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Abstract—Our prior work has studied the enforcement of opacity
security properties using insertion functions. Given a system that is not
opaque, the so-called All Insertion Structure (AIS) is a game structure,
played by the system and the insertion function, that embeds all valid
insertion functions. In this paper, we first propose a more compact AIS
that can be constructed with lower computational complexity. We then
introduce the maximum total cost and the maximum mean cost, and use
them as quantitative objectives to solve for optimal insertion functions.
Specifically, we first determine if an insertion function with a finite
total cost exists. If such an insertion function exists, we synthesize an
optimal total-cost insertion function. Otherwise, we construct an optimal
mean-cost insertion function. In either case, we find an optimal insertion
strategy on the AIS, with respect to the corresponding cost objective.
The algorithmic procedures are adapted from results developed for
minimax games and mean payoff games. The resulting optimal strategy
is represented as a subgraph of the AIS that consists of all the system
actions and the optimal insertion actions. Finally, we use this subgraph
to synthesize an optimal insertion function that is encoded as an I/O
automaton.

I. INTRODUCTION

With the rapid development of networked devices and network

technologies, network services have become increasingly popular.

While such services bring much convenience, they often entice users

to share their personal information and thus pose a major privacy

threat to users. In this paper, we study an important security property

called “opacity”, which characterizes whether a given secret can be

inferred by intruders. The notion of opacity was first introduced in

the computer science community [14]. It then quickly became an

active research topic in Discrete Event Systems (DES) as DES theory

provides suitable models and analytical techniques for formulating

and studying opacity properties [3], [4], [15].

We consider opacity properties in DES modeled as finite-state

automata. The settings of an opacity problem are: (i) the system

is partially observable and/or nondeterministic; (ii) the system has

a secret that can be modeled as states, strings, or a combination of

them; (iii) the intruder is an observer that has full knowledge of the

system structure. Opacity holds if for every secret behavior, there

is a non-secret behavior that is observationally-equivalent. Hence, by

observing the observable behavior of the system, the intruder is never

sure whether the secret has occurred or not. Depending on how the

secret is modeled, various notions of opacity are defined. In this paper,

we consider four opacity notions: language-based opacity, initial-state

opacity, current-state opacity, and initial-and-final-state opacity. They

will be collectively referred to as “opacity” as the four notions can

be mapped to one another [21].

Methods for verifying if a given opacity property holds have been

investigated in [6], [13], [16], [21]. If opacity is violated, researchers

have provided various mechanisms for enforcing opacity [2], [6],
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[8], [10], [17], [22]. In our prior work [22], we have proposed to

use insertion functions to enforce opacity. As shown in Figure 1, an

insertion function is a run-time monitoring interface placed at the

output of the system. The intruder is assumed to have no knowledge
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Fig. 1. The insertion mechanism.

of the insertion function at the outset and thus is expecting to observe

behaviors that are consistent with the system structure. We have

formally characterized the specifications for insertion functions as

i-enforceability in [22]. A given insertion function is i-enforcing if

(i) it allows all the system output behaviors; and (ii) every modified

behavior from the insertion function is observationally equivalent to

an existing non-secret behavior.

The “All Insertion Structure” (AIS) was introduced in [22] to

embed all i-enforcing insertion functions. It is a bipartite directed

graph with transition labels that enumerates all the system’s output

events at “system” states and all insertion choices at “insertion” states.

Such a transition structure describes a game where the insertion

function tries to react to the output of the system. This paper builds

on the results in [22] to solve optimal insertion problems. Moreover,

we present a more compact AIS that embeds all i-enforcing insertion

functions using fewer states. Specifically, the state space of the AIS

presented in [22] is exponential in the number of states of the state

estimator used to verify opacity. In this paper, we reduce the state

space of the AIS to polynomial (in the number of states of the state

estimator), thereby achieving significant computational gains. The

more compact AIS still embeds all i-enforcing insertion functions

in its structure. We then consider the synthesis of optimal insertion

functions by introducing quantitative objectives to quantify insertion

functions, a problem not treated in [22].

In this regard, the maximum total cost and the maximum mean

cost are introduced. The first cost captures the total insertion cost

and the second cost considers the average insertion cost (per system

output), both in the worst-case scenario. Specifically, we solve two

optimization problems. We develop a test that determines if there

is an insertion function that has a finite total cost. If such an

insertion function exists, we then minimize the maximum total cost

and synthesize an optimal total-cost insertion function. Otherwise,

we minimize the maximum mean cost and synthesize an optimal

mean-cost insertion function.

The synthesis of an optimal insertion function is solved by first

finding an optimal strategy for the insertion function on the AIS, and

then using the optimal strategy to construct an insertion automaton.

A strategy of the insertion function is a mapping from every historical

interaction of the system and the insertion function to an insertion

action. It uniquely represents a given insertion function. An insertion

automaton, on the other hand, is a compact encoding of an insertion

function that can be easily composed with the system automaton. To
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find an optimal strategy, we leverage results from minimax games

for the maximum total cost objective, and from mean payoff games,

developed in [24], for the maximum mean cost objective. After the

optimal strategy is found, we construct an insertion automaton, which

is an I/O automaton that encodes the optimal insertion function.

Our approach is inspired by [7] and [6], where an optimal dynamic

observer is synthesized for fault diagnosis and opacity enforcement,

respectively. But here we use insertion functions instead of dynamic

observers.

Our main contributions in this paper are twofold. First, we propose

a more compact AIS whose state space is significantly reduced.

Second, we develop a methodology and algorithmic procedures for

the synthesis of an optimal insertion function with respect to the

maximum total cost or the maximum mean cost. The methodology

exploits the structure of the AIS and adapts and extends theoretical

results for games on weighted automata to the problem of opacity en-

forcement by insertion functions. For most definitions and algorithms

in the paper, technical details and illustrative examples are provided

to guide the reader through our discussion.

The remaining sections of this paper are organized as follows.

Section II introduces the system model and defines the opacity

problem. Section III reviews the insertion mechanism and provides

a motivating example related to Location-Based Services (LBS). In

Section IV, we present our new algorithm for the construction of the

All Insertion Structure (AIS). Subsequently, we define in Section V

the maximum total cost and the maximum mean cost for insertion

functions represented as insertion strategies on the AIS. In Section

VI, we consider the maximum total cost and present an algorithm for

synthesizing an optimal total-cost insertion function. In Section VII,

we consider the maximum mean cost and present an algorithm for

synthesizing an optimal mean-cost insertion function. Finally, Section

VIII concludes the paper.

II. OPACITY NOTIONS IN AUTOMATA MODELS

A. Automata Models

We consider opacity problems in DES systems modeled as (po-

tentially nondeterministic) automata. An automaton G = (X ,E, f ,X0)
has a finite set of states, a set of events E, a partial state transition

function f : X ×E → 2X , and a set of initial states X0. The transition

function is extended to domain X ×E∗ in the standard manner [5]. In

opacity problems, the initial state need not be known a priori by the

intruder and thus we include a set of initial states X0 in the definition

of G. The language generated by G is the system behavior that is

defined by L (G,X0) := {t ∈ E∗ : (∃x ∈ X0)[ f (x, t) is defined]}. For

simplicity, we write L (G) if X0 is clearly defined and write L (G,x)
if X0 = {x}. The system is partially observable in general. Hence, the

event set is partitioned into an observable set Eo and an unobservable

set Euo. Given a string t ∈ E∗, its observation is the output of

the natural projection P : E∗ → E∗
o , which is recursively defined as

P(t) = P(t ′e) = P(t ′)P(e) where t ′ ∈ E∗ and e ∈ E. Projection of an

event is P(e) = e if e ∈ Eo and P(e) = ε if e ∈ Euo ∪{ε} where ε is

the empty string.

B. Current-State Opacity

We consider opacity properties in DES modeled as finite-state

automata. The settings of an opacity problem are: (1) G has a secret;

(2) G is partially observable and/or nondeterministic; (3) the intruder

is an observer of G that has full knowledge of the structure of G.

Hence, the intruder, with the knowledge of G and its observation,

can infer the real system behavior by constructing estimates. Opacity

holds if no intruder’s estimate reveals the occurrence of the secret.

In other words, the system is opaque if for any secret behavior, there

exists another non-secret behavior that is observationally equivalent

to the intruder. Therefore, the intruder is never sure whether the secret

has occurred or not.

We consider four notions of opacity studied in the literature:

current-state opacity (CSO), initial-state opacity (ISO), language-

based opacity (LBO), and initial-and-final-state opacity (IFO). Based

on [21], these four notions can be mapped to one and another. Thus,

deriving our results in this paper using one notion of opacity is

sufficient to show that these results apply to the other three notions

of opacity. For simplicity, we choose to present only the formal

definition of current-state opacity and use it to demonstrate our results

in the remainder of this paper.

Definition 1 (Current-State Opacity (CSO)). Given system G =
(X ,E, f ,X0), projection P, and the set of secret states XS ⊆ X, the

system is current-state opaque if ∀i ∈ X0 and ∀t ∈ L (G, i) such that

f (i, t)⊆ XS, ∃ j ∈ X0, ∃t ′ ∈L (G, j) such that: (i) f ( j, t ′)∩(X \XS) 6=
/0 and (ii) P(t) = P(t ′).

