be
or (3) and (4), shape and texture vectors had to be con-mapped onto the “frontal” reference face since the cor-
structed for the complete face as a whole. On the other respondence between the two images of the reference
hand, modeling parts of a face (e.g. nose, mouth or eye face is giventhrough the three-dimensional model. The
region ) inindependent separate linear classes is highly part of the “frontal” texture not visible in the “rotated”
preferable, because it allows a much better utilization view is substituted by the texture obtained by the linear
of the example image set and therefore gives a much texture model as described under B.
more detailed representation of a face (see also Choi The quality of the different synthesized “frontal”
et al., 1991). A full set of coefficients for shape and views was compared in a simple simulated recognition
texture representation is evaluated separately for eachexperiment. For each synthetic image, the most simi-
part instead of just one set for the entire face. lar frontal face image in the data base of 100 real face



images was computed. For the image comparison, two
common similarity measures were used: a)thege-
lation coefficientalso known aglirection cosineand

b) the Euclidean distanc€l,). Both measures were
applied to the images in pixel representation without
further processing.

The recognition rate of the synthesized images (type
A,B,C) was 100 % correct, both similarity measures
independently evaluated the true “frontal” view to a
given “rotated” view of a face as the most similar im-
age. This result holds for all three different methods
applied for the image synthesis. The similarity of the
synthetic imagesto the real face image improved by ap-
plying the linear object class approach separately to the
parts and improved again adding the correspondence
between the two reference images to the method. This
improvement is indicated in table 1 where thenorm
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subject classified as the true image and in one case the
synthetic image was found to match the rotated image
better as the real frontal image. On average each ob-
server wag4% correct whereas the chance level was
at50%.

4. Discussion

The results demonstrate a clear improvement in gener-
ating new synthetic images of a human face from only
a single given view over techniques proposed previ-
ously (Beymer and Poggio, 1995; Vetter and Poggio,
1996). Here a single three-dimensional model of a
human head was added to the linear class approach.
Using this model, the reference images could be seg-
mented into corresponding parts, and additionally any

decreases whereas the correlation coefficients increasd®xture on the reference image could be mapped pre-

for the different techniques.

A crucial test for the synthesis of images is a direct

cisely across the viewpoint change. The information
used from the three-dimensional model is equivalent to
the addition of a single correspondence field across the

servers. As can be seen in figure 4 the synthesized im-ity of the synthesized image to the image of the real
ages of typed already resemble the real faces in their face for the shape as well as for the texture. The im-
general shape and appearance. The images offlype Provement could be demonstrated in automated image
show the improved similarity of the details of the faces. comparison as well as in perceptual experiments with
The shape of the nose of fador example, is highly ~ human observers.
improved changing from typd to B. However, both
types are not able to capture the textural peculiarities Table 1. Comparing the differentimage synthesis techniques using
of the faces. Onlv the imaaes of t p:é reproduce Direction Cosines andlo-Norm as distance measures. First, for all
N y 9 Yy P real frontal face images the average distance to its nearest neighbor
features like birthmarks (see fateand2) or freckles (an image of a different face) was computed over an images test set
(see face8). On the other hand, for faces without pe- of 100 frontal face images. Second, for all synthetic images (type
culiarities all methods resultin almostidentical images #:B:C) the average value to its nearest neighbor was computed for
f Th l fthe i hesized both distance measures. For all synthetic images the real face image
(See acel)' ) e quality of the images synthesized to was found as nearest neighbor. Switching from technique A to B
all 100 faces in the data set was evaluated by humanand from B to C the average values of Direction Cosines increase
observers. In a two alternative forced choice task 10 Whereasthe values of ttie-Norm decrease, indicating an improved
subjects were asked to decide which of the two frontal ™a9¢ Similariy.
face images matches a given rotated imagé)best.
One image was the “real” face the other a synthetic

Average Image Distance to Nearest Neighbor

image generated applying the linear class method to Lo Direction Cosines
the parts of the faces separately (method B). The first

five images of the data set were used to familiarize ~ Real Face Images 4780.3 0.9589
the subjects with the task, whilst the performance was _

evaluated on the remaining 95 faces. Although there ~ SyntheticimagesType A 3131.9 0.9811
was no time Iimit for a response and all three images Synthetic Images Type B 3039.3 0.9822
were shown simultaneously, there were only 6 faces

classified correctly by all 10 subjects (see table 2). In Synthetic Images Type C ~ 2995.0 0.9827

all other cases the synthetic image was at least by one
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SYNTHETIC
B

