
Form Methods Syst Des
DOI 10.1007/s10703-012-0141-9

Synthesis of opaque systems with static and dynamic
masks

Franck Cassez · Jérémy Dubreil · Hervé Marchand

© Springer Science+Business Media, LLC 2012

Abstract Opacity is a security property formalizing the absence of secret information leak-
age and we address in this paper the problem of synthesizing opaque systems. A secret
predicate S over the runs of a system G is opaque to an external user having partial observ-
ability over G, if s/he can never infer from the observation of a run of G that the run belongs
to S. We choose to control the observability of events by adding a device, called a mask,
between the system G and the users. We first investigate the case of static partial observ-
ability where the set of events the user can observe is fixed a priori by a static mask. In this
context, we show that checking whether a system is opaque is PSPACE-complete, which
implies that computing an optimal static mask ensuring opacity is also a PSPACE-complete
problem. Next, we introduce dynamic partial observability where the set of events the user
can observe changes over time and is chosen by a dynamic mask. We show how to check that
a system is opaque w.r.t. to a dynamic mask and also address the corresponding synthesis
problem: given a system G and secret states S, compute the set of dynamic masks under
which S is opaque. Our main result is that the set of such masks can be finitely represented
and can be computed in EXPTIME and this is a lower bound. Finally we also address the
problem of computing an optimal mask.

Keywords Security · Confidentiality property · Opacity · Synthesis · Dynamic observation

F. Cassez
CNRS, National ICT Australia, Sydney, Australia
e-mail: franck.cassez@cnrs.irccyn.fr

J. Dubreil
Comète, INRIA and Ecole Polytechnique, Palaiseau, France
e-mail: jeremy.dubreil@inria.fr

H. Marchand (�)
VerTeCs, INRIA, Centre Rennes–Bretagne Atlantique, Rennes, France
e-mail: herve.marchand@inria.fr

mailto:franck.cassez@cnrs.irccyn.fr
mailto:jeremy.dubreil@inria.fr
mailto:herve.marchand@inria.fr

Form Methods Syst Des

1 Introduction

Security is one of the most important and challenging aspects in designing services deployed
on large open networks like Internet or mobile phones. Some services like medical informa-
tion storage, e-banking or e-voting systems may deal with information that should not be
corrupted or acquired by unauthorized people. For such services, naturally subject to ma-
licious attacks, methods to certify their security are crucial. In this context there has been
many research to develop formal methods for the design of secure systems and a growing
interest in the formal verification of security properties [3, 15, 19] and in their model-based
testing [8, 11, 17, 18, 23]. This line of research therefore complete at the computational level
the large amount of work on cryptography and cryptographic protocols. Security properties
are generally divided into three categories: integrity, availability and confidentiality. We fo-
cus here on confidentiality and especially information flow properties. We use the notion
of opacity introduced in [21] for transition system and later developed in [4] to formalize
the absence of information flow, or more precisely, the impossibility for an attacker to infer
the truth of a predicate representing the secret information.1 Consider such a predicate ϕ

over the runs of a system G and an attacker observing only a subset of the events of G. We
assume also that the attacker knows the model G. The attacker should not be able to infer
that a run of G belongs to ϕ. The secret ϕ is opaque for G with respect to a given partial
observation if for every run of G that belongs to ϕ, there exists a run, observationally equiv-
alent from the attacker’s point of view, that does not belong to ϕ. In such a case, the attacker
can never be sure that a run of G satisfying ϕ has occurred. In the sequel, we shall consider
a secret ϕ corresponding to either a regular language or a set of secret states. Finally, note
that the definition of opacity is general enough to model other notions of information flow
like trace-based non-interference [14] and anonymity. The reductions are given in [4]. Note
also that secrecy [1] can be handled as a particular case of opacity (see Sect. 3) and thus our
framework applies to secrecy as well.

Related work Methods for the synthesis of opaque systems have already been investi-
gated from the supervisory control point of view. In these frameworks, some of the events
are uncontrollable and the set of events an external attacker can observe is fixed. If the
system is G, the approach is then to restrict G (remove some of its behaviors) using a
supervisor (or controller) C, in order to render a secret ϕ opaque in the supervised sys-
tem G/C. In [2], the authors consider several secrets and attackers with different sets of
observable events. They provide sufficient conditions to compute an optimal controller pre-
serving all secrets assuming that the controller has complete knowledge of the system and
full control on it. In [10, 12], the authors consider a control problem under partial obser-
vation and provide algorithms to compute the optimal controller ensuring the opacity of
one secret against one attacker. Other works on the enforcement of opacity by means of
controllers can be found in [25]. Finally, in [22], the author adapts the decentralized su-
pervisory control theory in order to ensure the Chinese Wall Policy. Note that these ap-
proaches are characterized by their intrusive nature, in the sense that the behaviours of G

are restricted. Closely related to opacity, in [6], the authors investigate the control problem
for non-interference properties but they do not consider dynamic partial observability. Our
work also has some relationships with the earlier work done by Schneider on security au-
tomata [23], subsequently extended to edit automata in [18]. The goal pursued in [25] is to

1For a system with anonymity constrains, an example of such predicate can be “User X has sent a message”,
interpreted over the runs.

Form Methods Syst Des

Fig. 1 Architecture filtering out sequences of events in G

produce an interface automata that enforces a security policy, consisting of integrity prop-
erties. The interface automaton rejects the inputs from the environment that would lead the
system to leave the subset of safe executions. In [18], the authors consider several kinds of
automata, called edit automata, classified with respected to their transformational capabili-
ties, e.g. halt system, remove actions, insert actions, etc. Then, they give a set-theoretic char-
acterization of the security policies that can be enforced by each category of edit automata.
However, they only consider security properties that are properties over the runs. Therefore,
their approach does not apply for properties like non-interference or opacity. Enforcement
monitoring techniques for security have also been investigated in [13]. In this paper, the
authors give a classification of properties that can be enforced by monitoring. They also
provide an algorithm to compute an enforcing monitor given an automaton accepting this
property.

Our contribution In [12], ensuring opacity is done by restricting the behaviours of the
system to an opaque subset. We investigate here another strategy which does not alter the
system. The intuition of our method is the following: considering a trace observed by the
user, it may happen that the observation of the next event discloses secret information. The
idea is then to hide the observation of the occurrence of this event at run-time (and possi-
bly only this single occurrence) to avoid information flow. To implement such an intuitive
mechanism, we will consider a monitor or mask (see Fig. 1) which is added between the
system and the user and which filters out the unobservable events to prevent information
flows. Thus instead of restricting the behavior of the system by means of a controller which
enables/disables some actions, we shall consider (dynamic) masks that will (dynamically)
change the set of observable events in order to ensure opacity. Compared to the approaches
related to the supervisory control theory, this approach is not intrusive in the sense that it
does not restrict the system’s behavior but only hide some events whenever it is necessary.
Another advantage of this technique we can consider several variations of masks depending
on the level of security we want to enforce.

In [12], ensuring opacity is done by restricting the behaviors to an opaque subset. We
investigate here another strategy which does not alter the system. The intuition of our method
is the following: considering a trace observed by the user, it may happen that the observation
of the next event discloses some secret information. The idea is then to hide the observation
of this event at run-time (and possibly only this single occurrence) to avoid information flow.
To implement such an intuitive mechanism, we will consider a monitor or mask (see Fig. 1)
which is added between the system and the user and which filters out the unobservable events
to prevent information flows. Thus instead of restricting the behavior of the system by means
of a controller which enables/disables some actions, we shall consider (dynamic) masks that
will (dynamically) change the set of observable events in order to ensure opacity. Compared
to the approaches related to the supervisory control theory, this approach is not intrusive in
the sense that it does not restrict the system’s behavior but only hide some events whenever
it is necessary. Another advantage of this technique we can consider several variations of
masks depending on the level of security we want to enforce.

Form Methods Syst Des

For example, in the context of several and potentially malicious users A1,A2, . . . ,An,
we can implement n independent masks O1,O2, . . . ,On, one for each user. In this way, we
can implement a (dynamic) mask which provides different levels of secrecy for users with
different credentials. For instance, it can reduce the set of provided services for unprivileged
users who shall not access critical information, and implement a more permissive partial
observation for authorized users.

The main contributions of this paper are two-fold. First, we extend the notion of opacity
defined previously for static masks (i.e., the natural projection) to dynamic masks.2 We show
how to check opacity when the dynamic mask is given by a finite automaton. Second we give
an algorithm to compute the set of all dynamic masks which can ensure opacity of a secret
ϕ for a given system G. In particular, we show that this problem can be reduced to a safety
2-player game problem. Intuitively, Player 1 will play the role of a mask and decide which
subset of event should remain observable after a given trace. Player 2 will play the role of
both the system and the attacker and will decide what will be the next observable event
amongst the ones Player 1 has last chosen to render observable. The goal of Player 2 is thus
to make the system evolve in states in which the attacker is sure that the secret is revealed,
whereas the goal of Player 1 is opposite (he has to choose the successive sequences of
observable events’ sets so that the secret is never revealed). In particular, we show that the
set of valid masks, the ones ensuring opacity, can be finitely represented. However, among all
these valid masks, it is worthwhile noticing that some are better (in some sense) than others.
To formalize this idea, we introduce a notion of costs which takes into account the set of
events the mask chooses to hide and also how long it hides them. We show how to compute
a least expensive mask which ensuring avoids the leakage of the secret. This is an important
issue to consider (and it has not been considered before) as hiding some events/actions might
be more expensive than others: for instance, we can consider that hiding a service is very
expensive as it decreases the users’ actions whereas hiding some other actions can be more
adequate. The notion of dynamic masks was already introduced in [5] for the fault diagnosis
problem. Notice that the fault diagnosis problem and the opacity problems are not reducible
one to the other and thus we have to design new algorithms to solve the opacity problems
under dynamic observations.