To verify opacity, one can build the corresponding forward state

estimator and check if any estimate contains only the secret in-

formation (specifically, current states, initial states, or initial-and-

final-state pairs). A forward state estimator is an automaton where

the state reached by string s ∈ P[L (G)] is the intruder’s [current-

state; initial-state; initial-and-final-state] estimate when the intruder

observes string s. Specifically, CSO and LBO can be verified by the

standard observer automaton defined in Section 2.5.2 of [5]; ISO

and IFO can be verified by the trellis-based initial-state estimator

introduced in [16]. For simplicity, we will call a forward state

estimator an estimator and denote it by E hereafter.

III. INSERTION MECHANISM FOR OPACITY ENFORCEMENT

In [22], we proposed to enforce opacity using insertion functions

when opacity is violated. As shown in Figure 1, the insertion function

is a special monitoring interface that inserts additional events to the

system output when necessary. Given an observed event from the

system, the insertion function possibly inserts extra observable events

before the system event and outputs the resulting string. For the

intruder, the inserted events are indistinguishable from the genuine

observable events of the system. The intruder, observing at the output

of the system, cannot tell if the observed event is inserted or genuine.

A. Insertion Functions and Insertion Automata

While inserted and genuine observable events are indistinguishable

for the intruder, we need to distinguish them for the sake of

discussion. In the formulation of insertion functions, we attach to

each inserted event a virtual insertion label. That is, we denote

inserted events by ei ∈ Ei := {ei : e ∈ Eo} instead of e ∈ Eo. Formally,

an insertion function is defined as a (potentially partial) function

fI : E∗
o ×Eo → E∗

i Eo that outputs a string with inserted events based

on the past observed behavior and the current observed event. Given

string t ∈ L (G) where P(t) = seo, an insertion function is defined

such that fI(s,eo) = sIeo when string sI ∈ E∗
i is inserted before

eo. We also define a string-based insertion function f str
I from fI :

f str
I (ε) = ε and f str

I (sn) = fI(ε,e1) fI(e1,e2) · · · fI(e1e2 . . .en−1,en)
where sn = e1e2 . . .en ∈ E∗

o . Given G, the modified language output

by the insertion function is f str
I (P[L (G)]) = {s̃ ∈ (E∗

i Eo)
∗ : s̃ =

f str
I (s)∧ s ∈ P[L (G)]}.

We encode a given insertion function as an I/O (possibly infinite

state) automaton IA = (Xia,Eo,E
∗
i Eo, fia,qia,x0,ia) and call it an

insertion automaton. Specifically, given IA, the state set is Xia, the

input set is Eo, the output set is a set of strings in E∗
i Eo, the

transition function fia defines the dynamics of IA, the output function
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Fig. 2. Insertion automaton IA.

qia is defined such that qia(x,eo) = sIeo where fia(x0,ia,s) = x, if

fI(s,eo) = sIeo, and finally x0,ia is the initial state. In Figure 2,

we show an insertion automaton that does the following: If the

first output is b or c, then the insertion automaton does not insert

anything; however, if the first output is a, then the insertion automaton

inserts ci before a, and subsequently inserts bi for all subsequent

a. More formally, this insertion function is defined as follows:

fI(ε,a) = cia, fI(s,eo) = bia for seo = ana,n ≥ 1, and fI(s,eo) = eo

for seo ∈ P[L (G)]\{ana,n ≥ 1}.

In general, an insertion automaton can have an infinite number

of states. If an insertion function can be encoded as a finite-state

insertion automaton, we say it is “finite”. Based on the results in

[22], an i-enforcing insertion function exists if and only if a finite

one exists. Hence, with no loss of generality, we consider only finite

insertion functions hereafter.

B. I-Enforceability Property

In [22], we have formally characterized i-enforceability, a prop-

erty that captures the input and output specifications for insertion

functions. Specifically, two requirements must be satisfied. First,

the modified output of an insertion function should be always

consistent with the original system structure. We assume that the

intruder does not know the implementation of the insertion function

at the outset and thus is expecting to observe behaviors that are

consistent with the system structure. Hence, we require that the

modified output f str
I (P[L (G)]) should always be within Lsa f e :=

P[L (G)]\(P[L (G)]\P(LNS))E∗
o , where LNS = {t ∈L (G,X0) : ∃i∈

X0, f (i, t)∩ (X \XS) 6= /0}. The concatenation of E∗
o implements the

idea that “once the secret is revealed, it cannot be recovered.” We

will call the insertions satisfying this specification safe. Second,

the insertion function should not exclude any behavior from the

system. That is, fI(s,eo) should be defined for all seo ∈ P[L (G)].
Such insertions are called admissible. A given insertion function is

called i-enforcing if it satisfies both the safety and the admissibility

requirements. A given opacity property is i-enforceable if there exists

an i-enforcing insertion function.

C. Motivating Example

Systems where the users query servers while requiring the secret

information to be hidden from the servers are suitable for the

insertion mechanism, as i-enforcing insertion functions can conceal

the secret information without interfering with the querying process.

Here, we discuss a simpler version of the example in [23] that

applies the insertion mechanism to the problem of preserving location

privacy in Location-Based Services (LBS). We refer the interested

reader to [23] for a complete discussion. In LBS, the users query

the server using their locations; but at the same time, they may

also want to hide their exact locations from that server [18]. One

popular technique to protect users’ location privacy is the anonymizer

technique, introduced in [11] and adopted in many subsequent works.

The anonymizer generalizes the user’s exact location in a given query

to a region containing that location. While this technique works for

individual queries, the server may still be able to infer the user’s

exact location based on its knowledge of the user’s mobility patterns.

The challenge is how can a user hide its exact location from the LBS

server while continuously using the service.

We explain how to address location privacy as a current-state

opacity problem in DES. First, the automaton model for the LBS

application is obtained from the user’s mobility patterns, where states

are point locations on the physical map and where a transition

exists if the user can move from one location to another (based on

existing walking paths or roads for instance). Figure 3 shows such

an automaton built from a given user’s mobility patterns. The set

of initial states is the entire state space as the user can start from

any location. Transitions are labeled with the region information that

the server receives in the queries under the anonymizer mechanism.

For instance, the server receives region a = {0,1} when the user

moves from location 0 or location 1. The other regions are defined

as b = {2,3},c = {4,5},d = {6,7}. Let us consider the CSO speci-

fication that the user wants to hide its visits to location 6. We let 6

be the only secret state in G.

c

0

1

3

2

4
5

6

d

c

c

c

b
b

b
b

b

a

a

a
a

7

d

d

Fig. 3. The automaton G built from the mobility patterns.

To verify the above CSO requirement, we build in Figure 4 the

current-state estimator of G. Because estimate state {6} contains only

the secret state, G is not opaque. That is, the server will know for

sure that the user is currently visiting location 6 if it receives a query

sequence such as cdd. To avoid revelation of location 6, we propose to

insert fictitious queries to the anonymizer’s original query sequences

using an i-enforcing insertion function. The insertion mechanism is

suitable for LBS as insertion functions can insert fictitious queries and

drop replies to fictitious queries without interfering with the user’s

querying process. Also, i-enforcing insertion functions guarantee that

fictitious queries are inserted in a “convincing” manner where every

modified behavior is consistent with an original mobility pattern.

However, fictitious queries are “costly” as they introduce overhead

in terms of delay and bandwidth, and they also consume energy.

Hence, it is desirable to obtain an optimal insertion function with

respect to a given insertion cost model that captures delay, bandwidth,

and/or energy. In Sections V, VI, and VII, we develop algorithms

that synthesize optimal insertion functions for a general cost model.

The optimal insertion function for the above LBS example will be

presented later in this paper.

IV. THE ALL INSERTION STRUCTURE (AIS)

To synthesize an optimal i-enforcing insertion function, we con-

struct the All Insertion Structure (AIS) and perform optimization on

it. The AIS, first developed in [22], is an automaton that embeds in a
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Fig. 4. The current-state estimator.

finite game structure all deterministic i-enforcing insertion functions

for a given secret of the system. In this section, we propose a

more compact AIS that has a smaller state space. Specifically, the

algorithm for constructing this new AIS comprises three stages: (1)

constructing the i-verifier V ; (2) constructing the unfolded i-verifier

Vu; and (3) pruning and obtaining the AIS. The construction of the

meta-observer, which was an intermediate stage in the construction

algorithm in [22], is removed. With the removal of the meta-observer

construction and other improvements, the state space of the AIS is

reduced from exponential to polynomial, in the state space of the

estimator that verifies opacity. The resulting new AIS is theoretically

more compact than that in [22], with multiple states potentially

combined into one state. To distinguish the two AIS, hereafter, we

relabel the AIS obtained by the algorithm in [22] as AISe. Note that

the AIS constructed in this paper, simply denoted by AIS, has the

same properties as the AISe relative to synthesis. That is, the AIS

embeds all i-enforcing insertion functions, and the AIS is not the

empty automaton if and only if opacity is i-enforceable. This will

become clear after we present the construction procedure.