Fig. 4. Synthetic new frontal views (center columns) to a single given roté2efl) image of a face (left column) are shown. The prior
knowledge about faces was given through a example set of 99 pairs of images of different faces (not shown) in the two orientations. Column
A shows the result based purely on the linear object class approach. Adding a single 3D-head model, the linear object class approach can be
applied separately to the nose, mouth and eye region in a face (c@)nTrhe same 3D-model allows the texture mapping across the viewpoint
change (columi). The frontal image of the real face is shown in the right column. The synthesized images in coltesamble the real

faces already in general shape and appearance. In cauthae similarity of details is improved, see for example the mouth of facethe

eyebrows and nose of fa@e Images of type” additionally capture localized peculiarities like the mole on the cheek ofifareghe dimples

on the chin of fac&. For faces without peculiarities all methods result in almost identical images (face 4).

The results of the automated image comparison in- any 3D affine transformation, supposing of course the
dicate the importance of the proposed face model for linear face model can produce a good approximation

viewpoint independent face recognition systems. Here °f the target face.

the synthetic rotated images were compared with the The synthesis of new viewsis n(.)t.only_/ |_nterest|ng for
, the field of automated face recognition, itis also of great
real frontal face image. It should also be noted that

o i - interestfor applications in the fields of teleconferencing
coefficients, which result from the decomposition of 414 virtualized reality. In contrast to pure machine

shape and texture into example shapes and textures, alyision tasks, there the human observer is the best judge
ready give us a representation that is invariant under of the quality of a method. (The problem of automating



Vetter 113

Table 2. For 95 different faces a rotated imag4°) and two frontal images were shown to human observers simultaneously. They had to
decide which of the frontal images was the synthesized image (type B) and which one was the real image. The table shows the error rate for 10
observers and the related number of faces. In average each observer was c@a#cofrthe trails (chance level wag%).

Classification of Synthetic Versus Real Face Images

Error 0% 10% 20% 30% 40% 50% 60% 70— 100%

Number
of 6 17 22 24 19 6 1 0
Faces

the measurement of picture quality is discussed in Xu images of a face to given lighting conditions. This
and Hauske, 1994.) approach is very similar to the correspondence tech-
The difficulties experienced by human observers in nigues based oactive shape model&ootes et al.,
distinguishing between the synthetic images and the 1995; | anitis et al., 1995; Jones and Poggio, 1995;
real face images indicate that a linear face model of 99 \ jotter et al., 1997), which are more robust to local oc-
faces segmented into parts gives a good apprOXimaﬁonclusions when applied to a known object class. There

of a new face. The low number of images that were . .
. . . model parameters are optimized actively to model a
consistently recognized as synthetic by all observers .
target image.

demonstrates that the model can already be applied to ) .

a wide range of faces and indicates possible applica- Several open questions remain for a fully automated
tions of this method in the area of computer graphics. Implementation. The separation of parts of an object
Clearly, the linear model depends on the given example to form separated subspaces could be done by comput-
set, thus to represent faces from a different race or aing the covariance between the pixels of the example
different age group, the model would need examples images. However, for images at high resolution, this
of these, an effect well known in human perception (cf. may require thousands of example images.

e.g. O'Toole et al., 1994). One of the most critical assumptions in the method
presented here, is that the orientation of a face in the
image must be known. Different techniques have al-
ready been reported to estimate the orientation of faces.
Beymer (1993) used templates of faces of known ori-

ages obtained under less controlled conditions, a moreenté_lt_Ion to estimate the pose of a_face Ina new image.
sophisticated method for finding the correspondence Lanitis et al. (1995) used a flexible model for pose
might be necessary. The use of images derived from estimation, which was precice 20— 5°. Itis not clear
three-dimensional head models allowed the generationyet how precisely the orientation should be estimated
of identical illumination conditions for all the example to yield satisfactory results. However, considering that
and testimages. An extension of the proposed methodthere was still some variance in the pose of the faces in
to images obtained by a normal camera will lead to our data set, a precision df seems promising.

more unconstrained lighting conditions and will influ-
ence the correspondence finding step as well as the
image synthesis. Both problems have been investi-

gated by Hallinan (1995) for frontal face images. He )
demonstrated that a low dimensional linear illumina- | @M grateful to T. Poggio, H.H. @thoff and V. Blanz

tion model is able to explain most variations in lighting.  for useful discussions and suggestions. Special thanks
By fitting this model to an image, he could determine 10 Alice O'Toole for editing the manuscript and for her
the lighting conditions as well as the correspondence. endurance in discussing the paper. Iwould like to thank
Additionally, the model allows the synthesis of new Nikolaus Troje for providing the images.