Organization of the paper In Sect. 2 we introduce some notations for words, languages and
finite automata. In Sect. 3 we define the notion of opacity and show that deciding opacity for
finite automata is PSPACE-complete. We also consider the problem of computing a largest
set of observable events to ensure opacity and show that this problem is PSPACE-complete
as well. Section 4 considers dynamic masks for ensuring opacity. We prove that the set of
all masks that ensure opacity can be computed in EXPTIME. We also prove that EXPTIME
is a lower bound. In Sect. 5 we define a notion of cost for masks and give an algorithm to
compute a least expensive dynamic mask which ensures opacity.

Note This paper is an extended version of [7]. It contains the full proofs of the theorems
and examples that were omitted in the conference paper. The proof of the lower bound at the
end of Sect. 4 is new and Sect. 5 which was briefly sketched in [7] is now treated thoroughly.

2Note that we have to assume that the attacker always knows the implemented system which is the original
system combined with the masks, and can therefore try to disclose information accordingly.

Form Methods Syst Des

2 Notation & preliminaries

Let Σ be a finite alphabet. Σ∗ is the set of finite words over Σ and contains the empty
word ε. A language L is any subset of Σ∗. Given two words u ∈ Σ∗ and u′ ∈ Σ∗ we denote
u.u′ the concatenation of u and u′ which is defined in the usual way. |u| stands for the length
of the word u (the length of the empty word is zero). We let Σn with n ∈ N denote the words
of length n over Σ .

Given Σ1 ⊆ Σ , we define the projection operator on finite words, PΣ1 : Σ∗ → Σ∗
1 , that

removes in a sequence of Σ∗ all the events that do not belong to Σ1. Formally, PΣ1 is
recursively defined as follows: PΣ1(ε) = ε and for λ ∈ Σ,u ∈ Σ∗, PΣ1(u.λ) = PΣ1(u).λ

if λ ∈ Σ1 and PΣ1(u) otherwise. Let K ⊆ Σ∗ be a language. The definition of projection
for words extends to languages: PΣ1(K) = {PΣ1(u) | u ∈ K}. Conversely, let K ⊆ Σ∗

1 . The
inverse projection of K is P −1

Σ1
(K) = {u ∈ Σ∗ | PΣ1(u) ∈ K}.

Definition 1 (Automaton) An automaton G is a tuple (Q,q0,Σ, δ,F) with Q a set of states,
q0 ∈ Q is the initial state, δ : Q × Σ → 2Q is the transition relation and F ⊆ Q is the set of
accepting states. If Q is finite, G is a finite automaton (FA).

For q ∈ Q, Enabled(q) is the set of actions enabled at q , i.e., the set of λ such that

δ(q,λ) �= ∅. We write q
λ−→ whenever λ ∈ Enabled(q). An automaton is complete if for each

λ ∈ Σ and each q ∈ Q, q
λ−→. The automaton A is deterministic if for all q ∈ Q and all

λ ∈ Σ , |δ(q,λ)| ≤ 1. A run ρ from state q0 in G is a finite sequence of transitions

q0
λ1−→ q1

λ2−→ q2 · · ·qi−1
λi−−→ qi · · ·qn−1

λn−→ qn (1)

s.t. λi+1 ∈ Σ and qi+1 ∈ δ(qi, λi+1) for i ≥ 0. The trace of the run ρ is tr(ρ) = λ1.λ2 · · ·λn.
We let last(ρ) = qn, and the length of ρ, denoted |ρ|, is n. For i ≤ n we denote by ρ(i) the

prefix of the run ρ truncated at state qi , i.e., ρ(i) = q0
λ1−→ q1 · · ·qi−1

λi−→ qi . The set of finite
runs from q0 in G is denoted Runs(G).

A word u ∈ Σ∗ is generated by G if u = tr(ρ) for some ρ ∈ Runs(G). Let L(G) be the
set of words generated by G. The word u ∈ Σ∗ is accepted by G if u = tr(ρ) for some
ρ ∈ Runs(G) with last(ρ) ∈ F . The language of (finite) words LF (G) of G is the set of
words accepted by G. If G is a FA such that F = Q we simply omit F in the tuple that
defines G.

In the sequel we will use the Post operator defined as follows: let X ⊆ Q, Post(X, ε) =
X and for u ∈ Σ∗, λ ∈ Σ,Post(X,u.λ) = ⋃

q∈Post(X,u) δ(q,λ). We also let Post(X,L) =⋃
u∈L Post(X,u) for a non empty language L.

Product of automata The product of automata is defined in the usual way: the product
automaton represents the concurrent behavior of the automata with synchronization on the
common events.

Definition 2 (Product of Automata) Let A1 = (Q1, q
1
0 ,Σ1, δ1,F1) and A2 = (Q2, q

2
0 ,Σ2,

δ2,F2). The product of A1 and A2 is the automaton A1 × A2 = (Q,q0,Σ, δ,F) where:

– Q = Q1 × Q2, F = F1 × F2,
– q0 = (q1

0 , q2
0),

– Σ = Σ1 ∪ Σ2,

Form Methods Syst Des

– δ : Q × Σ → 2Q is defined by:

(q1, q2), λ �→

⎧
⎪⎨

⎪⎩

δ1(q1, λ) × δ2(q2, λ) if λ ∈ Σ1 ∩ Σ2,

δ1(q1, λ) × {q2} if λ ∈ Σ1 \ Σ2,

{q1} × δ2(q2, λ) if λ ∈ Σ2 \ Σ1.

3 Opacity with static projections

Enforcing opacity aims at preventing an attacker, denoted U , from deducing confidential
information on the execution of a system G from the observation of a subset of events
Σo ⊆ Σ . Given a run of G with trace s, the observation of the attacker U is given by the
static natural projection PΣo(s) following the architecture of Fig. 1 with D(u) = PΣo(u).

In the sequel we let G = (Q,q0,Σ, δ) be a non-deterministic finite automaton over Σ .
The language Lϕ ⊆ Σ∗ represents a confidential information on the execution of G, i.e.
if the current trace of a run is u ∈ L(G), the user should not be able to deduce, from the
knowledge of PΣo(s) and the structure of G, that u ∈ Lϕ . As stressed earlier, the attacker
is armed with full information on the structure of G (he can perform computations using G

like subset constructions) but has only partial observability at runtime upon its behaviors,
namely the observed traces are in Σ∗

o .
Let Σo ⊆ Σ . The set of Σo-traces of G is TrΣo(G) = PΣo(L(G)). We define the operator

[[·]]Σo by:

[[ε]]Σo = {ε} and for μ ∈ Σ∗
o and λ ∈ Σo, [[μ.λ]]Σo = P −1

Σ (μ).λ ∩ L(G)

i.e., u ∈ [[μ.λ]]Σo iff (1) the projection of u is μ.λ and (2) u ∈ L(G) and (3) u ends with an
observable “λ” event.

Remark 1 The above semantics is consistent with an on-line observation performed by a
user of the system for whom the system is only seen through the interface given by the
observation mask PΣo . We suppose that users are reacting faster than the system. Therefore,
when an observable event occurs, a user can take a decision before the system proceeds
with any unobservable event. This explains why we do not consider trajectories ending with
unobservable events in the definition of the semantics.

Next we introduce the notion of opacity first defined in [4, 21]. Intuitively, a secret Lϕ is
said to be opaque with respect to a pair (G,Σo) if the attacker U can never be sure that the
current trace of the run in G is in Lϕ .

Definition 3 (Trace Based Opacity) Let Lϕ ⊆ Σ∗. The secret Lϕ is opaque with respect to
(G,Σo) if for all μ ∈ TrΣo(G), [[μ]]Σo �⊆ Lϕ .

Remark 2 Notice that [[μ]]Σo is never empty when μ ∈ TrΣo(G).

Example 1 Let G be the automaton depicted in Fig. 2 with Σ = {h,p,a, b}, Σo = {a, b}.
The secret under consideration is the occurrence of the event “h”, and this can defined by
Lϕ = Σ∗.h.Σ∗. This should not be revealed to the users of the system, knowing that “h” is
not observable. Lϕ is not opaque w.r.t. (G,Σo) as by observing “b”, the sole corresponding
sequence in [[b]]Σo is h.b and thus it is in Lϕ . Note that if the attacker observes only “a”,

Form Methods Syst Des

Fig. 2 Trace based opacity
illustration

Fig. 3 State based opacity
illustration

then it cannot tell whether the current sequence of actions of the system belongs to Lϕ as
[[a]]Σo = {p.a,h.a} and thus is not included in Lϕ .

An alternative definition of opacity is when the secret is a set of states of the system.

Definition 4 (State Based Opacity) Let F ⊆ Q. The secret F is opaque with respect to
(G,Σo) if for all μ ∈ TrΣo(G), Post({q0}, [[μ]]Σo) �⊆ F .

We can extend the definition of opacity to a (finite) family of sets F = {F1,F2, . . . ,Fk}:
the secret F is opaque with respect to (G,Σo) if for all F ∈ F , for all μ ∈ TrΣo(G),
Post({q0}, [[μ]]Σo) �⊆ F . This can be used to express other kinds of confidentiality prop-
erties. For example, [1] introduced the notion of secrecy of a set of states F . Intuitively,
F is not secret w.r.t. G and Σo whenever after an observation μ, the attacker either knows
that the system is in F or knows that it is not in F . Secrecy can thus be handled considering
the opacity w.r.t. a family {F,Q\F }. In the sequel we consider only one set of states F and,
when necessary, we point out what has to be done for solving the problems with family of
sets.

Example 2 Consider the automaton G of Fig. 3, with Σo = Σ = {a, b}. The secret is given
by the states represented by red squares i.e., F = {q2, q5}.

The secret F is certainly not state-based opaque with respect to (G,Σ), as by observing
a trace of b∗.a.b, an attacker U knows that the system is in a secret state. Notice that he does
not know whether it is q2 or q5 but still he knows that the state of the system is in F .

3.1 From trace based to state based opacity

Let Lϕ be given by a finite and complete automaton Aϕ with accepting states Qϕ and initial
state q

ϕ

0 . Define G × Aϕ with accepting states Fϕ = Q × Qϕ .