A. Construction of the AIS

Stage 1: Constructing the i-verifier V

Recall the safety specification for insertion functions that is defined in

Section III. The purpose of constructing the i-verifier is to identify all

safe insertions, i.e., insertions for which the modified output is within

Lsa f e. The construction of the i-verifier in the new algorithm is the

same as that in the algorithm in [22]. It depends on the system’s

estimator that is used to verify opacity. Specifically, consider, for

example, the current-state estimator E in Figure 5(a) for a system

with Eo = {a,b,c}. For simplicity, the states of E are numbered from

0 to 5 (normally, these states would be sets of system states.) Assume

that state 1 reveals the secret, but the other states do not. We build

the desired estimator E d , as shown in Figure 5(b), by deleting in

E all estimates that reveal the secret and taking the accessible part.

Then, we build in Figure 5(c) the feasible estimator E f by adding a

self-loop for every inserted event ei ∈ Ei at every state in E . In the

figure, inserted events are represented using dashed transitions. These

self-loops generate all possible inserted strings while not triggering

real state transitions in the system. Finally, to obtain the i-verifier,

we compose E d and E f using an operation called dashed parallel

composition and construct V := E d ||dE f = (Mv,Eo ∪ Ei,δv,mv,0)
in Figure 5(d). Dashed parallel composition is a special parallel

composition that synchronizes solid transitions e ∈ Eo in E d and all

transitions (e∈ Eo and ei ∈ Ei) in E f if the two transitions are labeled

by the same event, subject to the virtual inserted label. The resulting

transition is dashed if and only if the corresponding transition in E f

is dashed. For example, transition 0
b
−→ 3 in Figure 5(b) synchronizes

0

1 2

aa

a

ba

4

3

5

c

c

b

(a) The current-state estimator E ; state 1
reveals the secret.

0

2 3

4 5

bc

a acb

(b) The desired estimator E d .

0

1 2 3

4 5

a bc

ai,bi,ci
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ai,bi,ci ai,bi,ci
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a
a acb

(c) The feasible estimator E f .
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a bibiai

bi

ai

biai
a

ai bi

b

(d) The i-verifier V .

Fig. 5. The desired estimator, feasible estimator, and the i-verifier V

constructed from the estimator in Figure 5(a).

with (dashed) transition 0
bi−→ 0 in Figure 5(c), resulting in (dashed)

transition (0,0)
bi−→ (3,0) in Figure 5(d).

Stage 2: Constructing the unfolded i-verifier Vu

Having V that identifies all safe insertions, we now “unfold” the

structure of V and obtain the unfolded i-verifier Vu. Consider again

the estimator E in Figure 5(a) and the i-verifier V in Figure 5(d).

The unfolded i-verifier is shown in Figure 6.

The unfolded i-verifier Vu enumerates all safe insertions in a two-

player game structure and thus can be used to identify insertions that

do not react to all strings in P[L (G)]. Specifically, Vu is a finite

game structure describing the interaction between the system and the

insertion function. It is a bipartite graph defined as an automaton

Vu = (Y ∪Z,Eo ∪Mv, fyz ∪ fzy,y0) that is built from E and V .

We follow the terminologies used in game theory and call the

participants “players” and their decisions “actions”. In this game

structure, the first player is the “system player” G that moves at

Y (square-shaped) states; the second player is “insertion function
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Fig. 6. The unfolded i-verifier Vu.

player” I that moves at Z (ellipse-shaped) states. Y and Z states are

information states of players G and I, respectively. That is, each state

contains enough information for the corresponding player to enumer-

ate its actions. A given Y state, say y, is a state m = (md ,m f ) ∈ Mv

in V and each action at y is an output event e ∈ Eo from the system.

Because m f is the real state estimate of the system, we can examine

all event transitions from m f in E to enumerate the possible actions

for player G. On the other hand, a given Z state, say z=(y,e), consists

of its predecessor state y and the action of observable event e that

player G has just made. Because a Y state is also an Mv state in V ,

we also write z = (m,e). Each action at z = (m,e) is a state m′ ∈ Mv

in V that compactly represents a set of inserted strings given by

function Ins(m,m′) = {sI ∈ E∗
i : δv(m,sI) =m′} where m,m′ ∈Mv. To

enumerate all safe insertion strings, we can search on V using m and

e. The transition function from Y to Z is denoted by fyz : Y ×Eo → Z,

and the transition function from Z to Y is denoted fzy : Z×Mv → Y .

As the system is the first player, the initial state of Vu is defined as

y0 = mv,0. The formal procedure for constructing Vu is presented in

Algorithm 1.

Algorithm 1: Construct Vu

input : V = (Mv,Eo ∪Ei,δv,mv,0) and E = (XE ,Eo, fE ,xE ,0)
output: Vu = (Y ∪Z,Eo ∪Mv, fyz ∪ fzy,y0)

1 y0 := mv,0, Y := {y0}
2 for y = (md ,m f ) ∈ Y that have not been examined do

for e ∈ Eo do

if fE (m f ,e) is defined then
fyz(y,e) := (y,e)
Z := Z ∪ fyz(y,e)

3 for z = (y,e) = (m,e) ∈ Z that have not been examined do

for m′ ∈ Mv do

if ∃sI ∈ E∗
i such that m′ = δv(m,sI) and δv(m

′,e) is

defined then

fzy(z,m
′) := δv(m

′,e)
Y := Y ∪ fzy(z,m

′)

4 Go back to step 2; repeat until all accessible part has been built

Stage 3: Pruning and obtaining the All Insertion Structure (AIS)

Once we obtain Vu, we can prune the insertions that do not react to

all strings in P[L (G)]. Observe that there can be blocking Z states

in Vu (e.g., z = ((4,5),c) in Figure 6). Because player I plays at Z

states, a blocking state z ∈ Z means that player I cannot respond to

player G when it reaches z; that is, insertions that lead to z cannot

b

(0,0),c

(0,0)

(2,2) (2,2),a

(5,5)

c

a

(0,0),b (3,3) (3,3),a
a

(0,0),a

(5,1) (5,1),a
a

(4,1),a

a

(4,1)
a

(5,5),c

(4,4) (4,4),b

c

b

(biai)
*

(aibi)
*

e

e  (aici)
*

(ciai)
*

ci

bi

bi

ci

Fig. 7. The AIS. The subgraph without the shaded states is the obtained
optimal strategy.

enforce opacity for the event that was just output by the system.

Therefore, we need to prune z away. When we prune away z, we must

also prune away its incoming actions. However, its incoming actions

should not be pruned because they are actions of player G. Thus, we

have to prune some earlier insertion actions in order to prevent the

AIS from generating this deadlocked state z. But such earlier pruning

may create other deadlocked Z states. Hence, this pruning process

needs to be performed iteratively until no deadlocked states exist.

Finally, we relabel all the insertion actions by the corresponding set

of inserted strings and obtain the AIS. The reader can find in Figure

7 the AIS that is pruned from Vu in Figure 6.

The pruning process can be formally formulated as an instance

of the “Basic Supervisory Control Problem - Nonblocking Case”

(BSCP-NB), in the terminology of [5]. The formal construction is

presented in Algorithm 2. Specifically, given Vu, we mark all Y states

and leave all Z states unmarked, as the insertion function player com-

pletes inserting strings at Y states. In the context of BSCP-NB, we let

the system’s output events (Eo) be uncontrollable events and insertion

actions (Mv) be controllable events as the insertion function player

can only control the insertion actions. The specification language

for BSCP-NB is the language marked by the trimmed automaton of

Vu, denoted by V trim
u . (The “trim” operation consists of taking the

accessible and co-accessible part of an automaton.) The desired AIS

is then obtained as the solution of BSCP-NB, i.e., it is the minimally

restrictive nonblocking supervisor of Vu, which is a sub-automaton

of Vu by construction in this problem instance. In the algorithm, the

notation Y |AIS means the restriction of the set Y to the AIS.

Algorithm 2: Construct the AIS

input : Vu = (Y ∪Z,Eo ∪Mv, fyz ∪ fzy,y0)
output: AIS = (Y ∪Z,Eo ∪2E∗

i , fAIS,yz ∪ fAIS,zy,y0)
1 Mark all the Y states in Vu

2 Let Eo be uncontrollable and Mv be controllable

3 Trim Vu and let V trim
u be the specification automaton

4 Obtain the AIS as the automaton obtained from [Lm(V
trim
u )]↑C

w.r.t L (Vu) by following the ↑C algorithm in [5]

5 for z
m′

−→ y where z = (m,e) ∈ Z|AIS and y ∈ Y |AIS do

Replace transition label m′ by Ins(m,m′)

6 Return the AIS

Notice that, in Algorithm 2, the AIS can be the empty automaton

when [Lm(V
trim
u )]↑C = /0. Moreover, we can verify that the AIS

obtained by Algorithm 2 has the same properties as the AISe in

[22] in terms of: (i) enumerating all i-enforcing insertion functions;

and (ii) the AIS is not the empty automaton if and only if the given

opacity property is i-enforceable. These results follow from the fact

that, by construction, each state in the AIS is an information state
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that contains all the information needed for the corresponding player.

The key difference between the AIS and the AISe is the information

contained in the information states. The state space reduction is

achieved by removing redundant information from the information

states in the AISe. Specifically, the construction of the meta-observer

in [22] potentially introduced states in the AISe that had the same

future behavior. These states are now merged in the AIS. An example

contrasting the AISe with the AIS is given in Chapter IV.8 of [20].