The key stepin the proposed technique is a dense cor-
respondence field between images of faces seen from
the same viewpoint. The optical flow technique used
for the examples shown worked well. However, forim-

Acknowledgements
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Appendix A. Face Images and Head Model other image. This is in general a hard problem. How-
ever, since all face images compared are in the same
Images of 100 caucasian faces, showing a frontal orientation, one can assume that the images are quite
view and views takeR4° from the frontal were avail-  similar and occlusions are negligible. The simplified
able. The images were originally rendered for psy- condition of a single view make it feasible to com-
chophysical experiments under mainly ambientillumi- pare the images of the different faces with automatic
nation conditions from a data base of three-dimensional techniques. Such algorithms are known from optical
human head models recorded with a laser scannerfiow computation, in which points have to be tracked
(Cyberware™™). The simulated pin-hole camerawas  from one image to the other. We used a coarse-to-fine
set to a distance of 120 cm from the face. The differ- gradient-based method (Bergen et al., 1992) applied to
ent views were taken by moving the camera around the ¢ | gplacians of the images and following an imple-
face. All faces were without makeup, accessories, and entation described in (Bergen and Hingorani, 1990).
facial hair. Additionally, the head hair was removed The Laplacian of the images were computed from the
digitally (but with manual editing), via a vertical cut Gaussian pyramid adopting the algorithm proposed by
behind the ears. The r_esolution of t_he grey-level im- (Burt and Adelson, 1983). For every pointy in an
ages was 256-by-256 pixels and 8 bit. image!, the error termtl = >°(1,.6x + I,y — 61)% is

Preprocessing: Firstthe faces were segmented fromminimizeol foréz, 8y, with I, I, being the spatial im-
the background and aligned roughly by automatically S oo vy ;

- . . . . age derivatives of the Laplacians ahtdthe difference
adjusting them to their two-dimensional centroid. The f the Laplac f the t di Th
centroid was computed by evaluating separately the qu-0' the Lapiacians ol the two compared images. €

coarse-to-fine strategy refines the computed displace-

erage of allr, y coordinates of the image pixels related , !
to the face independent of their intensity value. ments when finer levels are processed. The final result

A single three-dimensional model of a human head ‘?f this computa?ioné(x, 8y) is used as an approx.ima—
was used to render the two reference images and totion Of the spatial displacement vectorin equation
compute the correspondence field between these two(l)and (2). The correspondence is computed towards
images. This model was the average of 50 three- the reference image from the example and test images.

dimensional models of human heads, recorded with a AS @ consequence, all vector fields have a common ori-
laser scanner{yberware™). The averaging of the gin at the pixel locations of the reference image.
models was performed in a semiautomatic way. Af-

ter manual editing and spatial alignment of the three-

dimensional models, the gorrespondence l_Jetween theAppendix C. Linear shape and texture synthesis.
models was computed using the same optic flow pro-

cedure on the texture data of the models as it was fjrst the optimal linear decomposition of a given shape
used for the images in this paper. The obtained corre-gcor in equation (1) and a given texture vector in
spondence between the three-dimensional models WaSyquation (3) was computed. To compute the coeffi-

not correct in thg individual case, however, 'the aver- cientsa; (or similar 3;) the “initial” vector T" of the
age based on this correspondence resulted in a perfechew image is decomposed (in the sense of least square)
three-dimensional model of a human head without any . -
; . to theq example image vector¥] given through the
noticeable errors (see figure 2). . L
example images by minimizing

Appendix B. Computation of the Correspondence T — zq: aTTHQ
i=1

To compute the 2D-shape vectar's sf,sf, used in

equations (1) and (2), which are the vectors of the spa-  The numerical solution fow; and 3; was obtained
tial distances between corresponding points in the face by an standard SVD-algorithm (Press et al., 1992).
images, the correspondence of these points has to belhe new shape and texture vectors for the “frontal”
established first. That means we have to find for every view were obtained through simple summation of the
pixel location in an image, e.g. a pixel located on the weighted “frontal” vectors (equations( 2) and (4)).

nose, the corresponding pixellocation onthe nose inthe
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Appendix D. Blending of patches terpolation, a commonly used solution of this problem
' _ . . known as forward warping (Wolberg, 1990).

Blending of patches is used at different steps in the

proposed algorithm. Itis applied for merging different
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