Proposition 1 If Aϕ is deterministic then Lϕ is trace based opaque w.r.t. (G,Σo) iff Fϕ is
State Based opaque w.r.t. (G × Aϕ,Σo).

Form Methods Syst Des

Proof The proof is a direct consequence of Definitions 3, 4 and 2. Let (q0, q
ϕ

0) be the initial
state of G × Aϕ . We have s ∈ L(G) ∩ Lϕ ⇔ s ∈ LFϕ (G × Aϕ) and since Aϕ is determin-
istic, this is equivalent to Post({(q0, q

ϕ

0)}, [[μ]]Σo) ⊆ Fϕ . Consequently for all μ ∈ TrΣo(G),
[[μ]]Σo ⊆ Lϕ ⇐⇒ Post({(q0, q

ϕ

0)}, [[μ]]Σo) ⊆ Fϕ . �

Hence in this case, Trace Based Opacity can be reduced in polynomial time to State
Based Opacity. If Aϕ is non-deterministic, prior to the previous construction we need to
determinize Aϕ and the product has size exponential in |Aϕ |.

In the sequel we shall focus on variations of the State Based Opacity problem:

Problem 1 (Static State Based Opacity Problem)

INPUT: A non-deterministic FA G = (Q,q0,Σ, δ,F) and Σo ⊆ Σ .
PROBLEM: Is F opaque w.r.t. (G,Σo)?

3.2 Checking state based opacity

Let G = (Q,q0,Σ, δ,F) be a non-deterministic finite automaton with F the secret states.
In order to check for the opacity of F w.r.t. (G,Σo), we first introduce the classical notion
of determinization via subset construction adapted to our definition of opacity: Deto(G)

denotes the deterministic automaton which is computed from G. Formally, it can be obtained
as follows:

Definition 5 Let G = (Q,q0,Σ, δ,F) then Deto(G) = (X ,X0,Σo,�,Fo) where:

– X ⊆ 2Q \ ∅ and X0 = {q0} and Fo = 2F ,
– given λ ∈ Σo, if X′ = Post(X, (Σ \ Σo)

∗.λ) �= ∅ then �(X,λ) = X′.

Now, based on this operation, to check whether F is opaque w.r.t. (G,Σo) we can pro-
ceed as follows:

1. determinize G using the construction of Definition 5 and denote Deto(G) the obtained
automaton with states in 2Q. Note that the set of accepting states is Fo = 2F ;

2. check whether Fo is reachable in Deto(G)

– if yes, then F is not opaque w.r.t. (G,Σo),
– otherwise, F is opaque w.r.t. (G,Σo).

Indeed, if there exists μ ∈ Σ∗
o such that μ ∈ LFo(Deto(G)), then according to Definition 5,

it entails that Post({q0}, [[μ]]Σo) ⊆ F , meaning that F is not opaque w.r.t. (G,Σo). Thus,
according to this construction, the set of observed traces for which the attacker knows that
the current execution discloses the secret is given by LFo(Deto(G)) where Fo = 2F .

To check opacity for a family {F1,F2, . . . ,Fk}, we define F to be the set 2F1 ∪2F2 ∪· · ·∪
2Fk (as pointed out before, this enables us to handle secrecy).

The previous construction shows that State Based Opacity on non-deterministic FA
can be checked in exponential time. Actually, checking state based opacity for (non-
deterministic) FA is PSPACE-complete. First, from [24], checking language universality
for a non-deterministic FA is PSPACE-complete. Given a FA G over Σ and F the set of
accepting states, the (language) universality problem is to decide whether G accepts all pos-
sible sequences, namely if LF (G) = Σ∗. If not, then G is not universal. Next, to show that
the state based opacity problem is PSPACE-complete, we prove that state based opacity is
equivalent to universality.

Form Methods Syst Des

Theorem 1 Problem 1 is PSPACE-complete for non-deterministic FA.

Proof Let G = (Q,q0,Σ, δ,F) be a non-deterministic finite automaton with accepting
states in F . We assume that G is complete i.e., L(G) = Σ∗. Note that in this case
[[w]]Σ = w.

G is not language universal ⇐⇒ ∃w ∈ Σ∗ s.t. Post({q0}, [[w]]Σ) ⊆ Q \ F.

With the definition of state based opacity, taking Σo = Σ ,

Q \ F is not opaque w.r.t. (G,Σ) ⇐⇒ ∃μ ∈ Σ∗ s.t. Post({q0}, [[μ]]Σ) ⊆ Q \ F.

Hence LF (G) = Σ∗ iff Q \ F is opaque w.r.t. (G,Σ) and opacity if PSPACE-complete. �

3.3 Maximum cardinality set for static projections

If a secret is opaque w.r.t. to a set of observable events Σo, it will still be opaque w.r.t. any
subset of Σo. It might be of interest to hide as few events as possible from the attacker still
preserving opacity of a secret. Indeed, hiding an event can be seen as energy consuming or
as limiting the interactions or visibility for users of the system (and some of them are not
malicious attackers) and thus should be avoided if unnecessary.

This suggests an optimization problem which can be formulated as follows: What is the
maximum cardinality of the sets of observable events Σo such that the secret is opaque?
More precisely, we can state the following optimization problem:

Problem 2 (Maximum Number of Observable Events)

INPUT: A non-deterministic FA G = (Q,q0,Σ, δ,F), n ∈ N s.t. n ≤ |Σ |.
PROBLEMS: Is there any Σo ⊆ Σ with |Σo| ≥ n, such that F is opaque w.r.t. (G,Σo)?

Theorem 2 Problem 2 is PSPACE-complete.

Proof PSPACE-easiness follows directly as we can guess a set Σo with |Σo| ≥ n and check
in PSPACE whether F is opaque w.r.t. (G,Σo). Thus Problem 2 is in NPSPACE and thus in
PSPACE.

PSPACE-hardness is established by taking n = |Σ | which amounts to checking that F is
opaque w.r.t. (G,Σ) which has been shown equivalent to the universality problem (proof of
Theorem 1). �

It follows that determining the maximum n s.t. there exists Σo ⊆ Σ , |Σo| ≥ n, and F

is opaque w.r.t. (G,Σo) can be done in PSPACE by solving Problem 2 and doing a binary
search for n in [0, |Σo|].

4 Opacity with dynamic projection

So far, we have assumed that the observability of events is given a priori and this is why
we used the term static projections/masks. We generalize this approach by considering the
notion of dynamic projections encoded by means of dynamic masks as introduced in [5] for
the fault diagnosis problem. In this section, we formulate the opacity problem using dynamic

Form Methods Syst Des

masks. Notice that the fault diagnosis problem and the opacity problems are not reducible
one to the other and thus we have to design new ad hoc algorithms to solve the opacity
problems under dynamic observations.

Next we introduce the notion of dynamic projection that permits to render unobservable
some events after a given observed trace (for example, some outputs of the system). To
illustrate the benefits of such projections, we consider the following example:

Example 3 Consider again the automaton G of Example 2, Fig. 3, where the set of secret
states is F = {q2, q5}. With Σo = Σ = {a, b}, F is not opaque.

If either Σo = {a} or Σo = {b}, then the secret becomes opaque. Thus if we have to define
static sets of observable events, at least one event will have to be permanently unobservable.
However, if you hide less events then the observable behavior of the system will be more
important. Thus, we should try to reduce as much as possible the hiding of events. For this
particular example, we can be more efficient by using a dynamic mask that will render un-
observable an event only when necessary. In this example, after observing b∗, the attacker
still knows that the system is in the initial state. However, if a subsequent “a” follows, then
the attacker should not be able to observe “b” as in this case it could know the system is in
a secret state. We can then design a dynamic events’s hider as follows: at the beginning, ev-
erything is observable; when an “a” occurs, the mask hides any subsequent “b” occurrences
and permits only the observation of “a”. Once an “a” has been observed, the mask releases
its hiding by letting both “a” and “b” be observable again.

4.1 Opacity generalized to dynamic projection

In this section, we define the notion of dynamic projection and its associated dynamic mask.
We show how to extend the notion of opacity in order to take into account the dynamic
aspect of events’ observability.

4.1.1 Dynamic projections and dynamic masks

An (observation-based) dynamic projection is a function that will decide to let an event be
observable or to hide it (see Fig. 1), thus playing the role of a filter between the system and
the attacker to prevent information flow. Such a projection can be defined as follows:

Definition 6 A dynamic observability choice is a mapping TD : Σ∗ → 2Σ . The (observation-
based) dynamic projection induced by TD is the mapping D : Σ∗ → Σ∗ defined by:
D(ε) = ε and for all u ∈ Σ∗, and all λ ∈ Σ ,

D(u.λ) = D(u).λ if λ ∈ TD(D(u)) and D(u.λ) = D(u) otherwise. (2)

Assuming that u ∈ Σ∗ occurred in the system and μ ∈ Σ∗ has been observed so far
by the attacker i.e., μ = D(u), then the events that are currently observable are the ones
which belong to TD(μ). Note that the choice of this set cannot change until an observable
event occurs in the system. Given μ ∈ Σ∗, D−1(μ) = {u ∈ Σ∗ | D(u) = μ} i.e., the set of
sequences that project onto μ.

Example 4 A dynamic projection D : Σ∗ → Σ∗ corresponding to the one we introduced in
Example 3 can be induced by the dynamic observability choice TD defined by ∀u ∈ b∗.a,
TD(u) = {a}, and TD(u) = {a, b} for all the other sequences u ∈ Σ∗.

Form Methods Syst Des

For a model G as above and a dynamic projection D, we denote by TrD(G) = D(L(G)),
the set of observed traces. Conversely, given μ ∈ TrD(G), the set of words [[μ]]D of G that
are compatible with μ is defined by:

[[ε]]D = {ε} and for μ ∈ Σ∗, λ ∈ Σ : [[μ.λ]]D = D−1(μ).λ ∩ L(G).