B. Complexity of the Construction Procedure

We use current-state opacity to analyze the space complexity for

the construction of the AIS. Given G with |X | states, the current-

state estimator has at most |XE |= 2|X | states. We build the i-verifier

V by dashed parallel composing two special current-state estimators;

hence, V has at most |Mv| = |XE |
2 states. The unfolded i-verifier

Vu, which uses Mv states to enumerate actions, has worst-case state

space complexity |Xvu
|= |Mv|+ |Eo||Mv|. Specifically, the first and the

second terms account for the information states of player G and player

I, respectively. Finally, the AIS has at most |Xvu
| states because the

AIS is the recognizer for Lm(V
trim
u )↑C. In all, the space complexity

of the AIS is O
(

(|Eo|+1)|XE |
2
)

. Because of the computation of

connectivity between states of V in Stage 2, the time complexity

is O(|Mv|
3) = O(|XE |

6). The worst-case complexity of the AIS is

polynomial while that of the AISe is exponential, both in the state

space of the estimator.

C. Synthesis of One I-enforcing Insertion Function

The AIS embeds all i-enforcing insertion functions in a game

structure. With the AIS, one can synthesize one random i-enforcing

insertion function by selecting states and transitions on the AIS,

in a breadth-first search manner. Specifically, we first select all

outgoing transitions from every Y state and one random inserted

string for every Z state, resulting in an insertion strategy that is also

a sub-automaton of the AIS. Then we use this sub-automaton to

synthesize an insertion automaton. The complexity for constructing

one such insertion function is O(| fAIS|) where | fAIS| is the number

of transitions in fAIS := fAIS,yz ∪ fAIS,zy. Note that | fAIS| is at most

|Eo||XE |
2 + |Eo||XE |

2|XE |
2; the first and the second terms account

for the transitions from Y states and Z states, respectively. For the

formal procedure of this synthesis algorithm, we refer the interested

reader to Algorithm 5 in [22]. The remainder of this paper will focus

on synthesizing optimal insertion functions from the AIS.

V. COST OF AN INSERTION FUNCTION

To perform optimization on the AIS, we first define costs for all

the insertion functions that are embedded in the transition structure of

the AIS. Because our optimization procedures rely on finding optimal

insertion strategies and since an insertion strategy uniquely defines an

insertion function, we will define costs for insertion functions using

insertion strategies.

Specifically, given a game, a player’s strategy is a mapping from

every game history where the player should move to an action. An

insertion strategy, which is a strategy of player I, maps every path

on the AIS that ends at a Z state to an outgoing edge of that Z state.

Definition 2 (Insertion Strategy). An insertion strategy on the AIS

is a mapping π : (Eo2E∗
i )∗Eo → 2E∗

i that assigns an insertion action

Li ∈ 2E∗
i to every history where player I should play.

We can represent an insertion strategy as a (possibly infinite-state)

bipartite graph H = (YH ∪ZH ,Eo∪2E∗
i , fH ,yH,0) where each YH state

enumerates all system output events and each ZH state selects one

insertion action. In some cases, the bipartite graph representation H

can be obtained by selecting outgoing actions for states of the AIS;

such an insertion strategy is called AIS-state-based, or simply state-

based hereafter. In general, we can obtain H by splitting the state

space of the AIS as necessary using standard automata procedures.

Only finite-state Hs are considered for our problem domains in this

paper. In the remainder of this section, we assume all Hs are finite.

In Section VI, we will prove that there exists an optimal state-

based strategy when an optimal one exists for the the considered

cost objective.

A. The weight function w on the AIS

To define costs for insertion strategies, one needs to define a cost

structure on the AIS. We begin with assigning a cost value to every

inserted event. Cost function c : Ei → {0,1,2, . . .Cmax} maps each

inserted event to a finite natural number. The domain of c is extended

to E∗
i in a recursive additive manner by defining c(ε) = 0 and c(se) =

c(s)+ c(e) where s ∈ E∗
i ,e ∈ Ei. With function c, Definition 3 that

follows defines a weight function w on the transitions of the AIS.

The weight value of a transition is the minimum insertion cost.

Definition 3 (Weight Function w on the AIS). Given the AIS =
(Y ∪ Z,Eo ∪ 2E∗

i , fAIS,yz ∪ fAIS,zy,y0) and cost function c, we define

weight function w : (Y ×Eo ×Z)∪ (Z×2E∗
i ×Y )→{0,1,2, . . .Wmax}

that maps each transition to its minimum insertion cost. Specifically,

w(y
eo−→ z) = 0 and w(z

Li−→ y) = min{c(sI) : sI ∈ Li} where y ∈ Y,z ∈
Z,eo ∈ Eo and Li ∈ 2E∗

i is the set of inserted strings that labels the

given transition.

Note that transition y
eo−→ z has weight zero as eo is a system output

event that contains no inserted event. For transition z
Li−→ y, we select

from set Li one string that achieves the minimum cost and assign that

cost to the transition. This minimum is always well defined since there

is at least one insertion string that is bounded in length. Also, recall

from Algorithm 2 that the above Li’s are obtained from Ins(m,m′),
which contains all dashed (i.e., inserted) strings between states m

and m′ in V . By selecting from set Li the string that achieves the

minimum cost, we upper bound Wmax by kdCmax, where kd is the

longest dashed path in V .

Example 1. Consider the AIS in Figure 7. We calculate the weight

function w with respect to cost function c(ai) = c(bi) = 1,c(ci) =

2. Every y
eo−→ z has a zero weight value. For z

Li−→ y, we find the

minimum cost among all strings in Li. Specifically, for transition

((2,2),a)
(aibi)

∗

−−−−→ (4,4), we find the minimum insertion cost c(ε) =
0 and assign the transition weight to zero. Other transitions that

are labeled with (aibi)
∗ or (aici)

∗ are also assigned zero weight.

For transitions labeled with bi or ci, we assign them weight 1 or

2, respectively. Finally, the AIS can be represented as the weighted

graph in Figure 8, after the state names are relabeled by numbers

and transitions are labeled only by the edge weight.

B. The Maximum Total Cost of An Insertion Strategy

We now extend the domain of weight function w to paths on the

AIS and calculate the total cost of a path on the AIS.

Definition 4 (Paths). A path of k rounds that is generated by the AIS

is a sequence of transitions ending at a Y state: p = y0
e1−→ z0

L1−→

y1
e2−→ z1

L2−→·· ·yk−1
ek−→ zk−1

Lk−→ yk, where ei+1 ∈Eo, Li+1 ∈ 2E∗
i , zi =

fAIS,yz(yi,ei+1), and yi+1 = fAIS,zy(zi,Li+1) for 0 ≤ i ≤ k−1. The set

of paths generated by the AIS is Paths(AIS) := ∪k≥0Pathk(AIS),
where Pathk(AIS) is the set of all k-round paths.

Next, we define the total costs of paths.
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Fig. 8. The same AIS as in Figure 7 where information states are relabeled
by numbers, transitions are labeled by the edge weights, and event labels are
omitted. The blue number is the c∗(3) computed in Example 7.

Definition 5 (Total Cost of A Path). Consider path p = y0
e1−→ z0

L1−→

y1
e2−→ z1

L2−→ ·· ·yk−1
ek−→ zk−1

Lk−→ yk ∈ Pathk(AIS). The total cost of

p is w(p) = ∑
k
i=1[w(ei)+w(Li)] = ∑

k
i=1 w(Li).

The last equality holds because w(ei) = 0, ∀ei ∈ Eo.

An insertion strategy has an infinite number of paths in general;

each path leads to a total cost. We consider the worst-case scenario

by looking at the largest total cost. This cost is the maximum total

cost of the insertion function that the insertion strategy encodes.

Definition 6 (Maximum Total Cost of An Insertion Function).

Given insertion function fI , its maximum total cost is ct( fI) :=
ct(H) := limsupk→∞{max{w(p) : p ∈ Sk}}, where Sk := {p : p ∈
∪k

i=0Pathi(AIS)|H)} and H is the insertion strategy that uniquely

defines fI .

The notation Pathk(AIS)|H refers to the restriction of H to k-round

paths. We consider the limit superior because the system generates

arbitrarily long strings in general and the total cost may not converge.

C. Calculation of the Maximum Total Cost

Algorithm 3 computes the maximum total cost for an insertion

function. Given insertion function fI , we first construct insertion

strategy H by selecting actions on the AIS according to fI and

splitting the state space of the AIS when needed. We then compute

ct( fI) directly on the structure of H. In the algorithm we denote by

nH := |YH ∪ZH | the cardinality of the state space of H.

Algorithm 3: The maximum total cost of fI

input : Insertion function fI and cost function c

output: ct( fI)

1 Encode fI as insertion strategy H = (YH ∪ZH ,Eo ∪2E∗
i , fH ,yH,0)

2 Find all strongly connected components C = {C1,C2, . . . ,Ck} on

H

3 for Ci ∈ C do

if ∃u → u′ ∈Ci s.t. w(u → u′) 6= 0 then
Return ∞

4 for u ∈ YH ∪ZH do
Calculate V|nH |−1(u) where

∀u,Vk(u) := max
u→u′

{w(u → u′)+Vk−1(u
′)} and V0(u) := 0

5 Return V|nH |−1(yH,0)

The maximum total cost ct( fI) is the maximum cost-to-go from the

initial state of H. First, we determine if H contains any strongly-

connected component (SCC) that has a non-zero edge weight. If there

exists a non-zero-cost SCC (i.e., an SCC whose sum of all edge

weights is non-zero), then there exists a path that loops in that SCC

and incurs an infinite cost-to-go. In this case, we can immediately

return ct( fI) = ∞. If, otherwise, there is no non-zero-cost SCC, then

the maximum cost-to-go from the initial state equals the maximum

simple-path cost-to-go from the initial state. Hence, we iteratively

compute the (|nH |−1)-step cost-to-go from the initial state.