Given two different dynamic projections D1 and D2 and a system G over Σ , we say that D1

and D2 are G-equivalent, denoted D1 ∼G D2, whenever for all u ∈ L(G), D1(u) = D2(u).
The relation ∼G identifies two dynamic projections when they agree on L(G); they can
disagree on other words in Σ∗ but since they will not be generated by G, it will not make any
difference from the attacker point of view. In the sequel we will be interested in computing
the interesting part of dynamic projections given G, and thus will compute one dynamic
projection in each class.

4.1.2 Opacity with dynamic projection

As in the previous section, we assume that the user is considered as an attacker, U , who
is armed for this with full information on the structure of G and knows D. Based on these
assumptions, we generalize Definition 4 by taking into account the new observation interface
given by D.

Definition 7 Given a FA G = (Q,q0,Σ, δ,F), F is opaque with respect to (G,D) if

∀μ ∈ TrD(G), Post({q0}, [[μ]]D) �⊆ F. (3)

Again, this definition extends to family of sets. We say that D is a valid dynamic projec-
tion if (3) is satisfied (i.e., whenever F is opaque w.r.t. (G,D)) and we denote by D the set
of valid dynamic projections. Obviously if D1 ∼G D2, then D1 is valid if and only if D2 is
valid. We denote by D∼G

the quotient set of D by ∼G.

Remark 3 Let Σo ⊆ Σ be a fixed subset of actions, then if D is a dynamic projection that
defines a constant mapping making actions in Σo always observable (and the others always
unobservable), we have D(μ) = PΣo(μ) and we retrieve the original definition of state based
opacity in case of static projection. Finally, note that we can also alternatively consider a
trace-based opacity as the one defined in Definition 3, with dynamic projection instead of
natural projection with a result similar to the one of Proposition 1. The property of secrecy
can be extended as well using dynamic projection.

In the sequel, we will be interested in checking the opacity of F w.r.t. (G,D) or to
synthesize such a dynamic projection D ensuring this property. In Sect. 3, the dynamic
projection was merely the natural projection and computing the observational behavior of G

was easy. Here, we need to find a characterization of these dynamic projections that can be
used to check opacity or to enforce it. To do so, we introduce the notion of dynamic mask [5]
that will encode a dynamic projection in terms of automata.

Definition 8 (Dynamic Mask) A mask is a complete and deterministic labeled automaton
M = (X,x0,Σ, δo,Γ) where X is a (possibly infinite) set of states, x0 ∈ X is the initial state,
Σ is the set of input events, δo : X × Σ → X is the transition function (a total function),
and Γ : X → 2Σ is a labeling function that specifies the set of events that the mask keeps

Form Methods Syst Des

Fig. 4 Examples of dynamic masks

observable at state x. We require that for all x ∈ X and for all λ ∈ Σ , if λ /∈ Γ (x), then
δo(x,λ) = x, i.e., if the mask does not want an event to be observed, it does not change its
state when such an event occurs.

We extend δo to words of Σ∗ by: δo(q, ε) = q and for u ∈ Σ∗, λ ∈ Σ , δo(q,u.λ) =
δo(δo(q,u), λ). Assuming that the mask is at state x and an event λ occurs, it outputs λ

whenever λ ∈ Γ (x) or nothing (ε) if λ /∈ Γ (x) and moves to state δo(x,λ). A mask can be
interpreted as a functional transducer taking a string u ∈ Σ∗ as input, and producing the
output which corresponds to the successive events it has chosen to keep observable.

Example 5 Examples of dynamic masks are given in Fig. 4.

We now relate the notion of dynamic mask to the notion of dynamic projection.

Proposition 2 Let M = (X,x0,Σ, δo,Γ) be a mask and define DM as follows: DM(ε) = ε,
and for all u ∈ Σ∗, DM(u.λ) = DM(u).λ if λ ∈ Γ (δo(x0, u)) and DM(u) otherwise. Then
DM is a dynamic projection.

Proof To prove that DM defined above is a dynamic projection, it is sufficient to exhibit
a dynamic observability choice T : Σ∗ → 2Σ and to show that (2) holds. Let T (u) =
Γ (δo(xo,DO(u))). Using induction we can show that δo(xo, u) = δo(xo,DO(u)) because
δo(x,λ) = x when λ /∈ Γ (x). We can then define T (u) = Γ (δo(xo, u)) and the result fol-
lows from this remark. �

In the sequel, we shall write [[μ]]O for [[μ]]DO .

Proposition 3 Given a dynamic projection D and TD its dynamic observability choice, we
can define the dynamic mask MD = (Σ∗, ε,Σ, δD,TD) where δD(u,λ) = D(u.λ).

Proof MD is complete and deterministic by construction and after a sequence s if D(u.λ) =
D(u) then δD(u,λ) = u. �

Note that there might exists several equivalent masks that encode the same dynamic
projection. For example, the mask depicted in Fig. 4(b) is one mask that encodes the dynamic
projection described in Example 4. But, one can consider other masks obtained by unfolding
an arbitrary number of time the self-loops in states 1 or 3. Finally, to mimic the language

Form Methods Syst Des

theory terminology, we will say that a dynamic projection D is regular whenever there exists
a finite state dynamic mask M such that DM = D.

To summarize this part, we can state that with each dynamic projection D, we can asso-
ciate a dynamic mask MD such that D = DMD

. In other words, we can consider a dynamic
projection or one of its associated dynamic masks whenever one representation is more con-
venient than the other. If the dynamic projection D derived from M is valid, we say that M
is a valid dynamic mask. In that case, we will say that F is opaque w.r.t. (G, M) and we
denote by O B S(G) the set of all valid dynamic masks.

4.1.3 Checking opacity

The first problem we are going to address consists in checking whether a given dynamic
projection ensures opacity. To do so, we assume given a dynamic mask which defines this
projection map. The problem, we are interested in, is then the following:

Problem 3 (Dynamic State Based Opacity Problem)

INPUT: A non-deterministic FA G = (Q,q0,Σ, δ,F) and a dynamic mask M = (X,x0,Σ,

δo,Γ).
PROBLEM: Is F opaque w.r.t. (G, M)?

We first construct an automaton which represents what an attacker will see under the
dynamic choices of observable events made by M (i.e. by hiding in G the events the mask
have chosen to hide after observing a given trace). To do so, we define the automaton G ⊗
M = (Q×X, (q0, x0),Σ ∪{τ }, δ,F ×X) where τ is a fresh letter not in Σ and δ is defined
for each λ ∈ Σ , and (q, x) ∈ Q × X by:

– δ((q, x), λ) = δG(q,λ) × {δo(x,λ)} if λ ∈ Γ (x);
– δ((q, x), τ) = (

⋃
λ∈Σ\Γ (x) δG(q,λ)) × {x}.

Proposition 4 F is opaque w.r.t. (G, M) if and only if F × X is opaque w.r.t. to (G ⊗
M,Σ).

Proof Let μ ∈ TrO(G) be a trace observed by the attacker. We prove the following by in-
duction on the length of μ:

q ∈ PostG({q0}, [[μ]]M) ⇐⇒ (q, x) ∈ PostG⊗M({(q0, x0)}, [[μ]]Σ) for some x ∈ X.

If μ = ε, the result is immediate. Assume now that μ′ = μ.λ. Let q ∈ PostG({q0}, [[μ′]]M).
By definition of [[μ′]]M we have

q0
u−→ q ′ v−→ q ′′ λ−→ q

with u ∈ [[μ]]M , u.v.λ ∈ [[μ.λ]]M. By induction hypothesis, it follows that the state
(q ′, δo(x0, u)) belongs to PostG⊗M({(q0, x0)}, [[μ]]Σ) where δo(x0, u) is the (unique) state
of M after reading u. Then, there exists a word w ∈ (Σ ∪ {τ })∗ such that PΣ(w) = μ

and (q0, x0)
w−→ (q ′, δo(x0, u)) is a run of G ⊗ M. Assume v = v1.v2. · · · . vk , k ≥ 0. As

M(u.v) = M(u), we must have vi �∈ Γ (δo(x0, u.v1. · · · . vi)) when 1 ≤ i ≤ k. Hence, by
construction of G ⊗ M, there is a sequence of transitions in G ⊗ M of the form

(q ′, δo(x0, u))
τ−→ δo(x0, u.v1)

τ−→ · · · τ−→ (q ′′, δo(x0, u.v))

Form Methods Syst Des

with λ ∈ Γ (δo(x0, u.v)). Thus, (q0, x0)
w−→ (q ′, δo(x0, u))

τk .λ−→ (q, δo(u.v.λ)) is a run of
G⊗ M with PΣ(w.τ k.λ) = μ.λ = μ′. So, (q, δo(x0, u.v.λ)) ∈ PostG⊗M({(q0, x0)}, [[μ′]]Σ).
For the converse, if we have a sequence of τ transitions in G ⊗ M, they come from actions
in G which are not observable and this completes the proof. �

The previous result is general, and if M is a finite state mask we obtain the following
theorem:

Theorem 3 For finite state masks, Problem 3 is PSPACE-complete.

Proof As the size of the product G ⊗ M is the product of the size of G and the size of M
and State Based Opacity can be checked in PSPACE, PSPACE-easiness follows. Moreover,
checking state based opacity with respect to (G,Σ) can de done using a simple mask with
one state which always let Σ observable and PSPACE-hardness follows. �

As Proposition 4 reduces the problem of checking opacity with dynamic masks to the
problem of checking opacity with static masks, Theorem 3 extends to family of sets (and
thus to secrecy).

4.2 Enforcing opacity with dynamic projections

So far, we have assumed that the dynamic projection/mask was given. Next we will be
interested in synthesizing one in such a way that the secret becomes opaque w.r.t. the system
and this mask. Initially we assume that the attacker can observe all events in Σ . Thus the
problem can be stated as follows:

Problem 4 (Dynamic Mask Synthesis Problem)

INPUT: A non-deterministic FA G = (Q,q0,Σ, δ,F).
PROBLEM: Compute the set of valid masks O B S(G).

Our aim is actually to be able to generate at least one mask for each representative of
D∼G

, thus capturing all the interesting dynamical projections. Deciding the existence of a
valid mask is trivial: it is sufficient to check whether always hiding Σ is a solution. More-
over, note that O B S(G) can be infinite, i.e., there might be an infinite number of different
valid projections/masks ensuring the opacity of F with respect to G.

To solve Problem 4, we reduce it to a safety 2-player game. Player 1 will play the role
of a mask and Player 2 what the attacker observes. Assume the automaton G can be in any
of the states s = {q1, q2, . . . , qn}, after a sequence of actions occurred. A round of the game
is: given s, Player 1 chooses which letters should be observable next i.e., a set t ⊆ Σ ; then
it hands it over to Player 2 who picks up an observable letter λ ∈ t ; this determines a new
set of states G can be in after λ, and the turn is back to Player 1. The goal of the Players are
defined by:

– The goal of Player 2 is to pick up a sequence of letters such that the set of states that can
be reached after this sequence is included in F . If Player 2 can do this, then it can infer
the secret F . Player 2 thus plays a reachability game trying to enforce a particular set of
states, say Bad (i.e., the states in which the secret is disclosed).

Form Methods Syst Des

– The goal of Player 1 is opposite: it must keep the game in a safe set of states where the
secret is not disclosed. Thus Player 1 plays a safety game trying to keep the game in the
complement set of Bad .

As we are playing a (finite) turn-based game, Player 2 has a strategy to enforce Bad iff
Player 1 has no strategy to keep the game in the complement set of Bad (turn-based finite
games are determined [20]).

We now formally defines the 2-player game and show it allows us to obtain a finite
representation of all the valid dynamic masks. Let H = (S1 ∪ S2, s0,M1 ∪ M2, δH) be a
deterministic game automaton given by:

– S1 = 2Q is the set of Player 1 states and S2 = 2Q × 2Σ the set of Player 2 states;
– the initial state of the game is the Player 1 state s0 = {q0};
– Player 1 will choose a set of events to hide in Σ . Thus, Player 1 actions are in the alphabet

M1 = 2Σ and Player 2 actions in M2 = Σ ;
– the transition relation δH ⊆ (S1 × M1 × S2) ∪ (S2 × M2 × S1) is given by:

– Player 1 moves (choice of events to observe): if s ∈ S1, t ⊆ Σ , then δH (s, t) = (s, t);
– Player 2 moves (choice of next observable event): if (s, t) ∈ S2, λ ∈ t and s ′ =

Post(s, (Σ \ t)∗.λ) �= ∅, then δH ((s, t), λ) = s ′.

We define the set of Bad states to be the set of Player 1 states s s.t. s ⊆ F . For family of
sets F1,F2, . . . ,Fk , Bad is the set of states 2F1 ∪ 2F2 ∪ · · · ∪ 2Fk .

Remark 4 If we want to exclude the possibility of hiding everything for Player 1, it suffices
to build the game H with this constraint on Player 1 moves (i.e., ∀s ∈ S1, Enabled(s) �= ∅).
Using a similar method, we can also consider other kinds of constraints: for example, a valid
mask could choose to hide outputs whenever it is necessary to preserve the secret, however,
this mask must keep observable (and thus accepted) all the requests sent by the attacker to
the system. To do so, assuming that Σ is partitioned into Σ? ∪ Σ!, where Σ? denotes the set
of inputs of the system and Σ! the set of outputs events, we can force the mask to choose
to hide only events of Σ!, letting observable all the actions performed by the attacker by
building the game H so that ∀s ∈ S1, 2Σ? ⊆ Enabled(s).

Let Runsi (H), i = 1,2 be the set of runs of H that end in a Player i state. A strategy
for Player i is a mapping fi : Runsi (H) → Mi that associates with each run that ends in a
Player i state, the new choice of Player i. Given two strategies f1, f2, the game H generates
the set of runs Outcome(f1, f2,H) combining the choices of Players 1 and 2 w.r.t. f1 and f2.
f1 is a winning strategy for Playing 1 in H for avoiding Bad if for all Player 2 strategies
f2, no run of Outcome(f1, f2,H) contains a Bad state. A winning strategy for Player 2 is a
strategy f2 s.t. for all strategy f1 of Player 1, Outcome(f1, f2,H) reaches a Bad state. As
turn-based games are determined, either Player 1 has a winning strategy or Player 2 has a
winning strategy.

We now relate the set of winning strategies for Player 1 in H to the set of valid dynamic
projections. Let PM2(�) = PΣ(tr(�)) for a run � of H .

Definition 9 Given a dynamic projection D, we define a strategy fD such that for every
� ∈ Runs1(H), fD(�) = TD(PM2(�)).

Let Outcome1(f1,H) = (
⋃

f2
Outcome(f1, f2,H))∩Runs1(H) be the set of runs ending

in a Player 1 state which can be generated in the game when Player 1 plays f1 against all
the possible strategies of Player 2. The set of runs Outcome2(f2,H) is similarly defined.

Form Methods Syst Des

Lemma 1 Let D be a dynamic projection. If � ∈ Outcome1(fD,H) and μ = PM2(tr(�)),
then μ ∈ TrD(G) and last(�) = PostG(s0, [[μ]]D).

Proof The proof is by induction on the length of μ:
1. base case: for the run s0 it is trivial since s0 = {q0}, [[ε]]D = {ε} and ε ∈ TrD(G).
2. induction step: assume it is true for the run

� = s0
t0−→ (s0, t0)

λ0−−→ s1 · · · −→ · · · sn

tn−→ (sn, tn)
λn−−→ sn+1 ∈ Outcome1(fD,H).

Let �′ = �
tn+1−−−→ (sn+1, tn+1)

λn+1−−−→ sn+2 be a run in Outcome1(fD,H) and μ = PM2(tr(�)) =
λ0.λ1. · · · . λn. By definition of fD , tn+1 = fD(�) = TD(μ). Hence λn+1 ∈ TD(μ) and

sn+2 = PostG(sn+1, (Σ \ tn+1)
∗.λn+1)

= PostG(PostG(s0, [[μ]]D), (Σ \ tn+1)
∗.λn+1)

= PostG(s0, [[μ]]D.(Σ \ tn+1)
∗.λn+1)

= PostG(s0, [[μ.λn+1]]D).

By construction of H , sn+2 �= ∅ thus PostG({q0}, [[μ.λn+1]]D) �= ∅ and μ.λn+1 ∈
TrD(G). �

Lemma 2 Let D be a dynamic projection. For all μ ∈ TrD(G), there exists a unique run
� ∈ Outcome1(fD,H) such that μ = PM2(tr(�)).

Proof We prove this by induction on the length of μ. Note that as the game H is deter-
ministic, and strategies prescribes one move, it suffices to prove the existence of a run. If
μ = ε, then s0 is a good candidate. Suppose that every word in TrD(G) ∩ Σn satisfies the
property of the lemma and let μ.λ ∈ TrD(G) ∩ Σn+1. Since μ ∈ Σn, there exists a run
� ∈ Outcome1(fD,H) such that μ = PM2(tr(�)). Let s = last(�) and t = fD(�) = TD(μ)

the (unique) action Player 1 can perform after the run �. Then δH (s, t) = (s, t) and �
t−→

(s, t) ∈ Runs2(H). According to Lemma 1, s = PostG(s0, [[μ]]D). Since μ.λ ∈ TrD(G),
λ ∈ t and s ′ = PostG(s0, [[μ.λ]]D) �= ∅. So s ′ = PostG(s, (Σ \ t)∗.λ) = δH ((s, t), λ) and

�′ = �
t−→ (s, t)

λ−→ s ′ is a run of H . Hence �′ ∈ Outcome1(fD,H) and such that
PM2(tr(�

′)) = μ.λ. �

Proposition 5 Let D be a dynamic projection. D is valid if and only if fD is a winning
strategy for Player 1 in H .

Proof Assume that D is a valid dynamic projection and let � ∈ Outcome1(fD,H) with
s = last(�) and μ = PM2(tr(�)). According to Lemma 1, s = PostG(s0, [[μ]]D). Since D

is a valid dynamic projection, s �⊆ F , so s �∈ Bad . This implies that fD is a winning strat-
egy.

For the other implication, assume that D is not a valid mask. This means that there is
a trace μ ∈ TrD(G) such that PostG(s0, [[μ]]D) ⊆ F . Since μ ∈ TrD(G), then according to
Lemma 2, there exists a unique run � ∈ Runs1(H) such that PM2(tr(�)) = μ. Then, last(�) =
PostG(s0, [[μ]]D) ∈ Bad , so fD is not a winning strategy. �

Form Methods Syst Des

Given a strategy f for Player 1 in H , for all μ ∈ Σ∗, there exists at most one �μ ∈
Outcome1(f,H) such that PM2(tr(�μ)) = μ.

Definition 10 Let f be s strategy for Player 1 in H . We define the dynamic projection Df

induced by the dynamic observability choice Tf : Σ∗ → 2Σ given by: Tf (μ) = f (�μ) if �μ.

Proposition 6 If f is a winning strategy for Player 1 in H , then Df is a valid dynamic
mask.

Proof Applying the construction of the Lemma 1, we obtain the strategy fDf
= f . Since f

is a winning strategy, by Proposition 5, we get that Df is a valid dynamic projection. �

Notice that we only generate a representative for each of the equivalence classes induced
by ∼G. However, an immediate consequence of the two previous propositions is that there
is a bijection between the set of winning strategies of Player 1 and D∼G

.

4.3 Most permissive dynamic mask

We now define the notion of most permissive dynamic masks and show the existence of a
most permissive dynamic mask for a system G.

For a mask M = (X,xo,Σo, δo,Γ) and w ∈ Σ∗, recall that Γ (δo(xo,w)) is the set of
events that M chooses as observable after observing w.

Assume w = a0a1 · · ·ak . Let w = Γ (xo).a1.Γ (δo(xo, a1)).a2.Γ (δo(xo, a2)) · · ·
ak.Γ (δo(xo, ak)) i.e., w contains the history of what M has chosen to observe at each
step and the events that occurred after each choice.