Denote by | fH | the number of transitions in H. In Algorithm 3, step

2 can be computed by using Tarjan’s strongly connected components

algorithm [19], which runs in O(|nH |+ | fH |). Step 4 can be computed

in O(|nH || fH |). Thus, ct( fI) can be computed in O(|nH || fH |).

Example 2. Consider insertion function fI encoded by the insertion

automaton in Figure 2. We construct insertion strategy H that

defines fI by selecting in Figure 7 all states but the shaded states

and selecting ε for transitions labeled by (biai)
∗,(aibi)

∗,(aici)
∗,

or (ciai)
∗. Given cost function c(ai) = 1,c(bi) = 0,c(ci) = 2, we

calculate ct( fI) by following Algorithm 3. First, we find all the SCC

(i.e.,{(2,2),((2,2),a),(4,4),((4,4),b)},{(3,3),((3,3),a),(5,5),
((5,5),c)},{(4,1),((4,1),a)}) on H. Because the edge weights of all

the SCCs are zero, we then iteratively compute V|nH |−1(0) =V13(0) =
2. Thus, ct( fI) = 2. Now, let us change c(bi) = 1. The edge weights

of the AIS are shown in Figure 8. The SCC {(4,1),((4,1),a)} (or

{7,11} in Figure 8) with the new cost function becomes a non-zero-

cost self-loop. Hence, Algorithm 3 returns infinity.

D. The Maximum Mean Cost of An Insertion Strategy

Consider insertion function fI for system G. The maximum total

cost ct( fI) always exists when G generates only strings of finite

length. However, if G has a cycle, fI may insert one or more events

when G loops in that cycle, thereby resulting in an infinite ct( fI).
In this case, we compute the maximum mean cost of fI , denoted by

c̄( fI), which considers the average insertion cost per system output

event.

Definition 7 (Maximum Mean Cost of An Insertion Function).

Given insertion function fI , the maximum mean cost is c̄( fI) :=
c̄(H) := limsupk→∞{max{ 1

k w(p) : p ∈ Sk}}, where Sk := {p : p ∈

∪k
i=0Pathi(AIS)|H)} and H is the insertion strategy that uniquely

defines fI .

The limit superior is taken as the maximum mean cost may not

converge in the limit. If all paths on H are of finite length, then

c̄(H) = 0.

E. Calculation of the Mean Cost

We calculate c̄( fI) on its insertion strategy H by treating H as a

weighted graph using the given weight function. As seen in Definition

7, the maximum mean cost is defined in terms of rounds. Since a

round corresponds to two steps on H, the maximum mean cost of fI
is double of the “maximum mean weight” of H in the terminology of

weighted graphs. We can calculate c̄( fI) using the version of Karp’s

Theorem presented in [1] for maximum mean weight.1

Theorem 1. (Karp’s Theorem [1]) Consider a weighted directed

graph (X , f ) with |X |= n, where X is the set of vertices and f is the

set of edges. The maximum mean weight for a given initial vertex x0

is,

λ
∗ = max

x∈X
min

0≤k≤n−1

Fn(x)−Fk(x)

n− k
(1)

1The original version of Karp’s Theorem in [12] is for minimum mean
weight.
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where Fk(x) is the maximum weight of an edge progression of length

k from x0 to x.

With the maximum mean weight of H defined, we now compute

c̄( fI) in Algorithm 4. The computation finishes in O(|nH |+ | fH |).

Algorithm 4: The maximum mean cost of fI

input : Insertion function fI and cost function c

output: c̄( fI)

1 Encode fI as insertion strategy H = (YH ∪ZH ,Eo ∪2E∗
i , fH ,yH,0)

2 Compute the maximum mean weight λ ∗ of weighted graph

(YH ∪ZH , fH) using Equation (1)

3 Return 2λ ∗

Example 3. Consider again the insertion function fI in Figure 2; we

construct insertion strategy H for fI by removing the shaded states in

Figure 7. Let the cost function be c(ai) = c(bi) = 1,c(ci) = 2. We have

shown in Example 2 that ct( fI) goes to infinity. Here, we calculate

the maximum mean cost using Algorithm 4. Consider the weighted

graph (YH ∪ZH , fH) of H, as shown in Figure 8 without the shaded

states. The maximum mean weight is λ ∗ =
F14(7)−F12(7)

14−12 = 7−6
2 = 1

2 .

Thus, ct( fI) = 2λ ∗ = 1. The insertion function costs one per system

output in the worst case.

VI. SYNTHESIS OF AN OPTIMAL FINITE-COST INSERTION

FUNCTION

We have introduced the maximum total cost and the maximum

mean cost for insertion functions. Given G that is not opaque, we

want to find an optimal insertion function with respect to each cost.

The two optimization problems are formulated as follows. In the

problem statements, we use H ∈ AIS to denote that insertion strategy

H is obtained from the AIS after potential state splitting.

Problem 1. Consider G that is not opaque and cost function c for

inserted events. Find:

(a) the optimal maximum total cost c∗t = min{ct(H) : H ∈ AIS}
(b) an optimal total-cost insertion function that achieves c∗t

Problem 2. Consider G that is not opaque and cost function c for

inserted events. Find:

(a) the optimal maximum mean cost c̄∗ = min{c̄(H) : H ∈ AIS}
(b) an optimal mean-cost insertion function that achieves c̄∗

Notice that if c∗t is finite, there is no need to solve Problem 2 as

c̄∗ is known to be zero and an optimal total-cost insertion function

is an optimal mean-cost insertion function. Hence, our goal is to

synthesize an optimal total-cost insertion function if c∗t is finite,

and an optimal mean-cost insertion function otherwise. Problem 1

is solved in Sections VI-A to VI-C while Problem 2 is solved in

Section VII.

A. Minimax Game Formulation for An Optimal Total-Cost Insertion

Function

Recall that the AIS is a game structure that enumerates, in alternate

turns, the actions of the system player and those of the insertion func-

tion player. To solve Problem 1, we consider a minimax game on the

AIS and find an optimal insertion strategy. In the minimax game, the

system player tries to maximize liminfk→∞ ∑
k
i=1 w(u

e
−→ u′) and the in-

sertion function player tries to minimize limsupk→∞ ∑
k
i=1 w(u

e
−→ u′),

where u,u′ ∈Y ∪Z and e ∈ Eo ∪2E∗
i . Because the optimal maximum

total cost c∗t is defined in terms of the worst-case scenario, it is

indeed the resulting limsupk→∞ ∑
k
i=1 w(u

e
−→ u′) in the minimax game.

Moreover, the optimal insertion strategy is the resulting strategy that

minimizes limsupk→∞ ∑
k
i=1 w(u

e
−→ u′). As we will show later, there

is an optimal state-based insertion strategy, meaning that the strategy

can be represented as a subgraph of the AIS. We will use the subgraph

to construct an optimal insertion function in Section VI-C.

B. Finding the Optimal Total Cost

The system we consider generates arbitrarily long strings in

general, and thus the game described by the AIS is infinite horizon. In

this section, we solve Problem 1 by solving a finite-horizon minimax

game played on the AIS, where player P1 maximizes the total cost

at Y states and player P2 minimizes the total cost at Z states, for a

finite number of steps. Specifically, we use the optimal total cost for

the finite-horizon minimax game to determine c∗t , and then use c∗t to

find an optimal insertion strategy.

Consider the AIS = (Y ∪ Z,Eo ∪ 2E∗
i , fAIS,yz ∪ fAIS,zy,y0). Denote

by Vk(u) the optimal total cost and by ak(u) an optimal action in the

k-step game assuming the game starts at state u, where u ∈ Y ∪Z.

We calculate the cost and the action using the following recursive

equations.

Vk(u) =











max
(u→u′)

{w(u
e
−→ u′)+Vk−1(u

′)}, if u ∈ Y

min
(u→u′)

{w(u
e
−→ u′)+Vk−1(u

′)}, if u ∈ Z
(2)

where V0(u) = 0 for u ∈ Y ∪Z.

ak(u) =











argmax
(u→u′)

{w(u
e
−→ u′)+Vk−1(u

′)}, if u ∈ Y

argmin
(u→u′)

{w(u
e
−→ u′)+Vk−1(u

′)}, if u ∈ Z
(3)

Note that the strategy found using Equation (3) is not state-based

in general, as the optimal action depends also on k.

It turns out that finite-horizon minimax games can be used to

analyze the infinite-horizon minimax game. Denote by V (y0) the

optimal total cost and by π∗ an optimal strategy for P1 and P2 in

the infinite-horizon minimax game.2 Let n be the number of states

in the AIS. We will prove in Theorem 2 that V (y0) and a state-based

π∗ can be found in the n2Wmax-step game. In the following, we let

V π
k (y0) be the total cost in the k-step game when the game starts at

y0 and strategy π is used, and let π∗
k be an optimal strategy in the

k-step game.

Lemma 1. Let l = n2Wmax. If Vl(y0) < nWmax, then there exists

a state-based optimal strategy πl for the l-step game such that

V
πl

l′
(y0) =V

πl

l
(y0),∀l′ ≥ l.

Proof: Consider outcome path pl on the AIS, resulting from the

players playing π∗
l . Label actions on pl by a1a2 . . .al . We will first

construct a state-based strategy πl that is as good as π∗
l . Then, we

show that if πl is used for l′-step game (∀l′ ≥ l), the optimal total

cost would be the same as that for the l-step game.

Partition pl into a1 . . .(aq1
. . .ar1

) . . .(aq2
. . .ar2

) . . .(aqNc
. . .arNc

)
. . .al , where (aqi

. . .ari
) is the i-th cycle Ci on pl , as shown in Figure

9. Because a cycle is formed within at most n steps, Nc ≥ l/n =
n2Wmax/n = nWmax. First, we argue that each of these cycles has a

zero cycle cost. Suppose there exists a non-zero cost cycle Cnz (say

C1). If xq1
is played by P1, then P1 has a better strategy for which the

outcome path reaches Cnz and loops there until step l. In this case, the

number of times in Cnz must be greater than Nc and the path would

incur a total cost greater than nWmax. This contradicts the hypothesis

2Only one player will move at a given history of the game. Thus, we can
treat the strategies of the two players as a single strategy.
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x1 x2 xq1 xq2

xr1 xr2

xl

C1 C2

a1 a2
xl+1

al

ar1 ar2aq1 aq2

Fig. 9. An outcome path used to illustrate the proofs of Lemmas 1 and 2.

in the statement of the lemma that Vl(y0)< nWmax and that pl is the

optimal outcome path. On the other hand, if xq1
is played by P2, then

P2 has a better strategy for which the outcome path skips Cnz and

loops in a zero-cost cycle for the extra steps. This also contradicts

the hypothesis that pl is the optimal outcome path. Hence, all the

cycles have zero-cost. Then, we argue that actions arNc+1, . . . ,al are

also zero-cost using a similar reasoning. Suppose any of them has a

non-zero cost. Then, P1 has a better strategy for which the outcome

path skips C1 to CNc
and loops in a cycle containing arNc+1, . . . ,al .

Also, P2 has a better strategy that loops in zero-cost cycle CNc
until

step l. Either case contradicts the hypothesis that pl is the optimal

outcome path. Hence, arNc+1, . . . ,al are zero-cost.

Now, let us construct a new path p′l from pl as follows. First,

find on pl the smallest i such that all actions after ari
have a

zero cost. Then, remove cycles C1, . . .Ci−1 and all actions after

ari
. The resulting p′l is a1 . . .aq1−1ar1+1 . . .aq2−1ar2+1 . . .(aqi

. . .ari
),

which ends in cycle Ci. Define state-based strategy πl by assigning

to each state the only outgoing action according to p′l . Use πl as

the strategy for the l-step game. The resulting outcome path would

begin with p′l as a subpath and then loop in Ci until step l. Because

this path differs in pl only in the replacement of some zero-cost

actions, the corresponding total cost is the same as that for pl . That

is, V
πl

l
(y0) =Vl(y0). Therefore, πl is an optimal strategy for the l-step

game.

Finally, because Ci is a zero-cost cycle, using πl for any l′-step

game (l′ ≥ l) would not increase the total cost as the outcome path

will cycle in Ci. Hence, V
πl

l′
(y0) =V

πl

l
(y0),∀l′ ≥ l.

Lemma 2. Let l = n2Wmax. If Vl(y0) ≥ nWmax, then Vk+n(y0) >
Vk(y0),∀k ≥ 0.

Proof: Consider the same setups used in Lemma 1. We partition

pl again into a1 . . .(aq1
. . .ar1

) . . .(aq2
. . .ar2

) . . .(aqNc
. . .arNc

) . . .al .

This time, it is hypothesized that Vl(y0) ≥ nWmax. We will argue

that all the cycle costs are non-zero.

If all the cycles are zero cost, then Vl(y0)< nWmax because at most

n−1 steps do not belong to a cycle. But this violates the hypothesis

of the lemma. Suppose there is a zero-cost cycle Cz (say C2). Then,

if xq2
is played by P1, then P1 can do better by skipping Cz and using

the extra steps on a non-zero cost cycle. On the other hand, if xq2

is played by P2, then P2 can do better by staying in Cz until step l.

Both cases contradict our assumption that pl is an optimal outcome

path. Therefore, all the cycle costs on pl must be non-zero.

Consider the k-step game for a given k ≥ 0 and let pk be an optimal

outcome path for the k-step game. If k < l, all the cycle costs on pk

must be non-zero. Otherwise, for P1, using the first k steps of pl

results in a better strategy; for P2, using pk for the first k step of the

l-step game results in a path better than pl . If k > l, all the cycles

on pk must be non-zero cost as well. Otherwise, if there exists a

zero-cost cycle, then P1 could perform at least as well by skipping

that cycle and using the extra steps on a non-zero cost cycle; P2

would prefer to stay in that zero-cost cycle. Also, if all the cycles

are zero-cost, then Vk(y0)< nWmax, which would lead to the wrong

conclusion that Vk(y0) < Vl(y0). Therefore, if Vl(y0) ≥ nWmax, then

all the cycles on pk are non-zero cost, ∀k ≥ 0.

Now, let us compare Vk+n(y0) and Vk(y0). We partition pk and pk+n

into segments of cycles, as we have done for pl . Because a cycle is

formed within n steps, pk+n must have at least one more cycle than

pk. Since all the cycles are non-zero cost, Vk+n(y0)>Vk(y0).

Theorem 2. Let l = n2Wmax. If Vl(y0)< nWmax, then V (y0) =Vl(y0)
and is achieved by a state-based optimal strategy πl for the l-step

game. Otherwise, V (y0) goes to infinity.

Proof: When Vl(y0)< nWmax, we have constructed in Lemma 1

a state-based optimal strategy πl for the l-step game. Use πl for the

infinite game. We have liml′→∞ V
πl

l′
(y0) =Vl(y0)≤ liml′→∞ V π∗

l′ (y0).
The first equality is according to Lemma 1; the second inequality is

because π∗ is an optimal strategy for the infinite game.

Now, use π∗ for the l-step game. Because πl is the optimal

strategy for the l-step game, we have V π∗

l (y0) ≤ Vl(y0) < nWmax.

Partition the optimal outcome path p∞ for the infinite game into

a1 . . .(aq1
. . .ar1

) . . .(aq2
. . .ar2

) . . ., where (aqi
. . .ari

) is the i-the cycle

Ci on p∞. Because p∞ is an optimal outcome path, the cycle costs

must be either all zero or all non-zero. Otherwise, it would not be

optimal, by the same argument as in the proofs of Lemmas 1 and 2.

Since V π∗

l (y0) < nWmax, all cycles in the first l steps must be zero-

cost according to Lemma 1. Thus, all cycle costs on p∞ are zero

and there are at most n−1 non-zero cost edges on p∞. Now, let us

construct p′∞ from p∞ by skipping cycles until the last non-zero-cost

edge and then looping in a zero-cost cycle for the extra steps. The

total cost of p′∞ is the sum of the first n−1 steps, which equals that

of p∞. That is, p′∞ corresponds to another optimal strategy π ′∗ for

the infinite game. Consequently, we have V (y0) = liml′→∞ V π ′∗

l′ (y0) =

V π ′∗

n−1(y0) =V π ′∗

l (y0)≤V
πl

l
(y0) = liml′→∞ V

πl

l′
(y0).

Finally, combine the above two inequalities. We obtain V (y0) :=
liml′→∞ V π ′∗

l′ (y0) = liml′→∞ V
πl

l′
(y0) = V

πl

l
(y0) = Vl(y0); state-based

strategy πl is optimal for the infinite game and V (y0) =Vl(y0).

On the other hand, when Vl(y0) ≥ nWmax, we have Vk+n(y0) >
Vk(y0),∀k ≥ 0 by Lemma 2. Take k to infinity; the optimal total cost

for the infinite game V (y0) goes to infinity.

We have proven in Theorem 2 that c∗t = V (y0) can be calculated

in a finite-horizon minimax game. Hence, we now combine all the

above results and compute c∗t in Algorithm 5. Notice that if the AIS is

acyclic, then V (y0) will converge within n steps and V (y0)< nWmax;

that is, c∗t < ∞.

Algorithm 5: The optimal total cost c∗t

input : AIS = (Y ∪Z,Eo ∪2E∗
i , fAIS,yz ∪ fAIS,zy,y0) and weight

function w

output: c∗t

1 Compute Vl(y0) for l = n2Wmax using Equation (2)

2 if Vl(y0)< nWmax then
Return Vl(y0)

else
Return ∞

Example 4. Let us consider the AIS in Figure 7 with cost function

c(ai)= 1, c(bi)= 0, c(ci)= 2. We compute c∗t by following Algorithm

5. In step 1, Vl ((0,0))= 2, where l = n2Wmax = 162 ·2= 512. Because

Vl ((0,0)) < nWmax = 32, we have c∗t = Vl ((0,0)) = 2. Now, if we

change c(bi) = 1, then Vl ((0,0)) = 257 > nWmax = 32. Therefore, c∗t
goes to infinity in this case.