Definition 11 Let O∗ : (2Σ.Σ)∗ → 22Σ
. By definition, such a mapping O∗ is the most per-

missive mask for ensuring that F is opaque if the following holds:

M = (X,xo,Σo, δo,Γ) is a valid mask ⇐⇒ ∀w ∈ L(G), Γ (δo(xo,w)) ∈ O∗(w).

The definition of the most permissive mask states that any valid mask M must choose a
set of observable events in O∗(w) on input w; if a mask chooses its set of observable events
in O∗(w) on input w, then it is a valid mask.

Remark 5 Strictly speaking O∗ is not a mask because it maps to sets of sets of events
whereas masks map to sets of events. Still we use this term because it is the usual terminol-
ogy in the literature.

Theorem 4 The most permissive dynamic mask O∗ can be represented by a finite automa-
ton.

Proof As H is turn-based 2-player game under full observation, there is a most permissive
winning strategy which is state-based on H (see [26]). It is defined as follows: Let us first
compute the set of winning states of the game for player 1 It is defined as follows: Let
Good = (S1 ∪ S2) \ Bad be the set of safe states of H . To solve this 2-player game, we
define the Cpre operator:

CPre(S) = {s ∈ S1 | ∃t ⊆ Σ | δH (s, t) ∈ S} ∪ {(s, t) ∈ S2 | ∀λ ∈ t | δH ((s, t), λ) ∈ S}.

Form Methods Syst Des

Then by iterating Cpre and computing the fix-point Cpre∗(Good) = ⋂
i Cprei (Good), we

obtain the set of winning states of the game for Player 1 [26], and as the set of states is
finite, this computation terminates. If the initial state of the game belongs to Cpre∗(Good),
then there is a strategy for Player 1 to win. Consider now the following finite automaton
derived from H : FH = (Cpre∗(Good), s0,Σ ∪ 2Σ, δFH

), where δFH
is the restriction of δH

to the states Cpre∗(Good). Now, f is a winning strategy for Player 1 w.r.t. H and Bad if
and only if for any run ρ ∈ Runs1(H), f (ρ) ∈ EnabledFH (last(ρ)), namely, every move
defined by f is a move of FH . In other words, any winning strategy in H is an instance
of FH . Now from Proposition 6, given a winning strategy, we can define a valid dynamic
projection from which we can derive a valid dynamic mask (Proposition 3). Conversely,
with each valid dynamic mask D is associated a valid dynamic projection DM (Proposi-
tion 2) and from Proposition 5, fDM is a winning strategy which thus can be generated
by FH . �

The previous theorem states that FH can be used to generate any mask. In particular,
given a state-based winning strategy, the corresponding valid mask is finite and thus its
associated dynamic projection is regular.

An immediate corollary of Theorem 4 is the following:

Corollary 1 Problem 4 is in EXPTIME.

Proof Computing the winning states and FH on turn-based games can be done in linear time
in the size of the game. As H has size exponential in G and Σ the algorithm we provide to
solve Problem 4 is EXPTIME. �

Example 6 To illustrate this section, we consider the following small example. The system
is depicted by the automaton in Fig. 5(a). The set of secret states is reduced to the state (2).
Figure 5(b) represents the associated game automaton. The states of Player 1 are represented
by circles whereas the ones of Player 2 are represented by squares. The only bad states is
the state (2) (bottom right). The most permissive strategy is obtained when Player 1 does
not allow transition {a, b} to be triggered in state (1) (otherwise, Player 2 could chose to
observe either event a or b and in this case the game will evolve into state (2) and the secret
will be revealed). The dashed lines represents the transitions that are removed from the game
automaton to obtain FH . Finally, Fig. 5(c) represents a possible mask M generated from the
game automaton.

We complete this section by proving that EXPTIME is a lower bound for Problem 4.

Theorem 5 There is a family of non-deterministic automata (Ai)i≥1 for which the most
permissive dynamic mask has size exponential in |Ai |.

Proof To prove Theorem 5, we show that the most permissive mask for a given non deter-
ministic automaton B contains a sub-automaton that accepts L(B) and is deterministic.

Assume B is a non deterministic automaton on alphabet Σ . Let α �∈ Σ be a fresh symbol
and assume with out loss of generality that B has a single final state f . From the final state
f of B we add a transition to a new state F and a loop on f labelled α. The construction of
the resulting automaton A is depicted on Fig. 6.

If α is not observable, the automaton B is opaque w.r.t. {F }. We can construct the two-
player game associated with A as described in Sect. 4.2. In the game, every strategy that does

Form Methods Syst Des

Fig. 5 Example of a game automaton

Fig. 6 Automaton A

not observe α is winning and the strategy that observes Σ at each step is thus a winning one.
It must be part of the most permissive mask. This strategy, when we remove the choices of
Player 1, is a finite automaton that accepts exactly L(B). Consequently, the most permissive
mask for A has size larger than the size of deterministic automaton that accepts L(B).

It is known result that there is a family (Bi)i≥0 of non-deterministic FA, such that the
deterministic and language-equivalent automaton of each Bi requires at least exponential
size. It thus suffices to construct Ai starting from Bi as described above for B and A and
this completes the proof of Theorem 5. �

5 Optimal dynamic mask

Among all the possible masks that ensure the opacity of the secret, it is worthwhile noticing
that some are better (in some sense) than other. Note that if q0 /∈ F , then there exists a trivial
mask that always erases all events of Σ that ensures the opacity of F . The attacker will
observe nothing and will thus not be able to disclose the secret. Obviously, this mask is not

Form Methods Syst Des

very interesting as the effect would be to deny services from the standpoint of a user. In this
section, we would like to define a notion of cost of for masks which captures this intuitive
notion.

We first introduce a general cost function and we show how to compute the cost of a given
pair (G, O) where G is a system and O a finite state mask. Second, we show that among all
the valid masks (that ensure opacity), there is an optimal cost, and we can compute a mask
which ensures this cost. The problems in this section and the solutions are closely related
to the results in [5] and use the same tools: Karp algorithm [16] and a result of Zwick and
Paterson [27].

5.1 Cost of a mask

We want to define a notion of cost which takes into account the set of events the mask
chooses to hide and also how long it hides them. We assume we are given a system G =
(Q,q0,Σ, δ,F) and a finite mask O = (X,x0,Σ, δo,Γ).

With each set of observable events Σ ′ ∈ 2Σ , we associate a cost of hiding Σ \Σ ′ which is
a positive integer. We denote Cost : 2Σ → N this function. Now, if the mask O is in state x,
the current cost per time unit is Cost(Γ (x)). Examples of such cost mapping are given in
the sequel. A measure of the cost incurred by a mask O on a sequence of events w produced
by G is just the average of the cost of hiding events.

Definition 12 (Cost of a Run) Let Runsn(G) the set of runs of length n in Runs(G). Given

a run ρ = q0
a1−−→ q1 · · ·qn−1

an−−→ qn ∈ Runsn(G), let xi = δo(x0,wi) with wi = tr(ρ[i]). The
cost associated with ρ ∈ Runsn(G) is defined by:

Cost(ρ,G, M) = 1

n + 1
·

n∑

i=0

Cost(Γ (xi)).

Notice that the time basis we take is the number of steps which occurred in G. Thus if the
mask is in state x, and chooses to observe Γ (x) at steps i and i+1 in a run of G, Cost(Γ (x))

will be counted at steps i and i + 1. The definition of the cost of a run corresponds to the
average cost per time unit, the time unit being the number of steps of the run in G.

Definition 13 (Cost of a Mask) Define the cost of the set of runs of length n that belongs to
Runsn(G) by

Cost(n,G, M) = max{Cost(ρ,G, M) | ρ ∈ Runsn(G)} (4)

and the cost of a mask with respect to a system G is

Cost(G, M) = lim sup
n→∞

Cost(n,G, M) (5)

(the limit may not exist whereas the limit sup is always defined).

Here are examples for the cost mapping Cost on 2Σ :

– Suppose that we have a function c : Σ → N that associates with each a ∈ Σ the cost c(a)

corresponding to the penalty if this event is hidden. Hiding Σ ′ ⊆ 2Σ costs the sum of the
cost of the hidden events. Hence Cost(Γ (x)) = ∑

a∈Σ\Γ (x) c(a) and we can set Cost(Σ)

to a particular value.

Form Methods Syst Des

– Assume Σ = {a, b} and c(a) = c(b) = 2; hiding a and b at the same time costs more than
hiding a alone or b alone. This can be captured by Cost(∅) = 7 and Cost({a}) = 2 and
Cost({b}) = 2.

Remark 6 Alternatively, one can define the cost of a run as follows: Given a run ρ =
q0

a1−−→ q1 · · ·qn−1
an−−→ qn ∈ Runsn(G), let xi = δo(x0,wi) with wi = tr(ρ[i]). The cost of

ρ ∈ Runsn(G) is defined by:

Cost 2(ρ,G, M) = 1

n + 1
·

n∑

i=0

{
c(ai) if ai /∈ L(δo(x0,wi)),

0 otherwise.

Compared with Cost(ρ,G, M), we only take into account the costs of the events that are
filtered by the mask when they actually occur in the run ρ. Further, the cost of a mask is
given by Definition 13.

5.2 Computing the cost of a dynamic mask

We show that we can compute the cost of a given finite state mask O for a finite state
system G. We reduce the problem of computing this cost to computing the maximum mean-
weight in a weighted graph.

5.2.1 Weighted automata & Karp’s algorithm

Before introducing the optimal dynamic mask and opacity synthesis problem, we present
a set of tools that we are going to use in that process. These deal with the notion of cost
in a model of dynamic behaviors such as a finite automaton model. The notion of cost for
automata has already been defined and algorithms to compute some optimal values related
to this model are described in many papers. For our purposes, the model of weighted au-
tomata is appropriate. We recall here this model and the results of [16] which will be used
later.

Definition 14 (Weighted Automaton) A weighted automaton is a pair (A,w) s.t. A =
(Q,q0,Σ, δ) is a finite automaton and w : Q → N associates a weight with each state.