Corollary 1. There exists optimal state-based total-cost insertion

functions if and only if Vl(y0)< nWmax.
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Proof: The proof follows directly from Theorem 2.

C. Synthesis of the Optimal Total-Cost Insertion Function

Algorithm 5 calculates c∗t . If c∗t < ∞, then there exists an opti-

mal total-cost insertion function and we will synthesize one using

Algorithm 6. Otherwise, we go to Section VII and solve Problem 2.

When Vl(y0) < nWmax, by Corollary 1, there is an optimal state-

based strategy. In Algorithm 6 that follows, we build optimal state-

based strategy H that selects all the actions at Y states and optimal

actions at Z states from the AIS, resulting in a subgraph of the AIS.

Note that Algorithm 6 computes an optimal insertion strategy in a

breadth-first manner, thereby ignoring Z states that are never reached.

Algorithm 6: Find an optimal total-cost insertion strategy

input : AIS= (Y ∪Z,Eo ∪2E∗
i , fAIS,yz ∪ fAIS,zy,y0) and weight

function w

output: Optimal strategy H = (YH ∪ZH ,Eo ∪2E∗
i , fH ,yH,0)

1 for u ∈ Y ∪Z do

Compute al(u) for l = n2Wmax using Equation (3)

2 yH,0 := y0, YH := {yH,0}
3 for u ∈ YH that has not been examined do

for e ∈ Eo do
fH(u,e) := fAIS,yz(u,e) if fAIS,yz(u,e) is defined

4 for u ∈ ZH that has not been examined do
e := al(u) the optimal action for u

fH(u,e) := fAIS,yz(u,e)

5 Go back to step 2 until all selected states have been examined

Once we obtain optimal state-based insertion strategy H from

Algorithm 6, we build an insertion function from H. Without loss

of generality, the insertion function is encoded as an insertion

automaton, using Algorithm 7.

Algorithm 7: Construct an insertion automaton from an insertion

strategy

input : H = (YH ∪ZH ,Eo ∪2E∗
i , fH ,yH,0), and weight function w

output: IA= (Xia,Eo,E
∗
i Eo, fia,qia,xia,0)

1 xia,0 := yH,0, Xia := {xia,0}
2 for x ∈ Xia that has not been examined do

for x
eo−→ z

Li−→ y where x,y ∈ YH ,z ∈ ZH do
Xia := Xia ∪{y}

sI := {s ∈ Li : c(s) = w(z
Li−→ y)}

fia(x,eo) := y

qia(x,eo) := sIeo

3 Go back to step 2 until all states in Xia have been examined

Example 5. Consider again the AIS in Figure 7 with cost function

c(ai) = 1, c(bi) = 0, c(ci) = 2. We have computed c∗t = 2 in Example

4 and concluded that an optimal total-cost insertion function exists.

In this example, we want to synthesize an optimal total-cost insertion

function. First, we apply Algorithm 6 to obtain an optimal strategy

H. Specifically, we select all outgoing actions for square-shaped

states, action ((0,0),a)
ci−→ (4,1) for state ((0,0),a), and the only

actions for the other ellipse-shaped states. Such a selection results

in an optimal strategy H that is the AIS in Figure 7 without the

shaded states. Then, we apply Algorithm 7 by taking H as input

a/cia

a/bia

b/b

a/a

c/c

a/a

c/c

0

12

135

7

4

b/b

Fig. 10. The optimal IA in Examples 5 and 8, where the state names are
relabeled according to Figure 8.

to construct an insertion automaton. For each y
eo−→ z

Li−→ y′ where

y,y′ ∈ Y |H ,z ∈ Z|H , we first find the inserted string sI from Figure 7

as follows: select ε for transitions labelled with (aibi)
∗ or (biai)

∗;

select the only string for the other transitions. Then, using the chosen

sI , we redefine the transition to be y
eo/sI eo
−−−−→ y′. The resulting optimal

insertion automaton is shown in Figure 10, with state names relabeled

according to Figure 8.

Theorem 3. Applying Algorithms 5, 6 and 7 solves Problem 1(b).

Proof: Algorithm 5 follows from Theorem 2. In Algorithm 6,

an insertion action is chosen for every system output event. Hence,

the resulting insertion strategy is i-enforcing. The strategy is optimal

as all insertion actions are optimized. Since the insertion automaton

in Algorithm 7 is constructed from the optimal strategy, it encodes

an insertion function that achieves c∗t .

In all, given the AIS= (Y ∪Z,Eo ∪ 2E∗
i , fAIS,yz ∪ fAIS,zy,y0), com-

puting an optimal total-cost insertion function can be done in

O(n2| fAIS|Wmax), where n is the number of states in the AIS and

| fAIS| is the number of transitions in fAIS = fAIS,yz ∪ fAIS,zy. In terms

of the size of the state estimator of the system, the complexity is

O(|Eo|
3|XE |

8Wmax).

VII. SYNTHESIS OF AN OPTIMAL MEAN-COST INSERTION

STRATEGY

A. Mean Payoff Game Formulation of the Synthesis Problem

To solve Problem 2, we solve a mean payoff game on the AIS. Sim-

ilarly to Section VI, we let the AIS be our game structure. Here, the

insertion function player tries to minimize limsupk→∞
1
k ∑

k
i=1 w(u

e
−→

u′) and the system player tries to maximize liminfk→∞
1
k ∑

k
i=1 w(u

e
−→

u′) where u,u′ ∈ Y ∪ Z and e ∈ Eo ∪ 2E∗
i . The optimal maximum

mean cost c̄∗ is double of the resulting limsupk→∞
1
k ∑

k
i=1 w(u

e
−→ u′)

because c̄∗ is the worst-case average cost per round. Also, the

optimal insertion strategy is the resulting strategy that minimizes

limsupk→∞
1
k ∑

k
i=1 w(u

e
−→ u′). In a mean payoff game, both players

have state-based optimal strategies [9]. Hence, the resulting optimal

strategy will be a subgraph H of the AIS that selects all the actions of

the system at Y states but only one optimal action at Z states. In the

following, we first find the optimal mean cost c∗ in Section VII-B,

and then synthesize the optimal insertion function that achieves c∗ in

Section VII-C.

B. Finding the Optimal Mean Cost

We begin with solving Problem 2(a) and finding c∗. This problem

is a special instance of the problem of calculating the value of the

mean payoff game on weighted automata that is defined in [9], and

for which a general algorithmic solution is provided in [24]. Hence,

we can compute c∗ by adapting the results in [9] and customizing

the algorithms in [24]. Specifically, here, the AIS is our weighted
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automaton. Computing c∗ on the AIS differs from computing the

game value on a general weighted graph in the following aspects:

(1) the game value is the average cost per step in the game, whereas

c∗ is the average cost per round (i.e., per system output event); (2)

all edge weights in the AIS are non-negative while edge weights in

[24] can be negative; and (3) every edge from a Y state of the AIS

must have a zero weight while edge weights in [24] can be non-zero

in general. Let us denote by V̄ (u) the game value assuming that the

game starts from state u. To find c∗ on the AIS, we first address

differences (2) and (3) by establishing in Theorem 4 a tighter bound

for V̄ (u), where u is a state of the AIS. This bound allows us to

determine the correct value for V̄ (u). Then, we address difference

(1) by doubling the value of V̄ (y0) to obtain c∗ in Algorithm 8.

Theorem 4. For every state u of the AIS, we have

Vk(u)

k
−

n−1

2k
Wmax ≤ V̄ (u)≤

Vk(u)

k
+

n−1

2k
Wmax

Proof: The proof follows the reasoning in the proofs of The-

orems 2.2 and 2.3 in [24] but it is adapted for the special cost

structure of the AIS. Consider a k-step game and the outcome

path that is resulted from players playing π∗
k . The resulting k-step

cost-to-go from state u on the outcome path is Vk(u). We have

Vk(u) ≤ kV̄ (u)+ ⌈ n−1
2 ⌉Wmax. The first term on the right-hand side

is because at most k steps are in a cycle, and if P2 plays according to

its optimal strategy, then the average cost of that cycle is at most

V̄ (u). The second terms is because there can be at most ⌈ n−1
2 ⌉

non-zero steps before the cycle and each of them is at most Wmax.

Similarly, consider that P1 plays according to its optimal strategy.

We have Vk(u) ≥ (k − (n − 1))V̄ (u) + 0. On the right-hand side,

the first term is because there are at least k − (n− 1) steps in the

cycle; since all edge weights are non-negative, the second term,

which is the minimum path weight before the cycle, is zero. Because

V̄ (u)≤ 1
2Wmax, this inequality implies Vk(u)≥ kV̄ (u)− n−1

2 Wmax. By

rearranging the above two inequalities, we have
Vk(u)

k − n−1
2k Wmax ≤

V̄ (u)≤
Vk(u)

k + n−1
2k Wmax.

According to Theorem 4, as k increases, the bound for V̄ (u)
becomes tighter. Because each edge is assumed to have an integer

cost value and that a cycle is formed within at most n steps, V̄ (u)
is a rational number with a denominator at most n. Hence, the

minimum distance between two possible values of V̄ (u) is 1
n(n−1)

.