Definition 15 (Mean Cost) Let ρ = q0
a1−→ q1

a2−→ · · · an−→ qn be a run of A. The mean cost of
ρ is

μ(ρ) = 1

n + 1
×

n∑

i=0

w(qi).

We remind that the length of ρ = q0
a1−→ q1

a2−→ · · · an−→ qn is |ρ| = n. We assume that
each run of length n of A can be extended to a run of length n + 1. Let Runsn(A) be
the set of runs of length n in Runs(A). The maximum mean-weight of the runs of length
n for A is ν(A,n) = max{μ(ρ) for ρ ∈ Runsn(A)}. The maximum mean weight of A is
ν(A) = lim supn→∞ ν(A,n). Actually the value ν(A) can be computed using Karp’s maxi-

mum mean-weight cycle algorithm [16] on weighted graphs. If c = q0
a1−→ q1

a2−→ · · · an−→ qn

is a cycle of A i.e., q0 = qn, the mean weight of the cycle c is μ(c) = 1
n+1 · ∑n

i=0 w(qi).
The maximum mean-weight cycle of A is the value ν∗(A) = max{μ(c) for c a cycle of A}.

Form Methods Syst Des

As statedin [27], for weighted automata, the mean-weight cycle value is the value that de-
termines the mean-weight value (the transient behaviors of the system are not contributing
to this value). It follows that ν(A) = lim supn→∞ ν(A,n) = limn→∞ ν(A,n) = ν∗(A).

The original Karp’s maximum mean cycle algorithm [16] works for weighted automaton
where the weights are on the edges. We give the version where weights are on vertices. Let
ν∗ = maxc μ(c) where c ranges over all cycles in A. A cycle c with μ(c) = ν∗ is a maximum
mean-weight cycle. Let D(q) be the weight of a most expensive path from q0 to q and Dk(q)

be the weight of a most expensive path which has exactly k edges (if there is no such path
Dk(v) = −∞). Assume |Q| = n. Karp’s algorithm is based on the fact that

ν∗ = max
q∈Q

min
0≤k≤n−1

Dn(q) − Dk(q)

n − k
.

The values Dk(q) can be computed iteratively:

D0(q0) = w(q0), (6)

D0(q) = −∞ for q �= q0, (7)

Dk+1(q) = max
q∈δ(q ′,a)

{Dk(q
′) + w(q)}. (8)

Thus for each state q we can compute min(q) = min0≤k≤n−1
Dn(q)−Dk(q)

n−k
and then compute

the value maxq∈Q min(q) to obtain ν∗. This algorithm runs in O(n.m) where |Q| = n and
|δ| = m (where |δ| denotes the number of transitions in δ). Improvements [9] can be made
to this algorithm still the worst case run-time is O(n.m).

5.2.2 Algorithm

We assume that G generates runs of arbitrary length for simplicity. We use the automaton
G ⊗ O defined in Sect. 4.1.3. Remind that G ⊗ O = (Q × X, (qo, x0),Σ ∪ {τ }, δ,F × X).
We define the weight function for G ⊗ O as: w(q,x) = Cost(Γ (x)). Thus G = (G ⊗ O,w)

is a weighted automaton.
By Definition 12 and Definition 15, and the results related to the Karp’s maximum mean

cycle algorithm described in Sect. 5.2.1, we obtain:

Theorem 6 Cost(G, O) = ν∗(G).

Using Karps’s algorithm it follows that:

Theorem 7 Computing Cost(G, O) is in PTIME.

Proof The size of G ⊗ O is clearly polynomial in the size of G and O. �

Example 7 To illustrate the construction of the weighted automaton, let us consider the
system G and the mask M2 of Example 6. Assume that c(a) = c(b) = 2 and c(c) = 0. The
automaton is given in Fig. 7. The weight function is pictured near each state. The values
Dk(v) and min(v) for each state v are given in Table 1. The maximum mean-weight value
ν∗(G) is the maximum value maxv min(v) for every state v of G × M. We thus obtain
Cost(G, M) = 2.

Form Methods Syst Des

Fig. 7 G = (G ⊗ M2,w)

Table 1 Iterations for G ⊗ O

1, x1 2, x2 1, x2 2, x1

D0 2 −∞ −∞ −∞
D1 −∞ 2 −∞ 4
D2 6 −∞ 4 −∞
D3 −∞ 6 −∞ 8
D4 10 −∞ 8 −∞
min 2 −∞ 2 −∞

with

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

Dk+1(1, x1) = Dk(2, x1) + 2,

Dk+1(2, x2) = max{Dk(1, x1),Dk(1, x2)},
Dk+1(1, x2) = max{Dk(2, x2),Dk(2, x1)},
Dk+1(2, x1) = Dk(1, x1) + 2.

5.3 Optimal dynamic mask

We now turn our attention to a more difficult decision problem:

Problem 5 (Bounded Cost Mask)

INPUTS: an automaton G = (Q,q0,Σ, δ,F) and an integer k ∈ N.
PROBLEM:

(A) Is there a mask M ∈ O B S s.t. F is opaque w.r.t. G and M and Cost(G, M) ≤ k?
(B) If the answer to (A) is “yes”, compute a witness mask O s.t. Cost(G, O) ≤ k.

To solve this problem we use a result by Zwick and Paterson [27], which is an extension
of Karp’s algorithm for finite state games.

5.3.1 Zwick and Paterson’s algorithm

Definition 16 (Weighted Graph) A weighted directed graph is a pair (G,w) s.t. G = (V ,E)

is a directed graph and w : E → {−W, . . . ,0, . . . ,W } assigns an integral weight to each
edge of G with W ∈ N. We assume that each vertex v ∈ V is reachable from a unique
source vertex v0 and has at least one outgoing transition.

Definition 17 (Weighted Graph Game) A weighted graph game G = (V ,E) is a bipartite
weighted graph with V = V1 ∪ V2 and E = E1 ∪ E2, E1 ⊆ V1 × V2 and E2 ⊆ V2 × V1.
We assume the initial vertex v0 of G belongs to V1.

Vertices Vi are Player i’s vertices. A weighted graph game is a turn based game in which
the turn alternates between Player 1 and Player 2. The game starts at a vertex v0 ∈ V1.

Form Methods Syst Des

Player 1 chooses an edge e1 = (v0, v1) and then Player 2 chooses an edge e2 = (v1, v2) and
so on and they build an infinite sequence of edges. Player 2 wants to maximise lim infn→∞ 1

n
·

∑n

i=1 w(ei) and Player 1 wants to minimize lim supn→∞
1
n

· ∑n

i=1 w(ei).
One of the result of [27] is that there is a rational value ν ∈ Q s.t. Player 2 has a strat-

egy to ensure lim infn→∞ 1
n

· ∑n

i=1 w(ei) ≥ ν and Player 1 has a strategy to ensure that
lim supn→∞

1
n

· ∑n

i=1 w(ei) ≤ ν. ν is called the value of the game.
Let n = |V |. To compute ν, proceed as follows [27]:

1. Let ν0(v) = 0 for v ∈ V . For v ∈ V and k ≥ 1, νk(v) is defined by:

νk(v) =
{

min(v,w)∈E{w(v,w) + νk−1(w)} if v ∈ V1,

max(v,w)∈E{w(v,w) + νk−1(w)} if v ∈ V2.

This is the equivalent of the Dk(v) values for Karp’s algorithm using a min max strategy
depending on which player is playing.

2. For each v ∈ V , compute ν ′(v) = νk(v)/k for k = 4 · n3 · W .
3. For each vertex, the value of the game from v is the only rational number with a denom-

inator at most n that lies in the interval]ν ′(v) − α, ν ′(v) + α[with α = 1
2n(n−1)

.

The value of the game is ν = ν(v0) where v0 is the initial vertex. To compute an optimal
strategy for Player 1, proceed as follows:

1. compute the values ν(v) for each v ∈ V ;
2. if all the vertices of V1 have outgoing degree 1, there is a unique strategy and it is posi-

tional and optimal;
3. otherwise, take a vertex v ∈ V1 with outgoing degree d ≥ 2. Remove � d

2 � edges from
v leaving at least one. Recompute the value mv for each v. If mv = ν(v), there is an
optimal positional strategy which uses the remaining edges from v. Otherwise there is a
positional strategy that uses one of the removed edges.

We can iterate the previous scheme to find an optimal strategy for Player 1. In the sequel we
use the following results from Zwick and Paterson [27]:

– there is a value ν ∈ Q, called the value of the game s.t. Player 2 has a strategy to en-
sure that the value lim infn→∞ 1

n

∑n

i=1 w(ei) is greater than ν and Player 1 has a strategy
to ensure that lim supn→∞

1
n

∑n

i=1 w(ei) is less than ν; this value can be computed in
O(|V |3 × |E| × W) where W is the range of the weight function (assuming the weights
are in the interval [−W..W]). Note that deciding whether this value satisfies ν �� c for
��∈ {=,<,>} for c ∈ Q can be done in O(|V |2 × |E| × W).

– there are optimal memoryless strategies for both players that can be computed in
O(|V |4 × |E| × log(|E|/|V |) × W).

5.3.2 Synthesis of an optimal mask

To solve the Problem 5, we use the most permissive strategy FH we computed in Sect. 4.2.
Given G and FH , we build a weighted graph game WG(G, FH) s.t. the value of the game
is the optimal cost for the set of all masks. Moreover an optimal mask can be obtained by
taking an optimal memoryless strategy in WG(G, FH).

To build WG(G, FH) we first make FH complete. This is to enable FH to synchronize
with G even if the event chosen by G from the current state is not among the one that FH

has chosen to observe. Let (x,L) be a state of FH with L the set of events we have chosen
to observe. For each event λ ∈ Σ \L, we add a transition to a new state x(L), and from x(L)

Form Methods Syst Des

Fig. 8 F ′
H

a transition to (x,L) with the choice of observable events L: this is as if we can observe λ

but we keep the same choice of observable events when λ occurs. Doing this, we obtain the
complete most permissive strategy F ′

H . We do this in order to take into account the current
choice of the mask at each step taken by G which is the time basis.

Each transition of F ′
H is assigned a cost: if it is a transition labeled by λ ∈ Σ , the weight is

zero; if it is labeled by Σ ′ ⊆ Σ , the weight is Cost(Σ ′). In the product G× F ′
H , either G and

F ′
H make a joint synchronized transition (Σ) or only F ′

H makes a transition (labeled in 2Σ).
We can assign a weight to a transition of G× F ′

H by taking the weight of the transition taken
by F ′

H . This way we obtain the weighted automaton WG(G, FH).
Using Zwick and Paterson’s algorithm on WG(G, FH), we can solve the following prob-

lem:

Problem 6 (Optimal Cost Mask)

INPUTS: an automaton G, a secret F .
PROBLEM: Compute the least r ∈ Q s.t. there is a valid mask M s.t. F is opaque w.r.t.
(G, M) and Cost(G, M) ≤ r .

By construction of WG(G, FH) we have:

Theorem 8 Let ν be the value of the game WG(G, FH). Then r = 2 · ν.

Proof By construction of WG(G, FH), one time unit of G is simulated by 2 steps of
WG(G, FH). Hence the result. �

Corollary 2 Problems 5 and 6 can be solved in O(2|G|).

Proof Checking whether c ≤ 2 · ν can be done in O(|V |2 × |E| × W) if the game has |V |
vertices, |E| edges and the maximal constant is W . Computing ν can be done in O(|V |3 ×
|E|×W). Using our construction, WG(G, FH) has at most |Q| ·(2|Q| +(2|Q| ·2|Σ |)) vertices.
Computing the strategies can also be done in polynomial time in the size of the game. �

Form Methods Syst Des

F
ig

.9
T

he
w

ei
gh

te
d

ga
m

e
au

to
m

at
on

Form Methods Syst Des

Fig. 10 The two optimal masks

Example 8 Coming back to Example 6, we first need to complete the game automaton
depicted in Fig. 5(c). This leads to the new automaton F ′

H given in Fig. 8. Further, we
need to make the product between G and F ′

H and to attach to each transition of the game
automaton its weight (we here assume that c(a) = c(b)). The result is depicted in Fig. 9.

Using Zwick and Paterson’s algorithm we obtain that ν = c(a) is 2 and the most permis-
sive weight strategy is obtained by removing the dashed transitions in the game of Fig. 9.
This leads to two different mask M1 and M2 presented in Fig. 10(a) and (b).

6 Conclusion

We have investigated the synthesis of opaque system where the set of observable events
can be chosen. The observable events can be chosen a priori and fixed during the course of
execution of the system, and in this context of static masks, we have provided an algorithm,
Theorem 2 (PSPACE-complete) to compute a maximal sub-alphabet of observable actions
ensuring opacity.

We have also considered the case where the observability of events can be altered during
the course of execution of the system. We have defined a model of dynamic masks determin-
ing whether or not an event is observable after a given observed trace. We have formulated
the notion of valid mask for a mask ensuring opacity and we have proved that verifying
the validity of a finite state mask is PSPACE-complete (Theorem 3). We have addressed a
more general problem of computing the set of all valid masks and solved it using a game-
theoretical approach: the result is that the set of all valid masks can be finitely represented
(Theorem 4 and Corollary 1) and computed in EXPTIME.

Finally we have also addressed the problem of computing an optimal mask. To do this,
we have defined a cost function on masks and we have proved that computing an optimal
mask cost-wise can be done is EXPTIME (Corollary 2). EXPTIME-hardness for Problem 5
is left open but we proved (Theorem 5) that EXPTIME is a lower bound for Problem 4.

In this work, we assumed that the dynamic masks can change the set observable events
only after an observable event has occurred. This assumption fits most applications since the
knowledge of the attacker also depends on observed traces. It would be interesting to inves-
tigate also the case where this decision depends on the actual word generated by the system.
The case where the observability depends on the state of the system can also be considered.
Finally, the notion of semantics of an observed trace used throughout this paper is based
on the assumption that attacker can react, i.e., acquire knowledge, faster than the system’s
evolution. Another extension of this work is to consider various notions of semantics, e.g.,
for other partial observability notions.

Form Methods Syst Des

References

1. Alur R, Černý P, Zdancewic S (2006) Preserving secrecy under refinement. In: ICALP’06: proceedings
(Part II) of the 33rd international colloquium on automata, languages and programming. Springer, Berlin,
pp 107–118

2. Badouel E, Bednarczyk M, Borzyszkowski A, Caillaud B, Darondeau P (2007) Concurrent secrets. Dis-
cret Event Dyn Syst 17:425–446

3. Blanchet B, Abadi M, Fournet C (2005) Automated verification of selected equivalences for security
protocols. In: 20th IEEE symposium on logic in computer science (LICS 2005), Chicago, IL, June 2005.
IEEE Computer Society, Los Alamitos, pp 331–340

4. Bryans J, Koutny M, Mazaré L, Ryan P (2008) Opacity generalised to transition systems. Int J Inf Secur
7(6):421–435

5. Cassez F, Tripakis S (2008) Fault diagnosis with static or dynamic diagnosers. Fundam Inform
88(4):497–540

6. Cassez F, Mullins J, Roux OH (2007) Synthesis of non-interferent systems. In: 4th int conf on mathe-
matical methods, models and architectures for computer network security (MMM-ACNS’07). Commu-
nications in computer and inform science, vol 1. Springer, Berlin, pp 307–321

7. Cassez F, Dubreil J, Marchand H (2009) Dynamic observers for the synthesis of opaque systems. In: Liu
Z, Ravn AP (eds) 7th international symposium on automated technology for verification and analysis
(ATVA’09), Macao SAR, China, October 2009. LNCS, vol 5799. Springer, Berlin, pp 352–367

8. Darmaillacq V, Fernandez J-C, Groz R, Mounier L, Richier J-L (2006) Test generation for network
security rules. In: TestCom 2006. LNCS, vol 3964

9. Dasdan A, Irani S, Gupta R (1999) Efficient algorithms for optimum cycle mean and optimum cost to
time ratio problems. In: Annual ACM IEEE design automation conference, New Orleans, Louisiana,
United States. ACM, New York, pp 37–42

10. Dubreil J, Darondeau P, Marchand H (2008) Opacity enforcing control synthesis. In: Proceedings of
the 9th international workshop on discrete event systems (WODES’08), Göteborg, Sweden, May 2008,
pp 28–35

11. Dubreil J, Jéron T, Marchand H (2009) Monitoring confidentiality by diagnosis techniques. In: European
control conference, Budapest, Hungary, August 2009, pp 2584–2590

12. Dubreil J, Darondeau Ph, Marchand H (2010) Supervisory control for opacity. IEEE Trans Autom Con-
trol 55(5):1089–1100

13. Falcone Y, Fernandez J-C, Mounier L (2011) What can you verify and enforce at runtime? Int J Softw
Tools Technol Transf (STTT)

14. Focardi R, Gorrieri R (2001) Classification of security properties (part I: Information flow). In: Focardi
R, Gorrieri R (eds) Foundations of security analysis and design I: FOSAD 2000 tutorial lectures. Lecture
notes in computer science, vol 2171. Springer, Heidelberg, pp 331–396

15. Hadj-Alouane N, Lafrance S, Lin F, Mullins J, Yeddes M (2005) On the verification of intransitive
noninterference in multilevel security. IEEE Trans Syst Man Cybern, Part B, Cybern 35(5):948–957

16. Karp R (1978) A characterization of the minimum mean cycle in a digraph. Discrete Math 23:309–311
17. Le Guernic G (2007) Information flow testing—the third path towards confidentiality guarantee. In:

Advances in computer science, ASIAN 2007, Computer and network security. LNCS, vol 4846, pp 33–
47

18. Ligatti J, Bauer L, Walker D (2005) Edit automata: enforcement mechanisms for run-time security poli-
cies. Int J Inf Secur 4(1–2):2–16

19. Lowe G (1999) Towards a completeness result for model checking of security protocols. J Comput Secur
7(2–3):89–146

20. Martin D (1975) Borel determinacy. Ann Math 102(2):363–371
21. Mazaré L (2004) Using unification for opacity properties. In: Proceedings of the 4th IFIP WG1.7 work-

shop on issues in the theory of security (WITS’04), Barcelona (Spain), pp 165–176
22. Ricker SL (2006) A question of access: decentralized control and communication strategies for security

policies. In: 8th international workshop on discrete event systems, June 2006, pp 58–63
23. Schneider F (2000) Enforceable security policies. ACM Trans Inf Syst Secur 3(1):30–50
24. Stockmeyer L, Meyer A (1973) Word problems requiring exponential time: Preliminary report. In:

STOC. ACM, New York, pp 1–9
25. Takai S, Oka Y (2008) A formula for the supremal controllable and opaque sublanguage arising in

supervisory control. J Control Meas Syst Integr 1(4):307–312
26. Thomas W (1995) On the synthesis of strategies in infinite games. In: Proc 12th annual symposium on

theoretical aspects of computer science (STACS’95), vol 900. Springer, Berlin, pp 1–13. Invited talk
27. Zwick U, Paterson M (1996) The complexity of mean payoff games on graphs. Theor Comput Sci

158(1–2):343–359

	Synthesis of opaque systems with static and dynamic masks
	Abstract
	Introduction
	Related work
	Our contribution
	Organization of the paper
	Note

	Notation & preliminaries
	Product of automata

	Opacity with static projections
	From trace based to state based opacity
	Checking state based opacity
	Maximum cardinality set for static projections

	Opacity with dynamic projection
	Opacity generalized to dynamic projection
	Dynamic projections and dynamic masks
	Opacity with dynamic projection
	Checking opacity

	Enforcing opacity with dynamic projections
	Most permissive dynamic mask

	Optimal dynamic mask
	Cost of a mask
	Computing the cost of a dynamic mask
	Weighted automata & Karp's algorithm
	Algorithm

	Optimal dynamic mask
	Zwick and Paterson's algorithm
	Synthesis of an optimal mask

	Conclusion
	References