Now, let us choose k = n3Wmax. The value of V̄ (u) is then bounded in
Vk(u)

k − 1
2n(n−1)

<
Vk(u)

k − n−1
2n3 ≤ V̄ (u)≤

Vk(u)
k + n−1

2n3 <
Vk(u)

k + 1
2n(n−1)

where only one valid value exists. Therefore, we can determine

V̄ (u) by searching within [Vh(y0)/h− 1
2n(n−1)

, Vh(y0)/h+ 1
2n(n−1)

]

for h = n3Wmax. Notice that, because of the differences (2) and (3)

pointed out above, the value of h is reduced by a factor of 4, compared

to that in [24].

Finally, we find the optimal mean cost by doubling the value of

V̄ (y0). The whole process is captured in Algorithm 8.

Algorithm 8: Find the optimal mean cost for state u

input : AIS= (Y ∪Z,Eo ∪2E∗
i , fAIS,yz ∪ fAIS,zy,y0) and the

weight function w and state u ∈ Y ∪Z

output: c∗(u)

1 Compute Vh(u) for h = n3Wmax using Equation (2)

2 Compute the h-step mean cost Vh(u)/h

3 Find the only rational number r with a denominator at most n

that lies in the interval [Vh(u)/h−α,, Vh(u)/h+α] with

α = 1
2n(n−1)

4 Return 2r

In Algorithm 8, c∗(u) is the optimal mean cost assuming that the

game begins at state u. When u = y0, the returned c∗(y0) is the

optimal mean cost c∗. Note that we can compute Vh(y0) by continuing

the computation of Vl(y0) in Algorithm 5, as h = n3Wmax is greater

than l = n2Wmax. In the next section, we will use c∗(u) to compute

the optimal insertion function.

Example 6. Consider again the weighted graph in Figure 8. We

have shown in Example 4 that no optimal total-cost insertion function

exists when the cost structure is c(ai) = 1, c(bi) = 1, c(ci) = 2. Here,

we will synthesize an optimal mean-cost insertion function. In this

example, we first calculate the optimal mean cost by following Algo-

rithm 8. Then, we will finish the synthesis in Examples 7 and 8. In step

1, Vh(0) = 4097 where h = n3Wmax = 163 ·2 = 8192. Dividing Vh(0)
by h, we obtain the h-step mean cost Vh(0)/h = 0.50012. Finally,

searching within the interval [ 4097
8192 −

1
480 ,

4097
8192 +

1
480 ] = [0.498,0.502],

we find that 1
2 is the only valid value. The optimal mean cost is

c∗ = 2 · 1
2 = 1.

C. Synthesis of the Optimal Infinite-Cost Insertion Function

With Algorithm 8 that solves c∗(u),∀u ∈ Y ∪Z, at hand, we now

find an optimal action for a given Z state using Algorithm 9. This

algorithm, adapted from [24], eliminates insertion actions using a

binary search technique. Notice that Algorithm 9 is applied only

to insertion states, i.e., Z states. For every state z ∈ Z, denote by

d(z) the number of outgoing actions at z. By construction, we have

d(z) ≥ 1 because there are no deadlocked states in AIS. Therefore,

the algorithm always outputs a valid action when it terminates.

Algorithm 9: Find the optimal action for state z ∈ Z

input : AIS= (Y ∪Z,Eo ∪2E∗
i , fAIS,yz ∪ fAIS,zy,y0), weight

function w, and a state z ∈ Z

output: Optimal action Li ∈ 2E∗
i

1 Compute c∗(z) by applying Algorithm 8

2 while d(z)> 1 do
Remove ⌈d(z)/2⌉ outgoing actions at z but leave at least

one action

Recompute the optimal cost, say c∗(z)′, for the reduced AIS

if c∗(z)′ = c∗(z) then
The optimal action is one of the remaining actions at z

else
The optimal strategy is one of the removed actions at z

3 if d(z) = 1 then
Return the only one action

Example 7. We calculate the optimal action for state 3 in Figure 8

by following Algorithm 9. In step 1, we compute c∗(3) = 1, as written

in blue next to state 3. In step 2, we choose to remove edge 3 → 6

and recompute the optimal cost using the AIS without the removed

edge. The resulting new optimal cost is 1, which is the same as the

original optimal cost. Therefore, we know that the optimal action is

the only remaining edge 3 → 7.

Once we find an optimal insertion action for every Z state using

Algorithm 9, we construct optimal insertion strategy H in Algorithm

10 that contains all the actions at Y states and only the actions selected

in the optimal strategy at Z states. The resulting H is a subgraph of

the AIS and it will be used to build the optimal insertion automaton

using Algorithm 7.

Theorem 5. Applying Algorithms 8, 9, 10 and 7 solves Problem 2.

Limited circulation. For review only

IEEE-TAC Submission no.: FP-13-810.4

Preprint submitted to IEEE Transactions on Automatic Control. Received: May 22, 2015 18:33:10 PST



Algorithm 10: Find an optimal mean-cost insertion strategy

input : AIS= (Y ∪Z,Eo ∪2E∗
i , fAIS,yz ∪ fAIS,zy,y0) and weight

function w

output: Optimal strategy H = (YH ∪ZH ,Eo ∪2E∗
i , fH ,yH,0)

1 yH,0 := y0, YH := {yH,0}
2 for u ∈ YH that has not been examined do

for e ∈ Eo do
fH(u,e) := fAIS,yz(u,e) if fAIS,yz(u,e) is defined

3 for u ∈ ZH that has not been examined do
fH(u,e) := fAIS,yz(u,e) where e is the optimal action for u

computed using Algorithm 9

4 Go back to step 2 until all selected states have been examined

Proof: Algorithms 8 and 9 follow the results in [24]. In Algo-

rithm 10, all system actions are chosen and all insertion actions are

optimized. Thus, the strategy is i-enforcing and optimal. Finally, the

IA we obtain in Algorithm 7 is optimal because it is constructed from

the strategy in Algorithm 10.

In all, given the AIS= (Y ∪Z,Eo ∪ 2E∗
i , fAIS,yz ∪ fAIS,zy,y0), com-

puting the optimal mean-cost insertion function can be done in

O(n4| fAIS| log(
| fAIS|

n )Wmax), where n is the number of states in the AIS

and | fAIS| is the number of transitions in fAIS = fAIS,yz ∪ fAIS,zy. In

terms of the size of the state estimator of the system, the complexity

is O(|Eo|
5|XE |

12 log(|XE |)Wmax).

Example 8. We have computed in Example 7 the optimal action

for state 3. In this example, we complete the optimal strategy

using Algorithm 10 and build the optimal insertion automaton using

Algorithm 7. In Algorithm 10, all insertion states other than state 3

in the weighted graph have degree 1. Thus, only edge 3 → 6 for state

3 needs to be removed. The resulting optimal state-based strategy H

is the automaton without the shaded states in Figure 8. After H is

obtained, we then follow Algorithm 7 to build the optimal IA from

H, as it was done in Example 5. The resulting optimal insertion

automaton is shown in Figure 10.

Remark 1. When finding the optimal action in Algorithm 9, there

may be other actions that are as good as the selected one. As a

consequence, there may be more than one solution to Problem 2(b).

Our algorithmic procedure returns one of them.

D. Optimal Insertion Function for the Motivating Example

Let us now go back to the motivating example in Section III-C and

compute the optimal insertion function that inserts fictitious queries

by using the techniques developed in this paper. The constructed AIS

has 84 states and thus there exists an i-enforcing insertion function. To

synthesize an optimal insertion function, we assign the same unit cost

to each inserted query, and compute Vl(0) = 28220 using Equation

(2), where l = n2Wmax = 842 ·4 = 28224. Because Vl(0) ≥ nWmax =
336, we conclude from Theorem 1 that there is no optimal total-

cost insertion function. Hence, we solve for an optimal mean-cost

insertion function by applying Algorithms 8, 9, 10 and 7. The optimal

maximum mean cost is found to be 2 and the resulting insertion

automaton is shown in Figure 11. The insertion function encoded in

Figure 11 will provably guarantee that visiting location 6 is never

revealed.

Let us look at how this insertion automaton modifies the prob-

lematic query sequence cdd. The insertion automaton modifies cdd

to cdcicid by inserting cici, which induces the intruder to generate

estimate {4,7}. It is worth noticing that, for this particular query

sequence, the intruder’s new inference does not even include the true

actual location 6. However, this is not generally true.
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Fig. 11. The optimal insertion automaton.

VIII. CONCLUSION

We have considered the problem of synthesizing an optimal

insertion function for enforcing opacity. The All Insertion Structure

(AIS), which embeds all insertion functions, is used as a structure

over which the optimization is performed. First, we proposed a

more efficient algorithm for constructing a more compact AIS than

presented in prior work. To quantify insertion functions, two costs

were considered: the maximum total cost and the maximum mean

cost For each cost, we presented an algorithm that computes the cost

value of a given insertion function. We also presented algorithms that

synthesize an optimal insertion function, for each cost. Specifically,

we first minimize the maximum total cost and determine if an optimal

total-cost insertion function exists. If such an optimal one exists,

we synthesize an optimal total-cost insertion function. Otherwise, we

synthesize an optimal mean-cost insertion function. The synthesis

algorithms presented in this paper were developed by adapting and

customizing results in game theory for minimax games and mean

payoff games on weighted automata. We have also shown how to

encode the resulting optimal insertion function as an I/O automaton.

Finally, we have presented a case study that applies the insertion

mechanism to location privacy in location-based services.
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